blob: ef6e41cd3db69bfedca5fb200552f5c8bdde1795 [file] [log] [blame]
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/fuzz/fuzzer_util.h"
#include <algorithm>
#include <unordered_set>
#include "source/opt/build_module.h"
namespace spvtools {
namespace fuzz {
namespace fuzzerutil {
bool IsFreshId(opt::IRContext* context, uint32_t id) {
return !context->get_def_use_mgr()->GetDef(id);
}
void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) {
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the
// case where the maximum id bound is reached.
context->module()->SetIdBound(
std::max(context->module()->id_bound(), id + 1));
}
opt::BasicBlock* MaybeFindBlock(opt::IRContext* context,
uint32_t maybe_block_id) {
auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id);
if (inst == nullptr) {
// No instruction defining this id was found.
return nullptr;
}
if (inst->opcode() != SpvOpLabel) {
// The instruction defining the id is not a label, so it cannot be a block
// id.
return nullptr;
}
return context->cfg()->block(maybe_block_id);
}
bool PhiIdsOkForNewEdge(
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
if (bb_from->IsSuccessor(bb_to)) {
// There is already an edge from |from_block| to |to_block|, so there is
// no need to extend OpPhi instructions. Do not allow phi ids to be
// present. This might turn out to be too strict; perhaps it would be OK
// just to ignore the ids in this case.
return phi_ids.empty();
}
// The edge would add a previously non-existent edge from |from_block| to
// |to_block|, so we go through the given phi ids and check that they exactly
// match the OpPhi instructions in |to_block|.
uint32_t phi_index = 0;
// An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|,
// makes sense here because we need to increment |phi_index| for each OpPhi
// instruction.
for (auto& inst : *bb_to) {
if (inst.opcode() != SpvOpPhi) {
// The OpPhi instructions all occur at the start of the block; if we find
// a non-OpPhi then we have seen them all.
break;
}
if (phi_index == static_cast<uint32_t>(phi_ids.size())) {
// Not enough phi ids have been provided to account for the OpPhi
// instructions.
return false;
}
// Look for an instruction defining the next phi id.
opt::Instruction* phi_extension =
context->get_def_use_mgr()->GetDef(phi_ids[phi_index]);
if (!phi_extension) {
// The id given to extend this OpPhi does not exist.
return false;
}
if (phi_extension->type_id() != inst.type_id()) {
// The instruction given to extend this OpPhi either does not have a type
// or its type does not match that of the OpPhi.
return false;
}
if (context->get_instr_block(phi_extension)) {
// The instruction defining the phi id has an associated block (i.e., it
// is not a global value). Check whether its definition dominates the
// exit of |from_block|.
auto dominator_analysis =
context->GetDominatorAnalysis(bb_from->GetParent());
if (!dominator_analysis->Dominates(phi_extension,
bb_from->terminator())) {
// The given id is no good as its definition does not dominate the exit
// of |from_block|
return false;
}
}
phi_index++;
}
// We allow some of the ids provided for extending OpPhi instructions to be
// unused. Their presence does no harm, and requiring a perfect match may
// make transformations less likely to cleanly apply.
return true;
}
void AddUnreachableEdgeAndUpdateOpPhis(
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
bool condition_value,
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) &&
"Precondition on phi_ids is not satisfied");
assert(bb_from->terminator()->opcode() == SpvOpBranch &&
"Precondition on terminator of bb_from is not satisfied");
// Get the id of the boolean constant to be used as the condition.
uint32_t bool_id = MaybeGetBoolConstant(context, condition_value);
assert(
bool_id &&
"Precondition that condition value must be available is not satisfied");
const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to);
auto successor = bb_from->terminator()->GetSingleWordInOperand(0);
// Add the dead branch, by turning OpBranch into OpBranchConditional, and
// ordering the targets depending on whether the given boolean corresponds to
// true or false.
bb_from->terminator()->SetOpcode(SpvOpBranchConditional);
bb_from->terminator()->SetInOperands(
{{SPV_OPERAND_TYPE_ID, {bool_id}},
{SPV_OPERAND_TYPE_ID, {condition_value ? successor : bb_to->id()}},
{SPV_OPERAND_TYPE_ID, {condition_value ? bb_to->id() : successor}}});
// Update OpPhi instructions in the target block if this branch adds a
// previously non-existent edge from source to target.
