blob: 167797e7622111d359e9a02841825a3318c44f45 [file] [log] [blame]
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "xhtml1-transitional.dtd">
<!-- saved from url=(0013)about:internet -->
<?xml-stylesheet type="text/xsl" href="mathml.xsl"?><html xmlns="http://www.w3.org/1999/xhtml" xmlns:pref="http://www.w3.org/2002/Math/preference" xmlns:xlink="http://www.w3.org/1999/xlink" pref:renderer="mathplayer-dl">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style xmlns="" type="text/css">
/* This style sets a margin around the entire page */
html, body {
margin: 10px;
}
p {
font: normal 16px verdana, sans-serif;
margin: 0;
padding-bottom:12px;
}
h1 {
font: bold 25px verdana, sans-serif;
margin-top: 0;
margin-bottom: 3px;
padding-top: 0;
padding-bottom: 0;
}
h2 {
font: bold 19px verdana, sans-serif;
margin-top: 28px;
margin-bottom: 3px;
padding-top: 0;
padding-bottom: 0;
}
h3 {
font: bold 19px verdana, sans-serif !important;
margin-top: 28px;
margin-bottom: 3px;
padding-top: 0;
padding-bottom: 0;
}
li {
font: normal 16px verdana, sans-serif;
margin-top: 0;
margin-bottom: 18px;
padding-top: 0;
padding-bottom: 0;
}
.pdparam {
font: italic 16px verdana, sans-serif;
}
.term {
font: italic 16px verdana, sans-serif;
font-weight: normal;
}
.type {
font: normal 16px verdana, sans-serif !important;
}
.parameter {
font-style: italic;
}
a:link, a:visited {
color: blue;
text-decoration: none;
font: normal 16px;
}
a:hover {
background-color: #FFFF99;
font: normal 16px;
}
div.funcsynopsis {
text-align: left;
background-color: #e6e6e6;
font: normal 16px verdana, sans-serif;
padding-top: 10px;
padding-bottom: 10px;
}
div.funcsynopsis table {
border-collapse: separate;
font: normal 16px verdana, sans-serif;
}
div.funcsynopsis td {
background-color: #e6e6e6;
border: 0 solid #000;
padding: 1px;
font: normal 16px verdana, sans-serif;
}
div.refsect1 {
font-family: verdana, sans-serif;
font-size: 16px;
}
code.constant {
font: normal 16px courier new, monospace !important;
}
span.errorname {
font: normal 16px verdana, sans-serif !important;
}
code.function {
font: bold 16px verdana, sans-serif !important;
}
b.fsfunc {
font: bold 16px verdana, sans-serif !important;
}
code.varname {
font: italic 16px verdana, sans-serif;
}
code.replaceable {
font: italic 16px courier new, monospace;
}
code.funcdef {
font: normal 16px verdana, sans-serif !important;
}
.citerefentry {
font: normal 16px verdana, sans-serif !important;
}
.parameter {
font-style: italic;
}
code.fsfunc {
font: normal 16px verdana, sans-serif !important;
}
/* PARAMETER: This style controls spacing between the terms in Parameter section */
dt {
margin-top: 15px;
}
/* TABLES: These styles apply to all tables OTHER than the Synopsis and Example tables */
div.refsect1 table {
width: 100%;
margin-top: 10px;
background-color: #FFF;
border-collapse: collapse;
border-color: #000;
border-width: 1px;
font: normal 16px verdana, sans-serif;
}
div.refsect1 th {
border-collapse: collapse;
border-color: #000;
border-width: 1px;
font: bold 16px verdana, sans-serif;
}
div.refsect1 td {
background-color: #FFF;
padding: 5px;
vertical-align: text-top;
border-collapse: collapse;
border-color: #000;
border-width: 1px;
font: normal 16px verdana, sans-serif;
}
div.refsect1 p{
font: normal 16px verdana, sans-serif;
margin-top: 8px;
margin-bottom: 8px;
padding-top: 0;
padding-bottom: 0;
}
/* EXAMPLE: These styles apply only to the Example section */
div.refsect2 {
font: normal 16px courier new, monospace !important;
}
div.refsect2 table {
margin-top: 0;
background-color: #e6e6e6;
width: 100%;
border: 0 solid #000;
padding: 2px;
font: normal 16px courier new, monospace !important;
}
div.refsect2 td {
background-color: #e6e6e6;
font: normal 16px courier new, monospace !important;
white-space:pre;
}
/* COPYRIGHT: This style formats the text of the copyright statement at the bottom of the page */
div.refsect3 {
font: normal 11px verdana, sans-serif;
margin-top: 50px;
margin-bottom: 20px;
padding-top: 0;
padding-bottom: 0;
}
</style>
<title>Symbolic Math Constants</title>
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1" />
<meta name="keywords" content="Symbolic Math Constants" />
</head>
<body>
<div class="refentry">
<a id="id-1"></a>
<div class="titlepage"></div>
<div xmlns="" class="refnamediv">
<a xmlns="http://www.w3.org/1999/xhtml" id="SymbolicMathConstants"></a>
<h1>Symbolic Math Constants</h1>
<p>
The following symbolic constants are available.
