|  | // Copyright (c) 2018 Google LLC. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | // This file implements the SSA rewriting algorithm proposed in | 
|  | // | 
|  | //      Simple and Efficient Construction of Static Single Assignment Form. | 
|  | //      Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013) | 
|  | //      In: Jhala R., De Bosschere K. (eds) | 
|  | //      Compiler Construction. CC 2013. | 
|  | //      Lecture Notes in Computer Science, vol 7791. | 
|  | //      Springer, Berlin, Heidelberg | 
|  | // | 
|  | //      https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6 | 
|  | // | 
|  | // In contrast to common eager algorithms based on dominance and dominance | 
|  | // frontier information, this algorithm works backwards from load operations. | 
|  | // | 
|  | // When a target variable is loaded, it queries the variable's reaching | 
|  | // definition.  If the reaching definition is unknown at the current location, | 
|  | // it searches backwards in the CFG, inserting Phi instructions at join points | 
|  | // in the CFG along the way until it finds the desired store instruction. | 
|  | // | 
|  | // The algorithm avoids repeated lookups using memoization. | 
|  | // | 
|  | // For reducible CFGs, which are a superset of the structured CFGs in SPIRV, | 
|  | // this algorithm is proven to produce minimal SSA.  That is, it inserts the | 
|  | // minimal number of Phi instructions required to ensure the SSA property, but | 
|  | // some Phi instructions may be dead | 
|  | // (https://en.wikipedia.org/wiki/Static_single_assignment_form). | 
|  |  | 
|  | #include "source/opt/ssa_rewrite_pass.h" | 
|  |  | 
|  | #include <memory> | 
|  | #include <sstream> | 
|  |  | 
|  | #include "source/opcode.h" | 
|  | #include "source/opt/cfg.h" | 
|  | #include "source/opt/mem_pass.h" | 
|  | #include "source/opt/types.h" | 
|  | #include "source/util/make_unique.h" | 
|  |  | 
|  | // Debug logging (0: Off, 1-N: Verbosity level).  Replace this with the | 
|  | // implementation done for | 
|  | // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351 | 
|  | // #define SSA_REWRITE_DEBUGGING_LEVEL 3 | 
|  |  | 
|  | #ifdef SSA_REWRITE_DEBUGGING_LEVEL | 
|  | #include <ostream> | 
|  | #else | 
|  | #define SSA_REWRITE_DEBUGGING_LEVEL 0 | 
|  | #endif | 
|  |  | 
|  | namespace spvtools { | 
|  | namespace opt { | 
|  |  | 
|  | namespace { | 
|  | const uint32_t kStoreValIdInIdx = 1; | 
|  | const uint32_t kVariableInitIdInIdx = 1; | 
|  | const uint32_t kDebugDeclareOperandVariableIdx = 5; | 
|  | }  // namespace | 
|  |  | 
|  | std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const { | 
|  | std::ostringstream str; | 
|  | str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id() | 
|  | << "]("; | 
|  | if (phi_args_.size() > 0) { | 
|  | uint32_t arg_ix = 0; | 
|  | for (uint32_t pred_label : cfg->preds(bb_->id())) { | 
|  | uint32_t arg_id = phi_args_[arg_ix++]; | 
|  | str << "[%" << arg_id << ", bb(%" << pred_label << ")] "; | 
|  | } | 
|  | } | 
|  | str << ")"; | 
|  | if (copy_of_ != 0) { | 
|  | str << "  [COPY OF " << copy_of_ << "]"; | 
|  | } | 
|  | str << ((is_complete_) ? "  [COMPLETE]" : "  [INCOMPLETE]"); | 
|  |  | 
|  | return str.str(); | 
|  | } | 
|  |  | 
|  | SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id, | 
|  | BasicBlock* bb) { | 
|  | // TODO(1841): Handle id overflow. | 
|  | uint32_t phi_result_id = pass_->context()->TakeNextId(); | 
|  | auto result = phi_candidates_.emplace( | 
|  | phi_result_id, PhiCandidate(var_id, phi_result_id, bb)); | 
|  | PhiCandidate& phi_candidate = result.first->second; | 
|  | return phi_candidate; | 
|  | } | 
|  |  | 
