| // Copyright (c) 2018 Google LLC | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "source/opt/const_folding_rules.h" | 
 |  | 
 | #include "source/opt/ir_context.h" | 
 |  | 
 | namespace spvtools { | 
 | namespace opt { | 
 | namespace { | 
 | constexpr uint32_t kExtractCompositeIdInIdx = 0; | 
 |  | 
 | // Returns a constants with the value NaN of the given type.  Only works for | 
 | // 32-bit and 64-bit float point types.  Returns |nullptr| if an error occurs. | 
 | const analysis::Constant* GetNan(const analysis::Type* type, | 
 |                                  analysis::ConstantManager* const_mgr) { | 
 |   const analysis::Float* float_type = type->AsFloat(); | 
 |   if (float_type == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   switch (float_type->width()) { | 
 |     case 32: | 
 |       return const_mgr->GetFloatConst(std::numeric_limits<float>::quiet_NaN()); | 
 |     case 64: | 
 |       return const_mgr->GetDoubleConst( | 
 |           std::numeric_limits<double>::quiet_NaN()); | 
 |     default: | 
 |       return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | // Returns a constants with the value INF of the given type.  Only works for | 
 | // 32-bit and 64-bit float point types.  Returns |nullptr| if an error occurs. | 
 | const analysis::Constant* GetInf(const analysis::Type* type, | 
 |                                  analysis::ConstantManager* const_mgr) { | 
 |   const analysis::Float* float_type = type->AsFloat(); | 
 |   if (float_type == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   switch (float_type->width()) { | 
 |     case 32: | 
 |       return const_mgr->GetFloatConst(std::numeric_limits<float>::infinity()); | 
 |     case 64: | 
 |       return const_mgr->GetDoubleConst(std::numeric_limits<double>::infinity()); | 
 |     default: | 
 |       return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | // Returns true if |type| is Float or a vector of Float. | 
 | bool HasFloatingPoint(const analysis::Type* type) { | 
 |   if (type->AsFloat()) { | 
 |     return true; | 
 |   } else if (const analysis::Vector* vec_type = type->AsVector()) { | 
 |     return vec_type->element_type()->AsFloat() != nullptr; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Returns a constants with the value |-val| of the given type.  Only works for | 
 | // 32-bit and 64-bit float point types.  Returns |nullptr| if an error occurs. | 
 | const analysis::Constant* NegateFPConst(const analysis::Type* result_type, | 
 |                                         const analysis::Constant* val, | 
 |                                         analysis::ConstantManager* const_mgr) { | 
 |   const analysis::Float* float_type = result_type->AsFloat(); | 
 |   assert(float_type != nullptr); | 
 |   if (float_type->width() == 32) { | 
 |     float fa = val->GetFloat(); | 
 |     return const_mgr->GetFloatConst(-fa); | 
 |   } else if (float_type->width() == 64) { | 
 |     double da = val->GetDouble(); | 
 |     return const_mgr->GetDoubleConst(-da); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Folds an OpcompositeExtract where input is a composite constant. | 
 | ConstantFoldingRule FoldExtractWithConstants() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     const analysis::Constant* c = constants[kExtractCompositeIdInIdx]; | 
 |     if (c == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     for (uint32_t i = 1; i < inst->NumInOperands(); ++i) { | 
 |       uint32_t element_index = inst->GetSingleWordInOperand(i); | 
 |       if (c->AsNullConstant()) { | 
 |         // Return Null for the return type. | 
 |         analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |         analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |         return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), {}); | 
 |       } | 
 |  | 
 |       auto cc = c->AsCompositeConstant(); | 
 |       assert(cc != nullptr); | 
 |       auto components = cc->GetComponents(); | 
 |       // Protect against invalid IR.  Refuse to fold if the index is out | 
 |       // of bounds. | 
 |       if (element_index >= components.size()) return nullptr; | 
 |       c = components[element_index]; | 
 |     } | 
 |     return c; | 
 |   }; | 
 | } | 
 |  | 
 | // Folds an OpcompositeInsert where input is a composite constant. | 
 | ConstantFoldingRule FoldInsertWithConstants() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     const analysis::Constant* object = constants[0]; | 
 |     const analysis::Constant* composite = constants[1]; | 
 |     if (object == nullptr || composite == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // If there is more than 1 index, then each additional constant used by the | 
 |     // index will need to be recreated to use the inserted object. | 
 |     std::vector<const analysis::Constant*> chain; | 
 |     std::vector<const analysis::Constant*> components; | 
 |     const analysis::Type* type = nullptr; | 
 |  | 
 |     // Work down hierarchy and add all the indexes, not including the final | 
 |     // index. | 
 |     for (uint32_t i = 2; i < inst->NumInOperands(); ++i) { | 
 |       if (composite->AsNullConstant()) { | 
 |         // Return Null for the return type. | 
 |         analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |         return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), {}); | 
 |       } | 
 |  | 
 |       if (i != inst->NumInOperands() - 1) { | 
 |         chain.push_back(composite); | 
 |       } | 
 |       const uint32_t index = inst->GetSingleWordInOperand(i); | 
 |       components = composite->AsCompositeConstant()->GetComponents(); | 
 |       type = composite->AsCompositeConstant()->type(); | 
 |       composite = components[index]; | 
 |     } | 
 |  | 
 |     // Final index in hierarchy is inserted with new object. | 
 |     const uint32_t final_index = | 
 |         inst->GetSingleWordInOperand(inst->NumInOperands() - 1); | 
 |     std::vector<uint32_t> ids; | 
 |     for (size_t i = 0; i < components.size(); i++) { | 
 |       const analysis::Constant* constant = | 
 |           (i == final_index) ? object : components[i]; | 
 |       Instruction* member_inst = const_mgr->GetDefiningInstruction(constant); | 
 |       ids.push_back(member_inst->result_id()); | 
 |     } | 
 |     const analysis::Constant* new_constant = const_mgr->GetConstant(type, ids); | 
 |  | 
 |     // Work backwards up the chain and replace each index with new constant. | 
 |     for (size_t i = chain.size(); i > 0; i--) { | 
 |       // Need to insert any previous instruction into the module first. | 
 |       // Can't just insert in types_values_begin() because it will move above | 
 |       // where the types are declared | 
 |       for (Module::inst_iterator inst_iter = context->types_values_begin(); | 
 |            inst_iter != context->types_values_end(); ++inst_iter) { | 
 |         Instruction* x = &*inst_iter; | 
 |         if (inst->result_id() == x->result_id()) { | 
 |           const_mgr->BuildInstructionAndAddToModule(new_constant, &inst_iter); | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       composite = chain[i - 1]; | 
 |       components = composite->AsCompositeConstant()->GetComponents(); | 
 |       type = composite->AsCompositeConstant()->type(); | 
 |       ids.clear(); | 
 |       for (size_t k = 0; k < components.size(); k++) { | 
 |         const uint32_t index = | 
 |             inst->GetSingleWordInOperand(1 + static_cast<uint32_t>(i)); | 
 |         const analysis::Constant* constant = | 
 |             (k == index) ? new_constant : components[k]; | 
 |         const uint32_t constant_id = | 
 |             const_mgr->FindDeclaredConstant(constant, 0); | 
 |         ids.push_back(constant_id); | 
 |       } | 
 |       new_constant = const_mgr->GetConstant(type, ids); | 
 |     } | 
 |  | 
 |     // If multiple constants were created, only need to return the top index. | 
 |     return new_constant; | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldVectorShuffleWithConstants() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     assert(inst->opcode() == spv::Op::OpVectorShuffle); | 
 |     const analysis::Constant* c1 = constants[0]; | 
 |     const analysis::Constant* c2 = constants[1]; | 
 |     if (c1 == nullptr || c2 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     const analysis::Type* element_type = c1->type()->AsVector()->element_type(); | 
 |  | 
 |     std::vector<const analysis::Constant*> c1_components; | 
