blob: 09764a00609c1c6f0dbc3c282c5c2b3dab5e5731 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2008-2016 The Khronos Group Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and/or associated documentation files (the
* "Materials"), to deal in the Materials without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Materials, and to
* permit persons to whom the Materials are furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
* KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
* SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
* https://www.khronos.org/registry/
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
******************************************************************************/
/*! \file
*
* \brief C++ bindings for OpenCL 1.0 (rev 48), OpenCL 1.1 (rev 33),
* OpenCL 1.2 (rev 15) and OpenCL 2.0 (rev 29)
* \author Lee Howes and Bruce Merry
*
* Derived from the OpenCL 1.x C++ bindings written by
* Benedict R. Gaster, Laurent Morichetti and Lee Howes
* With additions and fixes from:
* Brian Cole, March 3rd 2010 and April 2012
* Matt Gruenke, April 2012.
* Bruce Merry, February 2013.
* Tom Deakin and Simon McIntosh-Smith, July 2013
* James Price, 2015-
*
* \version 2.0.10
* \date 2016-07-20
*
* Optional extension support
*
* cl_ext_device_fission
* #define CL_HPP_USE_CL_DEVICE_FISSION
* cl_khr_d3d10_sharing
* #define CL_HPP_USE_DX_INTEROP
* cl_khr_sub_groups
* #define CL_HPP_USE_CL_SUB_GROUPS_KHR
* cl_khr_image2d_from_buffer
* #define CL_HPP_USE_CL_IMAGE2D_FROM_BUFFER_KHR
*
* Doxygen documentation for this header is available here:
*
* http://khronosgroup.github.io/OpenCL-CLHPP/
*
* The latest version of this header can be found on the GitHub releases page:
*
* https://github.com/KhronosGroup/OpenCL-CLHPP/releases
*
* Bugs and patches can be submitted to the GitHub repository:
*
* https://github.com/KhronosGroup/OpenCL-CLHPP
*/
/*! \mainpage
* \section intro Introduction
* For many large applications C++ is the language of choice and so it seems
* reasonable to define C++ bindings for OpenCL.
*
* The interface is contained with a single C++ header file \em cl2.hpp and all
* definitions are contained within the namespace \em cl. There is no additional
* requirement to include \em cl.h and to use either the C++ or original C
* bindings; it is enough to simply include \em cl2.hpp.
*
* The bindings themselves are lightweight and correspond closely to the
* underlying C API. Using the C++ bindings introduces no additional execution
* overhead.
*
* There are numerous compatibility, portability and memory management
* fixes in the new header as well as additional OpenCL 2.0 features.
* As a result the header is not directly backward compatible and for this
* reason we release it as cl2.hpp rather than a new version of cl.hpp.
*
*
* \section compatibility Compatibility
* Due to the evolution of the underlying OpenCL API the 2.0 C++ bindings
* include an updated approach to defining supported feature versions
* and the range of valid underlying OpenCL runtime versions supported.
*
* The combination of preprocessor macros CL_HPP_TARGET_OPENCL_VERSION and
* CL_HPP_MINIMUM_OPENCL_VERSION control this range. These are three digit
* decimal values representing OpenCL runime versions. The default for
* the target is 200, representing OpenCL 2.0 and the minimum is also
* defined as 200. These settings would use 2.0 API calls only.
* If backward compatibility with a 1.2 runtime is required, the minimum
* version may be set to 120.
*
* Note that this is a compile-time setting, and so affects linking against
* a particular SDK version rather than the versioning of the loaded runtime.
*
* The earlier versions of the header included basic vector and string
* classes based loosely on STL versions. These were difficult to
* maintain and very rarely used. For the 2.0 header we now assume
* the presence of the standard library unless requested otherwise.
* We use std::array, std::vector, std::shared_ptr and std::string
* throughout to safely manage memory and reduce the chance of a
* recurrance of earlier memory management bugs.
*
* These classes are used through typedefs in the cl namespace:
* cl::array, cl::vector, cl::pointer and cl::string.
* In addition cl::allocate_pointer forwards to std::allocate_shared
* by default.
* In all cases these standard library classes can be replaced with
* custom interface-compatible versions using the CL_HPP_NO_STD_ARRAY,
* CL_HPP_NO_STD_VECTOR, CL_HPP_NO_STD_UNIQUE_PTR and
* CL_HPP_NO_STD_STRING macros.
*
* The OpenCL 1.x versions of the C++ bindings included a size_t wrapper
* class to interface with kernel enqueue. This caused unpleasant interactions
* with the standard size_t declaration and led to namespacing bugs.
* In the 2.0 version we have replaced this with a std::array-based interface.
* However, the old behaviour can be regained for backward compatibility
* using the CL_HPP_ENABLE_SIZE_T_COMPATIBILITY macro.
*
* Finally, the program construction interface used a clumsy vector-of-pairs
* design in the earlier versions. We have replaced that with a cleaner
* vector-of-vectors and vector-of-strings design. However, for backward
* compatibility old behaviour can be regained with the
* CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY macro.
*
* In OpenCL 2.0 OpenCL C is not entirely backward compatibility with
* earlier versions. As a result a flag must be passed to the OpenCL C
* compiled to request OpenCL 2.0 compilation of kernels with 1.2 as
* the default in the absence of the flag.
* In some cases the C++ bindings automatically compile code for ease.
* For those cases the compilation defaults to OpenCL C 2.0.
* If this is not wanted, the CL_HPP_CL_1_2_DEFAULT_BUILD macro may
* be specified to assume 1.2 compilation.
* If more fine-grained decisions on a per-kernel bases are required
* then explicit build operations that take the flag should be used.
*
*
* \section parameterization Parameters
* This header may be parameterized by a set of preprocessor macros.
*
* - CL_HPP_TARGET_OPENCL_VERSION
*
* Defines the target OpenCL runtime version to build the header
* against. Defaults to 200, representing OpenCL 2.0.
*
* - CL_HPP_NO_STD_STRING
*
* Do not use the standard library string class. cl::string is not
* defined and may be defined by the user before cl2.hpp is
* included.
*
* - CL_HPP_NO_STD_VECTOR
*
* Do not use the standard library vector class. cl::vector is not
* defined and may be defined by the user before cl2.hpp is
* included.
*
* - CL_HPP_NO_STD_ARRAY
*
* Do not use the standard library array class. cl::array is not
* defined and may be defined by the user before cl2.hpp is
* included.
*
* - CL_HPP_NO_STD_UNIQUE_PTR
*
* Do not use the standard library unique_ptr class. cl::pointer and
* the cl::allocate_pointer functions are not defined and may be
* defined by the user before cl2.hpp is included.
*
* - CL_HPP_ENABLE_DEVICE_FISSION
*
* Enables device fission for OpenCL 1.2 platforms.
*
* - CL_HPP_ENABLE_EXCEPTIONS
*
* Enable exceptions for use in the C++ bindings header. This is the
* preferred error handling mechanism but is not required.
*
* - CL_HPP_ENABLE_SIZE_T_COMPATIBILITY
*
* Backward compatibility option to support cl.hpp-style size_t
* class. Replaces the updated std::array derived version and
* removal of size_t from the namespace. Note that in this case the
* new size_t class is placed in the cl::compatibility namespace and
* thus requires an additional using declaration for direct backward
* compatibility.
*
* - CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY
*
* Enable older vector of pairs interface for construction of
* programs.
*
* - CL_HPP_CL_1_2_DEFAULT_BUILD
*
* Default to OpenCL C 1.2 compilation rather than OpenCL C 2.0
* applies to use of cl::Program construction and other program
* build variants.
*
*
* \section example Example
*
* The following example shows a general use case for the C++
* bindings, including support for the optional exception feature and
* also the supplied vector and string classes, see following sections for
* decriptions of these features.