|  | void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove, | 
|  | uint32_t repl_id) { | 
|  | for (uint32_t user_id : phi_to_remove.users()) { | 
|  | PhiCandidate* user_phi = GetPhiCandidate(user_id); | 
|  | BasicBlock* bb = pass_->context()->get_instr_block(user_id); | 
|  | if (user_phi) { | 
|  | // If the user is a Phi candidate, replace all arguments that refer to | 
|  | // |phi_to_remove.result_id()| with |repl_id|. | 
|  | for (uint32_t& arg : user_phi->phi_args()) { | 
|  | if (arg == phi_to_remove.result_id()) { | 
|  | arg = repl_id; | 
|  | } | 
|  | } | 
|  | } else if (bb->id() == user_id) { | 
|  | // The phi candidate is the definition of the variable at basic block | 
|  | // |bb|.  We must change this to the replacement. | 
|  | WriteVariable(phi_to_remove.var_id(), bb, repl_id); | 
|  | } else { | 
|  | // For regular loads, traverse the |load_replacement_| table looking for | 
|  | // instances of |phi_to_remove|. | 
|  | for (auto& it : load_replacement_) { | 
|  | if (it.second == phi_to_remove.result_id()) { | 
|  | it.second = repl_id; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) { | 
|  | uint32_t same_id = 0; | 
|  | for (uint32_t arg_id : phi_candidate->phi_args()) { | 
|  | if (arg_id == same_id || arg_id == phi_candidate->result_id()) { | 
|  | // This is a self-reference operand or a reference to the same value ID. | 
|  | continue; | 
|  | } | 
|  | if (same_id != 0) { | 
|  | // This Phi candidate merges at least two values.  Therefore, it is not | 
|  | // trivial. | 
|  | assert(phi_candidate->copy_of() == 0 && | 
|  | "Phi candidate transitioning from copy to non-copy."); | 
|  | return phi_candidate->result_id(); | 
|  | } | 
|  | same_id = arg_id; | 
|  | } | 
|  |  | 
|  | // The previous logic has determined that this Phi candidate |phi_candidate| | 
|  | // is trivial.  It is essentially the copy operation phi_candidate->phi_result | 
|  | // = Phi(same, same, same, ...).  Since it is not necessary, we can re-route | 
|  | // all the users of |phi_candidate->phi_result| to all its users, and remove | 
|  | // |phi_candidate|. | 
|  |  | 
|  | // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be | 
|  | // generated. | 
|  | phi_candidate->MarkCopyOf(same_id); | 
|  |  | 
|  | assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments"); | 
|  |  | 
|  | // Since |phi_candidate| always produces |same_id|, replace all the users of | 
|  | // |phi_candidate| with |same_id|. | 
|  | ReplacePhiUsersWith(*phi_candidate, same_id); | 
|  |  | 
|  | return same_id; | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) { | 
|  | assert(phi_candidate->phi_args().size() == 0 && | 
|  | "Phi candidate already has arguments"); | 
|  |  | 
|  | bool found_0_arg = false; | 
|  | for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { | 
|  | BasicBlock* pred_bb = pass_->cfg()->block(pred); | 
|  |  | 
|  | // If |pred_bb| is not sealed, use %0 to indicate that | 
|  | // |phi_candidate| needs to be completed after the whole CFG has | 
|  | // been processed. | 
|  | // | 
|  | // Note that we cannot call GetReachingDef() in these cases | 
|  | // because this would generate an empty Phi candidate in | 
|  | // |pred_bb|.  When |pred_bb| is later processed, a new definition | 
|  | // for |phi_candidate->var_id_| will be lost because | 
|  | // |phi_candidate| will still be reached by the empty Phi. | 
|  | // | 
|  | // Consider: | 
|  | // | 
|  | //       BB %23: | 
|  | //           %38 = Phi[%i](%int_0[%1], %39[%25]) | 
|  | // | 
|  | //           ... | 
|  | // | 
|  | //       BB %25: [Starts unsealed] | 
|  | //       %39 = Phi[%i]() | 
|  | //       %34 = ... | 
|  | //       OpStore %i %34    -> Currdef(%i) at %25 is %34 | 
