|  | // Copyright (c) 2018 Google LLC. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "source/opt/scalar_analysis.h" | 
|  |  | 
|  | #include <functional> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <unordered_set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | // Simplifies scalar analysis DAGs. | 
|  | // | 
|  | // 1. Given a node passed to SimplifyExpression we first simplify the graph by | 
|  | // calling SimplifyPolynomial. This groups like nodes following basic arithmetic | 
|  | // rules, so multiple adds of the same load instruction could be grouped into a | 
|  | // single multiply of that instruction. SimplifyPolynomial will traverse the DAG | 
|  | // and build up an accumulator buffer for each class of instruction it finds. | 
|  | // For example take the loop: | 
|  | // for (i=0, i<N; i++) { i+B+23+4+B+C; } | 
|  | // In this example the expression "i+B+23+4+B+C" has four classes of | 
|  | // instruction, induction variable i, the two value unknowns B and C, and the | 
|  | // constants. The accumulator buffer is then used to rebuild the graph using | 
|  | // the accumulation of each type. This example would then be folded into | 
|  | // i+2*B+C+27. | 
|  | // | 
|  | // This new graph contains a single add node (or if only one type found then | 
|  | // just that node) with each of the like terms (or multiplication node) as a | 
|  | // child. | 
|  | // | 
|  | // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take | 
|  | // RecurrentAddExpressions which are with respect to the same loop and fold them | 
|  | // into a single new RecurrentAddExpression with respect to that same loop. An | 
|  | // expression can have multiple RecurrentAddExpression's with respect to | 
|  | // different loops in the case of nested loops. These expressions cannot be | 
|  | // folded further. For example: | 
|  | // | 
|  | // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k) | 
|  | // | 
|  | // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop | 
|  | // and 'i' to the first. If 'j' and 'k' are used in an expression together then | 
|  | // they will be folded into a new RecurrentAddExpression with respect to the | 
|  | // second loop in that expression. | 
|  | // | 
|  | // | 
|  | // 3. If the DAG now only contains a single RecurrentAddExpression we can now | 
|  | // perform a final optimization SimplifyRecurrentAddExpression. This will | 
|  | // transform the entire DAG into a RecurrentAddExpression. Additions to the | 
|  | // RecurrentAddExpression are added to the offset field and multiplications to | 
|  | // the coefficient. | 
|  | // | 
|  |  | 
|  | namespace spvtools { | 
|  | namespace opt { | 
|  |  | 
|  | // Implementation of the functions which are used to simplify the graph. Graphs | 
|  | // of unknowns, multiplies, additions, and constants can be turned into a linear | 
|  | // add node with each term as a child. For instance a large graph built from, X | 
|  | // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the | 
|  | // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent | 
|  | // expression will be simplified to represent the entire graph around a single | 
|  | // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to | 
|  | // i in an expression we can rewrite the graph of that expression to be a single | 
|  | // recurrent expression of (i=1,i++). | 
|  | class SENodeSimplifyImpl { | 
|  | public: | 
|  | SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis, | 
|  | SENode* node_to_simplify) | 
|  | : analysis_(*analysis), | 
|  | node_(node_to_simplify), | 
|  | constant_accumulator_(0) {} | 
|  |  | 
|  | // Return the result of the simplification. | 
|  | SENode* Simplify(); | 
|  |  | 
|  | private: | 
|  | // Recursively descend through the graph to build up the accumulator objects | 
|  | // which are used to flatten the graph. |child| is the node currenty being | 
|  | // traversed and the |negation| flag is used to signify that this operation | 
|  | // was preceded by a unary negative operation and as such the result should be | 
|  | // negated. | 
|  | void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child, | 
|  | bool negation); | 
|  |  | 
|  | // Given a |multiply| node add to the accumulators for the term type within | 
|  | // the |multiply| expression. Will return true if the accumulators could be | 