 |     if (const analysis::VectorConstant* vec_const = c1->AsVectorConstant()) { | 
 |       c1_components = vec_const->GetComponents(); | 
 |     } else { | 
 |       assert(c1->AsNullConstant()); | 
 |       const analysis::Constant* element = | 
 |           const_mgr->GetConstant(element_type, {}); | 
 |       c1_components.resize(c1->type()->AsVector()->element_count(), element); | 
 |     } | 
 |     std::vector<const analysis::Constant*> c2_components; | 
 |     if (const analysis::VectorConstant* vec_const = c2->AsVectorConstant()) { | 
 |       c2_components = vec_const->GetComponents(); | 
 |     } else { | 
 |       assert(c2->AsNullConstant()); | 
 |       const analysis::Constant* element = | 
 |           const_mgr->GetConstant(element_type, {}); | 
 |       c2_components.resize(c2->type()->AsVector()->element_count(), element); | 
 |     } | 
 |  | 
 |     std::vector<uint32_t> ids; | 
 |     const uint32_t undef_literal_value = 0xffffffff; | 
 |     for (uint32_t i = 2; i < inst->NumInOperands(); ++i) { | 
 |       uint32_t index = inst->GetSingleWordInOperand(i); | 
 |       if (index == undef_literal_value) { | 
 |         // Don't fold shuffle with undef literal value. | 
 |         return nullptr; | 
 |       } else if (index < c1_components.size()) { | 
 |         Instruction* member_inst = | 
 |             const_mgr->GetDefiningInstruction(c1_components[index]); | 
 |         ids.push_back(member_inst->result_id()); | 
 |       } else { | 
 |         Instruction* member_inst = const_mgr->GetDefiningInstruction( | 
 |             c2_components[index - c1_components.size()]); | 
 |         ids.push_back(member_inst->result_id()); | 
 |       } | 
 |     } | 
 |  | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |     return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldVectorTimesScalar() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     assert(inst->opcode() == spv::Op::OpVectorTimesScalar); | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     const analysis::Constant* c1 = constants[0]; | 
 |     const analysis::Constant* c2 = constants[1]; | 
 |  | 
 |     if (c1 && c1->IsZero()) { | 
 |       return c1; | 
 |     } | 
 |  | 
 |     if (c2 && c2->IsZero()) { | 
 |       // Get or create the NullConstant for this type. | 
 |       std::vector<uint32_t> ids; | 
 |       return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); | 
 |     } | 
 |  | 
 |     if (c1 == nullptr || c2 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // Check result type. | 
 |     const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); | 
 |     const analysis::Vector* vector_type = result_type->AsVector(); | 
 |     assert(vector_type != nullptr); | 
 |     const analysis::Type* element_type = vector_type->element_type(); | 
 |     assert(element_type != nullptr); | 
 |     const analysis::Float* float_type = element_type->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |  | 
 |     // Check types of c1 and c2. | 
 |     assert(c1->type()->AsVector() == vector_type); | 
 |     assert(c1->type()->AsVector()->element_type() == element_type && | 
 |            c2->type() == element_type); | 
 |  | 
 |     // Get a float vector that is the result of vector-times-scalar. | 
 |     std::vector<const analysis::Constant*> c1_components = | 
 |         c1->GetVectorComponents(const_mgr); | 
 |     std::vector<uint32_t> ids; | 
 |     if (float_type->width() == 32) { | 
 |       float scalar = c2->GetFloat(); | 
 |       for (uint32_t i = 0; i < c1_components.size(); ++i) { | 
 |         utils::FloatProxy<float> result(c1_components[i]->GetFloat() * scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } else if (float_type->width() == 64) { | 
 |       double scalar = c2->GetDouble(); | 
 |       for (uint32_t i = 0; i < c1_components.size(); ++i) { | 
 |         utils::FloatProxy<double> result(c1_components[i]->GetDouble() * | 
 |                                          scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } | 
 |     return nullptr; | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldVectorTimesMatrix() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     assert(inst->opcode() == spv::Op::OpVectorTimesMatrix); | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     const analysis::Constant* c1 = constants[0]; | 
 |     const analysis::Constant* c2 = constants[1]; | 
 |  | 
 |     if (c1 == nullptr || c2 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // Check result type. | 
 |     const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); | 
 |     const analysis::Vector* vector_type = result_type->AsVector(); | 
 |     assert(vector_type != nullptr); | 
 |     const analysis::Type* element_type = vector_type->element_type(); | 
 |     assert(element_type != nullptr); | 
 |     const analysis::Float* float_type = element_type->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |  | 
 |     // Check types of c1 and c2. | 
 |     assert(c1->type()->AsVector() == vector_type); | 
 |     assert(c1->type()->AsVector()->element_type() == element_type && | 
 |            c2->type()->AsMatrix()->element_type() == vector_type); | 
 |  | 
 |     // Get a float vector that is the result of vector-times-matrix. | 
 |     std::vector<const analysis::Constant*> c1_components = | 
 |         c1->GetVectorComponents(const_mgr); | 
 |     std::vector<const analysis::Constant*> c2_components = | 
 |         c2->AsMatrixConstant()->GetComponents(); | 
 |     uint32_t resultVectorSize = result_type->AsVector()->element_count(); | 
 |  | 
 |     std::vector<uint32_t> ids; | 
 |  | 
 |     if ((c1 && c1->IsZero()) || (c2 && c2->IsZero())) { | 
 |       std::vector<uint32_t> words(float_type->width() / 32, 0); | 
 |       for (uint32_t i = 0; i < resultVectorSize; ++i) { | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } | 
 |  | 
 |     if (float_type->width() == 32) { | 
 |       for (uint32_t i = 0; i < resultVectorSize; ++i) { | 
 |         float result_scalar = 0.0f; | 
 |         const analysis::VectorConstant* c2_vec = | 
 |             c2_components[i]->AsVectorConstant(); | 
 |         for (uint32_t j = 0; j < c2_vec->GetComponents().size(); ++j) { | 
 |           float c1_scalar = c1_components[j]->GetFloat(); | 
 |           float c2_scalar = c2_vec->GetComponents()[j]->GetFloat(); | 
 |           result_scalar += c1_scalar * c2_scalar; | 
 |         } | 
 |         utils::FloatProxy<float> result(result_scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } else if (float_type->width() == 64) { | 
 |       for (uint32_t i = 0; i < c2_components.size(); ++i) { | 
 |         double result_scalar = 0.0; | 
 |         const analysis::VectorConstant* c2_vec = | 
 |             c2_components[i]->AsVectorConstant(); | 
 |         for (uint32_t j = 0; j < c2_vec->GetComponents().size(); ++j) { | 
 |           double c1_scalar = c1_components[j]->GetDouble(); | 
 |           double c2_scalar = c2_vec->GetComponents()[j]->GetDouble(); | 
 |           result_scalar += c1_scalar * c2_scalar; | 
 |         } | 
 |         utils::FloatProxy<double> result(result_scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } | 
 |     return nullptr; | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldMatrixTimesVector() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     assert(inst->opcode() == spv::Op::OpMatrixTimesVector); | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     const analysis::Constant* c1 = constants[0]; | 
 |     const analysis::Constant* c2 = constants[1]; | 
 |  | 
 |     if (c1 == nullptr || c2 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // Check result type. | 
 |     const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); | 
 |     const analysis::Vector* vector_type = result_type->AsVector(); | 
 |     assert(vector_type != nullptr); | 
 |     const analysis::Type* element_type = vector_type->element_type(); | 
 |     assert(element_type != nullptr); | 
 |     const analysis::Float* float_type = element_type->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |  | 
 |     // Check types of c1 and c2. | 
 |     assert(c1->type()->AsMatrix()->element_type() == vector_type); | 
 |     assert(c2->type()->AsVector()->element_type() == element_type); | 
 |  | 
 |     // Get a float vector that is the result of matrix-times-vector. | 
 |     std::vector<const analysis::Constant*> c1_components = | 
 |         c1->AsMatrixConstant()->GetComponents(); | 