|  | //       OpBranch %23 | 
|  | // | 
|  | // When we first create the Phi in %38, we add an operandless Phi in | 
|  | // %39 to hold the unknown reaching def for %i. | 
|  | // | 
|  | // But then, when we go to complete %39 at the end.  The reaching def | 
|  | // for %i in %25's predecessor is %38 itself.  So we miss the fact | 
|  | // that %25 has a def for %i that should be used. | 
|  | // | 
|  | // By making the argument %0, we make |phi_candidate| incomplete, | 
|  | // which will cause it to be completed after the whole CFG has | 
|  | // been scanned. | 
|  | uint32_t arg_id = IsBlockSealed(pred_bb) | 
|  | ? GetReachingDef(phi_candidate->var_id(), pred_bb) | 
|  | : 0; | 
|  | phi_candidate->phi_args().push_back(arg_id); | 
|  |  | 
|  | if (arg_id == 0) { | 
|  | found_0_arg = true; | 
|  | } else { | 
|  | // If this argument is another Phi candidate, add |phi_candidate| to the | 
|  | // list of users for the defining Phi. | 
|  | PhiCandidate* defining_phi = GetPhiCandidate(arg_id); | 
|  | if (defining_phi && defining_phi != phi_candidate) { | 
|  | defining_phi->AddUser(phi_candidate->result_id()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we could not fill-in all the arguments of this Phi, mark it incomplete | 
|  | // so it gets completed after the whole CFG has been processed. | 
|  | if (found_0_arg) { | 
|  | phi_candidate->MarkIncomplete(); | 
|  | incomplete_phis_.push(phi_candidate); | 
|  | return phi_candidate->result_id(); | 
|  | } | 
|  |  | 
|  | // Try to remove |phi_candidate|, if it's trivial. | 
|  | uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate); | 
|  | if (repl_id == phi_candidate->result_id()) { | 
|  | // |phi_candidate| is complete and not trivial.  Add it to the | 
|  | // list of Phi candidates to generate. | 
|  | phi_candidate->MarkComplete(); | 
|  | phis_to_generate_.push_back(phi_candidate); | 
|  | } | 
|  |  | 
|  | return repl_id; | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) { | 
|  | assert(bb != nullptr); | 
|  | const auto& bb_it = defs_at_block_.find(bb); | 
|  | if (bb_it != defs_at_block_.end()) { | 
|  | const auto& current_defs = bb_it->second; | 
|  | const auto& var_it = current_defs.find(var_id); | 
|  | if (var_it != current_defs.end()) { | 
|  | return var_it->second; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) { | 
|  | // If |var_id| has a definition in |bb|, return it. | 
|  | uint32_t val_id = GetValueAtBlock(var_id, bb); | 
|  | if (val_id != 0) return val_id; | 
|  |  | 
|  | // Otherwise, look up the value for |var_id| in |bb|'s predecessors. | 
|  | auto& predecessors = pass_->cfg()->preds(bb->id()); | 
|  | if (predecessors.size() == 1) { | 
|  | // If |bb| has exactly one predecessor, we look for |var_id|'s definition | 
|  | // there. | 
|  | val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0])); | 
|  | } else if (predecessors.size() > 1) { | 
|  | // If there is more than one predecessor, this is a join block which may | 
|  | // require a Phi instruction.  This will act as |var_id|'s current | 
|  | // definition to break potential cycles. | 
|  | PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb); | 
|  |  | 
|  | // Set the value for |bb| to avoid an infinite recursion. | 
|  | WriteVariable(var_id, bb, phi_candidate.result_id()); | 
|  | val_id = AddPhiOperands(&phi_candidate); | 
|  | } | 
|  |  | 
|  | // If we could not find a store for this variable in the path from the root | 
|  | // of the CFG, the variable is not defined, so we use undef. | 
|  | if (val_id == 0) { | 
|  | val_id = pass_->GetUndefVal(var_id); | 
|  | if (val_id == 0) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | WriteVariable(var_id, bb, val_id); | 