*
* \code
#define CL_HPP_ENABLE_EXCEPTIONS
#define CL_HPP_TARGET_OPENCL_VERSION 200
#include <CL/cl2.hpp>
#include <iostream>
#include <vector>
#include <memory>
#include <algorithm>
const int numElements = 32;
int main(void)
{
// Filter for a 2.0 platform and set it as the default
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
cl::Platform plat;
for (auto &p : platforms) {
std::string platver = p.getInfo<CL_PLATFORM_VERSION>();
if (platver.find("OpenCL 2.") != std::string::npos) {
plat = p;
}
}
if (plat() == 0) {
std::cout << "No OpenCL 2.0 platform found.";
return -1;
}
cl::Platform newP = cl::Platform::setDefault(plat);
if (newP != plat) {
std::cout << "Error setting default platform.";
return -1;
}
// Use C++11 raw string literals for kernel source code
std::string kernel1{R"CLC(
global int globalA;
kernel void updateGlobal()
{
globalA = 75;
}
)CLC"};
std::string kernel2{R"CLC(
typedef struct { global int *bar; } Foo;
kernel void vectorAdd(global const Foo* aNum, global const int *inputA, global const int *inputB,
global int *output, int val, write_only pipe int outPipe, queue_t childQueue)
{
output[get_global_id(0)] = inputA[get_global_id(0)] + inputB[get_global_id(0)] + val + *(aNum->bar);
write_pipe(outPipe, &val);
queue_t default_queue = get_default_queue();
ndrange_t ndrange = ndrange_1D(get_global_size(0)/2, get_global_size(0)/2);
// Have a child kernel write into third quarter of output
enqueue_kernel(default_queue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange,
^{
output[get_global_size(0)*2 + get_global_id(0)] =
inputA[get_global_size(0)*2 + get_global_id(0)] + inputB[get_global_size(0)*2 + get_global_id(0)] + globalA;
});
// Have a child kernel write into last quarter of output
enqueue_kernel(childQueue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange,
^{
output[get_global_size(0)*3 + get_global_id(0)] =
inputA[get_global_size(0)*3 + get_global_id(0)] + inputB[get_global_size(0)*3 + get_global_id(0)] + globalA + 2;
});
}
)CLC"};
// New simpler string interface style
std::vector<std::string> programStrings {kernel1, kernel2};
cl::Program vectorAddProgram(programStrings);
try {
vectorAddProgram.build("-cl-std=CL2.0");
}
catch (...) {
// Print build info for all devices
cl_int buildErr = CL_SUCCESS;
auto buildInfo = vectorAddProgram.getBuildInfo<CL_PROGRAM_BUILD_LOG>(&buildErr);
for (auto &pair : buildInfo) {
std::cerr << pair.second << std::endl << std::endl;
}
return 1;
}
typedef struct { int *bar; } Foo;
// Get and run kernel that initializes the program-scope global
// A test for kernels that take no arguments
auto program2Kernel =
cl::KernelFunctor<>(vectorAddProgram, "updateGlobal");
program2Kernel(
cl::EnqueueArgs(
cl::NDRange(1)));
//////////////////
// SVM allocations
auto anSVMInt = cl::allocate_svm<int, cl::SVMTraitCoarse<>>();
*anSVMInt = 5;
cl::SVMAllocator<Foo, cl::SVMTraitCoarse<cl::SVMTraitReadOnly<>>> svmAllocReadOnly;
auto fooPointer = cl::allocate_pointer<Foo>(svmAllocReadOnly);
fooPointer->bar = anSVMInt.get();
cl::SVMAllocator<int, cl::SVMTraitCoarse<>> svmAlloc;
std::vector<int, cl::SVMAllocator<int, cl::SVMTraitCoarse<>>> inputA(numElements, 1, svmAlloc);
cl::coarse_svm_vector<int> inputB(numElements, 2, svmAlloc);
//
//////////////
// Traditional cl_mem allocations
std::vector<int> output(numElements, 0xdeadbeef);
cl::Buffer outputBuffer(begin(output), end(output), false);
cl::Pipe aPipe(sizeof(cl_int), numElements / 2);
// Default command queue, also passed in as a parameter
cl::DeviceCommandQueue defaultDeviceQueue = cl::DeviceCommandQueue::makeDefault(
cl::Context::getDefault(), cl::Device::getDefault());
auto vectorAddKernel =
cl::KernelFunctor<
decltype(fooPointer)&,
int*,
cl::coarse_svm_vector<int>&,
cl::Buffer,
int,
cl::Pipe&,
cl::DeviceCommandQueue
>(vectorAddProgram, "vectorAdd");
// Ensure that the additional SVM pointer is available to the kernel
// This one was not passed as a parameter
vectorAddKernel.setSVMPointers(anSVMInt);
// Hand control of coarse allocations to runtime
cl::enqueueUnmapSVM(anSVMInt);
cl::enqueueUnmapSVM(fooPointer);
cl::unmapSVM(inputB);
cl::unmapSVM(output2);
cl_int error;
vectorAddKernel(
cl::EnqueueArgs(
cl::NDRange(numElements/2),
cl::NDRange(numElements/2)),
fooPointer,
inputA.data(),
inputB,
outputBuffer,
3,
aPipe,
defaultDeviceQueue,
error
);
cl::copy(outputBuffer, begin(output), end(output));
// Grab the SVM output vector using a map
cl::mapSVM(output2);
cl::Device d = cl::Device::getDefault();
std::cout << "Output:\n";
for (int i = 1; i < numElements; ++i) {
std::cout << "\t" << output[i] << "\n";
}
std::cout << "\n\n";
return 0;
}
*
* \endcode
*
*/
#ifndef CL_HPP_
#define CL_HPP_
/* Handle deprecated preprocessor definitions. In each case, we only check for
* the old name if the new name is not defined, so that user code can define
* both and hence work with either version of the bindings.
*/
#if !defined(CL_HPP_USE_DX_INTEROP) && defined(USE_DX_INTEROP)
# pragma message("cl2.hpp: USE_DX_INTEROP is deprecated. Define CL_HPP_USE_DX_INTEROP instead")
# define CL_HPP_USE_DX_INTEROP
#endif
#if !defined(CL_HPP_USE_CL_DEVICE_FISSION) && defined(USE_CL_DEVICE_FISSION)
# pragma message("cl2.hpp: USE_CL_DEVICE_FISSION is deprecated. Define CL_HPP_USE_CL_DEVICE_FISSION instead")
# define CL_HPP_USE_CL_DEVICE_FISSION
#endif
#if !defined(CL_HPP_ENABLE_EXCEPTIONS) && defined(__CL_ENABLE_EXCEPTIONS)
# pragma message("cl2.hpp: __CL_ENABLE_EXCEPTIONS is deprecated. Define CL_HPP_ENABLE_EXCEPTIONS instead")
# define CL_HPP_ENABLE_EXCEPTIONS
#endif
#if !defined(CL_HPP_NO_STD_VECTOR) && defined(__NO_STD_VECTOR)
# pragma message("cl2.hpp: __NO_STD_VECTOR is deprecated. Define CL_HPP_NO_STD_VECTOR instead")
# define CL_HPP_NO_STD_VECTOR
#endif
#if !defined(CL_HPP_NO_STD_STRING) && defined(__NO_STD_STRING)
# pragma message("cl2.hpp: __NO_STD_STRING is deprecated. Define CL_HPP_NO_STD_STRING instead")
# define CL_HPP_NO_STD_STRING
#endif
#if defined(VECTOR_CLASS)
# pragma message("cl2.hpp: VECTOR_CLASS is deprecated. Alias cl::vector instead")
#endif
#if defined(STRING_CLASS)
