blob: 0b541290541f4e5b455aaf8baa3a463e85c2c553 [file] [log] [blame] [edit]
// Copyright (c) 2023-2025 Arm Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Validates correctness of tensor instructions.
#include "source/opcode.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"
namespace spvtools {
namespace val {
namespace {
bool IsRankedTensor(ValidationState_t& _, uint32_t id) {
auto inst = _.FindDef(id);
if (!inst || inst->opcode() != spv::Op::OpTypeTensorARM ||
inst->words().size() <= 3) {
return false;
}
return true;
}
uint64_t GetTensorTypeRank(ValidationState_t& _, uint32_t id) {
auto inst = _.FindDef(id);
if (!inst || inst->opcode() != spv::Op::OpTypeTensorARM ||
inst->words().size() <= 3) {
return 0;
}
uint64_t rank = 0;
if (!_.EvalConstantValUint64(inst->word(3), &rank)) {
return 0;
}
return rank;
}
bool IsScalarTypeOrOrArrayOfScalarType(ValidationState_t& _, uint32_t id) {
auto inst = _.FindDef(id);
if (!inst) {
return false;
}
return _.IsScalarType(id) || (inst->opcode() == spv::Op::OpTypeArray &&
_.IsScalarType(inst->word(2)));
}
spv_result_t ValidateTensorRead(ValidationState_t& _, const Instruction* inst) {
// Result Type must be a scalar type or array of scalar type.
if (!IsScalarTypeOrOrArrayOfScalarType(_, inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be a scalar type or array of "
"scalar type.";
}
// Tensor must be a Ranked Tensor.
auto op_tensor = inst->word(3);
auto inst_tensor = _.FindDef(op_tensor);
if (!inst_tensor || !IsRankedTensor(_, inst_tensor->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Tensor to be an OpTypeTensorARM whose Rank is "
"specified";
}
// The scalar type must be the same as the Element Type of Tensor.
if (_.GetComponentType(inst_tensor->type_id()) !=
_.GetComponentType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be the same as the Element Type of "
"Tensor.";
}
// Coordinates is an array whose Element Type must be an integer type and
// whose Length must be equal to the Rank of Tensor.
auto op_coord = inst->word(4);
auto inst_coord = _.FindDef(op_coord);
auto tensor_rank = GetTensorTypeRank(_, inst_tensor->type_id());
if (!_.IsIntArrayType(inst_coord->type_id(), tensor_rank)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Coordinates to be an array whose Element Type is an "
"integer type and whose Length is equal to the Rank of Tensor.";
}
// Validate Tensor Operands
if (inst->words().size() > 5) {
auto toperands = static_cast<spv::TensorOperandsMask>(inst->word(5));
if ((toperands & spv::TensorOperandsMask::OutOfBoundsValueARM) !=
spv::TensorOperandsMask::MaskNone) {
if (inst->words().size() < 7) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "A value must be provided after the OutOfBoundsValueARM "
"Tensor Operand.";
}
auto op_oobval = inst->word(6);
auto inst_oobval = _.FindDef(op_oobval);
if (_.GetComponentType(inst_tensor->type_id()) !=
_.GetComponentType(inst_oobval->type_id())) {
return _.diag(SPV_ERROR_INVALID_ID, inst)
<< "Expected the type of the OutOfBoundsValueARM value to be "
"the same "
"as the Element Type of Tensor.";
}
}
if ((toperands & spv::TensorOperandsMask::MakeElementAvailableARM) !=
spv::TensorOperandsMask::MaskNone) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "MakeElementAvailableARM cannot be used with OpTensorReadARM.";
}
if (((toperands & spv::TensorOperandsMask::MakeElementVisibleARM) !=
spv::TensorOperandsMask::MaskNone) &&
((toperands & spv::TensorOperandsMask::NonPrivateElementARM) ==
spv::TensorOperandsMask::MaskNone)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "MakeElementAvailableARM requires NonPrivateElementARM.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateTensorWrite(ValidationState_t& _,
const Instruction* inst) {
// Tensor must be a Ranked Tensor.