|  |  | 
|  | return val_id; | 
|  | } | 
|  |  | 
|  | void SSARewriter::SealBlock(BasicBlock* bb) { | 
|  | auto result = sealed_blocks_.insert(bb); | 
|  | (void)result; | 
|  | assert(result.second == true && | 
|  | "Tried to seal the same basic block more than once."); | 
|  | } | 
|  |  | 
|  | void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) { | 
|  | auto opcode = inst->opcode(); | 
|  | assert((opcode == SpvOpStore || opcode == SpvOpVariable) && | 
|  | "Expecting a store or a variable definition instruction."); | 
|  |  | 
|  | uint32_t var_id = 0; | 
|  | uint32_t val_id = 0; | 
|  | if (opcode == SpvOpStore) { | 
|  | (void)pass_->GetPtr(inst, &var_id); | 
|  | val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx); | 
|  | } else if (inst->NumInOperands() >= 2) { | 
|  | var_id = inst->result_id(); | 
|  | val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx); | 
|  | } | 
|  | if (pass_->IsTargetVar(var_id)) { | 
|  | WriteVariable(var_id, bb, val_id); | 
|  | pass_->context()->get_debug_info_mgr()->AddDebugValueIfVarDeclIsVisible( | 
|  | inst, var_id, val_id, inst, &decls_invisible_to_value_assignment_); | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': " | 
|  | << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) | 
|  | << "\n"; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) { | 
|  | // Get the pointer that we are using to load from. | 
|  | uint32_t var_id = 0; | 
|  | (void)pass_->GetPtr(inst, &var_id); | 
|  |  | 
|  | // Get the immediate reaching definition for |var_id|. | 
|  | // | 
|  | // In the presence of variable pointers, the reaching definition may be | 
|  | // another pointer.  For example, the following fragment: | 
|  | // | 
|  | //  %2 = OpVariable %_ptr_Input_float Input | 
|  | // %11 = OpVariable %_ptr_Function__ptr_Input_float Function | 
|  | //       OpStore %11 %2 | 
|  | // %12 = OpLoad %_ptr_Input_float %11 | 
|  | // %13 = OpLoad %float %12 | 
|  | // | 
|  | // corresponds to the pseudo-code: | 
|  | // | 
|  | // layout(location = 0) in flat float *%2 | 
|  | // float %13; | 
|  | // float *%12; | 
|  | // float **%11; | 
|  | // *%11 = %2; | 
|  | // %12 = *%11; | 
|  | // %13 = *%12; | 
|  | // | 
|  | // which ultimately, should correspond to: | 
|  | // | 
|  | // %13 = *%2; | 
|  | // | 
|  | // During rewriting, the pointer %12 is found to be replaceable by %2 (i.e., | 
|  | // load_replacement_[12] is 2). However, when processing the load | 
|  | // %13 = *%12, the type of %12's reaching definition is another float | 
|  | // pointer (%2), instead of a float value. | 
|  | // | 
|  | // When this happens, we need to continue looking up the reaching definition | 
|  | // chain until we get to a float value or a non-target var (i.e. a variable | 
|  | // that cannot be SSA replaced, like %2 in this case since it is a function | 
|  | // argument). | 
|  | analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr(); | 
|  | analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr(); | 
|  | analysis::Type* load_type = type_mgr->GetType(inst->type_id()); | 
|  | uint32_t val_id = 0; | 
|  | bool found_reaching_def = false; | 
|  | while (!found_reaching_def) { | 
|  | if (!pass_->IsTargetVar(var_id)) { | 
|  | // If the variable we are loading from is not an SSA target (globals, | 
|  | // function parameters), do nothing. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | val_id = GetReachingDef(var_id, bb); | 
|  | if (val_id == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the reaching definition is a pointer type different than the type of | 
|  | // the instruction we are analyzing, then it must be a reference to another | 