# pragma message("cl2.hpp: STRING_CLASS is deprecated. Alias cl::string instead.")
#endif
#if !defined(CL_HPP_USER_OVERRIDE_ERROR_STRINGS) && defined(__CL_USER_OVERRIDE_ERROR_STRINGS)
# pragma message("cl2.hpp: __CL_USER_OVERRIDE_ERROR_STRINGS is deprecated. Define CL_HPP_USER_OVERRIDE_ERROR_STRINGS instead")
# define CL_HPP_USER_OVERRIDE_ERROR_STRINGS
#endif
/* Warn about features that are no longer supported
*/
#if defined(__USE_DEV_VECTOR)
# pragma message("cl2.hpp: __USE_DEV_VECTOR is no longer supported. Expect compilation errors")
#endif
#if defined(__USE_DEV_STRING)
# pragma message("cl2.hpp: __USE_DEV_STRING is no longer supported. Expect compilation errors")
#endif
/* Detect which version to target */
#if !defined(CL_HPP_TARGET_OPENCL_VERSION)
# pragma message("cl2.hpp: CL_HPP_TARGET_OPENCL_VERSION is not defined. It will default to 200 (OpenCL 2.0)")
# define CL_HPP_TARGET_OPENCL_VERSION 200
#endif
#if CL_HPP_TARGET_OPENCL_VERSION != 100 && CL_HPP_TARGET_OPENCL_VERSION != 110 && CL_HPP_TARGET_OPENCL_VERSION != 120 && CL_HPP_TARGET_OPENCL_VERSION != 200
# pragma message("cl2.hpp: CL_HPP_TARGET_OPENCL_VERSION is not a valid value (100, 110, 120 or 200). It will be set to 200")
# undef CL_HPP_TARGET_OPENCL_VERSION
# define CL_HPP_TARGET_OPENCL_VERSION 200
#endif
#if !defined(CL_HPP_MINIMUM_OPENCL_VERSION)
# define CL_HPP_MINIMUM_OPENCL_VERSION 200
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION != 100 && CL_HPP_MINIMUM_OPENCL_VERSION != 110 && CL_HPP_MINIMUM_OPENCL_VERSION != 120 && CL_HPP_MINIMUM_OPENCL_VERSION != 200
# pragma message("cl2.hpp: CL_HPP_MINIMUM_OPENCL_VERSION is not a valid value (100, 110, 120 or 200). It will be set to 100")
# undef CL_HPP_MINIMUM_OPENCL_VERSION
# define CL_HPP_MINIMUM_OPENCL_VERSION 100
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION > CL_HPP_TARGET_OPENCL_VERSION
# error "CL_HPP_MINIMUM_OPENCL_VERSION must not be greater than CL_HPP_TARGET_OPENCL_VERSION"
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION <= 100 && !defined(CL_USE_DEPRECATED_OPENCL_1_0_APIS)
# define CL_USE_DEPRECATED_OPENCL_1_0_APIS
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION <= 110 && !defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
# define CL_USE_DEPRECATED_OPENCL_1_1_APIS
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION <= 120 && !defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS)
# define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#endif
#if CL_HPP_MINIMUM_OPENCL_VERSION <= 200 && !defined(CL_USE_DEPRECATED_OPENCL_2_0_APIS)
# define CL_USE_DEPRECATED_OPENCL_2_0_APIS
#endif
#ifdef _WIN32
#include <malloc.h>
#if defined(CL_HPP_USE_DX_INTEROP)
#include <CL/cl_d3d10.h>
#include <CL/cl_dx9_media_sharing.h>
#endif
#endif // _WIN32
#if defined(_MSC_VER)
#include <intrin.h>
#endif // _MSC_VER
// Check for a valid C++ version
// Need to do both tests here because for some reason __cplusplus is not
// updated in visual studio
#if (!defined(_MSC_VER) && __cplusplus < 201103L) || (defined(_MSC_VER) && _MSC_VER < 1700)
#error Visual studio 2013 or another C++11-supporting compiler required
#endif
//
#if defined(CL_HPP_USE_CL_DEVICE_FISSION) || defined(CL_HPP_USE_CL_SUB_GROUPS_KHR)
#include <CL/cl_ext.h>
#endif
#if defined(__APPLE__) || defined(__MACOSX)
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif // !__APPLE__
#if (__cplusplus >= 201103L)
#define CL_HPP_NOEXCEPT_ noexcept
#else
#define CL_HPP_NOEXCEPT_
#endif
#if defined(_MSC_VER)
# define CL_HPP_DEFINE_STATIC_MEMBER_ __declspec(selectany)
#else
# define CL_HPP_DEFINE_STATIC_MEMBER_ __attribute__((weak))
#endif // !_MSC_VER
// Define deprecated prefixes and suffixes to ensure compilation
// in case they are not pre-defined
#if !defined(CL_EXT_PREFIX__VERSION_1_1_DEPRECATED)
#define CL_EXT_PREFIX__VERSION_1_1_DEPRECATED
#endif // #if !defined(CL_EXT_PREFIX__VERSION_1_1_DEPRECATED)
#if !defined(CL_EXT_SUFFIX__VERSION_1_1_DEPRECATED)
#define CL_EXT_SUFFIX__VERSION_1_1_DEPRECATED
#endif // #if !defined(CL_EXT_PREFIX__VERSION_1_1_DEPRECATED)
#if !defined(CL_EXT_PREFIX__VERSION_1_2_DEPRECATED)
#define CL_EXT_PREFIX__VERSION_1_2_DEPRECATED
#endif // #if !defined(CL_EXT_PREFIX__VERSION_1_2_DEPRECATED)
#if !defined(CL_EXT_SUFFIX__VERSION_1_2_DEPRECATED)
#define CL_EXT_SUFFIX__VERSION_1_2_DEPRECATED
#endif // #if !defined(CL_EXT_PREFIX__VERSION_1_2_DEPRECATED)
#if !defined(CL_CALLBACK)
#define CL_CALLBACK
#endif //CL_CALLBACK
#include <utility>
#include <limits>
#include <iterator>
#include <mutex>
#include <cstring>
#include <functional>
// Define a size_type to represent a correctly resolved size_t
#if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY)
namespace cl {
using size_type = ::size_t;
} // namespace cl
#else // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY)
namespace cl {
using size_type = size_t;
} // namespace cl
#endif // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY)
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
#include <exception>
#endif // #if defined(CL_HPP_ENABLE_EXCEPTIONS)
#if !defined(CL_HPP_NO_STD_VECTOR)
#include <vector>
namespace cl {
template < class T, class Alloc = std::allocator<T> >
using vector = std::vector<T, Alloc>;
} // namespace cl
#endif // #if !defined(CL_HPP_NO_STD_VECTOR)
#if !defined(CL_HPP_NO_STD_STRING)
#include <string>
namespace cl {
using string = std::string;
} // namespace cl
#endif // #if !defined(CL_HPP_NO_STD_STRING)
#if CL_HPP_TARGET_OPENCL_VERSION >= 200
#if !defined(CL_HPP_NO_STD_UNIQUE_PTR)
#include <memory>
namespace cl {
// Replace unique_ptr and allocate_pointer for internal use
// to allow user to replace them
template<class T, class D>
using pointer = std::unique_ptr<T, D>;
} // namespace cl
#endif
#endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200
#if !defined(CL_HPP_NO_STD_ARRAY)
#include <array>
namespace cl {
template < class T, size_type N >
using array = std::array<T, N>;
} // namespace cl
#endif // #if !defined(CL_HPP_NO_STD_ARRAY)
// Define size_type appropriately to allow backward-compatibility
// use of the old size_t interface class
#if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY)
namespace cl {
namespace compatibility {
/*! \brief class used to interface between C++ and
* OpenCL C calls that require arrays of size_t values, whose
* size is known statically.
*/
template <int N>
class size_t
{
private:
size_type data_[N];
public:
//! \brief Initialize size_t to all 0s
size_t()
{
for (int i = 0; i < N; ++i) {
data_[i] = 0;
}
}
size_t(const array<size_type, N> &rhs)
{
for (int i = 0; i < N; ++i) {
data_[i] = rhs[i];
}
}
size_type& operator[](int index)
{
return data_[index];
}
const size_type& operator[](int index) const
{
return data_[index];
}
//! \brief Conversion operator to T*.
operator size_type* () { return data_; }
//! \brief Conversion operator to const T*.
operator const size_type* () const { return data_; }
operator array<size_type, N>() const
{
array<size_type, N> ret;
for (int i = 0; i < N; ++i) {
ret[i] = data_[i];
}
return ret;
}
};
} // namespace compatibility
template<int N>
using size_t = compatibility::size_t<N>;
} // namespace cl
#endif // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY)
// Helper alias to avoid confusing the macros
namespace cl {
namespace detail {
using size_t_array = array<size_type, 3>;
} // namespace detail
} // namespace cl
/*! \namespace cl
*
* \brief The OpenCL C++ bindings are defined within this namespace.
*
*/
namespace cl {
class Memory;
#define CL_HPP_INIT_CL_EXT_FCN_PTR_(name) \
if (!pfn_##name) { \
pfn_##name = (PFN_##name) \
clGetExtensionFunctionAddress(#name); \
if (!pfn_##name) { \
} \
}
#define CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, name) \
if (!pfn_##name) { \
pfn_##name = (PFN_##name) \
clGetExtensionFunctionAddressForPlatform(platform, #name); \
if (!pfn_##name) { \
} \
}
class Program;
class Device;
class Context;
class CommandQueue;
class DeviceCommandQueue;
class Memory;
class Buffer;
class Pipe;
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
/*! \brief Exception class
*
* This may be thrown by API functions when CL_HPP_ENABLE_EXCEPTIONS is defined.
*/
class Error : public std::exception
{
private:
cl_int err_;
const char * errStr_;
public:
/*! \brief Create a new CL error exception for a given error code
* and corresponding message.
*
* \param err error code value.
*
* \param errStr a descriptive string that must remain in scope until
* handling of the exception has concluded. If set, it
* will be returned by what().
*/
Error(cl_int err, const char * errStr = NULL) : err_(err), errStr_(errStr)
{}
~Error() throw() {}
/*! \brief Get error string associated with exception
*
* \return A memory pointer to the error message string.
*/
virtual const char * what() const throw ()
{
if (errStr_ == NULL) {
return "empty";
}
else {
return errStr_;
}
}
/*! \brief Get error code associated with exception
*
* \return The error code.