if (!from_to_edge_already_exists) {
uint32_t phi_index = 0;
for (auto& inst : *bb_to) {
if (inst.opcode() != SpvOpPhi) {
break;
}
assert(phi_index < static_cast<uint32_t>(phi_ids.size()) &&
"There should be at least one phi id per OpPhi instruction.");
inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}});
inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}});
phi_index++;
}
}
}
bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id,
uint32_t maybe_loop_header_id) {
// We deem a block to be part of a loop's continue construct if the loop's
// continue target dominates the block.
auto containing_construct_block = context->cfg()->block(maybe_loop_header_id);
if (containing_construct_block->IsLoopHeader()) {
auto continue_target = containing_construct_block->ContinueBlockId();
if (context->GetDominatorAnalysis(containing_construct_block->GetParent())
->Dominates(continue_target, block_id)) {
return true;
}
}
return false;
}
opt::BasicBlock::iterator GetIteratorForInstruction(
opt::BasicBlock* block, const opt::Instruction* inst) {
for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) {
if (inst == &*inst_it) {
return inst_it;
}
}
return block->end();
}
bool BlockIsReachableInItsFunction(opt::IRContext* context,
opt::BasicBlock* bb) {
auto enclosing_function = bb->GetParent();
return context->GetDominatorAnalysis(enclosing_function)
->Dominates(enclosing_function->entry().get(), bb);
}
bool CanInsertOpcodeBeforeInstruction(
SpvOp opcode, const opt::BasicBlock::iterator& instruction_in_block) {
if (instruction_in_block->PreviousNode() &&
(instruction_in_block->PreviousNode()->opcode() == SpvOpLoopMerge ||
instruction_in_block->PreviousNode()->opcode() == SpvOpSelectionMerge)) {
// We cannot insert directly after a merge instruction.
return false;
}
if (opcode != SpvOpVariable &&
instruction_in_block->opcode() == SpvOpVariable) {
// We cannot insert a non-OpVariable instruction directly before a
// variable; variables in a function must be contiguous in the entry block.
return false;
}
// We cannot insert a non-OpPhi instruction directly before an OpPhi, because
// OpPhi instructions need to be contiguous at the start of a block.
return opcode == SpvOpPhi || instruction_in_block->opcode() != SpvOpPhi;
}
bool CanMakeSynonymOf(opt::IRContext* ir_context, opt::Instruction* inst) {
if (inst->opcode() == SpvOpSampledImage) {
// The SPIR-V data rules say that only very specific instructions may
// may consume the result id of an OpSampledImage, and this excludes the
// instructions that are used for making synonyms.
return false;
}
if (!inst->HasResultId()) {
// We can only make a synonym of an instruction that generates an id.
return false;
}
if (!inst->type_id()) {
// We can only make a synonym of an instruction that has a type.
return false;
}
auto type_inst = ir_context->get_def_use_mgr()->GetDef(inst->type_id());
if (type_inst->opcode() == SpvOpTypePointer) {
switch (inst->opcode()) {
case SpvOpConstantNull:
case SpvOpUndef:
// We disallow making synonyms of null or undefined pointers. This is
// to provide the property that if the original shader exhibited no bad
// pointer accesses, the transformed shader will not either.
return false;
default:
break;
}
}
// We do not make synonyms of objects that have decorations: if the synonym is
// not decorated analogously, using the original object vs. its synonymous
// form may not be equivalent.