|  | // pointer (otherwise, this would be invalid SPIRV).  We continue | 
|  | // de-referencing it by making |val_id| be |var_id|. | 
|  | // | 
|  | // NOTE: if there is no reaching definition instruction, it means |val_id| | 
|  | // is an undef. | 
|  | Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id); | 
|  | if (reaching_def_inst && | 
|  | !type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) { | 
|  | var_id = val_id; | 
|  | } else { | 
|  | found_reaching_def = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Schedule a replacement for the result of this load instruction with | 
|  | // |val_id|. After all the rewriting decisions are made, every use of | 
|  | // this load will be replaced with |val_id|. | 
|  | uint32_t load_id = inst->result_id(); | 
|  | assert(load_replacement_.count(load_id) == 0); | 
|  | load_replacement_[load_id] = val_id; | 
|  | PhiCandidate* defining_phi = GetPhiCandidate(val_id); | 
|  | if (defining_phi) { | 
|  | defining_phi->AddUser(load_id); | 
|  | } | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | std::cerr << "\tFound load: " | 
|  | << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) | 
|  | << " (replacement for %" << load_id << " is %" << val_id << ")\n"; | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SSARewriter::PrintPhiCandidates() const { | 
|  | std::cerr << "\nPhi candidates:\n"; | 
|  | for (const auto& phi_it : phi_candidates_) { | 
|  | std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": " | 
|  | << phi_it.second.PrettyPrint(pass_->cfg()) << "\n"; | 
|  | } | 
|  | std::cerr << "\n"; | 
|  | } | 
|  |  | 
|  | void SSARewriter::PrintReplacementTable() const { | 
|  | std::cerr << "\nLoad replacement table\n"; | 
|  | for (const auto& it : load_replacement_) { | 
|  | std::cerr << "\t%" << it.first << " -> %" << it.second << "\n"; | 
|  | } | 
|  | std::cerr << "\n"; | 
|  | } | 
|  |  | 
|  | bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) { | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n"; | 
|  | std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) | 
|  | << "\n"; | 
|  | #endif | 
|  |  | 
|  | for (auto& inst : *bb) { | 
|  | auto opcode = inst.opcode(); | 
|  | if (opcode == SpvOpStore || opcode == SpvOpVariable) { | 
|  | ProcessStore(&inst, bb); | 
|  | } else if (inst.opcode() == SpvOpLoad) { | 
|  | if (!ProcessLoad(&inst, bb)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Seal |bb|. This means that all the stores in it have been scanned and | 
|  | // it's ready to feed them into its successors. | 
|  | SealBlock(bb); | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | PrintPhiCandidates(); | 
|  | PrintReplacementTable(); | 
|  | std::cerr << "\n\n"; | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) { | 
|  | uint32_t val_id = repl.second; | 
|  | auto it = load_replacement_.find(val_id); | 
|  | while (it != load_replacement_.end()) { | 
|  | val_id = it->second; | 
|  | it = load_replacement_.find(val_id); | 
|  | } | 
|  | return val_id; | 
|  | } | 
|  |  | 
|  | uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate, | 
|  | uint32_t ix) { | 
|  | assert(phi_candidate->IsReady() && | 
|  | "Tried to get the final argument from an incomplete/trivial Phi"); | 
|  |  | 
|  | uint32_t arg_id = phi_candidate->phi_args()[ix]; | 
|  | while (arg_id != 0) { | 
|  | PhiCandidate* phi_user = GetPhiCandidate(arg_id); | 
|  | if (phi_user == nullptr || phi_user->IsReady()) { | 
|  | // If the argument is not a Phi or it's a Phi candidate ready to be | 
|  | // emitted, return it. | 
|  | return arg_id; | 
|  | } | 
|  | arg_id = phi_user->copy_of(); | 
|  | } | 
|  |  | 
|  | assert(false && | 