|  | // calculated successfully. If the |multiply| is in any form other than | 
|  | // unknown*constant then we return false. |negation| signifies that the | 
|  | // operation was preceded by a unary negative. | 
|  | bool AccumulatorsFromMultiply(SENode* multiply, bool negation); | 
|  |  | 
|  | SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, | 
|  | int64_t coefficient_update) const; | 
|  |  | 
|  | // If the graph contains a recurrent expression, ie, an expression with the | 
|  | // loop iterations as a term in the expression, then the whole expression | 
|  | // can be rewritten to be a recurrent expression. | 
|  | SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node); | 
|  |  | 
|  | // Simplify the whole graph by linking like terms together in a single flat | 
|  | // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a | 
|  | // ValueUnknown node (i.e, a load) or a recurrent expression. | 
|  | SENode* SimplifyPolynomial(); | 
|  |  | 
|  | // Each recurrent expression is an expression with respect to a specific loop. | 
|  | // If we have two different recurrent terms with respect to the same loop in a | 
|  | // single expression then we can fold those terms into a single new term. | 
|  | // For instance: | 
|  | // | 
|  | // induction i = 0, i++ | 
|  | // temp = i*10 | 
|  | // array[i+temp] | 
|  | // | 
|  | // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can | 
|  | // become Rec(0,11). | 
|  | SENode* FoldRecurrentAddExpressions(SENode*); | 
|  |  | 
|  | // We can eliminate recurrent expressions which have a coefficient of zero by | 
|  | // replacing them with their offset value. We are able to do this because a | 
|  | // recurrent expression represents the equation coefficient*iterations + | 
|  | // offset. | 
|  | SENode* EliminateZeroCoefficientRecurrents(SENode* node); | 
|  |  | 
|  | // A reference the the analysis which requested the simplification. | 
|  | ScalarEvolutionAnalysis& analysis_; | 
|  |  | 
|  | // The node being simplified. | 
|  | SENode* node_; | 
|  |  | 
|  | // An accumulator of the net result of all the constant operations performed | 
|  | // in a graph. | 
|  | int64_t constant_accumulator_; | 
|  |  | 
|  | // An accumulator for each of the non constant terms in the graph. | 
|  | std::map<SENode*, int64_t> accumulators_; | 
|  | }; | 
|  |  | 
|  | // From a |multiply| build up the accumulator objects. | 
|  | bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply, | 
|  | bool negation) { | 
|  | if (multiply->GetChildren().size() != 2 || | 
|  | multiply->GetType() != SENode::Multiply) | 
|  | return false; | 
|  |  | 
|  | SENode* operand_1 = multiply->GetChild(0); | 
|  | SENode* operand_2 = multiply->GetChild(1); | 
|  |  | 
|  | SENode* value_unknown = nullptr; | 
|  | SENode* constant = nullptr; | 
|  |  | 
|  | // Work out which operand is the unknown value. | 
|  | if (operand_1->GetType() == SENode::ValueUnknown || | 
|  | operand_1->GetType() == SENode::RecurrentAddExpr) | 
|  | value_unknown = operand_1; | 
|  | else if (operand_2->GetType() == SENode::ValueUnknown || | 
|  | operand_2->GetType() == SENode::RecurrentAddExpr) | 
|  | value_unknown = operand_2; | 
|  |  | 
|  | // Work out which operand is the constant coefficient. | 
|  | if (operand_1->GetType() == SENode::Constant) | 
|  | constant = operand_1; | 
|  | else if (operand_2->GetType() == SENode::Constant) | 
|  | constant = operand_2; | 
|  |  | 
|  | // If the expression is not a variable multiplied by a constant coefficient, | 
|  | // exit out. | 
|  | if (!(value_unknown && constant)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int64_t sign = negation ? -1 : 1; | 
|  |  | 
|  | auto iterator = accumulators_.find(value_unknown); | 
|  | int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign; | 
|  | // Add the result of the multiplication to the accumulators. | 
|  | if (iterator != accumulators_.end()) { | 
|  | (*iterator).second += new_value; | 
|  | } else { | 
|  | accumulators_.insert({value_unknown, new_value}); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SENode* SENodeSimplifyImpl::Simplify() { | 
|  | // We only handle graphs with an addition, multiplication, or negation, at the | 
|  | // root. | 
|  | if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply && | 