return ir_context->get_decoration_mgr()
->GetDecorationsFor(inst->result_id(), true)
.empty();
}
bool IsCompositeType(const opt::analysis::Type* type) {
return type && (type->AsArray() || type->AsMatrix() || type->AsStruct() ||
type->AsVector());
}
std::vector<uint32_t> RepeatedFieldToVector(
const google::protobuf::RepeatedField<uint32_t>& repeated_field) {
std::vector<uint32_t> result;
for (auto i : repeated_field) {
result.push_back(i);
}
return result;
}
uint32_t WalkOneCompositeTypeIndex(opt::IRContext* context,
uint32_t base_object_type_id,
uint32_t index) {
auto should_be_composite_type =
context->get_def_use_mgr()->GetDef(base_object_type_id);
assert(should_be_composite_type && "The type should exist.");
switch (should_be_composite_type->opcode()) {
case SpvOpTypeArray: {
auto array_length = GetArraySize(*should_be_composite_type, context);
if (array_length == 0 || index >= array_length) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(0);
}
case SpvOpTypeMatrix:
case SpvOpTypeVector: {
auto count = should_be_composite_type->GetSingleWordInOperand(1);
if (index >= count) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(0);
}
case SpvOpTypeStruct: {
if (index >= GetNumberOfStructMembers(*should_be_composite_type)) {
return 0;
}
return should_be_composite_type->GetSingleWordInOperand(index);
}
default:
return 0;
}
}
uint32_t WalkCompositeTypeIndices(
opt::IRContext* context, uint32_t base_object_type_id,
const google::protobuf::RepeatedField<google::protobuf::uint32>& indices) {
uint32_t sub_object_type_id = base_object_type_id;
for (auto index : indices) {
sub_object_type_id =
WalkOneCompositeTypeIndex(context, sub_object_type_id, index);
if (!sub_object_type_id) {
return 0;
}
}
return sub_object_type_id;
}
uint32_t GetNumberOfStructMembers(
const opt::Instruction& struct_type_instruction) {
assert(struct_type_instruction.opcode() == SpvOpTypeStruct &&
"An OpTypeStruct instruction is required here.");
return struct_type_instruction.NumInOperands();
}
uint32_t GetArraySize(const opt::Instruction& array_type_instruction,
opt::IRContext* context) {
auto array_length_constant =
context->get_constant_mgr()
->GetConstantFromInst(context->get_def_use_mgr()->GetDef(
array_type_instruction.GetSingleWordInOperand(1)))
->AsIntConstant();
if (array_length_constant->words().size() != 1) {
return 0;
}
return array_length_constant->GetU32();
}
bool IsValid(opt::IRContext* context, spv_validator_options validator_options) {
std::vector<uint32_t> binary;
context->module()->ToBinary(&binary, false);
SpirvTools tools(context->grammar().target_env());
return tools.Validate(binary.data(), binary.size(), validator_options);
}
std::unique_ptr<opt::IRContext> CloneIRContext(opt::IRContext* context) {
std::vector<uint32_t> binary;
context->module()->ToBinary(&binary, false);
return BuildModule(context->grammar().target_env(), nullptr, binary.data(),
binary.size());
}
bool IsNonFunctionTypeId(opt::IRContext* ir_context, uint32_t id) {
auto type = ir_context->get_type_mgr()->GetType(id);
return type && !type->AsFunction();
}
bool IsMergeOrContinue(opt::IRContext* ir_context, uint32_t block_id) {
bool result = false;
ir_context->get_def_use_mgr()->WhileEachUse(
block_id,
[&result](const opt::Instruction* use_instruction,
uint32_t /*unused*/) -> bool {
switch (use_instruction->opcode()) {
case SpvOpLoopMerge:
case SpvOpSelectionMerge:
result = true;
return false;
default:
return true;
}
});
return result;
}
uint32_t FindFunctionType(opt::IRContext* ir_context,
const std::vector<uint32_t>& type_ids) {
// Look through the existing types for a match.
for (auto& type_or_value : ir_context->types_values()) {
if (type_or_value.opcode() != SpvOpTypeFunction) {
// We are only interested in function types.
continue;
}
if (type_or_value.NumInOperands() != type_ids.size()) {
// Not a match: different numbers of arguments.
continue;
}
// Check whether the return type and argument types match.
bool input_operands_match = true;
for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
if (type_ids[i] != type_or_value.GetSingleWordInOperand(i)) {
input_operands_match = false;
break;
}
}
if (input_operands_match) {
// Everything matches.
return type_or_value.result_id();
}
}
// No match was found.
return 0;
}
opt::Instruction* GetFunctionType(opt::IRContext* context,
const opt::Function* function) {
uint32_t type_id = function->DefInst().GetSingleWordInOperand(1);
return context->get_def_use_mgr()->GetDef(type_id);
}
opt::Function* FindFunction(opt::IRContext* ir_context, uint32_t function_id) {
for (auto& function : *ir_context->module()) {
if (function.result_id() == function_id) {
return &function;
}
}
return nullptr;
}
bool FunctionIsEntryPoint(opt::IRContext* context, uint32_t function_id) {
for (auto& entry_point : context->module()->entry_points()) {
if (entry_point.GetSingleWordInOperand(1) == function_id) {
return true;
}
}
return false;
}
bool IdIsAvailableAtUse(opt::IRContext* context,
opt::Instruction* use_instruction,
uint32_t use_input_operand_index, uint32_t id) {
auto defining_instruction = context->get_def_use_mgr()->GetDef(id);
auto enclosing_function =
context->get_instr_block(use_instruction)->GetParent();
// If the id a function parameter, it needs to be associated with the
// function containing the use.