*/
cl_int err(void) const { return err_; }
};
#define CL_HPP_ERR_STR_(x) #x
#else
#define CL_HPP_ERR_STR_(x) NULL
#endif // CL_HPP_ENABLE_EXCEPTIONS
namespace detail
{
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
static inline cl_int errHandler (
cl_int err,
const char * errStr = NULL)
{
if (err != CL_SUCCESS) {
throw Error(err, errStr);
}
return err;
}
#else
static inline cl_int errHandler (cl_int err, const char * errStr = NULL)
{
(void) errStr; // suppress unused variable warning
return err;
}
#endif // CL_HPP_ENABLE_EXCEPTIONS
}
//! \cond DOXYGEN_DETAIL
#if !defined(CL_HPP_USER_OVERRIDE_ERROR_STRINGS)
#define __GET_DEVICE_INFO_ERR CL_HPP_ERR_STR_(clGetDeviceInfo)
#define __GET_PLATFORM_INFO_ERR CL_HPP_ERR_STR_(clGetPlatformInfo)
#define __GET_DEVICE_IDS_ERR CL_HPP_ERR_STR_(clGetDeviceIDs)
#define __GET_PLATFORM_IDS_ERR CL_HPP_ERR_STR_(clGetPlatformIDs)
#define __GET_CONTEXT_INFO_ERR CL_HPP_ERR_STR_(clGetContextInfo)
#define __GET_EVENT_INFO_ERR CL_HPP_ERR_STR_(clGetEventInfo)
#define __GET_EVENT_PROFILE_INFO_ERR CL_HPP_ERR_STR_(clGetEventProfileInfo)
#define __GET_MEM_OBJECT_INFO_ERR CL_HPP_ERR_STR_(clGetMemObjectInfo)
#define __GET_IMAGE_INFO_ERR CL_HPP_ERR_STR_(clGetImageInfo)
#define __GET_SAMPLER_INFO_ERR CL_HPP_ERR_STR_(clGetSamplerInfo)
#define __GET_KERNEL_INFO_ERR CL_HPP_ERR_STR_(clGetKernelInfo)
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __GET_KERNEL_ARG_INFO_ERR CL_HPP_ERR_STR_(clGetKernelArgInfo)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __GET_KERNEL_WORK_GROUP_INFO_ERR CL_HPP_ERR_STR_(clGetKernelWorkGroupInfo)
#define __GET_PROGRAM_INFO_ERR CL_HPP_ERR_STR_(clGetProgramInfo)
#define __GET_PROGRAM_BUILD_INFO_ERR CL_HPP_ERR_STR_(clGetProgramBuildInfo)
#define __GET_COMMAND_QUEUE_INFO_ERR CL_HPP_ERR_STR_(clGetCommandQueueInfo)
#define __CREATE_CONTEXT_ERR CL_HPP_ERR_STR_(clCreateContext)
#define __CREATE_CONTEXT_FROM_TYPE_ERR CL_HPP_ERR_STR_(clCreateContextFromType)
#define __GET_SUPPORTED_IMAGE_FORMATS_ERR CL_HPP_ERR_STR_(clGetSupportedImageFormats)
#define __CREATE_BUFFER_ERR CL_HPP_ERR_STR_(clCreateBuffer)
#define __COPY_ERR CL_HPP_ERR_STR_(cl::copy)
#define __CREATE_SUBBUFFER_ERR CL_HPP_ERR_STR_(clCreateSubBuffer)
#define __CREATE_GL_BUFFER_ERR CL_HPP_ERR_STR_(clCreateFromGLBuffer)
#define __CREATE_GL_RENDER_BUFFER_ERR CL_HPP_ERR_STR_(clCreateFromGLBuffer)
#define __GET_GL_OBJECT_INFO_ERR CL_HPP_ERR_STR_(clGetGLObjectInfo)
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __CREATE_IMAGE_ERR CL_HPP_ERR_STR_(clCreateImage)
#define __CREATE_GL_TEXTURE_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture)
#define __IMAGE_DIMENSION_ERR CL_HPP_ERR_STR_(Incorrect image dimensions)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR CL_HPP_ERR_STR_(clSetMemObjectDestructorCallback)
#define __CREATE_USER_EVENT_ERR CL_HPP_ERR_STR_(clCreateUserEvent)
#define __SET_USER_EVENT_STATUS_ERR CL_HPP_ERR_STR_(clSetUserEventStatus)
#define __SET_EVENT_CALLBACK_ERR CL_HPP_ERR_STR_(clSetEventCallback)
#define __WAIT_FOR_EVENTS_ERR CL_HPP_ERR_STR_(clWaitForEvents)
#define __CREATE_KERNEL_ERR CL_HPP_ERR_STR_(clCreateKernel)
#define __SET_KERNEL_ARGS_ERR CL_HPP_ERR_STR_(clSetKernelArg)
#define __CREATE_PROGRAM_WITH_SOURCE_ERR CL_HPP_ERR_STR_(clCreateProgramWithSource)
#define __CREATE_PROGRAM_WITH_BINARY_ERR CL_HPP_ERR_STR_(clCreateProgramWithBinary)
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __CREATE_PROGRAM_WITH_BUILT_IN_KERNELS_ERR CL_HPP_ERR_STR_(clCreateProgramWithBuiltInKernels)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __BUILD_PROGRAM_ERR CL_HPP_ERR_STR_(clBuildProgram)
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __COMPILE_PROGRAM_ERR CL_HPP_ERR_STR_(clCompileProgram)
#define __LINK_PROGRAM_ERR CL_HPP_ERR_STR_(clLinkProgram)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __CREATE_KERNELS_IN_PROGRAM_ERR CL_HPP_ERR_STR_(clCreateKernelsInProgram)
#if CL_HPP_TARGET_OPENCL_VERSION >= 200
#define __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR CL_HPP_ERR_STR_(clCreateCommandQueueWithProperties)
#define __CREATE_SAMPLER_WITH_PROPERTIES_ERR CL_HPP_ERR_STR_(clCreateSamplerWithProperties)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 200
#define __SET_COMMAND_QUEUE_PROPERTY_ERR CL_HPP_ERR_STR_(clSetCommandQueueProperty)
#define __ENQUEUE_READ_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueReadBuffer)
#define __ENQUEUE_READ_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueReadBufferRect)
#define __ENQUEUE_WRITE_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueWriteBuffer)
#define __ENQUEUE_WRITE_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueWriteBufferRect)
#define __ENQEUE_COPY_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueCopyBuffer)
#define __ENQEUE_COPY_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueCopyBufferRect)
#define __ENQUEUE_FILL_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueFillBuffer)
#define __ENQUEUE_READ_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueReadImage)
#define __ENQUEUE_WRITE_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueWriteImage)
#define __ENQUEUE_COPY_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueCopyImage)
#define __ENQUEUE_FILL_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueFillImage)
#define __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueCopyImageToBuffer)
#define __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueCopyBufferToImage)
#define __ENQUEUE_MAP_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueMapBuffer)
#define __ENQUEUE_MAP_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueMapImage)
#define __ENQUEUE_UNMAP_MEM_OBJECT_ERR CL_HPP_ERR_STR_(clEnqueueUnMapMemObject)
#define __ENQUEUE_NDRANGE_KERNEL_ERR CL_HPP_ERR_STR_(clEnqueueNDRangeKernel)
#define __ENQUEUE_NATIVE_KERNEL CL_HPP_ERR_STR_(clEnqueueNativeKernel)
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __ENQUEUE_MIGRATE_MEM_OBJECTS_ERR CL_HPP_ERR_STR_(clEnqueueMigrateMemObjects)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __ENQUEUE_ACQUIRE_GL_ERR CL_HPP_ERR_STR_(clEnqueueAcquireGLObjects)
#define __ENQUEUE_RELEASE_GL_ERR CL_HPP_ERR_STR_(clEnqueueReleaseGLObjects)
#define __CREATE_PIPE_ERR CL_HPP_ERR_STR_(clCreatePipe)
#define __GET_PIPE_INFO_ERR CL_HPP_ERR_STR_(clGetPipeInfo)
#define __RETAIN_ERR CL_HPP_ERR_STR_(Retain Object)
#define __RELEASE_ERR CL_HPP_ERR_STR_(Release Object)
#define __FLUSH_ERR CL_HPP_ERR_STR_(clFlush)
#define __FINISH_ERR CL_HPP_ERR_STR_(clFinish)
#define __VECTOR_CAPACITY_ERR CL_HPP_ERR_STR_(Vector capacity error)
/**
* CL 1.2 version that uses device fission.