|  | "No Phi candidates in the copy-of chain are ready to be generated"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool SSARewriter::ApplyReplacements() { | 
|  | bool modified = false; | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 | 
|  | std::cerr << "\n\nApplying replacement decisions to IR\n\n"; | 
|  | PrintPhiCandidates(); | 
|  | PrintReplacementTable(); | 
|  | std::cerr << "\n\n"; | 
|  | #endif | 
|  |  | 
|  | // Add Phi instructions from completed Phi candidates. | 
|  | std::vector<Instruction*> generated_phis; | 
|  | for (const PhiCandidate* phi_candidate : phis_to_generate_) { | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 | 
|  | std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg()) | 
|  | << "\n"; | 
|  | #endif | 
|  |  | 
|  | assert(phi_candidate->is_complete() && | 
|  | "Tried to instantiate a Phi instruction from an incomplete Phi " | 
|  | "candidate"); | 
|  |  | 
|  | auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id()); | 
|  |  | 
|  | // Build the vector of operands for the new OpPhi instruction. | 
|  | uint32_t type_id = pass_->GetPointeeTypeId(local_var); | 
|  | std::vector<Operand> phi_operands; | 
|  | uint32_t arg_ix = 0; | 
|  | std::unordered_map<uint32_t, uint32_t> already_seen; | 
|  | for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) { | 
|  | uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++); | 
|  | if (already_seen.count(pred_label) == 0) { | 
|  | phi_operands.push_back( | 
|  | {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}}); | 
|  | phi_operands.push_back( | 
|  | {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}}); | 
|  | already_seen[pred_label] = op_val_id; | 
|  | } else { | 
|  | // It is possible that there are two edges from the same parent block. | 
|  | // Since the OpPhi can have only one entry for each parent, we have to | 
|  | // make sure the two edges are consistent with each other. | 
|  | assert(already_seen[pred_label] == op_val_id && | 
|  | "Inconsistent value for duplicate edges."); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate a new OpPhi instruction and insert it in its basic | 
|  | // block. | 
|  | std::unique_ptr<Instruction> phi_inst( | 
|  | new Instruction(pass_->context(), SpvOpPhi, type_id, | 
|  | phi_candidate->result_id(), phi_operands)); | 
|  | generated_phis.push_back(phi_inst.get()); | 
|  | pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst); | 
|  | pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb()); | 
|  | auto insert_it = phi_candidate->bb()->begin(); | 
|  | insert_it = insert_it.InsertBefore(std::move(phi_inst)); | 
|  | pass_->context()->get_decoration_mgr()->CloneDecorations( | 
|  | phi_candidate->var_id(), phi_candidate->result_id(), | 
|  | {SpvDecorationRelaxedPrecision}); | 
|  |  | 
|  | // Add DebugValue for the new OpPhi instruction. | 
|  | insert_it->SetDebugScope(local_var->GetDebugScope()); | 
|  | pass_->context()->get_debug_info_mgr()->AddDebugValueIfVarDeclIsVisible( | 
|  | &*insert_it, phi_candidate->var_id(), phi_candidate->result_id(), | 
|  | &*insert_it, &decls_invisible_to_value_assignment_); | 
|  |  | 
|  | modified = true; | 
|  | } | 
|  |  | 
|  | // Scan uses for all inserted Phi instructions. Do this separately from the | 
|  | // registration of the Phi instruction itself to avoid trying to analyze | 
|  | // uses of Phi instructions that have not been registered yet. | 
|  | for (Instruction* phi_inst : generated_phis) { | 
|  | pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst); | 
|  | } | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | std::cerr << "\n\nReplacing the result of load instructions with the " | 
|  | "corresponding SSA id\n\n"; | 
|  | #endif | 
|  |  | 