if (defining_instruction->opcode() == SpvOpFunctionParameter) {
return InstructionIsFunctionParameter(defining_instruction,
enclosing_function);
}
if (!context->get_instr_block(id)) {
// The id must be at global scope.
return true;
}
if (defining_instruction == use_instruction) {
// It is not OK for a definition to use itself.
return false;
}
auto dominator_analysis = context->GetDominatorAnalysis(enclosing_function);
if (use_instruction->opcode() == SpvOpPhi) {
// In the case where the use is an operand to OpPhi, it is actually the
// *parent* block associated with the operand that must be dominated by
// the synonym.
auto parent_block =
use_instruction->GetSingleWordInOperand(use_input_operand_index + 1);
return dominator_analysis->Dominates(
context->get_instr_block(defining_instruction)->id(), parent_block);
}
return dominator_analysis->Dominates(defining_instruction, use_instruction);
}
bool IdIsAvailableBeforeInstruction(opt::IRContext* context,
opt::Instruction* instruction,
uint32_t id) {
auto defining_instruction = context->get_def_use_mgr()->GetDef(id);
auto enclosing_function = context->get_instr_block(instruction)->GetParent();
// If the id a function parameter, it needs to be associated with the
// function containing the instruction.
if (defining_instruction->opcode() == SpvOpFunctionParameter) {
return InstructionIsFunctionParameter(defining_instruction,
enclosing_function);
}
if (!context->get_instr_block(id)) {
// The id is at global scope.
return true;
}
if (defining_instruction == instruction) {
// The instruction is not available right before its own definition.
return false;
}
return context->GetDominatorAnalysis(enclosing_function)
->Dominates(defining_instruction, instruction);
}
bool InstructionIsFunctionParameter(opt::Instruction* instruction,
opt::Function* function) {
if (instruction->opcode() != SpvOpFunctionParameter) {
return false;
}
bool found_parameter = false;
function->ForEachParam(
[instruction, &found_parameter](opt::Instruction* param) {
if (param == instruction) {
found_parameter = true;
}
});
return found_parameter;
}
uint32_t GetTypeId(opt::IRContext* context, uint32_t result_id) {
return context->get_def_use_mgr()->GetDef(result_id)->type_id();
}
uint32_t GetPointeeTypeIdFromPointerType(opt::Instruction* pointer_type_inst) {
assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer &&
"Precondition: |pointer_type_inst| must be OpTypePointer.");
return pointer_type_inst->GetSingleWordInOperand(1);
}
uint32_t GetPointeeTypeIdFromPointerType(opt::IRContext* context,
uint32_t pointer_type_id) {
return GetPointeeTypeIdFromPointerType(
context->get_def_use_mgr()->GetDef(pointer_type_id));
}
SpvStorageClass GetStorageClassFromPointerType(
opt::Instruction* pointer_type_inst) {
assert(pointer_type_inst && pointer_type_inst->opcode() == SpvOpTypePointer &&
"Precondition: |pointer_type_inst| must be OpTypePointer.");
return static_cast<SpvStorageClass>(
pointer_type_inst->GetSingleWordInOperand(0));
}
SpvStorageClass GetStorageClassFromPointerType(opt::IRContext* context,
uint32_t pointer_type_id) {
return GetStorageClassFromPointerType(
context->get_def_use_mgr()->GetDef(pointer_type_id));
}
uint32_t MaybeGetPointerType(opt::IRContext* context, uint32_t pointee_type_id,
SpvStorageClass storage_class) {
for (auto& inst : context->types_values()) {
switch (inst.opcode()) {
case SpvOpTypePointer:
if (inst.GetSingleWordInOperand(0) == storage_class &&
inst.GetSingleWordInOperand(1) == pointee_type_id) {
return inst.result_id();
}
break;
default:
break;
}
}
return 0;
}
bool IsNullConstantSupported(const opt::analysis::Type& type) {
return type.AsBool() || type.AsInteger() || type.AsFloat() ||
type.AsMatrix() || type.AsVector() || type.AsArray() ||
type.AsStruct() || type.AsPointer() || type.AsEvent() ||
type.AsDeviceEvent() || type.AsReserveId() || type.AsQueue();
}
bool GlobalVariablesMustBeDeclaredInEntryPointInterfaces(
const opt::IRContext* ir_context) {
// TODO(afd): We capture the universal environments for which this requirement
// holds. The check should be refined on demand for other target
// environments.