*/
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __CREATE_SUB_DEVICES_ERR CL_HPP_ERR_STR_(clCreateSubDevices)
#else
#define __CREATE_SUB_DEVICES_ERR CL_HPP_ERR_STR_(clCreateSubDevicesEXT)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
/**
* Deprecated APIs for 1.2
*/
#if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
#define __ENQUEUE_MARKER_ERR CL_HPP_ERR_STR_(clEnqueueMarker)
#define __ENQUEUE_WAIT_FOR_EVENTS_ERR CL_HPP_ERR_STR_(clEnqueueWaitForEvents)
#define __ENQUEUE_BARRIER_ERR CL_HPP_ERR_STR_(clEnqueueBarrier)
#define __UNLOAD_COMPILER_ERR CL_HPP_ERR_STR_(clUnloadCompiler)
#define __CREATE_GL_TEXTURE_2D_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture2D)
#define __CREATE_GL_TEXTURE_3D_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture3D)
#define __CREATE_IMAGE2D_ERR CL_HPP_ERR_STR_(clCreateImage2D)
#define __CREATE_IMAGE3D_ERR CL_HPP_ERR_STR_(clCreateImage3D)
#endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
/**
* Deprecated APIs for 2.0
*/
#if defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS)
#define __CREATE_COMMAND_QUEUE_ERR CL_HPP_ERR_STR_(clCreateCommandQueue)
#define __ENQUEUE_TASK_ERR CL_HPP_ERR_STR_(clEnqueueTask)
#define __CREATE_SAMPLER_ERR CL_HPP_ERR_STR_(clCreateSampler)
#endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
/**
* CL 1.2 marker and barrier commands
*/
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#define __ENQUEUE_MARKER_WAIT_LIST_ERR CL_HPP_ERR_STR_(clEnqueueMarkerWithWaitList)
#define __ENQUEUE_BARRIER_WAIT_LIST_ERR CL_HPP_ERR_STR_(clEnqueueBarrierWithWaitList)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
#endif // CL_HPP_USER_OVERRIDE_ERROR_STRINGS
//! \endcond
namespace detail {
// Generic getInfoHelper. The final parameter is used to guide overload
// resolution: the actual parameter passed is an int, which makes this
// a worse conversion sequence than a specialization that declares the
// parameter as an int.
template<typename Functor, typename T>
inline cl_int getInfoHelper(Functor f, cl_uint name, T* param, long)
{
return f(name, sizeof(T), param, NULL);
}
// Specialized for getInfo<CL_PROGRAM_BINARIES>
// Assumes that the output vector was correctly resized on the way in
template <typename Func>
inline cl_int getInfoHelper(Func f, cl_uint name, vector<vector<unsigned char>>* param, int)
{
if (name != CL_PROGRAM_BINARIES) {
return CL_INVALID_VALUE;
}
if (param) {
// Create array of pointers, calculate total size and pass pointer array in
size_type numBinaries = param->size();
vector<unsigned char*> binariesPointers(numBinaries);
for (size_type i = 0; i < numBinaries; ++i)
{
binariesPointers[i] = (*param)[i].data();
}
cl_int err = f(name, numBinaries * sizeof(unsigned char*), binariesPointers.data(), NULL);
if (err != CL_SUCCESS) {
return err;
}
}
return CL_SUCCESS;
}
// Specialized getInfoHelper for vector params
template <typename Func, typename T>
inline cl_int getInfoHelper(Func f, cl_uint name, vector<T>* param, long)
{
size_type required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
const size_type elements = required / sizeof(T);
// Temporary to avoid changing param on an error
vector<T> localData(elements);
err = f(name, required, localData.data(), NULL);
if (err != CL_SUCCESS) {
return err;
}
if (param) {
*param = std::move(localData);
}
return CL_SUCCESS;
}
/* Specialization for reference-counted types. This depends on the
* existence of Wrapper<T>::cl_type, and none of the other types having the
* cl_type member. Note that simplify specifying the parameter as Wrapper<T>
* does not work, because when using a derived type (e.g. Context) the generic
* template will provide a better match.
*/
template <typename Func, typename T>
inline cl_int getInfoHelper(
Func f, cl_uint name, vector<T>* param, int, typename T::cl_type = 0)
{
size_type required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
const size_type elements = required / sizeof(typename T::cl_type);
vector<typename T::cl_type> value(elements);
err = f(name, required, value.data(), NULL);
if (err != CL_SUCCESS) {
return err;
}
if (param) {
// Assign to convert CL type to T for each element
param->resize(elements);
// Assign to param, constructing with retain behaviour
// to correctly capture each underlying CL object
for (size_type i = 0; i < elements; i++) {
(*param)[i] = T(value[i], true);
}
}
return CL_SUCCESS;
}
// Specialized GetInfoHelper for string params
template <typename Func>
inline cl_int getInfoHelper(Func f, cl_uint name, string* param, long)
{
size_type required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
// std::string has a constant data member
// a char vector does not
if (required > 0) {
vector<char> value(required);
err = f(name, required, value.data(), NULL);
if (err != CL_SUCCESS) {
return err;
}
if (param) {
param->assign(begin(value), prev(end(value)));
}
}
else if (param) {
param->assign("");
}
return CL_SUCCESS;
}
// Specialized GetInfoHelper for clsize_t params
template <typename Func, size_type N>
inline cl_int getInfoHelper(Func f, cl_uint name, array<size_type, N>* param, long)
{
size_type required;
cl_int err = f(name, 0, NULL, &required);
if (err != CL_SUCCESS) {
return err;
}
size_type elements = required / sizeof(size_type);
vector<size_type> value(elements, 0);
err = f(name, required, value.data(), NULL);
if (err != CL_SUCCESS) {
return err;
}
// Bound the copy with N to prevent overruns
// if passed N > than the amount copied
if (elements > N) {
elements = N;
}
for (size_type i = 0; i < elements; ++i) {
(*param)[i] = value[i];
}
return CL_SUCCESS;
}
template<typename T> struct ReferenceHandler;
/* Specialization for reference-counted types. This depends on the
* existence of Wrapper<T>::cl_type, and none of the other types having the
* cl_type member. Note that simplify specifying the parameter as Wrapper<T>
* does not work, because when using a derived type (e.g. Context) the generic
* template will provide a better match.
*/
template<typename Func, typename T>
inline cl_int getInfoHelper(Func f, cl_uint name, T* param, int, typename T::cl_type = 0)
{
typename T::cl_type value;
cl_int err = f(name, sizeof(value), &value, NULL);
if (err != CL_SUCCESS) {
return err;
}
*param = value;
if (value != NULL)
{
err = param->retain();
if (err != CL_SUCCESS) {
return err;
}
}
return CL_SUCCESS;
}
#define CL_HPP_PARAM_NAME_INFO_1_0_(F) \
F(cl_platform_info, CL_PLATFORM_PROFILE, string) \
F(cl_platform_info, CL_PLATFORM_VERSION, string) \
F(cl_platform_info, CL_PLATFORM_NAME, string) \
F(cl_platform_info, CL_PLATFORM_VENDOR, string) \
F(cl_platform_info, CL_PLATFORM_EXTENSIONS, string) \
\
F(cl_device_info, CL_DEVICE_TYPE, cl_device_type) \
F(cl_device_info, CL_DEVICE_VENDOR_ID, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_COMPUTE_UNITS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WORK_GROUP_SIZE, size_type) \
F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_SIZES, cl::vector<size_type>) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_CLOCK_FREQUENCY, cl_uint) \
F(cl_device_info, CL_DEVICE_ADDRESS_BITS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_READ_IMAGE_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_MEM_ALLOC_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_WIDTH, size_type) \
F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_HEIGHT, size_type) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_WIDTH, size_type) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_HEIGHT, size_type) \