|  | node_->GetType() != SENode::Negative) | 
|  | return node_; | 
|  |  | 
|  | SENode* simplified_polynomial = SimplifyPolynomial(); | 
|  |  | 
|  | SERecurrentNode* recurrent_expr = nullptr; | 
|  | node_ = simplified_polynomial; | 
|  |  | 
|  | // Fold recurrent expressions which are with respect to the same loop into a | 
|  | // single recurrent expression. | 
|  | simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial); | 
|  |  | 
|  | simplified_polynomial = | 
|  | EliminateZeroCoefficientRecurrents(simplified_polynomial); | 
|  |  | 
|  | // Traverse the immediate children of the new node to find the recurrent | 
|  | // expression. If there is more than one there is nothing further we can do. | 
|  | for (SENode* child : simplified_polynomial->GetChildren()) { | 
|  | if (child->GetType() == SENode::RecurrentAddExpr) { | 
|  | recurrent_expr = child->AsSERecurrentNode(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to count the number of unique recurrent expressions in the DAG to | 
|  | // ensure there is only one. | 
|  | for (auto child_iterator = simplified_polynomial->graph_begin(); | 
|  | child_iterator != simplified_polynomial->graph_end(); ++child_iterator) { | 
|  | if (child_iterator->GetType() == SENode::RecurrentAddExpr && | 
|  | recurrent_expr != child_iterator->AsSERecurrentNode()) { | 
|  | return simplified_polynomial; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (recurrent_expr) { | 
|  | return SimplifyRecurrentAddExpression(recurrent_expr); | 
|  | } | 
|  |  | 
|  | return simplified_polynomial; | 
|  | } | 
|  |  | 
|  | // Traverse the graph to build up the accumulator objects. | 
|  | void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node, | 
|  | SENode* child, | 
|  | bool negation) { | 
|  | int32_t sign = negation ? -1 : 1; | 
|  |  | 
|  | if (child->GetType() == SENode::Constant) { | 
|  | // Collect all the constants and add them together. | 
|  | constant_accumulator_ += | 
|  | child->AsSEConstantNode()->FoldToSingleValue() * sign; | 
|  |  | 
|  | } else if (child->GetType() == SENode::ValueUnknown || | 
|  | child->GetType() == SENode::RecurrentAddExpr) { | 
|  | // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X | 
|  | // and create a new node of count*X after. X can either be a ValueUnknown or | 
|  | // a RecurrentAddExpr. The count for each X is stored in the accumulators_ | 
|  | // map. | 
|  |  | 
|  | auto iterator = accumulators_.find(child); | 
|  | // If we've encountered this term before add to the accumulator for it. | 
|  | if (iterator == accumulators_.end()) | 
|  | accumulators_.insert({child, sign}); | 
|  | else | 
|  | iterator->second += sign; | 
|  |  | 
|  | } else if (child->GetType() == SENode::Multiply) { | 
|  | if (!AccumulatorsFromMultiply(child, negation)) { | 
|  | new_node->AddChild(child); | 
|  | } | 
|  |  | 
|  | } else if (child->GetType() == SENode::Add) { | 
|  | for (SENode* next_child : *child) { | 
|  | GatherAccumulatorsFromChildNodes(new_node, next_child, negation); | 
|  | } | 
|  |  | 
|  | } else if (child->GetType() == SENode::Negative) { | 
|  | SENode* negated_node = child->GetChild(0); | 
|  | GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation); | 
|  | } else { | 
|  | // If we can't work out how to fold the expression just add it back into | 
|  | // the graph. | 
|  | new_node->AddChild(child); | 
|  | } | 
|  | } | 
|  |  | 
|  | SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient( | 
|  | SERecurrentNode* recurrent, int64_t coefficient_update) const { | 
|  | std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode( | 
|  | recurrent->GetParentAnalysis(), recurrent->GetLoop())}; | 
|  |  | 
|  | SENode* new_coefficient = analysis_.CreateMultiplyNode( | 
|  | recurrent->GetCoefficient(), | 
|  | analysis_.CreateConstant(coefficient_update)); | 
|  |  | 
|  | // See if the node can be simplified. | 
|  | SENode* simplified = analysis_.SimplifyExpression(new_coefficient); | 
|  | if (simplified->GetType() != SENode::CanNotCompute) | 
|  | new_coefficient = simplified; | 
|  |  | 
|  | if (coefficient_update < 0) { | 
|  | new_recurrent_node->AddOffset( | 
|  | analysis_.CreateNegation(recurrent->GetOffset())); | 
|  | } else { | 
|  | new_recurrent_node->AddOffset(recurrent->GetOffset()); | 
|  | } | 
|  |  | 
|  | new_recurrent_node->AddCoefficient(new_coefficient); | 