switch (ir_context->grammar().target_env()) {
case SPV_ENV_UNIVERSAL_1_0:
case SPV_ENV_UNIVERSAL_1_1:
case SPV_ENV_UNIVERSAL_1_2:
case SPV_ENV_UNIVERSAL_1_3:
return false;
default:
return true;
}
}
void AddVariableIdToEntryPointInterfaces(opt::IRContext* context, uint32_t id) {
if (GlobalVariablesMustBeDeclaredInEntryPointInterfaces(context)) {
// Conservatively add this global to the interface of every entry point in
// the module. This means that the global is available for other
// transformations to use.
//
// A downside of this is that the global will be in the interface even if it
// ends up never being used.
//
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3111) revisit
// this if a more thorough approach to entry point interfaces is taken.
for (auto& entry_point : context->module()->entry_points()) {
entry_point.AddOperand({SPV_OPERAND_TYPE_ID, {id}});
}
}
}
void AddGlobalVariable(opt::IRContext* context, uint32_t result_id,
uint32_t type_id, SpvStorageClass storage_class,
uint32_t initializer_id) {
// Check various preconditions.
assert(result_id != 0 && "Result id can't be 0");
assert((storage_class == SpvStorageClassPrivate ||
storage_class == SpvStorageClassWorkgroup) &&
"Variable's storage class must be either Private or Workgroup");
auto* type_inst = context->get_def_use_mgr()->GetDef(type_id);
(void)type_inst; // Variable becomes unused in release mode.
assert(type_inst && type_inst->opcode() == SpvOpTypePointer &&
GetStorageClassFromPointerType(type_inst) == storage_class &&
"Variable's type is invalid");
if (storage_class == SpvStorageClassWorkgroup) {
assert(initializer_id == 0);
}
if (initializer_id != 0) {
const auto* constant_inst =
context->get_def_use_mgr()->GetDef(initializer_id);
(void)constant_inst; // Variable becomes unused in release mode.
assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) &&
GetPointeeTypeIdFromPointerType(type_inst) ==
constant_inst->type_id() &&
"Initializer is invalid");
}
opt::Instruction::OperandList operands = {
{SPV_OPERAND_TYPE_STORAGE_CLASS, {static_cast<uint32_t>(storage_class)}}};
if (initializer_id) {
operands.push_back({SPV_OPERAND_TYPE_ID, {initializer_id}});
}
context->module()->AddGlobalValue(MakeUnique<opt::Instruction>(
context, SpvOpVariable, type_id, result_id, std::move(operands)));
AddVariableIdToEntryPointInterfaces(context, result_id);
}
void AddLocalVariable(opt::IRContext* context, uint32_t result_id,
uint32_t type_id, uint32_t function_id,
uint32_t initializer_id) {
// Check various preconditions.
assert(result_id != 0 && "Result id can't be 0");
auto* type_inst = context->get_def_use_mgr()->GetDef(type_id);
(void)type_inst; // Variable becomes unused in release mode.
assert(type_inst && type_inst->opcode() == SpvOpTypePointer &&
GetStorageClassFromPointerType(type_inst) == SpvStorageClassFunction &&
"Variable's type is invalid");
const auto* constant_inst =
context->get_def_use_mgr()->GetDef(initializer_id);
(void)constant_inst; // Variable becomes unused in release mode.