 |     std::vector<const analysis::Constant*> c2_components = | 
 |         c2->GetVectorComponents(const_mgr); | 
 |     uint32_t resultVectorSize = result_type->AsVector()->element_count(); | 
 |  | 
 |     std::vector<uint32_t> ids; | 
 |  | 
 |     if ((c1 && c1->IsZero()) || (c2 && c2->IsZero())) { | 
 |       std::vector<uint32_t> words(float_type->width() / 32, 0); | 
 |       for (uint32_t i = 0; i < resultVectorSize; ++i) { | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } | 
 |  | 
 |     if (float_type->width() == 32) { | 
 |       for (uint32_t i = 0; i < resultVectorSize; ++i) { | 
 |         float result_scalar = 0.0f; | 
 |         for (uint32_t j = 0; j < c1_components.size(); ++j) { | 
 |           float c1_scalar = c1_components[j] | 
 |                                 ->AsVectorConstant() | 
 |                                 ->GetComponents()[i] | 
 |                                 ->GetFloat(); | 
 |           float c2_scalar = c2_components[j]->GetFloat(); | 
 |           result_scalar += c1_scalar * c2_scalar; | 
 |         } | 
 |         utils::FloatProxy<float> result(result_scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } else if (float_type->width() == 64) { | 
 |       for (uint32_t i = 0; i < resultVectorSize; ++i) { | 
 |         double result_scalar = 0.0; | 
 |         for (uint32_t j = 0; j < c1_components.size(); ++j) { | 
 |           double c1_scalar = c1_components[j] | 
 |                                  ->AsVectorConstant() | 
 |                                  ->GetComponents()[i] | 
 |                                  ->GetDouble(); | 
 |           double c2_scalar = c2_components[j]->GetDouble(); | 
 |           result_scalar += c1_scalar * c2_scalar; | 
 |         } | 
 |         utils::FloatProxy<double> result(result_scalar); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         const analysis::Constant* new_elem = | 
 |             const_mgr->GetConstant(float_type, words); | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } | 
 |     return nullptr; | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldCompositeWithConstants() { | 
 |   // Folds an OpCompositeConstruct where all of the inputs are constants to a | 
 |   // constant.  A new constant is created if necessary. | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |     const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); | 
 |     Instruction* type_inst = | 
 |         context->get_def_use_mgr()->GetDef(inst->type_id()); | 
 |  | 
 |     std::vector<uint32_t> ids; | 
 |     for (uint32_t i = 0; i < constants.size(); ++i) { | 
 |       const analysis::Constant* element_const = constants[i]; | 
 |       if (element_const == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |  | 
 |       uint32_t component_type_id = 0; | 
 |       if (type_inst->opcode() == spv::Op::OpTypeStruct) { | 
 |         component_type_id = type_inst->GetSingleWordInOperand(i); | 
 |       } else if (type_inst->opcode() == spv::Op::OpTypeArray) { | 
 |         component_type_id = type_inst->GetSingleWordInOperand(0); | 
 |       } | 
 |  | 
 |       uint32_t element_id = | 
 |           const_mgr->FindDeclaredConstant(element_const, component_type_id); | 
 |       if (element_id == 0) { | 
 |         return nullptr; | 
 |       } | 
 |       ids.push_back(element_id); | 
 |     } | 
 |     return const_mgr->GetConstant(new_type, ids); | 
 |   }; | 
 | } | 
 |  | 
 | // The interface for a function that returns the result of applying a scalar | 
 | // floating-point binary operation on |a| and |b|.  The type of the return value | 
 | // will be |type|.  The input constants must also be of type |type|. | 
 | using UnaryScalarFoldingRule = std::function<const analysis::Constant*( | 
 |     const analysis::Type* result_type, const analysis::Constant* a, | 
 |     analysis::ConstantManager*)>; | 
 |  | 
 | // The interface for a function that returns the result of applying a scalar | 
 | // floating-point binary operation on |a| and |b|.  The type of the return value | 
 | // will be |type|.  The input constants must also be of type |type|. | 
 | using BinaryScalarFoldingRule = std::function<const analysis::Constant*( | 
 |     const analysis::Type* result_type, const analysis::Constant* a, | 
 |     const analysis::Constant* b, analysis::ConstantManager*)>; | 
 |  | 
 | // Returns a |ConstantFoldingRule| that folds unary floating point scalar ops | 
 | // using |scalar_rule| and unary float point vectors ops by applying | 
 | // |scalar_rule| to the elements of the vector.  The |ConstantFoldingRule| | 
 | // that is returned assumes that |constants| contains 1 entry.  If they are | 
 | // not |nullptr|, then their type is either |Float| or |Integer| or a |Vector| | 
 | // whose element type is |Float| or |Integer|. | 
 | ConstantFoldingRule FoldFPUnaryOp(UnaryScalarFoldingRule scalar_rule) { | 
 |   return [scalar_rule](IRContext* context, Instruction* inst, | 
 |                        const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |     const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); | 
 |     const analysis::Vector* vector_type = result_type->AsVector(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     const analysis::Constant* arg = | 
 |         (inst->opcode() == spv::Op::OpExtInst) ? constants[1] : constants[0]; | 
 |  | 
 |     if (arg == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (vector_type != nullptr) { | 
 |       std::vector<const analysis::Constant*> a_components; | 
 |       std::vector<const analysis::Constant*> results_components; | 
 |  | 
 |       a_components = arg->GetVectorComponents(const_mgr); | 
 |  | 
 |       // Fold each component of the vector. | 
 |       for (uint32_t i = 0; i < a_components.size(); ++i) { | 
 |         results_components.push_back(scalar_rule(vector_type->element_type(), | 
 |                                                  a_components[i], const_mgr)); | 
 |         if (results_components[i] == nullptr) { | 
 |           return nullptr; | 
 |         } | 
 |       } | 
 |  | 
 |       // Build the constant object and return it. | 
 |       std::vector<uint32_t> ids; | 
 |       for (const analysis::Constant* member : results_components) { | 
 |         ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); | 
 |       } | 
 |       return const_mgr->GetConstant(vector_type, ids); | 
 |     } else { | 
 |       return scalar_rule(result_type, arg, const_mgr); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | // Returns the result of folding the constants in |constants| according the | 
 | // |scalar_rule|.  If |result_type| is a vector, then |scalar_rule| is applied | 
 | // per component. | 
 | const analysis::Constant* FoldFPBinaryOp( | 
 |     BinaryScalarFoldingRule scalar_rule, uint32_t result_type_id, | 
 |     const std::vector<const analysis::Constant*>& constants, | 
 |     IRContext* context) { | 
 |   analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |   analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |   const analysis::Type* result_type = type_mgr->GetType(result_type_id); | 
 |   const analysis::Vector* vector_type = result_type->AsVector(); | 
 |  | 
 |   if (constants[0] == nullptr || constants[1] == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (vector_type != nullptr) { | 
 |     std::vector<const analysis::Constant*> a_components; | 
 |     std::vector<const analysis::Constant*> b_components; | 
 |     std::vector<const analysis::Constant*> results_components; | 
 |  | 
 |     a_components = constants[0]->GetVectorComponents(const_mgr); | 
 |     b_components = constants[1]->GetVectorComponents(const_mgr); | 
 |  | 
 |     // Fold each component of the vector. | 
 |     for (uint32_t i = 0; i < a_components.size(); ++i) { | 
 |       results_components.push_back(scalar_rule(vector_type->element_type(), | 
 |                                                a_components[i], b_components[i], | 
 |                                                const_mgr)); | 
 |       if (results_components[i] == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     // Build the constant object and return it. | 
 |     std::vector<uint32_t> ids; | 
 |     for (const analysis::Constant* member : results_components) { | 
 |       ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); | 
 |     } | 
 |     return const_mgr->GetConstant(vector_type, ids); | 
 |   } else { | 
 |     return scalar_rule(result_type, constants[0], constants[1], const_mgr); | 
 |   } | 