|  |  | 
|  | return analysis_.GetCachedOrAdd(std::move(new_recurrent_node)) | 
|  | ->AsSERecurrentNode(); | 
|  | } | 
|  |  | 
|  | // Simplify all the terms in the polynomial function. | 
|  | SENode* SENodeSimplifyImpl::SimplifyPolynomial() { | 
|  | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; | 
|  |  | 
|  | // Traverse the graph and gather the accumulators from it. | 
|  | GatherAccumulatorsFromChildNodes(new_add.get(), node_, false); | 
|  |  | 
|  | // Fold all the constants into a single constant node. | 
|  | if (constant_accumulator_ != 0) { | 
|  | new_add->AddChild(analysis_.CreateConstant(constant_accumulator_)); | 
|  | } | 
|  |  | 
|  | for (auto& pair : accumulators_) { | 
|  | SENode* term = pair.first; | 
|  | int64_t count = pair.second; | 
|  |  | 
|  | // We can eliminate the term completely. | 
|  | if (count == 0) continue; | 
|  |  | 
|  | if (count == 1) { | 
|  | new_add->AddChild(term); | 
|  | } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) { | 
|  | // If the count is -1 we can just add a negative version of that node, | 
|  | // unless it is a recurrent expression as we would rather the negative | 
|  | // goes on the recurrent expressions children. This makes it easier to | 
|  | // work with in other places. | 
|  | new_add->AddChild(analysis_.CreateNegation(term)); | 
|  | } else { | 
|  | // Output value unknown terms as count*term and output recurrent | 
|  | // expression terms as rec(offset, coefficient + count) offset and | 
|  | // coefficient are the same as in the original expression. | 
|  | if (term->GetType() == SENode::ValueUnknown) { | 
|  | SENode* count_as_constant = analysis_.CreateConstant(count); | 
|  | new_add->AddChild( | 
|  | analysis_.CreateMultiplyNode(count_as_constant, term)); | 
|  | } else { | 
|  | assert(term->GetType() == SENode::RecurrentAddExpr && | 
|  | "We only handle value unknowns or recurrent expressions"); | 
|  |  | 
|  | // Create a new recurrent expression by adding the count to the | 
|  | // coefficient of the old one. | 
|  | new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is only one term in the addition left just return that term. | 
|  | if (new_add->GetChildren().size() == 1) { | 
|  | return new_add->GetChild(0); | 
|  | } | 
|  |  | 
|  | // If there are no terms left in the addition just return 0. | 
|  | if (new_add->GetChildren().size() == 0) { | 
|  | return analysis_.CreateConstant(0); | 
|  | } | 
|  |  | 
|  | return analysis_.GetCachedOrAdd(std::move(new_add)); | 
|  | } | 
|  |  | 
|  | SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) { | 
|  | std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)}; | 
|  |  | 
|  | // A mapping of loops to the list of recurrent expressions which are with | 
|  | // respect to those loops. | 
|  | std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>> | 
|  | loops_to_recurrent{}; | 
|  |  | 
|  | bool has_multiple_same_loop_recurrent_terms = false; | 
|  |  | 
|  | for (SENode* child : *root) { | 
|  | bool negation = false; | 
|  |  | 
|  | if (child->GetType() == SENode::Negative) { | 
|  | child = child->GetChild(0); | 
|  | negation = true; | 
|  | } | 
|  |  | 
|  | if (child->GetType() == SENode::RecurrentAddExpr) { | 
|  | const Loop* loop = child->AsSERecurrentNode()->GetLoop(); | 
|  |  | 
|  | SERecurrentNode* rec = child->AsSERecurrentNode(); | 
|  | if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) { | 
|  | loops_to_recurrent[loop] = {std::make_pair(rec, negation)}; | 
|  | } else { | 
|  | loops_to_recurrent[loop].push_back(std::make_pair(rec, negation)); | 
|  | has_multiple_same_loop_recurrent_terms = true; | 
|  | } | 
|  | } else { | 
|  | new_node->AddChild(child); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!has_multiple_same_loop_recurrent_terms) return root; | 
|  |  | 
|  | for (auto pair : loops_to_recurrent) { | 
|  | std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions = | 
|  | pair.second; | 
|  | const Loop* loop = pair.first; | 
|  |  | 
|  | std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)}; | 
|  | std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)}; | 
|  |  | 
|  | for (auto node_pair : recurrent_expressions) { | 
|  | SERecurrentNode* node = node_pair.first; | 
|  | bool negative = node_pair.second; | 
|  |  | 
|  | if (!negative) { | 