F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_DEPTH, size_type) \
F(cl_device_info, CL_DEVICE_IMAGE_SUPPORT, cl_bool) \
F(cl_device_info, CL_DEVICE_MAX_PARAMETER_SIZE, size_type) \
F(cl_device_info, CL_DEVICE_MAX_SAMPLERS, cl_uint) \
F(cl_device_info, CL_DEVICE_MEM_BASE_ADDR_ALIGN, cl_uint) \
F(cl_device_info, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, cl_uint) \
F(cl_device_info, CL_DEVICE_SINGLE_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, cl_device_mem_cache_type) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, cl_uint)\
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_GLOBAL_MEM_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_MAX_CONSTANT_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_LOCAL_MEM_TYPE, cl_device_local_mem_type) \
F(cl_device_info, CL_DEVICE_LOCAL_MEM_SIZE, cl_ulong) \
F(cl_device_info, CL_DEVICE_ERROR_CORRECTION_SUPPORT, cl_bool) \
F(cl_device_info, CL_DEVICE_PROFILING_TIMER_RESOLUTION, size_type) \
F(cl_device_info, CL_DEVICE_ENDIAN_LITTLE, cl_bool) \
F(cl_device_info, CL_DEVICE_AVAILABLE, cl_bool) \
F(cl_device_info, CL_DEVICE_COMPILER_AVAILABLE, cl_bool) \
F(cl_device_info, CL_DEVICE_EXECUTION_CAPABILITIES, cl_device_exec_capabilities) \
F(cl_device_info, CL_DEVICE_PLATFORM, cl_platform_id) \
F(cl_device_info, CL_DEVICE_NAME, string) \
F(cl_device_info, CL_DEVICE_VENDOR, string) \
F(cl_device_info, CL_DRIVER_VERSION, string) \
F(cl_device_info, CL_DEVICE_PROFILE, string) \
F(cl_device_info, CL_DEVICE_VERSION, string) \
F(cl_device_info, CL_DEVICE_EXTENSIONS, string) \
\
F(cl_context_info, CL_CONTEXT_REFERENCE_COUNT, cl_uint) \
F(cl_context_info, CL_CONTEXT_DEVICES, cl::vector<Device>) \
F(cl_context_info, CL_CONTEXT_PROPERTIES, cl::vector<cl_context_properties>) \
\
F(cl_event_info, CL_EVENT_COMMAND_QUEUE, cl::CommandQueue) \
F(cl_event_info, CL_EVENT_COMMAND_TYPE, cl_command_type) \
F(cl_event_info, CL_EVENT_REFERENCE_COUNT, cl_uint) \
F(cl_event_info, CL_EVENT_COMMAND_EXECUTION_STATUS, cl_int) \
\
F(cl_profiling_info, CL_PROFILING_COMMAND_QUEUED, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_SUBMIT, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_START, cl_ulong) \
F(cl_profiling_info, CL_PROFILING_COMMAND_END, cl_ulong) \
\
F(cl_mem_info, CL_MEM_TYPE, cl_mem_object_type) \
F(cl_mem_info, CL_MEM_FLAGS, cl_mem_flags) \
F(cl_mem_info, CL_MEM_SIZE, size_type) \
F(cl_mem_info, CL_MEM_HOST_PTR, void*) \
F(cl_mem_info, CL_MEM_MAP_COUNT, cl_uint) \
F(cl_mem_info, CL_MEM_REFERENCE_COUNT, cl_uint) \
F(cl_mem_info, CL_MEM_CONTEXT, cl::Context) \
\
F(cl_image_info, CL_IMAGE_FORMAT, cl_image_format) \
F(cl_image_info, CL_IMAGE_ELEMENT_SIZE, size_type) \
F(cl_image_info, CL_IMAGE_ROW_PITCH, size_type) \
F(cl_image_info, CL_IMAGE_SLICE_PITCH, size_type) \
F(cl_image_info, CL_IMAGE_WIDTH, size_type) \
F(cl_image_info, CL_IMAGE_HEIGHT, size_type) \
F(cl_image_info, CL_IMAGE_DEPTH, size_type) \
\
F(cl_sampler_info, CL_SAMPLER_REFERENCE_COUNT, cl_uint) \
F(cl_sampler_info, CL_SAMPLER_CONTEXT, cl::Context) \
F(cl_sampler_info, CL_SAMPLER_NORMALIZED_COORDS, cl_bool) \
F(cl_sampler_info, CL_SAMPLER_ADDRESSING_MODE, cl_addressing_mode) \
F(cl_sampler_info, CL_SAMPLER_FILTER_MODE, cl_filter_mode) \
\
F(cl_program_info, CL_PROGRAM_REFERENCE_COUNT, cl_uint) \
F(cl_program_info, CL_PROGRAM_CONTEXT, cl::Context) \
F(cl_program_info, CL_PROGRAM_NUM_DEVICES, cl_uint) \
F(cl_program_info, CL_PROGRAM_DEVICES, cl::vector<Device>) \
F(cl_program_info, CL_PROGRAM_SOURCE, string) \
F(cl_program_info, CL_PROGRAM_BINARY_SIZES, cl::vector<size_type>) \
F(cl_program_info, CL_PROGRAM_BINARIES, cl::vector<cl::vector<unsigned char>>) \
\
F(cl_program_build_info, CL_PROGRAM_BUILD_STATUS, cl_build_status) \
F(cl_program_build_info, CL_PROGRAM_BUILD_OPTIONS, string) \
F(cl_program_build_info, CL_PROGRAM_BUILD_LOG, string) \
\
F(cl_kernel_info, CL_KERNEL_FUNCTION_NAME, string) \
F(cl_kernel_info, CL_KERNEL_NUM_ARGS, cl_uint) \
F(cl_kernel_info, CL_KERNEL_REFERENCE_COUNT, cl_uint) \
F(cl_kernel_info, CL_KERNEL_CONTEXT, cl::Context) \
F(cl_kernel_info, CL_KERNEL_PROGRAM, cl::Program) \
\
F(cl_kernel_work_group_info, CL_KERNEL_WORK_GROUP_SIZE, size_type) \
F(cl_kernel_work_group_info, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, cl::detail::size_t_array) \
F(cl_kernel_work_group_info, CL_KERNEL_LOCAL_MEM_SIZE, cl_ulong) \
\
F(cl_command_queue_info, CL_QUEUE_CONTEXT, cl::Context) \
F(cl_command_queue_info, CL_QUEUE_DEVICE, cl::Device) \
F(cl_command_queue_info, CL_QUEUE_REFERENCE_COUNT, cl_uint) \
F(cl_command_queue_info, CL_QUEUE_PROPERTIES, cl_command_queue_properties)
#define CL_HPP_PARAM_NAME_INFO_1_1_(F) \
F(cl_context_info, CL_CONTEXT_NUM_DEVICES, cl_uint)\
F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, cl_uint) \
F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF, cl_uint) \
F(cl_device_info, CL_DEVICE_DOUBLE_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_HALF_FP_CONFIG, cl_device_fp_config) \
F(cl_device_info, CL_DEVICE_OPENCL_C_VERSION, string) \
\
F(cl_mem_info, CL_MEM_ASSOCIATED_MEMOBJECT, cl::Memory) \
F(cl_mem_info, CL_MEM_OFFSET, size_type) \
\
F(cl_kernel_work_group_info, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, size_type) \
F(cl_kernel_work_group_info, CL_KERNEL_PRIVATE_MEM_SIZE, cl_ulong) \
\
F(cl_event_info, CL_EVENT_CONTEXT, cl::Context)
#define CL_HPP_PARAM_NAME_INFO_1_2_(F) \
F(cl_program_info, CL_PROGRAM_NUM_KERNELS, size_type) \
F(cl_program_info, CL_PROGRAM_KERNEL_NAMES, string) \
\
F(cl_program_build_info, CL_PROGRAM_BINARY_TYPE, cl_program_binary_type) \
\
F(cl_kernel_info, CL_KERNEL_ATTRIBUTES, string) \
\
F(cl_kernel_arg_info, CL_KERNEL_ARG_ADDRESS_QUALIFIER, cl_kernel_arg_address_qualifier) \
F(cl_kernel_arg_info, CL_KERNEL_ARG_ACCESS_QUALIFIER, cl_kernel_arg_access_qualifier) \
F(cl_kernel_arg_info, CL_KERNEL_ARG_TYPE_NAME, string) \
F(cl_kernel_arg_info, CL_KERNEL_ARG_NAME, string) \
F(cl_kernel_arg_info, CL_KERNEL_ARG_TYPE_QUALIFIER, cl_kernel_arg_type_qualifier) \
\
F(cl_device_info, CL_DEVICE_PARENT_DEVICE, cl::Device) \
F(cl_device_info, CL_DEVICE_PARTITION_PROPERTIES, cl::vector<cl_device_partition_property>) \
F(cl_device_info, CL_DEVICE_PARTITION_TYPE, cl::vector<cl_device_partition_property>) \
F(cl_device_info, CL_DEVICE_REFERENCE_COUNT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_INTEROP_USER_SYNC, size_type) \
F(cl_device_info, CL_DEVICE_PARTITION_AFFINITY_DOMAIN, cl_device_affinity_domain) \
F(cl_device_info, CL_DEVICE_BUILT_IN_KERNELS, string) \
\
F(cl_image_info, CL_IMAGE_ARRAY_SIZE, size_type) \
F(cl_image_info, CL_IMAGE_NUM_MIP_LEVELS, cl_uint) \
F(cl_image_info, CL_IMAGE_NUM_SAMPLES, cl_uint)
#define CL_HPP_PARAM_NAME_INFO_2_0_(F) \
F(cl_device_info, CL_DEVICE_QUEUE_ON_HOST_PROPERTIES, cl_command_queue_properties) \
F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES, cl_command_queue_properties) \
F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE, cl_uint) \
F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_ON_DEVICE_QUEUES, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_ON_DEVICE_EVENTS, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_PIPE_ARGS, cl_uint) \
F(cl_device_info, CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS, cl_uint) \
F(cl_device_info, CL_DEVICE_PIPE_MAX_PACKET_SIZE, cl_uint) \
F(cl_device_info, CL_DEVICE_SVM_CAPABILITIES, cl_device_svm_capabilities) \