|  | // Apply replacements from the load replacement table. | 
|  | for (auto& repl : load_replacement_) { | 
|  | uint32_t load_id = repl.first; | 
|  | uint32_t val_id = GetReplacement(repl); | 
|  | Instruction* load_inst = | 
|  | pass_->context()->get_def_use_mgr()->GetDef(load_id); | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 | 
|  | std::cerr << "\t" | 
|  | << load_inst->PrettyPrint( | 
|  | SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) | 
|  | << "  (%" << load_id << " -> %" << val_id << ")\n"; | 
|  | #endif | 
|  |  | 
|  | // Remove the load instruction and replace all the uses of this load's | 
|  | // result with |val_id|.  Kill any names or decorates using the load's | 
|  | // result before replacing to prevent incorrect replacement in those | 
|  | // instructions. | 
|  | pass_->context()->KillNamesAndDecorates(load_id); | 
|  | pass_->context()->ReplaceAllUsesWith(load_id, val_id); | 
|  | pass_->context()->KillInst(load_inst); | 
|  | modified = true; | 
|  | } | 
|  |  | 
|  | return modified; | 
|  | } | 
|  |  | 
|  | void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) { | 
|  | assert(phi_candidate->phi_args().size() > 0 && | 
|  | "Phi candidate should have arguments"); | 
|  |  | 
|  | uint32_t ix = 0; | 
|  | for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { | 
|  | BasicBlock* pred_bb = pass_->cfg()->block(pred); | 
|  | uint32_t& arg_id = phi_candidate->phi_args()[ix++]; | 
|  | if (arg_id == 0) { | 
|  | // If |pred_bb| is still not sealed, it means it's unreachable. In this | 
|  | // case, we just use Undef as an argument. | 
|  | arg_id = IsBlockSealed(pred_bb) | 
|  | ? GetReachingDef(phi_candidate->var_id(), pred_bb) | 
|  | : pass_->GetUndefVal(phi_candidate->var_id()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This candidate is now completed. | 
|  | phi_candidate->MarkComplete(); | 
|  |  | 
|  | // If |phi_candidate| is not trivial, add it to the list of Phis to | 
|  | // generate. | 
|  | if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) { | 
|  | // If we could not remove |phi_candidate|, it means that it is complete | 
|  | // and not trivial. Add it to the list of Phis to generate. | 
|  | assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial."); | 
|  | phis_to_generate_.push_back(phi_candidate); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SSARewriter::FinalizePhiCandidates() { | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 | 
|  | std::cerr << "Finalizing Phi candidates:\n\n"; | 
|  | PrintPhiCandidates(); | 
|  | std::cerr << "\n"; | 
|  | #endif | 
|  |  | 
|  | // Now, complete the collected candidates. | 
|  | while (incomplete_phis_.size() > 0) { | 
|  | PhiCandidate* phi_candidate = incomplete_phis_.front(); | 
|  | incomplete_phis_.pop(); | 
|  | FinalizePhiCandidate(phi_candidate); | 
|  | } | 
|  | } | 
|  |  | 
|  | Pass::Status SSARewriter::AddDebugValuesForInvisibleDebugDecls(Function* fp) { | 
|  | // For the cases the value assignment is invisible to DebugDeclare e.g., | 
|  | // the argument passing for an inlined function. | 
|  | // | 
|  | // Before inlining foo(int x): | 
|  | //   a = 3; | 
|  | //   foo(3); | 
|  | // After inlining: | 
|  | //   a = 3; | 
|  | //   foo and x disappeared but we want to specify "DebugValue: %x = %int_3". | 
|  | // | 
|  | // We want to specify the value for the variable using |defs_at_block_[bb]|, | 
|  | // where |bb| is the basic block contains the decl. | 
|  | DominatorAnalysis* dom_tree = pass_->context()->GetDominatorAnalysis(fp); | 
|  | Pass::Status status = Pass::Status::SuccessWithoutChange; | 
|  | for (auto* decl : decls_invisible_to_value_assignment_) { | 
|  | uint32_t var_id = | 