 | } | 
 |  | 
 | // Returns a |ConstantFoldingRule| that folds floating point scalars using | 
 | // |scalar_rule| and vectors of floating point by applying |scalar_rule| to the | 
 | // elements of the vector.  The |ConstantFoldingRule| that is returned assumes | 
 | // that |constants| contains 2 entries.  If they are not |nullptr|, then their | 
 | // type is either |Float| or a |Vector| whose element type is |Float|. | 
 | ConstantFoldingRule FoldFPBinaryOp(BinaryScalarFoldingRule scalar_rule) { | 
 |   return [scalar_rule](IRContext* context, Instruction* inst, | 
 |                        const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       return nullptr; | 
 |     } | 
 |     if (inst->opcode() == spv::Op::OpExtInst) { | 
 |       return FoldFPBinaryOp(scalar_rule, inst->type_id(), | 
 |                             {constants[1], constants[2]}, context); | 
 |     } | 
 |     return FoldFPBinaryOp(scalar_rule, inst->type_id(), constants, context); | 
 |   }; | 
 | } | 
 |  | 
 | // This macro defines a |UnaryScalarFoldingRule| that performs float to | 
 | // integer conversion. | 
 | // TODO(greg-lunarg): Support for 64-bit integer types. | 
 | UnaryScalarFoldingRule FoldFToIOp() { | 
 |   return [](const analysis::Type* result_type, const analysis::Constant* a, | 
 |             analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |     assert(result_type != nullptr && a != nullptr); | 
 |     const analysis::Integer* integer_type = result_type->AsInteger(); | 
 |     const analysis::Float* float_type = a->type()->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |     assert(integer_type != nullptr); | 
 |     if (integer_type->width() != 32) return nullptr; | 
 |     if (float_type->width() == 32) { | 
 |       float fa = a->GetFloat(); | 
 |       uint32_t result = integer_type->IsSigned() | 
 |                             ? static_cast<uint32_t>(static_cast<int32_t>(fa)) | 
 |                             : static_cast<uint32_t>(fa); | 
 |       std::vector<uint32_t> words = {result}; | 
 |       return const_mgr->GetConstant(result_type, words); | 
 |     } else if (float_type->width() == 64) { | 
 |       double fa = a->GetDouble(); | 
 |       uint32_t result = integer_type->IsSigned() | 
 |                             ? static_cast<uint32_t>(static_cast<int32_t>(fa)) | 
 |                             : static_cast<uint32_t>(fa); | 
 |       std::vector<uint32_t> words = {result}; | 
 |       return const_mgr->GetConstant(result_type, words); | 
 |     } | 
 |     return nullptr; | 
 |   }; | 
 | } | 
 |  | 
 | // This function defines a |UnaryScalarFoldingRule| that performs integer to | 
 | // float conversion. | 
 | // TODO(greg-lunarg): Support for 64-bit integer types. | 
 | UnaryScalarFoldingRule FoldIToFOp() { | 
 |   return [](const analysis::Type* result_type, const analysis::Constant* a, | 
 |             analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |     assert(result_type != nullptr && a != nullptr); | 
 |     const analysis::Integer* integer_type = a->type()->AsInteger(); | 
 |     const analysis::Float* float_type = result_type->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |     assert(integer_type != nullptr); | 
 |     if (integer_type->width() != 32) return nullptr; | 
 |     uint32_t ua = a->GetU32(); | 
 |     if (float_type->width() == 32) { | 
 |       float result_val = integer_type->IsSigned() | 
 |                              ? static_cast<float>(static_cast<int32_t>(ua)) | 
 |                              : static_cast<float>(ua); | 
 |       utils::FloatProxy<float> result(result_val); | 
 |       std::vector<uint32_t> words = {result.data()}; | 
 |       return const_mgr->GetConstant(result_type, words); | 
 |     } else if (float_type->width() == 64) { | 
 |       double result_val = integer_type->IsSigned() | 
 |                               ? static_cast<double>(static_cast<int32_t>(ua)) | 
 |                               : static_cast<double>(ua); | 
 |       utils::FloatProxy<double> result(result_val); | 
 |       std::vector<uint32_t> words = result.GetWords(); | 
 |       return const_mgr->GetConstant(result_type, words); | 
 |     } | 
 |     return nullptr; | 
 |   }; | 
 | } | 
 |  | 
 | // This defines a |UnaryScalarFoldingRule| that performs |OpQuantizeToF16|. | 
 | UnaryScalarFoldingRule FoldQuantizeToF16Scalar() { | 
 |   return [](const analysis::Type* result_type, const analysis::Constant* a, | 
 |             analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |     assert(result_type != nullptr && a != nullptr); | 
 |     const analysis::Float* float_type = a->type()->AsFloat(); | 
 |     assert(float_type != nullptr); | 
 |     if (float_type->width() != 32) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     float fa = a->GetFloat(); | 
 |     utils::HexFloat<utils::FloatProxy<float>> orignal(fa); | 
 |     utils::HexFloat<utils::FloatProxy<utils::Float16>> quantized(0); | 
 |     utils::HexFloat<utils::FloatProxy<float>> result(0.0f); | 
 |     orignal.castTo(quantized, utils::round_direction::kToZero); | 
 |     quantized.castTo(result, utils::round_direction::kToZero); | 
 |     std::vector<uint32_t> words = {result.getBits()}; | 
 |     return const_mgr->GetConstant(result_type, words); | 
 |   }; | 
 | } | 
 |  | 
 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|.  The | 
 | // operator |op| must work for both float and double, and use syntax "f1 op f2". | 
 | #define FOLD_FPARITH_OP(op)                                                   \ | 
 |   [](const analysis::Type* result_type_in_macro, const analysis::Constant* a, \ | 
 |      const analysis::Constant* b,                                             \ | 
 |      analysis::ConstantManager* const_mgr_in_macro)                           \ | 
 |       -> const analysis::Constant* {                                          \ | 
 |     assert(result_type_in_macro != nullptr && a != nullptr && b != nullptr);  \ | 
 |     assert(result_type_in_macro == a->type() &&                               \ | 
 |            result_type_in_macro == b->type());                                \ | 
 |     const analysis::Float* float_type_in_macro =                              \ | 
 |         result_type_in_macro->AsFloat();                                      \ | 
 |     assert(float_type_in_macro != nullptr);                                   \ | 
 |     if (float_type_in_macro->width() == 32) {                                 \ | 
 |       float fa = a->GetFloat();                                               \ | 
 |       float fb = b->GetFloat();                                               \ | 
 |       utils::FloatProxy<float> result_in_macro(fa op fb);                     \ | 
 |       std::vector<uint32_t> words_in_macro = result_in_macro.GetWords();      \ | 
 |       return const_mgr_in_macro->GetConstant(result_type_in_macro,            \ | 
 |                                              words_in_macro);                 \ | 
 |     } else if (float_type_in_macro->width() == 64) {                          \ | 
 |       double fa = a->GetDouble();                                             \ | 
 |       double fb = b->GetDouble();                                             \ | 
 |       utils::FloatProxy<double> result_in_macro(fa op fb);                    \ | 
 |       std::vector<uint32_t> words_in_macro = result_in_macro.GetWords();      \ | 
 |       return const_mgr_in_macro->GetConstant(result_type_in_macro,            \ | 
 |                                              words_in_macro);                 \ | 
 |     }                                                                         \ | 
 |     return nullptr;                                                           \ | 
 |   } | 
 |  | 
 | // Define the folding rule for conversion between floating point and integer | 
 | ConstantFoldingRule FoldFToI() { return FoldFPUnaryOp(FoldFToIOp()); } | 
 | ConstantFoldingRule FoldIToF() { return FoldFPUnaryOp(FoldIToFOp()); } | 
 | ConstantFoldingRule FoldQuantizeToF16() { | 
 |   return FoldFPUnaryOp(FoldQuantizeToF16Scalar()); | 
 | } | 
 |  | 
 | // Define the folding rules for subtraction, addition, multiplication, and | 
 | // division for floating point values. | 
 | ConstantFoldingRule FoldFSub() { return FoldFPBinaryOp(FOLD_FPARITH_OP(-)); } | 
 | ConstantFoldingRule FoldFAdd() { return FoldFPBinaryOp(FOLD_FPARITH_OP(+)); } | 
 | ConstantFoldingRule FoldFMul() { return FoldFPBinaryOp(FOLD_FPARITH_OP(*)); } | 