F(cl_device_info, CL_DEVICE_PREFERRED_PLATFORM_ATOMIC_ALIGNMENT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT, cl_uint) \
F(cl_device_info, CL_DEVICE_PREFERRED_LOCAL_ATOMIC_ALIGNMENT, cl_uint) \
F(cl_device_info, CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE, size_type) \
F(cl_device_info, CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE, size_type) \
F(cl_device_info, CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS, cl_uint) \
F(cl_command_queue_info, CL_QUEUE_SIZE, cl_uint) \
F(cl_mem_info, CL_MEM_USES_SVM_POINTER, cl_bool) \
F(cl_program_build_info, CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE, size_type) \
F(cl_pipe_info, CL_PIPE_PACKET_SIZE, cl_uint) \
F(cl_pipe_info, CL_PIPE_MAX_PACKETS, cl_uint)
#define CL_HPP_PARAM_NAME_DEVICE_FISSION_(F) \
F(cl_device_info, CL_DEVICE_PARENT_DEVICE_EXT, cl_device_id) \
F(cl_device_info, CL_DEVICE_PARTITION_TYPES_EXT, cl::vector<cl_device_partition_property_ext>) \
F(cl_device_info, CL_DEVICE_AFFINITY_DOMAINS_EXT, cl::vector<cl_device_partition_property_ext>) \
F(cl_device_info, CL_DEVICE_REFERENCE_COUNT_EXT , cl_uint) \
F(cl_device_info, CL_DEVICE_PARTITION_STYLE_EXT, cl::vector<cl_device_partition_property_ext>)
template <typename enum_type, cl_int Name>
struct param_traits {};
#define CL_HPP_DECLARE_PARAM_TRAITS_(token, param_name, T) \
struct token; \
template<> \
struct param_traits<detail:: token,param_name> \
{ \
enum { value = param_name }; \
typedef T param_type; \
};
CL_HPP_PARAM_NAME_INFO_1_0_(CL_HPP_DECLARE_PARAM_TRAITS_)
#if CL_HPP_TARGET_OPENCL_VERSION >= 110
CL_HPP_PARAM_NAME_INFO_1_1_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 110
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
CL_HPP_PARAM_NAME_INFO_1_2_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 110
#if CL_HPP_TARGET_OPENCL_VERSION >= 200
CL_HPP_PARAM_NAME_INFO_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 110
// Flags deprecated in OpenCL 2.0
#define CL_HPP_PARAM_NAME_INFO_1_0_DEPRECATED_IN_2_0_(F) \
F(cl_device_info, CL_DEVICE_QUEUE_PROPERTIES, cl_command_queue_properties)
#define CL_HPP_PARAM_NAME_INFO_1_1_DEPRECATED_IN_2_0_(F) \
F(cl_device_info, CL_DEVICE_HOST_UNIFIED_MEMORY, cl_bool)
#define CL_HPP_PARAM_NAME_INFO_1_2_DEPRECATED_IN_2_0_(F) \
F(cl_image_info, CL_IMAGE_BUFFER, cl::Buffer)
// Include deprecated query flags based on versions
// Only include deprecated 1.0 flags if 2.0 not active as there is an enum clash
#if CL_HPP_TARGET_OPENCL_VERSION > 100 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 && CL_HPP_TARGET_OPENCL_VERSION < 200
CL_HPP_PARAM_NAME_INFO_1_0_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_MINIMUM_OPENCL_VERSION < 110
#if CL_HPP_TARGET_OPENCL_VERSION > 110 && CL_HPP_MINIMUM_OPENCL_VERSION < 200
CL_HPP_PARAM_NAME_INFO_1_1_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120
#if CL_HPP_TARGET_OPENCL_VERSION > 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 200
CL_HPP_PARAM_NAME_INFO_1_2_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_)
#endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200
#if defined(CL_HPP_USE_CL_DEVICE_FISSION)
CL_HPP_PARAM_NAME_DEVICE_FISSION_(CL_HPP_DECLARE_PARAM_TRAITS_);
#endif // CL_HPP_USE_CL_DEVICE_FISSION
#ifdef CL_PLATFORM_ICD_SUFFIX_KHR
CL_HPP_DECLARE_PARAM_TRAITS_(cl_platform_info, CL_PLATFORM_ICD_SUFFIX_KHR, string)
#endif
#ifdef CL_DEVICE_PROFILING_TIMER_OFFSET_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_PROFILING_TIMER_OFFSET_AMD, cl_ulong)
#endif
#ifdef CL_DEVICE_GLOBAL_FREE_MEMORY_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_FREE_MEMORY_AMD, vector<size_type>)
#endif
#ifdef CL_DEVICE_SIMD_PER_COMPUTE_UNIT_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_PER_COMPUTE_UNIT_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_SIMD_WIDTH_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_WIDTH_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_SIMD_INSTRUCTION_WIDTH_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_INSTRUCTION_WIDTH_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_WAVEFRONT_WIDTH_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_WAVEFRONT_WIDTH_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_GLOBAL_MEM_CHANNELS_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNELS_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_GLOBAL_MEM_CHANNEL_BANKS_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNEL_BANKS_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_GLOBAL_MEM_CHANNEL_BANK_WIDTH_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNEL_BANK_WIDTH_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_LOCAL_MEM_SIZE_PER_COMPUTE_UNIT_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LOCAL_MEM_SIZE_PER_COMPUTE_UNIT_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_LOCAL_MEM_BANKS_AMD
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LOCAL_MEM_BANKS_AMD, cl_uint)
#endif
#ifdef CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV, cl_uint)
#endif
#ifdef CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV, cl_uint)
#endif
#ifdef CL_DEVICE_REGISTERS_PER_BLOCK_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_REGISTERS_PER_BLOCK_NV, cl_uint)
#endif
#ifdef CL_DEVICE_WARP_SIZE_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_WARP_SIZE_NV, cl_uint)
#endif
#ifdef CL_DEVICE_GPU_OVERLAP_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GPU_OVERLAP_NV, cl_bool)
#endif
#ifdef CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV, cl_bool)
#endif
#ifdef CL_DEVICE_INTEGRATED_MEMORY_NV
CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_INTEGRATED_MEMORY_NV, cl_bool)
#endif
// Convenience functions
template <typename Func, typename T>
inline cl_int
getInfo(Func f, cl_uint name, T* param)
{
return getInfoHelper(f, name, param, 0);
}
template <typename Func, typename Arg0>
struct GetInfoFunctor0
{
Func f_; const Arg0& arg0_;
cl_int operator ()(
cl_uint param, size_type size, void* value, size_type* size_ret)
{ return f_(arg0_, param, size, value, size_ret); }
};
template <typename Func, typename Arg0, typename Arg1>
struct GetInfoFunctor1
{
Func f_; const Arg0& arg0_; const Arg1& arg1_;
cl_int operator ()(
cl_uint param, size_type size, void* value, size_type* size_ret)
{ return f_(arg0_, arg1_, param, size, value, size_ret); }
};
template <typename Func, typename Arg0, typename T>
inline cl_int
getInfo(Func f, const Arg0& arg0, cl_uint name, T* param)
{
GetInfoFunctor0<Func, Arg0> f0 = { f, arg0 };
return getInfoHelper(f0, name, param, 0);
}
template <typename Func, typename Arg0, typename Arg1, typename T>
inline cl_int
getInfo(Func f, const Arg0& arg0, const Arg1& arg1, cl_uint name, T* param)
{
GetInfoFunctor1<Func, Arg0, Arg1> f0 = { f, arg0, arg1 };
return getInfoHelper(f0, name, param, 0);
}
template<typename T>
struct ReferenceHandler
{ };
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
/**
* OpenCL 1.2 devices do have retain/release.
*/
template <>
struct ReferenceHandler<cl_device_id>
{
/**
* Retain the device.
* \param device A valid device created using createSubDevices
* \return
* CL_SUCCESS if the function executed successfully.
* CL_INVALID_DEVICE if device was not a valid subdevice
* CL_OUT_OF_RESOURCES
* CL_OUT_OF_HOST_MEMORY
*/
static cl_int retain(cl_device_id device)
{ return ::clRetainDevice(device); }
/**
* Retain the device.
* \param device A valid device created using createSubDevices
* \return
* CL_SUCCESS if the function executed successfully.