</p>
</div>
<div class="refsect1">
<a id="description"></a>
<h2>Built-in Math Constants</h2>
<p>
The following symbolic constants are available. Their values are of type
<span class="type">float</span> and are accurate within the precision of a single precision
floating-point number.
</p>
<div class="informaltable">
<table class="informaltable" border="1">
<colgroup>
<col align="left" class="col1" />
<col align="left" class="col2" />
</colgroup>
<thead>
<tr>
<th align="left">Constant Name</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"> MAXFLOAT </td>
<td align="left">
Value of maximum non-infinite single-precision floating-point number.
</td>
</tr>
<tr>
<td align="left"> HUGE_VALF </td>
<td align="left">
A positive float constant expression. <code class="constant">HUGE_VALF</code> evaluates to +infinity.
Used as an error value returned by the
<a class="citerefentry" href="mathFunctions.html"><span class="citerefentry"><span class="refentrytitle">built-in math functions</span></span></a>.
</td>
</tr>
<tr>
<td align="left"> INFINITY </td>
<td align="left">
A constant expression of type <span class="type">float</span> representing positive or unsigned infinity.
</td>
</tr>
<tr>
<td align="left"> NAN </td>
<td align="left">
A constant expression of type <span class="type">float</span> representing a quiet NaN.
</td>
</tr>
</tbody>
</table>
</div>
<p>
If double precision is supported by the device, the following symbolic constant will
also be available:
</p>
<div class="informaltable">
<table class="informaltable" border="1">
<colgroup>
<col align="left" class="col1" />
<col align="left" class="col2" />
</colgroup>
<thead>
<tr>
<th align="left">Constant Name</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
HUGE_VAL
</td>
<td align="left">
<p>
A positive double constant expression. <code class="constant">HUGE_VAL</code>
evaluates to +infinity. Used as an error value returned by the
built-in math functions.
</p>
</td>
</tr>
</tbody>
</table>
</div>
<p>
The following constants are also available. They are of type <span class="type">float</span>
and are accurate within the precision of the <span class="type">float</span> type.
</p>
<div class="informaltable">
<table class="informaltable" border="1">
<colgroup>
<col align="left" class="col1" />
<col align="left" class="col2" />
</colgroup>
<thead>
<tr>
<th align="left">Constant Name</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">M_E_F</td>
<td align="left">Value of e</td>
</tr>
<tr>
<td align="left">M_LOG2E_F</td>
<td align="left">Value of log<sub>2</sub>e</td>
</tr>
<tr>
<td align="left">M_LOG10E_F</td>
<td align="left">Value of log<sub>10</sub>e</td>
</tr>
<tr>
<td align="left">M_LN2_F</td>
<td align="left">Value of log<sub>e</sub>2</td>
</tr>
<tr>
<td align="left">M_LN10_F</td>
<td align="left">Value of log<sub>e</sub>10</td>
</tr>
<tr>
<td align="left">M_PI_F</td>
<td align="left">Value of pi</td>
</tr>
<tr>
<td align="left">M_PI_2_F</td>
<td align="left">Value of pi / 2</td>
</tr>
<tr>
<td align="left">M_PI_4_F</td>
<td align="left">Value of pi / 4</td>
</tr>
<tr>
<td align="left">M_1_PI_F</td>
<td align="left">Value of 1 / pi</td>
</tr>
<tr>
<td align="left">M_2_PI_F</td>
<td align="left">Value of 2 / pi</td>
</tr>
<tr>
<td align="left">M_2_SQRTPI_F</td>
<td align="left">Value of 2 / (square root of pi)</td>
</tr>
<tr>
<td align="left">M_SQRT2_F</td>
<td align="left">Value of square root of 2</td>
</tr>
<tr>
<td align="left">M_SQRT1_2_F</td>
<td align="left">Value of 1 / (square root of 2)</td>
</tr>
</tbody>
</table>
</div>
<p>
If double precision is supported by the device, the following macros and constants
are also available. They are of type <span class="type">double</span> and are accurate within the
precision of the <span class="type">double</span> type.