assert(constant_inst && spvOpcodeIsConstant(constant_inst->opcode()) &&
GetPointeeTypeIdFromPointerType(type_inst) ==
constant_inst->type_id() &&
"Initializer is invalid");
auto* function = FindFunction(context, function_id);
assert(function && "Function id is invalid");
function->begin()->begin()->InsertBefore(MakeUnique<opt::Instruction>(
context, SpvOpVariable, type_id, result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}},
{SPV_OPERAND_TYPE_ID, {initializer_id}}}));
}
bool HasDuplicates(const std::vector<uint32_t>& arr) {
return std::unordered_set<uint32_t>(arr.begin(), arr.end()).size() !=
arr.size();
}
bool IsPermutationOfRange(const std::vector<uint32_t>& arr, uint32_t lo,
uint32_t hi) {
if (arr.empty()) {
return lo > hi;
}
if (HasDuplicates(arr)) {
return false;
}
auto min_max = std::minmax_element(arr.begin(), arr.end());
return arr.size() == hi - lo + 1 && *min_max.first == lo &&
*min_max.second == hi;
}
std::vector<opt::Instruction*> GetParameters(opt::IRContext* ir_context,
uint32_t function_id) {
auto* function = FindFunction(ir_context, function_id);
assert(function && "|function_id| is invalid");
std::vector<opt::Instruction*> result;
function->ForEachParam(
[&result](opt::Instruction* inst) { result.push_back(inst); });
return result;
}
void AddFunctionType(opt::IRContext* ir_context, uint32_t result_id,
const std::vector<uint32_t>& type_ids) {
assert(result_id != 0 && "Result id can't be 0");
assert(!type_ids.empty() &&
"OpTypeFunction always has at least one operand - function's return "
"type");
assert(IsNonFunctionTypeId(ir_context, type_ids[0]) &&
"Return type must not be a function");
for (size_t i = 1; i < type_ids.size(); ++i) {
const auto* param_type = ir_context->get_type_mgr()->GetType(type_ids[i]);
(void)param_type; // Make compiler happy in release mode.
assert(param_type && !param_type->AsVoid() && !param_type->AsFunction() &&
"Function parameter can't have a function or void type");
}
opt::Instruction::OperandList operands;
operands.reserve(type_ids.size());
for (auto id : type_ids) {
operands.push_back({SPV_OPERAND_TYPE_ID, {id}});
}
ir_context->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeFunction, 0, result_id, std::move(operands)));
UpdateModuleIdBound(ir_context, result_id);
}
uint32_t FindOrCreateFunctionType(opt::IRContext* ir_context,
uint32_t result_id,
const std::vector<uint32_t>& type_ids) {
if (auto existing_id = FindFunctionType(ir_context, type_ids)) {
return existing_id;
}
AddFunctionType(ir_context, result_id, type_ids);
return result_id;
}
uint32_t MaybeGetIntegerType(opt::IRContext* ir_context, uint32_t width,
bool is_signed) {
opt::analysis::Integer type(width, is_signed);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetFloatType(opt::IRContext* ir_context, uint32_t width) {
opt::analysis::Float type(width);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetVectorType(opt::IRContext* ir_context,
uint32_t component_type_id,
uint32_t element_count) {
const auto* component_type =
ir_context->get_type_mgr()->GetType(component_type_id);
assert(component_type &&
(component_type->AsInteger() || component_type->AsFloat() ||
component_type->AsBool()) &&
"|component_type_id| is invalid");
assert(element_count >= 2 && element_count <= 4 &&
"Precondition: component count must be in range [2, 4].");
opt::analysis::Vector type(component_type, element_count);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetStructType(opt::IRContext* ir_context,
const std::vector<uint32_t>& component_type_ids) {
std::vector<const opt::analysis::Type*> component_types;
component_types.reserve(component_type_ids.size());
for (auto type_id : component_type_ids) {
const auto* component_type = ir_context->get_type_mgr()->GetType(type_id);
assert(component_type && !component_type->AsFunction() &&
"Component type is invalid");
component_types.push_back(component_type);
}
opt::analysis::Struct type(component_types);
return ir_context->get_type_mgr()->GetId(&type);
}
uint32_t MaybeGetZeroConstant(opt::IRContext* ir_context,
uint32_t scalar_or_composite_type_id) {
const auto* type =
ir_context->get_type_mgr()->GetType(scalar_or_composite_type_id);
assert(type && "|scalar_or_composite_type_id| is invalid");
switch (type->kind()) {
case opt::analysis::Type::kBool:
return MaybeGetBoolConstant(ir_context, false);
case opt::analysis::Type::kFloat:
case opt::analysis::Type::kInteger: {
std::vector<uint32_t> words = {0};