 |  | 
 | // Returns the constant that results from evaluating |numerator| / 0.0.  Returns | 
 | // |nullptr| if the result could not be evaluated. | 
 | const analysis::Constant* FoldFPScalarDivideByZero( | 
 |     const analysis::Type* result_type, const analysis::Constant* numerator, | 
 |     analysis::ConstantManager* const_mgr) { | 
 |   if (numerator == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (numerator->IsZero()) { | 
 |     return GetNan(result_type, const_mgr); | 
 |   } | 
 |  | 
 |   const analysis::Constant* result = GetInf(result_type, const_mgr); | 
 |   if (result == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (numerator->AsFloatConstant()->GetValueAsDouble() < 0.0) { | 
 |     result = NegateFPConst(result_type, result, const_mgr); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | // Returns the result of folding |numerator| / |denominator|.  Returns |nullptr| | 
 | // if it cannot be folded. | 
 | const analysis::Constant* FoldScalarFPDivide( | 
 |     const analysis::Type* result_type, const analysis::Constant* numerator, | 
 |     const analysis::Constant* denominator, | 
 |     analysis::ConstantManager* const_mgr) { | 
 |   if (denominator == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (denominator->IsZero()) { | 
 |     return FoldFPScalarDivideByZero(result_type, numerator, const_mgr); | 
 |   } | 
 |  | 
 |   const analysis::FloatConstant* denominator_float = | 
 |       denominator->AsFloatConstant(); | 
 |   if (denominator_float && denominator->GetValueAsDouble() == -0.0) { | 
 |     const analysis::Constant* result = | 
 |         FoldFPScalarDivideByZero(result_type, numerator, const_mgr); | 
 |     if (result != nullptr) | 
 |       result = NegateFPConst(result_type, result, const_mgr); | 
 |     return result; | 
 |   } else { | 
 |     return FOLD_FPARITH_OP(/)(result_type, numerator, denominator, const_mgr); | 
 |   } | 
 | } | 
 |  | 
 | // Returns the constant folding rule to fold |OpFDiv| with two constants. | 
 | ConstantFoldingRule FoldFDiv() { return FoldFPBinaryOp(FoldScalarFPDivide); } | 
 |  | 
 | bool CompareFloatingPoint(bool op_result, bool op_unordered, | 
 |                           bool need_ordered) { | 
 |   if (need_ordered) { | 
 |     // operands are ordered and Operand 1 is |op| Operand 2 | 
 |     return !op_unordered && op_result; | 
 |   } else { | 
 |     // operands are unordered or Operand 1 is |op| Operand 2 | 
 |     return op_unordered || op_result; | 
 |   } | 
 | } | 
 |  | 
 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|.  The | 
 | // operator |op| must work for both float and double, and use syntax "f1 op f2". | 
 | #define FOLD_FPCMP_OP(op, ord)                                            \ | 
 |   [](const analysis::Type* result_type, const analysis::Constant* a,      \ | 
 |      const analysis::Constant* b,                                         \ | 
 |      analysis::ConstantManager* const_mgr) -> const analysis::Constant* { \ | 
 |     assert(result_type != nullptr && a != nullptr && b != nullptr);       \ | 
 |     assert(result_type->AsBool());                                        \ | 
 |     assert(a->type() == b->type());                                       \ | 
 |     const analysis::Float* float_type = a->type()->AsFloat();             \ | 
 |     assert(float_type != nullptr);                                        \ | 
 |     if (float_type->width() == 32) {                                      \ | 
 |       float fa = a->GetFloat();                                           \ | 
 |       float fb = b->GetFloat();                                           \ | 
 |       bool result = CompareFloatingPoint(                                 \ | 
 |           fa op fb, std::isnan(fa) || std::isnan(fb), ord);               \ | 
 |       std::vector<uint32_t> words = {uint32_t(result)};                   \ | 
 |       return const_mgr->GetConstant(result_type, words);                  \ | 
 |     } else if (float_type->width() == 64) {                               \ | 
 |       double fa = a->GetDouble();                                         \ | 
 |       double fb = b->GetDouble();                                         \ | 
 |       bool result = CompareFloatingPoint(                                 \ | 
 |           fa op fb, std::isnan(fa) || std::isnan(fb), ord);               \ | 
 |       std::vector<uint32_t> words = {uint32_t(result)};                   \ | 
 |       return const_mgr->GetConstant(result_type, words);                  \ | 
 |     }                                                                     \ | 
 |     return nullptr;                                                       \ | 
 |   } | 
 |  | 
 | // Define the folding rules for ordered and unordered comparison for floating | 
 | // point values. | 
 | ConstantFoldingRule FoldFOrdEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(==, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(==, false)); | 
 | } | 
 | ConstantFoldingRule FoldFOrdNotEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordNotEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, false)); | 
 | } | 
 | ConstantFoldingRule FoldFOrdLessThan() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(<, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordLessThan() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(<, false)); | 
 | } | 
 | ConstantFoldingRule FoldFOrdGreaterThan() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(>, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordGreaterThan() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(>, false)); | 
 | } | 
 | ConstantFoldingRule FoldFOrdLessThanEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordLessThanEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, false)); | 
 | } | 
 | ConstantFoldingRule FoldFOrdGreaterThanEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, true)); | 
 | } | 
 | ConstantFoldingRule FoldFUnordGreaterThanEqual() { | 
 |   return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, false)); | 
 | } | 
 |  | 
 | // Folds an OpDot where all of the inputs are constants to a | 
 | // constant.  A new constant is created if necessary. | 
 | ConstantFoldingRule FoldOpDotWithConstants() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |     const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); | 
 |     assert(new_type->AsFloat() && "OpDot should have a float return type."); | 
 |     const analysis::Float* float_type = new_type->AsFloat(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // If one of the operands is 0, then the result is 0. | 
 |     bool has_zero_operand = false; | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       if (constants[i]) { | 
 |         if (constants[i]->AsNullConstant() || | 
 |             constants[i]->AsVectorConstant()->IsZero()) { | 
 |           has_zero_operand = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (has_zero_operand) { | 
 |       if (float_type->width() == 32) { | 
 |         utils::FloatProxy<float> result(0.0f); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         return const_mgr->GetConstant(float_type, words); | 
 |       } | 
 |       if (float_type->width() == 64) { | 
 |         utils::FloatProxy<double> result(0.0); | 
 |         std::vector<uint32_t> words = result.GetWords(); | 
 |         return const_mgr->GetConstant(float_type, words); | 
 |       } | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (constants[0] == nullptr || constants[1] == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     std::vector<const analysis::Constant*> a_components; | 
 |     std::vector<const analysis::Constant*> b_components; | 
 |  | 
 |     a_components = constants[0]->GetVectorComponents(const_mgr); | 
 |     b_components = constants[1]->GetVectorComponents(const_mgr); | 
 |  | 
 |     utils::FloatProxy<double> result(0.0); | 
 |     std::vector<uint32_t> words = result.GetWords(); | 
 |     const analysis::Constant* result_const = | 
 |         const_mgr->GetConstant(float_type, words); | 
 |     for (uint32_t i = 0; i < a_components.size() && result_const != nullptr; | 
 |          ++i) { | 
 |       if (a_components[i] == nullptr || b_components[i] == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |  | 
 |       const analysis::Constant* component = FOLD_FPARITH_OP(*)( | 
 |           new_type, a_components[i], b_components[i], const_mgr); | 