</p>
<div class="informaltable">
<table class="informaltable" border="1">
<colgroup>
<col align="left" class="col1" />
<col align="left" class="col2" />
</colgroup>
<thead>
<tr>
<th align="left">Constant Name</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">M_E</td>
<td align="left">Value of e</td>
</tr>
<tr>
<td align="left">M_LOG2E</td>
<td align="left">Value of log<sub>2</sub>e</td>
</tr>
<tr>
<td align="left">M_LOG10E</td>
<td align="left">Value of log<sub>10</sub>e</td>
</tr>
<tr>
<td align="left">M_LN2</td>
<td align="left">Value of log<sub>e</sub>2</td>
</tr>
<tr>
<td align="left">M_LN10</td>
<td align="left">Value of log<sub>e</sub>10</td>
</tr>
<tr>
<td align="left">M_PI</td>
<td align="left">Value of pi</td>
</tr>
<tr>
<td align="left">M_PI_2</td>
<td align="left">Value of pi / 2</td>
</tr>
<tr>
<td align="left">M_PI_4</td>
<td align="left">Value of pi / 4</td>
</tr>
<tr>
<td align="left">M_1_PI</td>
<td align="left">Value of 1 / pi</td>
</tr>
<tr>
<td align="left">M_2_PI</td>
<td align="left">Value of 2 / pi</td>
</tr>
<tr>
<td align="left">M_2_SQRTPI</td>
<td align="left">Value of 2 / (square root of pi)</td>
</tr>
<tr>
<td align="left">M_SQRT2</td>
<td align="left">Value of square root of 2</td>
</tr>
<tr>
<td align="left">M_SQRT1_2</td>
<td align="left">Value of 1 / (square root of 2)</td>
</tr>
</tbody>
</table>
</div>
<p>
The following constants are also available. They are of type <span class="type">half</span> and
are accurate within the precision of the <span class="type">half</span> type. An application that
wants to use <span class="type">half</span> and <span class="type">half<em class="replaceable"><code>n</code></em></span>
types will need to include the <code class="code">#pragma OPENCL EXTENSION
<a class="citerefentry" href="cl_khr_fp16.html"><span class="citerefentry"><span class="refentrytitle">cl_khr_fp16</span></span></a> : enable</code>
directive.
</p>
<div class="informaltable">
<table class="informaltable" border="1">
<colgroup>
<col align="left" class="col1" />
<col align="left" class="col2" />
</colgroup>
<thead>
<tr>
<th align="left">Constant</th>
<th align="left">Description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">M_E_H</td>
<td align="left">Value of e</td>
</tr>
<tr>
<td align="left">M_LOG2E_H</td>
<td align="left">Value of log<sub>2</sub>e</td>
</tr>
<tr>
<td align="left">M_LOG10E_H</td>
<td align="left">Value of log<sub>10</sub>e</td>
</tr>
<tr>
<td align="left">M_LN2_H</td>
<td align="left">Value of log<sub>e</sub>2</td>
</tr>
<tr>
<td align="left">M_LN10_H</td>
<td align="left">Value of log<sub>e</sub>10</td>
</tr>
<tr>
<td align="left">M_PI_H</td>
<td align="left">Value of pi</td>
</tr>
<tr>
<td align="left">M_PI_2_H</td>
<td align="left">Value of pi / 2</td>
</tr>
<tr>
<td align="left">M_PI_4_H</td>
<td align="left">Value of pi / 4</td>
</tr>
<tr>
<td align="left">M_1_PI_H</td>
<td align="left">Value of 1 / pi</td>
</tr>
<tr>
<td align="left">M_2_PI_H</td>
<td align="left">Value of 2 / pi</td>
</tr>
<tr>
<td align="left">M_2_SQRTPI_H</td>
<td align="left">Value of 2 / (square root of pi)</td>
</tr>
<tr>
<td align="left">M_SQRT2_H</td>
<td align="left">Value of square root of 2</td>
</tr>
<tr>
<td align="left">M_SQRT1_2_H</td>
<td align="left">Value of 1 / (square root of 2)</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="refsect1">
<a id="specification"></a>
<h2>Specification</h2>
<p>
<img src="pdficon_small1.gif" />
<a href="https://www.khronos.org/registry/cl/specs/opencl-2.1-openclc.pdf#page=79" target="OpenCL Spec">OpenCL Specification</a>
</p>
</div>
<div class="refsect1">
<a id="seealso"></a>
<h2>Also see</h2>
<p>
<a class="citerefentry" href="mathFunctions.html"><span class="citerefentry"><span class="refentrytitle">Math Functions</span></span></a>,
<a class="citerefentry" href="FP_CONTRACT.html"><span class="citerefentry"><span class="refentrytitle">Floating Point Pragma</span></span></a>,
<a class="citerefentry" href="macroLimits.html"><span class="citerefentry"><span class="refentrytitle">Macros and Limits</span></span></a>
</p>
</div>
<div xmlns="" class="refsect3" lang="en" xml:lang="en"><a xmlns="http://www.w3.org/1999/xhtml" id="Copyright"></a><h4 xmlns="http://www.w3.org/1999/xhtml"></h4><img xmlns="http://www.w3.org/1999/xhtml" src="KhronosLogo.jpg" /><p xmlns="http://www.w3.org/1999/xhtml"></p>Copyright © 2007-2015 The Khronos Group Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and/or associated documentation files (the
"Materials"), to deal in the Materials without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Materials, and to
permit persons to whom the Materials are furnished to do so, subject to
the condition that this copyright notice and permission notice shall be included
in all copies or substantial portions of the Materials.
</div>
</div>
</body>
</html>