|  | new_coefficient->AddChild(node->GetCoefficient()); | 
|  | new_offset->AddChild(node->GetOffset()); | 
|  | } else { | 
|  | new_coefficient->AddChild( | 
|  | analysis_.CreateNegation(node->GetCoefficient())); | 
|  | new_offset->AddChild(analysis_.CreateNegation(node->GetOffset())); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::unique_ptr<SERecurrentNode> new_recurrent{ | 
|  | new SERecurrentNode(&analysis_, loop)}; | 
|  |  | 
|  | SENode* new_coefficient_simplified = | 
|  | analysis_.SimplifyExpression(new_coefficient.get()); | 
|  |  | 
|  | SENode* new_offset_simplified = | 
|  | analysis_.SimplifyExpression(new_offset.get()); | 
|  |  | 
|  | if (new_coefficient_simplified->GetType() == SENode::Constant && | 
|  | new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() == | 
|  | 0) { | 
|  | return new_offset_simplified; | 
|  | } | 
|  |  | 
|  | new_recurrent->AddCoefficient(new_coefficient_simplified); | 
|  | new_recurrent->AddOffset(new_offset_simplified); | 
|  |  | 
|  | new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent))); | 
|  | } | 
|  |  | 
|  | // If we only have one child in the add just return that. | 
|  | if (new_node->GetChildren().size() == 1) { | 
|  | return new_node->GetChild(0); | 
|  | } | 
|  |  | 
|  | return analysis_.GetCachedOrAdd(std::move(new_node)); | 
|  | } | 
|  |  | 
|  | SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) { | 
|  | if (node->GetType() != SENode::Add) return node; | 
|  |  | 
|  | bool has_change = false; | 
|  |  | 
|  | std::vector<SENode*> new_children{}; | 
|  | for (SENode* child : *node) { | 
|  | if (child->GetType() == SENode::RecurrentAddExpr) { | 
|  | SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient(); | 
|  | // If coefficient is zero then we can eliminate the recurrent expression | 
|  | // entirely and just return the offset as the recurrent expression is | 
|  | // representing the equation coefficient*iterations + offset. | 
|  | if (coefficient->GetType() == SENode::Constant && | 
|  | coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) { | 
|  | new_children.push_back(child->AsSERecurrentNode()->GetOffset()); | 
|  | has_change = true; | 
|  | } else { | 
|  | new_children.push_back(child); | 
|  | } | 
|  | } else { | 
|  | new_children.push_back(child); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!has_change) return node; | 
|  |  | 
|  | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; | 
|  |  | 
|  | for (SENode* child : new_children) { | 
|  | new_add->AddChild(child); | 
|  | } | 
|  |  | 
|  | return analysis_.GetCachedOrAdd(std::move(new_add)); | 
|  | } | 
|  |  | 
|  | SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression( | 
|  | SERecurrentNode* recurrent_expr) { | 
|  | const std::vector<SENode*>& children = node_->GetChildren(); | 
|  |  | 
|  | std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode( | 
|  | recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())}; | 
|  |  | 
|  | // Create and simplify the new offset node. | 
|  | std::unique_ptr<SENode> new_offset{ | 
|  | new SEAddNode(recurrent_expr->GetParentAnalysis())}; | 
|  | new_offset->AddChild(recurrent_expr->GetOffset()); | 
|  |  | 
|  | for (SENode* child : children) { | 
|  | if (child->GetType() != SENode::RecurrentAddExpr) { | 
|  | new_offset->AddChild(child); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Simplify the new offset. | 
|  | SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get()); | 
|  |  | 
|  | // If the child can be simplified, add the simplified form otherwise, add it | 
|  | // via the usual caching mechanism. | 
|  | if (simplified_child->GetType() != SENode::CanNotCompute) { | 
|  | recurrent_node->AddOffset(simplified_child); | 
|  | } else { | 
|  | recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset))); | 
|  | } | 
|  |  | 
|  | recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient()); | 
|  |  | 
|  | return analysis_.GetCachedOrAdd(std::move(recurrent_node)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scalar Analysis simplification public methods. | 
|  | */ | 
|  |  | 
|  | SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) { | 
|  | SENodeSimplifyImpl impl{this, node}; | 
|  |  | 
|  | return impl.Simplify(); | 
|  | } | 
|  |  | 
|  | }  // namespace opt | 
|  | }  // namespace spvtools |