 |       if (component == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |       result_const = | 
 |           FOLD_FPARITH_OP(+)(new_type, result_const, component, const_mgr); | 
 |     } | 
 |     return result_const; | 
 |   }; | 
 | } | 
 |  | 
 | // This function defines a |UnaryScalarFoldingRule| that subtracts the constant | 
 | // from zero. | 
 | UnaryScalarFoldingRule FoldFNegateOp() { | 
 |   return [](const analysis::Type* result_type, const analysis::Constant* a, | 
 |             analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |     assert(result_type != nullptr && a != nullptr); | 
 |     assert(result_type == a->type()); | 
 |     return NegateFPConst(result_type, a, const_mgr); | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldFNegate() { return FoldFPUnaryOp(FoldFNegateOp()); } | 
 |  | 
 | ConstantFoldingRule FoldFClampFeedingCompare(spv::Op cmp_opcode) { | 
 |   return [cmp_opcode](IRContext* context, Instruction* inst, | 
 |                       const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     uint32_t non_const_idx = (constants[0] ? 1 : 0); | 
 |     uint32_t operand_id = inst->GetSingleWordInOperand(non_const_idx); | 
 |     Instruction* operand_inst = def_use_mgr->GetDef(operand_id); | 
 |  | 
 |     analysis::TypeManager* type_mgr = context->get_type_mgr(); | 
 |     const analysis::Type* operand_type = | 
 |         type_mgr->GetType(operand_inst->type_id()); | 
 |  | 
 |     if (!operand_type->AsFloat()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (operand_type->AsFloat()->width() != 32 && | 
 |         operand_type->AsFloat()->width() != 64) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (operand_inst->opcode() != spv::Op::OpExtInst) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (operand_inst->GetSingleWordInOperand(1) != GLSLstd450FClamp) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     if (constants[1] == nullptr && constants[0] == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     uint32_t max_id = operand_inst->GetSingleWordInOperand(4); | 
 |     const analysis::Constant* max_const = | 
 |         const_mgr->FindDeclaredConstant(max_id); | 
 |  | 
 |     uint32_t min_id = operand_inst->GetSingleWordInOperand(3); | 
 |     const analysis::Constant* min_const = | 
 |         const_mgr->FindDeclaredConstant(min_id); | 
 |  | 
 |     bool found_result = false; | 
 |     bool result = false; | 
 |  | 
 |     switch (cmp_opcode) { | 
 |       case spv::Op::OpFOrdLessThan: | 
 |       case spv::Op::OpFUnordLessThan: | 
 |       case spv::Op::OpFOrdGreaterThanEqual: | 
 |       case spv::Op::OpFUnordGreaterThanEqual: | 
 |         if (constants[0]) { | 
 |           if (min_const) { | 
 |             if (constants[0]->GetValueAsDouble() < | 
 |                 min_const->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = (cmp_opcode == spv::Op::OpFOrdLessThan || | 
 |                         cmp_opcode == spv::Op::OpFUnordLessThan); | 
 |             } | 
 |           } | 
 |           if (max_const) { | 
 |             if (constants[0]->GetValueAsDouble() >= | 
 |                 max_const->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = !(cmp_opcode == spv::Op::OpFOrdLessThan || | 
 |                          cmp_opcode == spv::Op::OpFUnordLessThan); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         if (constants[1]) { | 
 |           if (max_const) { | 
 |             if (max_const->GetValueAsDouble() < | 
 |                 constants[1]->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = (cmp_opcode == spv::Op::OpFOrdLessThan || | 
 |                         cmp_opcode == spv::Op::OpFUnordLessThan); | 
 |             } | 
 |           } | 
 |  | 
 |           if (min_const) { | 
 |             if (min_const->GetValueAsDouble() >= | 
 |                 constants[1]->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = !(cmp_opcode == spv::Op::OpFOrdLessThan || | 
 |                          cmp_opcode == spv::Op::OpFUnordLessThan); | 
 |             } | 
 |           } | 
 |         } | 
 |         break; | 
 |       case spv::Op::OpFOrdGreaterThan: | 
 |       case spv::Op::OpFUnordGreaterThan: | 
 |       case spv::Op::OpFOrdLessThanEqual: | 
 |       case spv::Op::OpFUnordLessThanEqual: | 
 |         if (constants[0]) { | 
 |           if (min_const) { | 
 |             if (constants[0]->GetValueAsDouble() <= | 
 |                 min_const->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = (cmp_opcode == spv::Op::OpFOrdLessThanEqual || | 
 |                         cmp_opcode == spv::Op::OpFUnordLessThanEqual); | 
 |             } | 
 |           } | 
 |           if (max_const) { | 
 |             if (constants[0]->GetValueAsDouble() > | 
 |                 max_const->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = !(cmp_opcode == spv::Op::OpFOrdLessThanEqual || | 
 |                          cmp_opcode == spv::Op::OpFUnordLessThanEqual); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         if (constants[1]) { | 
 |           if (max_const) { | 
 |             if (max_const->GetValueAsDouble() <= | 
 |                 constants[1]->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = (cmp_opcode == spv::Op::OpFOrdLessThanEqual || | 
 |                         cmp_opcode == spv::Op::OpFUnordLessThanEqual); | 
 |             } | 
 |           } | 
 |  | 
 |           if (min_const) { | 
 |             if (min_const->GetValueAsDouble() > | 
 |                 constants[1]->GetValueAsDouble()) { | 
 |               found_result = true; | 
 |               result = !(cmp_opcode == spv::Op::OpFOrdLessThanEqual || | 
 |                          cmp_opcode == spv::Op::OpFUnordLessThanEqual); | 
 |             } | 
 |           } | 
 |         } | 
 |         break; | 
 |       default: | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (!found_result) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     const analysis::Type* bool_type = | 
 |         context->get_type_mgr()->GetType(inst->type_id()); | 
 |     const analysis::Constant* result_const = | 
 |         const_mgr->GetConstant(bool_type, {static_cast<uint32_t>(result)}); | 
 |     assert(result_const); | 
 |     return result_const; | 
 |   }; | 
 | } | 
 |  | 
 | ConstantFoldingRule FoldFMix() { | 
 |   return [](IRContext* context, Instruction* inst, | 
 |             const std::vector<const analysis::Constant*>& constants) | 
 |              -> const analysis::Constant* { | 
 |     analysis::ConstantManager* const_mgr = context->get_constant_mgr(); | 
 |     assert(inst->opcode() == spv::Op::OpExtInst && | 
 |            "Expecting an extended instruction."); | 
 |     assert(inst->GetSingleWordInOperand(0) == | 
 |                context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && | 
 |            "Expecting a GLSLstd450 extended instruction."); | 
 |     assert(inst->GetSingleWordInOperand(1) == GLSLstd450FMix && | 
 |            "Expecting and FMix instruction."); | 
 |  | 
 |     if (!inst->IsFloatingPointFoldingAllowed()) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // Make sure all FMix operands are constants. | 
 |     for (uint32_t i = 1; i < 4; i++) { | 
 |       if (constants[i] == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |  | 
 |     const analysis::Constant* one; | 
 |     bool is_vector = false; | 
 |     const analysis::Type* result_type = constants[1]->type(); | 
 |     const analysis::Type* base_type = result_type; | 
 |     if (base_type->AsVector()) { | 
 |       is_vector = true; | 
 |       base_type = base_type->AsVector()->element_type(); | 
 |     } | 
 |     assert(base_type->AsFloat() != nullptr && | 
 |            "FMix is suppose to act on floats or vectors of floats."); | 
 |  | 
 |     if (base_type->AsFloat()->width() == 32) { | 
 |       one = const_mgr->GetConstant(base_type, | 
 |                                    utils::FloatProxy<float>(1.0f).GetWords()); | 
 |     } else { | 
 |       one = const_mgr->GetConstant(base_type, | 
 |                                    utils::FloatProxy<double>(1.0).GetWords()); | 
 |     } | 
 |  | 
 |     if (is_vector) { | 
 |       uint32_t one_id = const_mgr->GetDefiningInstruction(one)->result_id(); | 
 |       one = | 
 |           const_mgr->GetConstant(result_type, std::vector<uint32_t>(4, one_id)); | 
 |     } | 
 |  | 
 |     const analysis::Constant* temp1 = FoldFPBinaryOp( | 
 |         FOLD_FPARITH_OP(-), inst->type_id(), {one, constants[3]}, context); | 