auto op_tensor = inst->word(1);
auto inst_tensor = _.FindDef(op_tensor);
if (!IsRankedTensor(_, inst_tensor->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Tensor to be an OpTypeTensorARM whose Rank is "
"specified";
}
// Coordinates is an array whose Element Type must be an integer type and
// whose Length must be equal to the Rank of Tensor.
auto op_coord = inst->word(2);
auto inst_coord = _.FindDef(op_coord);
auto tensor_rank = GetTensorTypeRank(_, inst_tensor->type_id());
if (!_.IsIntArrayType(inst_coord->type_id(), tensor_rank)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Coordinates to be an array whose Element Type is an "
"integer type and whose Length is equal to the Rank of Tensor.";
}
// Object must be an object of scalar type or array of scalar type.
// The scalar type must be the same as the Element Type of Tensor.
auto op_object = inst->word(3);
auto inst_object = _.FindDef(op_object);
if (!IsScalarTypeOrOrArrayOfScalarType(_, inst_object->type_id()) ||
(_.GetComponentType(inst_object->type_id()) !=
_.GetComponentType(inst_tensor->type_id()))) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Object to be a scalar type or array of scalar "
"type that is the same as the Element Type of Tensor.";
}
// Validate Tensor Operands
if (inst->words().size() > 5) {
auto toperands = static_cast<spv::TensorOperandsMask>(inst->word(4));
if ((toperands & spv::TensorOperandsMask::OutOfBoundsValueARM) !=
spv::TensorOperandsMask::MaskNone) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "OutOfBoundsValue Tensor Operand not allowed with "
"OpTensorWriteARM.";
}
if ((toperands & spv::TensorOperandsMask::MakeElementVisibleARM) !=
spv::TensorOperandsMask::MaskNone) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "MakeElementVisibleARM not allowed with OpTensorWriteARM.";
}
if (((toperands & spv::TensorOperandsMask::MakeElementAvailableARM) !=
spv::TensorOperandsMask::MaskNone) &&
((toperands & spv::TensorOperandsMask::NonPrivateElementARM) ==
spv::TensorOperandsMask::MaskNone)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "MakeElementAvailableARM requires NonPrivateElementARM.";
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateTensorQuerySize(ValidationState_t& _,
const Instruction* inst) {
// Check result type
if (!_.IsIntScalarType(inst->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Result Type to be an integer type scalar";
}
// Check Tensor operand
auto op_tensor = inst->word(3);
auto inst_tensor = _.FindDef(op_tensor);
if (!inst_tensor || !IsRankedTensor(_, inst_tensor->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Expected Tensor to be an OpTypeTensorARM whose Rank is "
"specified";
}
// Check Dimension operand
auto op_dim = inst->word(4);
auto inst_dim = _.FindDef(op_dim);
if (!spvOpcodeIsConstant(inst_dim->opcode()) ||
!_.IsIntScalarType(inst_dim->type_id())) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Dimension must come from a constant instruction of scalar "
"integer type.";
}
auto inst_tensor_type = _.FindDef(inst_tensor->type_id());
auto op_tensor_rank = inst_tensor_type->word(3);
uint64_t tensor_rank = 0;
uint64_t dim;
if (_.EvalConstantValUint64(op_tensor_rank, &tensor_rank) &&
_.EvalConstantValUint64(op_dim, &dim) && (dim >= tensor_rank)) {
return _.diag(SPV_ERROR_INVALID_DATA, inst)
<< "Dimension (" << dim << ") must be less than the Rank of Tensor ("
<< tensor_rank << ").";
}
return SPV_SUCCESS;
}
} // namespace
// Validates correctness of tensor instructions.
spv_result_t TensorPass(ValidationState_t& _, const Instruction* inst) {
(void)_;
const spv::Op opcode = inst->opcode();
switch (opcode) {
case spv::Op::OpTensorReadARM:
return ValidateTensorRead(_, inst);
case spv::Op::OpTensorWriteARM:
return ValidateTensorWrite(_, inst);
case spv::Op::OpTensorQuerySizeARM:
return ValidateTensorQuerySize(_, inst);
default:
break;
}
return SPV_SUCCESS;
}
} // namespace val
} // namespace spvtools