if ((type->AsInteger() && type->AsInteger()->width() > 32) ||
(type->AsFloat() && type->AsFloat()->width() > 32)) {
words.push_back(0);
}
return MaybeGetScalarConstant(ir_context, words,
scalar_or_composite_type_id);
}
case opt::analysis::Type::kStruct: {
std::vector<uint32_t> component_ids;
for (const auto* component_type : type->AsStruct()->element_types()) {
auto component_type_id =
ir_context->get_type_mgr()->GetId(component_type);
assert(component_type_id && "Component type is invalid");
auto component_id = MaybeGetZeroConstant(ir_context, component_type_id);
if (component_id == 0) {
return 0;
}
component_ids.push_back(component_id);
}
return MaybeGetCompositeConstant(ir_context, component_ids,
scalar_or_composite_type_id);
}
case opt::analysis::Type::kMatrix:
case opt::analysis::Type::kVector: {
const auto* component_type = type->AsVector()
? type->AsVector()->element_type()
: type->AsMatrix()->element_type();
auto component_type_id =
ir_context->get_type_mgr()->GetId(component_type);
assert(component_type_id && "Component type is invalid");
if (auto component_id =
MaybeGetZeroConstant(ir_context, component_type_id)) {
auto component_count = type->AsVector()
? type->AsVector()->element_count()
: type->AsMatrix()->element_count();
return MaybeGetCompositeConstant(
ir_context, std::vector<uint32_t>(component_count, component_id),
scalar_or_composite_type_id);
}
return 0;
}
case opt::analysis::Type::kArray: {
auto component_type_id =
ir_context->get_type_mgr()->GetId(type->AsArray()->element_type());
assert(component_type_id && "Component type is invalid");
if (auto component_id =
MaybeGetZeroConstant(ir_context, component_type_id)) {
auto type_id = ir_context->get_type_mgr()->GetId(type);
assert(type_id && "|type| is invalid");
const auto* type_inst = ir_context->get_def_use_mgr()->GetDef(type_id);
assert(type_inst && "Array's type id is invalid");
return MaybeGetCompositeConstant(
ir_context,
std::vector<uint32_t>(GetArraySize(*type_inst, ir_context),
component_id),
scalar_or_composite_type_id);
}
return 0;
}
default:
assert(false && "Type is not supported");
return 0;
}
}
uint32_t MaybeGetScalarConstant(opt::IRContext* ir_context,
const std::vector<uint32_t>& words,
uint32_t scalar_type_id) {
const auto* type = ir_context->get_type_mgr()->GetType(scalar_type_id);
assert(type && "|scalar_type_id| is invalid");
if (const auto* int_type = type->AsInteger()) {
return MaybeGetIntegerConstant(ir_context, words, int_type->width(),
int_type->IsSigned());
} else if (const auto* float_type = type->AsFloat()) {
return MaybeGetFloatConstant(ir_context, words, float_type->width());
} else {
assert(type->AsBool() && words.size() == 1 &&
"|scalar_type_id| doesn't represent a scalar type");
return MaybeGetBoolConstant(ir_context, words[0]);
}
}
uint32_t MaybeGetCompositeConstant(opt::IRContext* ir_context,
const std::vector<uint32_t>& component_ids,
uint32_t composite_type_id) {
std::vector<const opt::analysis::Constant*> constants;
for (auto id : component_ids) {
const auto* component_constant =
ir_context->get_constant_mgr()->FindDeclaredConstant(id);
assert(component_constant && "|id| is invalid");
constants.push_back(component_constant);
}
const auto* type = ir_context->get_type_mgr()->GetType(composite_type_id);
assert(type && "|composite_type_id| is invalid");
std::unique_ptr<opt::analysis::Constant> composite_constant;
switch (type->kind()) {
case opt::analysis::Type::kStruct:
composite_constant = MakeUnique<opt::analysis::StructConstant>(
type->AsStruct(), std::move(constants));
break;
case opt::analysis::Type::kVector:
composite_constant = MakeUnique<opt::analysis::VectorConstant>(
type->AsVector(), std::move(constants));
break;
case opt::analysis::Type::kMatrix:
composite_constant = MakeUnique<opt::analysis::MatrixConstant>(
type->AsMatrix(), std::move(constants));
break;
case opt::analysis::Type::kArray:
composite_constant = MakeUnique<opt::analysis::ArrayConstant>(
type->AsArray(), std::move(constants));
break;
default:
assert(false &&
"|composite_type_id| is not a result id of a composite type");
return 0;
}
return ir_context->get_constant_mgr()->FindDeclaredConstant(
composite_constant.get(), composite_type_id);
}
uint32_t MaybeGetIntegerConstant(opt::IRContext* ir_context,
const std::vector<uint32_t>& words,
uint32_t width, bool is_signed) {
auto type_id = MaybeGetIntegerType(ir_context, width, is_signed);
if (!type_id) {
return 0;
}
const auto* type = ir_context->get_type_mgr()->GetType(type_id);