 |     if (temp1 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     const analysis::Constant* temp2 = FoldFPBinaryOp( | 
 |         FOLD_FPARITH_OP(*), inst->type_id(), {constants[1], temp1}, context); | 
 |     if (temp2 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     const analysis::Constant* temp3 = | 
 |         FoldFPBinaryOp(FOLD_FPARITH_OP(*), inst->type_id(), | 
 |                        {constants[2], constants[3]}, context); | 
 |     if (temp3 == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     return FoldFPBinaryOp(FOLD_FPARITH_OP(+), inst->type_id(), {temp2, temp3}, | 
 |                           context); | 
 |   }; | 
 | } | 
 |  | 
 | const analysis::Constant* FoldMin(const analysis::Type* result_type, | 
 |                                   const analysis::Constant* a, | 
 |                                   const analysis::Constant* b, | 
 |                                   analysis::ConstantManager*) { | 
 |   if (const analysis::Integer* int_type = result_type->AsInteger()) { | 
 |     if (int_type->width() == 32) { | 
 |       if (int_type->IsSigned()) { | 
 |         int32_t va = a->GetS32(); | 
 |         int32_t vb = b->GetS32(); | 
 |         return (va < vb ? a : b); | 
 |       } else { | 
 |         uint32_t va = a->GetU32(); | 
 |         uint32_t vb = b->GetU32(); | 
 |         return (va < vb ? a : b); | 
 |       } | 
 |     } else if (int_type->width() == 64) { | 
 |       if (int_type->IsSigned()) { | 
 |         int64_t va = a->GetS64(); | 
 |         int64_t vb = b->GetS64(); | 
 |         return (va < vb ? a : b); | 
 |       } else { | 
 |         uint64_t va = a->GetU64(); | 
 |         uint64_t vb = b->GetU64(); | 
 |         return (va < vb ? a : b); | 
 |       } | 
 |     } | 
 |   } else if (const analysis::Float* float_type = result_type->AsFloat()) { | 
 |     if (float_type->width() == 32) { | 
 |       float va = a->GetFloat(); | 
 |       float vb = b->GetFloat(); | 
 |       return (va < vb ? a : b); | 
 |     } else if (float_type->width() == 64) { | 
 |       double va = a->GetDouble(); | 
 |       double vb = b->GetDouble(); | 
 |       return (va < vb ? a : b); | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | const analysis::Constant* FoldMax(const analysis::Type* result_type, | 
 |                                   const analysis::Constant* a, | 
 |                                   const analysis::Constant* b, | 
 |                                   analysis::ConstantManager*) { | 
 |   if (const analysis::Integer* int_type = result_type->AsInteger()) { | 
 |     if (int_type->width() == 32) { | 
 |       if (int_type->IsSigned()) { | 
 |         int32_t va = a->GetS32(); | 
 |         int32_t vb = b->GetS32(); | 
 |         return (va > vb ? a : b); | 
 |       } else { | 
 |         uint32_t va = a->GetU32(); | 
 |         uint32_t vb = b->GetU32(); | 
 |         return (va > vb ? a : b); | 
 |       } | 
 |     } else if (int_type->width() == 64) { | 
 |       if (int_type->IsSigned()) { | 
 |         int64_t va = a->GetS64(); | 
 |         int64_t vb = b->GetS64(); | 
 |         return (va > vb ? a : b); | 
 |       } else { | 
 |         uint64_t va = a->GetU64(); | 
 |         uint64_t vb = b->GetU64(); | 
 |         return (va > vb ? a : b); | 
 |       } | 
 |     } | 
 |   } else if (const analysis::Float* float_type = result_type->AsFloat()) { | 
 |     if (float_type->width() == 32) { | 
 |       float va = a->GetFloat(); | 
 |       float vb = b->GetFloat(); | 
 |       return (va > vb ? a : b); | 
 |     } else if (float_type->width() == 64) { | 
 |       double va = a->GetDouble(); | 
 |       double vb = b->GetDouble(); | 
 |       return (va > vb ? a : b); | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Fold an clamp instruction when all three operands are constant. | 
 | const analysis::Constant* FoldClamp1( | 
 |     IRContext* context, Instruction* inst, | 
 |     const std::vector<const analysis::Constant*>& constants) { | 
 |   assert(inst->opcode() == spv::Op::OpExtInst && | 
 |          "Expecting an extended instruction."); | 
 |   assert(inst->GetSingleWordInOperand(0) == | 
 |              context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && | 
 |          "Expecting a GLSLstd450 extended instruction."); | 
 |  | 
 |   // Make sure all Clamp operands are constants. | 
 |   for (uint32_t i = 1; i < 4; i++) { | 
 |     if (constants[i] == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   const analysis::Constant* temp = FoldFPBinaryOp( | 
 |       FoldMax, inst->type_id(), {constants[1], constants[2]}, context); | 
 |   if (temp == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   return FoldFPBinaryOp(FoldMin, inst->type_id(), {temp, constants[3]}, | 
 |                         context); | 
 | } | 
 |  | 
 | // Fold a clamp instruction when |x <= min_val|. | 
 | const analysis::Constant* FoldClamp2( | 
 |     IRContext* context, Instruction* inst, | 
 |     const std::vector<const analysis::Constant*>& constants) { | 
 |   assert(inst->opcode() == spv::Op::OpExtInst && | 
 |          "Expecting an extended instruction."); | 
 |   assert(inst->GetSingleWordInOperand(0) == | 
 |              context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && | 
 |          "Expecting a GLSLstd450 extended instruction."); | 
 |  | 
 |   const analysis::Constant* x = constants[1]; | 
 |   const analysis::Constant* min_val = constants[2]; | 
 |  | 
 |   if (x == nullptr || min_val == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   const analysis::Constant* temp = | 
 |       FoldFPBinaryOp(FoldMax, inst->type_id(), {x, min_val}, context); | 
 |   if (temp == min_val) { | 
 |     // We can assume that |min_val| is less than |max_val|.  Therefore, if the | 
 |     // result of the max operation is |min_val|, we know the result of the min | 
 |     // operation, even if |max_val| is not a constant. | 
 |     return min_val; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Fold a clamp instruction when |x >= max_val|. | 
 | const analysis::Constant* FoldClamp3( | 
 |     IRContext* context, Instruction* inst, | 
 |     const std::vector<const analysis::Constant*>& constants) { | 
 |   assert(inst->opcode() == spv::Op::OpExtInst && | 
 |          "Expecting an extended instruction."); | 
 |   assert(inst->GetSingleWordInOperand(0) == | 
 |              context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && | 
 |          "Expecting a GLSLstd450 extended instruction."); | 
 |  | 
 |   const analysis::Constant* x = constants[1]; | 
 |   const analysis::Constant* max_val = constants[3]; | 
 |  | 
 |   if (x == nullptr || max_val == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   const analysis::Constant* temp = | 
 |       FoldFPBinaryOp(FoldMin, inst->type_id(), {x, max_val}, context); | 
 |   if (temp == max_val) { | 
 |     // We can assume that |min_val| is less than |max_val|.  Therefore, if the | 
 |     // result of the max operation is |min_val|, we know the result of the min | 
 |     // operation, even if |max_val| is not a constant. | 
 |     return max_val; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | UnaryScalarFoldingRule FoldFTranscendentalUnary(double (*fp)(double)) { | 
 |   return | 
 |       [fp](const analysis::Type* result_type, const analysis::Constant* a, | 
 |            analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |         assert(result_type != nullptr && a != nullptr); | 
 |         const analysis::Float* float_type = a->type()->AsFloat(); | 
 |         assert(float_type != nullptr); | 
 |         assert(float_type == result_type->AsFloat()); | 
 |         if (float_type->width() == 32) { | 
 |           float fa = a->GetFloat(); | 
 |           float res = static_cast<float>(fp(fa)); | 
 |           utils::FloatProxy<float> result(res); | 
 |           std::vector<uint32_t> words = result.GetWords(); | 
 |           return const_mgr->GetConstant(result_type, words); | 
 |         } else if (float_type->width() == 64) { | 
 |           double fa = a->GetDouble(); | 
 |           double res = fp(fa); | 
 |           utils::FloatProxy<double> result(res); | 
 |           std::vector<uint32_t> words = result.GetWords(); | 
 |           return const_mgr->GetConstant(result_type, words); | 
 |         } | 
 |         return nullptr; | 
 |       }; | 
 | } | 
 |  | 
 | BinaryScalarFoldingRule FoldFTranscendentalBinary(double (*fp)(double, | 
 |                                                                double)) { | 