|  | decl->GetSingleWordOperand(kDebugDeclareOperandVariableIdx); | 
|  | auto* var = pass_->get_def_use_mgr()->GetDef(var_id); | 
|  | if (var->opcode() == SpvOpFunctionParameter) continue; | 
|  |  | 
|  | auto* bb = pass_->context()->get_instr_block(decl); | 
|  | uint32_t value_id = GetValueAtBlock(var_id, bb); | 
|  | Instruction* value = nullptr; | 
|  | if (value_id) value = pass_->get_def_use_mgr()->GetDef(value_id); | 
|  |  | 
|  | // If |value| is defined before the function body, it dominates |decl|. | 
|  | // If |value| dominates |decl|, we can set it as DebugValue. | 
|  | if (value && (pass_->context()->get_instr_block(value) == nullptr || | 
|  | dom_tree->Dominates(value, decl))) { | 
|  | if (pass_->context()->get_debug_info_mgr()->AddDebugValueForDecl( | 
|  | decl, value->result_id(), decl, value) == nullptr) { | 
|  | return Pass::Status::Failure; | 
|  | } | 
|  | } else { | 
|  | // If |value| in the same basic block does not dominate |decl|, we can | 
|  | // assign the value in the immediate dominator. | 
|  | value_id = GetValueAtBlock(var_id, dom_tree->ImmediateDominator(bb)); | 
|  | if (value_id) value = pass_->get_def_use_mgr()->GetDef(value_id); | 
|  | if (value_id && | 
|  | pass_->context()->get_debug_info_mgr()->AddDebugValueForDecl( | 
|  | decl, value_id, decl, value) == nullptr) { | 
|  | return Pass::Status::Failure; | 
|  | } | 
|  | } | 
|  |  | 
|  | // DebugDeclares of target variables will be removed by | 
|  | // SSARewritePass::Process(). | 
|  | if (!pass_->IsTargetVar(var_id)) { | 
|  | pass_->context()->get_debug_info_mgr()->KillDebugDeclares(var_id); | 
|  | } | 
|  | status = Pass::Status::SuccessWithChange; | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) { | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 0 | 
|  | std::cerr << "Function before SSA rewrite:\n" | 
|  | << fp->PrettyPrint(0) << "\n\n\n"; | 
|  | #endif | 
|  |  | 
|  | // Collect variables that can be converted into SSA IDs. | 
|  | pass_->CollectTargetVars(fp); | 
|  |  | 
|  | // Generate all the SSA replacements and Phi candidates. This will | 
|  | // generate incomplete and trivial Phis. | 
|  | bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder( | 
|  | fp->entry().get(), [this](BasicBlock* bb) { | 
|  | if (!GenerateSSAReplacements(bb)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }); | 
|  |  | 
|  | if (!succeeded) { | 
|  | return Pass::Status::Failure; | 
|  | } | 
|  |  | 
|  | // Remove trivial Phis and add arguments to incomplete Phis. | 
|  | FinalizePhiCandidates(); | 
|  |  | 
|  | // Finally, apply all the replacements in the IR. | 
|  | bool modified = ApplyReplacements(); | 
|  |  | 
|  | auto status = AddDebugValuesForInvisibleDebugDecls(fp); | 
|  | if (status == Pass::Status::SuccessWithChange || | 
|  | status == Pass::Status::Failure) { | 
|  | return status; | 
|  | } | 
|  |  | 
|  | #if SSA_REWRITE_DEBUGGING_LEVEL > 0 | 
|  | std::cerr << "\n\n\nFunction after SSA rewrite:\n" | 
|  | << fp->PrettyPrint(0) << "\n"; | 
|  | #endif | 
|  |  | 
|  | return modified ? Pass::Status::SuccessWithChange | 
|  | : Pass::Status::SuccessWithoutChange; | 
|  | } | 
|  |  | 
|  | Pass::Status SSARewritePass::Process() { | 
|  | Status status = Status::SuccessWithoutChange; | 
|  | for (auto& fn : *get_module()) { | 
|  | status = | 
|  | CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn)); | 
|  | // Kill DebugDeclares for target variables. | 
|  | for (auto var_id : seen_target_vars_) { | 
|  | context()->get_debug_info_mgr()->KillDebugDeclares(var_id); | 
|  | } | 
|  | if (status == Status::Failure) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | }  // namespace opt | 
|  | }  // namespace spvtools |