assert(type && "|type_id| is invalid");
opt::analysis::IntConstant constant(type->AsInteger(), words);
return ir_context->get_constant_mgr()->FindDeclaredConstant(&constant,
type_id);
}
uint32_t MaybeGetFloatConstant(opt::IRContext* ir_context,
const std::vector<uint32_t>& words,
uint32_t width) {
auto type_id = MaybeGetFloatType(ir_context, width);
if (!type_id) {
return 0;
}
const auto* type = ir_context->get_type_mgr()->GetType(type_id);
assert(type && "|type_id| is invalid");
opt::analysis::FloatConstant constant(type->AsFloat(), words);
return ir_context->get_constant_mgr()->FindDeclaredConstant(&constant,
type_id);
}
uint32_t MaybeGetBoolConstant(opt::IRContext* context, bool value) {
opt::analysis::Bool bool_type;
auto registered_bool_type =
context->get_type_mgr()->GetRegisteredType(&bool_type);
if (!registered_bool_type) {
return 0;
}
opt::analysis::BoolConstant bool_constant(registered_bool_type->AsBool(),
value);
return context->get_constant_mgr()->FindDeclaredConstant(
&bool_constant, context->get_type_mgr()->GetId(&bool_type));
}
void AddIntegerType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t width, bool is_signed) {
ir_context->module()->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeInt, 0, result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {width}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {is_signed ? 1u : 0u}}}));
UpdateModuleIdBound(ir_context, result_id);
}
void AddFloatType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t width) {
ir_context->module()->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeFloat, 0, result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {width}}}));
UpdateModuleIdBound(ir_context, result_id);
}
void AddVectorType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t component_type_id, uint32_t element_count) {
const auto* component_type =
ir_context->get_type_mgr()->GetType(component_type_id);
(void)component_type; // Make compiler happy in release mode.
assert(component_type &&
(component_type->AsInteger() || component_type->AsFloat() ||
component_type->AsBool()) &&
"|component_type_id| is invalid");
assert(element_count >= 2 && element_count <= 4 &&
"Precondition: component count must be in range [2, 4].");
ir_context->module()->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeVector, 0, result_id,
opt::Instruction::OperandList{
{SPV_OPERAND_TYPE_ID, {component_type_id}},
{SPV_OPERAND_TYPE_LITERAL_INTEGER, {element_count}}}));
UpdateModuleIdBound(ir_context, result_id);
}
void AddStructType(opt::IRContext* ir_context, uint32_t result_id,
const std::vector<uint32_t>& component_type_ids) {
opt::Instruction::OperandList operands;
operands.reserve(component_type_ids.size());
for (auto type_id : component_type_ids) {
const auto* type = ir_context->get_type_mgr()->GetType(type_id);
(void)type; // Make compiler happy in release mode.
assert(type && !type->AsFunction() && "Component's type id is invalid");
operands.push_back({SPV_OPERAND_TYPE_ID, {type_id}});
}
ir_context->AddType(MakeUnique<opt::Instruction>(
ir_context, SpvOpTypeStruct, 0, result_id, std::move(operands)));
UpdateModuleIdBound(ir_context, result_id);
}
uint32_t FindOrCreateIntegerType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t width, bool is_signed) {
if (auto existing_id = MaybeGetIntegerType(ir_context, width, is_signed)) {
return existing_id;
}
AddIntegerType(ir_context, result_id, width, is_signed);
return result_id;
}
uint32_t FindOrCreateFloatType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t width) {
if (auto existing_id = MaybeGetFloatType(ir_context, width)) {
return existing_id;
}
AddFloatType(ir_context, result_id, width);
return result_id;
}
uint32_t FindOrCreateVectorType(opt::IRContext* ir_context, uint32_t result_id,
uint32_t component_type_id,
uint32_t element_count) {
if (auto existing_id =
MaybeGetVectorType(ir_context, component_type_id, element_count)) {
return existing_id;
}
AddVectorType(ir_context, result_id, component_type_id, element_count);
return result_id;
}
uint32_t FindOrCreateStructType(
opt::IRContext* ir_context, uint32_t result_id,
const std::vector<uint32_t>& component_type_ids) {
if (auto existing_id = MaybeGetStructType(ir_context, component_type_ids)) {
return existing_id;
}
AddStructType(ir_context, result_id, component_type_ids);
return result_id;
}
} // namespace fuzzerutil
} // namespace fuzz
} // namespace spvtools