 |   return | 
 |       [fp](const analysis::Type* result_type, const analysis::Constant* a, | 
 |            const analysis::Constant* b, | 
 |            analysis::ConstantManager* const_mgr) -> const analysis::Constant* { | 
 |         assert(result_type != nullptr && a != nullptr); | 
 |         const analysis::Float* float_type = a->type()->AsFloat(); | 
 |         assert(float_type != nullptr); | 
 |         assert(float_type == result_type->AsFloat()); | 
 |         assert(float_type == b->type()->AsFloat()); | 
 |         if (float_type->width() == 32) { | 
 |           float fa = a->GetFloat(); | 
 |           float fb = b->GetFloat(); | 
 |           float res = static_cast<float>(fp(fa, fb)); | 
 |           utils::FloatProxy<float> result(res); | 
 |           std::vector<uint32_t> words = result.GetWords(); | 
 |           return const_mgr->GetConstant(result_type, words); | 
 |         } else if (float_type->width() == 64) { | 
 |           double fa = a->GetDouble(); | 
 |           double fb = b->GetDouble(); | 
 |           double res = fp(fa, fb); | 
 |           utils::FloatProxy<double> result(res); | 
 |           std::vector<uint32_t> words = result.GetWords(); | 
 |           return const_mgr->GetConstant(result_type, words); | 
 |         } | 
 |         return nullptr; | 
 |       }; | 
 | } | 
 | }  // namespace | 
 |  | 
 | void ConstantFoldingRules::AddFoldingRules() { | 
 |   // Add all folding rules to the list for the opcodes to which they apply. | 
 |   // Note that the order in which rules are added to the list matters. If a rule | 
 |   // applies to the instruction, the rest of the rules will not be attempted. | 
 |   // Take that into consideration. | 
 |  | 
 |   rules_[spv::Op::OpCompositeConstruct].push_back(FoldCompositeWithConstants()); | 
 |  | 
 |   rules_[spv::Op::OpCompositeExtract].push_back(FoldExtractWithConstants()); | 
 |   rules_[spv::Op::OpCompositeInsert].push_back(FoldInsertWithConstants()); | 
 |  | 
 |   rules_[spv::Op::OpConvertFToS].push_back(FoldFToI()); | 
 |   rules_[spv::Op::OpConvertFToU].push_back(FoldFToI()); | 
 |   rules_[spv::Op::OpConvertSToF].push_back(FoldIToF()); | 
 |   rules_[spv::Op::OpConvertUToF].push_back(FoldIToF()); | 
 |  | 
 |   rules_[spv::Op::OpDot].push_back(FoldOpDotWithConstants()); | 
 |   rules_[spv::Op::OpFAdd].push_back(FoldFAdd()); | 
 |   rules_[spv::Op::OpFDiv].push_back(FoldFDiv()); | 
 |   rules_[spv::Op::OpFMul].push_back(FoldFMul()); | 
 |   rules_[spv::Op::OpFSub].push_back(FoldFSub()); | 
 |  | 
 |   rules_[spv::Op::OpFOrdEqual].push_back(FoldFOrdEqual()); | 
 |  | 
 |   rules_[spv::Op::OpFUnordEqual].push_back(FoldFUnordEqual()); | 
 |  | 
 |   rules_[spv::Op::OpFOrdNotEqual].push_back(FoldFOrdNotEqual()); | 
 |  | 
 |   rules_[spv::Op::OpFUnordNotEqual].push_back(FoldFUnordNotEqual()); | 
 |  | 
 |   rules_[spv::Op::OpFOrdLessThan].push_back(FoldFOrdLessThan()); | 
 |   rules_[spv::Op::OpFOrdLessThan].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFOrdLessThan)); | 
 |  | 
 |   rules_[spv::Op::OpFUnordLessThan].push_back(FoldFUnordLessThan()); | 
 |   rules_[spv::Op::OpFUnordLessThan].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFUnordLessThan)); | 
 |  | 
 |   rules_[spv::Op::OpFOrdGreaterThan].push_back(FoldFOrdGreaterThan()); | 
 |   rules_[spv::Op::OpFOrdGreaterThan].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFOrdGreaterThan)); | 
 |  | 
 |   rules_[spv::Op::OpFUnordGreaterThan].push_back(FoldFUnordGreaterThan()); | 
 |   rules_[spv::Op::OpFUnordGreaterThan].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFUnordGreaterThan)); | 
 |  | 
 |   rules_[spv::Op::OpFOrdLessThanEqual].push_back(FoldFOrdLessThanEqual()); | 
 |   rules_[spv::Op::OpFOrdLessThanEqual].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFOrdLessThanEqual)); | 
 |  | 
 |   rules_[spv::Op::OpFUnordLessThanEqual].push_back(FoldFUnordLessThanEqual()); | 
 |   rules_[spv::Op::OpFUnordLessThanEqual].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFUnordLessThanEqual)); | 
 |  | 
 |   rules_[spv::Op::OpFOrdGreaterThanEqual].push_back(FoldFOrdGreaterThanEqual()); | 
 |   rules_[spv::Op::OpFOrdGreaterThanEqual].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFOrdGreaterThanEqual)); | 
 |  | 
 |   rules_[spv::Op::OpFUnordGreaterThanEqual].push_back( | 
 |       FoldFUnordGreaterThanEqual()); | 
 |   rules_[spv::Op::OpFUnordGreaterThanEqual].push_back( | 
 |       FoldFClampFeedingCompare(spv::Op::OpFUnordGreaterThanEqual)); | 
 |  | 
 |   rules_[spv::Op::OpVectorShuffle].push_back(FoldVectorShuffleWithConstants()); | 
 |   rules_[spv::Op::OpVectorTimesScalar].push_back(FoldVectorTimesScalar()); | 
 |   rules_[spv::Op::OpVectorTimesMatrix].push_back(FoldVectorTimesMatrix()); | 
 |   rules_[spv::Op::OpMatrixTimesVector].push_back(FoldMatrixTimesVector()); | 
 |  | 
 |   rules_[spv::Op::OpFNegate].push_back(FoldFNegate()); | 
 |   rules_[spv::Op::OpQuantizeToF16].push_back(FoldQuantizeToF16()); | 
 |  | 
 |   // Add rules for GLSLstd450 | 
 |   FeatureManager* feature_manager = context_->get_feature_mgr(); | 
 |   uint32_t ext_inst_glslstd450_id = | 
 |       feature_manager->GetExtInstImportId_GLSLstd450(); | 
 |   if (ext_inst_glslstd450_id != 0) { | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMix}].push_back(FoldFMix()); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMin}].push_back( | 
 |         FoldFPBinaryOp(FoldMin)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMin}].push_back( | 
 |         FoldFPBinaryOp(FoldMin)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMin}].push_back( | 
 |         FoldFPBinaryOp(FoldMin)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMax}].push_back( | 
 |         FoldFPBinaryOp(FoldMax)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMax}].push_back( | 
 |         FoldFPBinaryOp(FoldMax)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMax}].push_back( | 
 |         FoldFPBinaryOp(FoldMax)); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( | 
 |         FoldClamp1); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( | 
 |         FoldClamp2); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( | 
 |         FoldClamp3); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( | 
 |         FoldClamp1); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( | 
 |         FoldClamp2); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( | 
 |         FoldClamp3); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( | 
 |         FoldClamp1); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( | 
 |         FoldClamp2); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( | 
 |         FoldClamp3); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sin}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::sin))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Cos}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::cos))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Tan}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::tan))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Asin}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::asin))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Acos}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::acos))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::atan))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::log))); | 
 |  | 
 | #ifdef __ANDROID__ | 
 |     // Android NDK r15c targeting ABI 15 doesn't have full support for C++11 | 
 |     // (no std::exp2/log2). ::exp2 is available from C99 but ::log2 isn't | 
 |     // available up until ABI 18 so we use a shim | 
 |     auto log2_shim = [](double v) -> double { return log(v) / log(2.0); }; | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(::exp2))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(log2_shim))); | 
 | #else | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp2))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::log2))); | 
 | #endif | 
 |  | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sqrt}].push_back( | 
 |         FoldFPUnaryOp(FoldFTranscendentalUnary(std::sqrt))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan2}].push_back( | 
 |         FoldFPBinaryOp(FoldFTranscendentalBinary(std::atan2))); | 
 |     ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Pow}].push_back( | 
 |         FoldFPBinaryOp(FoldFTranscendentalBinary(std::pow))); | 
 |   } | 
 | } | 
 | }  // namespace opt | 
 | }  // namespace spvtools |