* CL_INVALID_DEVICE if device was not a valid subdevice
* CL_OUT_OF_RESOURCES
* CL_OUT_OF_HOST_MEMORY
*/
static cl_int release(cl_device_id device)
{ return ::clReleaseDevice(device); }
};
#else // CL_HPP_TARGET_OPENCL_VERSION >= 120
/**
* OpenCL 1.1 devices do not have retain/release.
*/
template <>
struct ReferenceHandler<cl_device_id>
{
// cl_device_id does not have retain().
static cl_int retain(cl_device_id)
{ return CL_SUCCESS; }
// cl_device_id does not have release().
static cl_int release(cl_device_id)
{ return CL_SUCCESS; }
};
#endif // ! (CL_HPP_TARGET_OPENCL_VERSION >= 120)
template <>
struct ReferenceHandler<cl_platform_id>
{
// cl_platform_id does not have retain().
static cl_int retain(cl_platform_id)
{ return CL_SUCCESS; }
// cl_platform_id does not have release().
static cl_int release(cl_platform_id)
{ return CL_SUCCESS; }
};
template <>
struct ReferenceHandler<cl_context>
{
static cl_int retain(cl_context context)
{ return ::clRetainContext(context); }
static cl_int release(cl_context context)
{ return ::clReleaseContext(context); }
};
template <>
struct ReferenceHandler<cl_command_queue>
{
static cl_int retain(cl_command_queue queue)
{ return ::clRetainCommandQueue(queue); }
static cl_int release(cl_command_queue queue)
{ return ::clReleaseCommandQueue(queue); }
};
template <>
struct ReferenceHandler<cl_mem>
{
static cl_int retain(cl_mem memory)
{ return ::clRetainMemObject(memory); }
static cl_int release(cl_mem memory)
{ return ::clReleaseMemObject(memory); }
};
template <>
struct ReferenceHandler<cl_sampler>
{
static cl_int retain(cl_sampler sampler)
{ return ::clRetainSampler(sampler); }
static cl_int release(cl_sampler sampler)
{ return ::clReleaseSampler(sampler); }
};
template <>
struct ReferenceHandler<cl_program>
{
static cl_int retain(cl_program program)
{ return ::clRetainProgram(program); }
static cl_int release(cl_program program)
{ return ::clReleaseProgram(program); }
};
template <>
struct ReferenceHandler<cl_kernel>
{
static cl_int retain(cl_kernel kernel)
{ return ::clRetainKernel(kernel); }
static cl_int release(cl_kernel kernel)
{ return ::clReleaseKernel(kernel); }
};
template <>
struct ReferenceHandler<cl_event>
{
static cl_int retain(cl_event event)
{ return ::clRetainEvent(event); }
static cl_int release(cl_event event)
{ return ::clReleaseEvent(event); }
};
#if CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120
// Extracts version number with major in the upper 16 bits, minor in the lower 16
static cl_uint getVersion(const vector<char> &versionInfo)
{
int highVersion = 0;
int lowVersion = 0;
int index = 7;
while(versionInfo[index] != '.' ) {
highVersion *= 10;
highVersion += versionInfo[index]-'0';
++index;
}
++index;
while(versionInfo[index] != ' ' && versionInfo[index] != '\0') {
lowVersion *= 10;
lowVersion += versionInfo[index]-'0';
++index;
}
return (highVersion << 16) | lowVersion;
}
static cl_uint getPlatformVersion(cl_platform_id platform)
{
size_type size = 0;
clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, NULL, &size);
vector<char> versionInfo(size);
clGetPlatformInfo(platform, CL_PLATFORM_VERSION, size, versionInfo.data(), &size);
return getVersion(versionInfo);
}
static cl_uint getDevicePlatformVersion(cl_device_id device)
{
cl_platform_id platform;
clGetDeviceInfo(device, CL_DEVICE_PLATFORM, sizeof(platform), &platform, NULL);
return getPlatformVersion(platform);
}
static cl_uint getContextPlatformVersion(cl_context context)
{
// The platform cannot be queried directly, so we first have to grab a
// device and obtain its context
size_type size = 0;
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);
if (size == 0)
return 0;
vector<cl_device_id> devices(size/sizeof(cl_device_id));
clGetContextInfo(context, CL_CONTEXT_DEVICES, size, devices.data(), NULL);
return getDevicePlatformVersion(devices[0]);
}
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120
template <typename T>
class Wrapper
{
public:
typedef T cl_type;
protected:
cl_type object_;
public:
Wrapper() : object_(NULL) { }
Wrapper(const cl_type &obj, bool retainObject) : object_(obj)
{
if (retainObject) {
detail::errHandler(retain(), __RETAIN_ERR);
}
}
~Wrapper()
{
if (object_ != NULL) { release(); }
}
Wrapper(const Wrapper<cl_type>& rhs)
{
object_ = rhs.object_;
detail::errHandler(retain(), __RETAIN_ERR);
}
Wrapper(Wrapper<cl_type>&& rhs) CL_HPP_NOEXCEPT_
{
object_ = rhs.object_;
rhs.object_ = NULL;
}
Wrapper<cl_type>& operator = (const Wrapper<cl_type>& rhs)
{
if (this != &rhs) {
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs.object_;
detail::errHandler(retain(), __RETAIN_ERR);
}
return *this;
}
Wrapper<cl_type>& operator = (Wrapper<cl_type>&& rhs)
{
if (this != &rhs) {
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs.object_;
rhs.object_ = NULL;
}
return *this;
}
Wrapper<cl_type>& operator = (const cl_type &rhs)
{
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs;
return *this;
}
const cl_type& operator ()() const { return object_; }
cl_type& operator ()() { return object_; }
const cl_type get() const { return object_; }
cl_type get() { return object_; }
protected:
template<typename Func, typename U>
friend inline cl_int getInfoHelper(Func, cl_uint, U*, int, typename U::cl_type);
cl_int retain() const
{
if (object_ != nullptr) {
return ReferenceHandler<cl_type>::retain(object_);
}
else {
return CL_SUCCESS;
}
}
cl_int release() const
{
if (object_ != nullptr) {
return ReferenceHandler<cl_type>::release(object_);
}
else {
return CL_SUCCESS;
}
}
};
template <>
class Wrapper<cl_device_id>
{
public:
typedef cl_device_id cl_type;
protected:
cl_type object_;
bool referenceCountable_;
static bool isReferenceCountable(cl_device_id device)
{
bool retVal = false;
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
#if CL_HPP_MINIMUM_OPENCL_VERSION < 120
if (device != NULL) {
int version = getDevicePlatformVersion(device);
if(version > ((1 << 16) + 1)) {
retVal = true;
}
}
#else // CL_HPP_MINIMUM_OPENCL_VERSION < 120
retVal = true;
#endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
return retVal;
}
public:
Wrapper() : object_(NULL), referenceCountable_(false)
{
}
Wrapper(const cl_type &obj, bool retainObject) :
object_(obj),
referenceCountable_(false)
{
referenceCountable_ = isReferenceCountable(obj);
if (retainObject) {
detail::errHandler(retain(), __RETAIN_ERR);
}
}
~Wrapper()
{
release();
}
Wrapper(const Wrapper<cl_type>& rhs)
{
object_ = rhs.object_;
referenceCountable_ = isReferenceCountable(object_);
detail::errHandler(retain(), __RETAIN_ERR);
}
Wrapper(Wrapper<cl_type>&& rhs) CL_HPP_NOEXCEPT_
{
object_ = rhs.object_;
referenceCountable_ = rhs.referenceCountable_;
rhs.object_ = NULL;
rhs.referenceCountable_ = false;
}
Wrapper<cl_type>& operator = (const Wrapper<cl_type>& rhs)
{
if (this != &rhs) {
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs.object_;
referenceCountable_ = rhs.referenceCountable_;
detail::errHandler(retain(), __RETAIN_ERR);
}
return *this;
}
Wrapper<cl_type>& operator = (Wrapper<cl_type>&& rhs)
{
if (this != &rhs) {
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs.object_;
referenceCountable_ = rhs.referenceCountable_;
rhs.object_ = NULL;
rhs.referenceCountable_ = false;
}
return *this;
}
Wrapper<cl_type>& operator = (const cl_type &rhs)
{
detail::errHandler(release(), __RELEASE_ERR);
object_ = rhs;
referenceCountable_ = isReferenceCountable(object_);
return *this;
}
const cl_type& operator ()() const { return object_; }
cl_type& operator ()() { return object_; }
const cl_type get() const { return object_; }
cl_type get() { return object_; }
protected:
template<typename Func, typename U>
friend inline cl_int getInfoHelper(Func, cl_uint, U*, int, typename U::cl_type);
template<typename Func, typename U>
friend inline cl_int getInfoHelper(Func, cl_uint, vector<U>*, int, typename U::cl_type);
cl_int retain() const
{
if( object_ != nullptr && referenceCountable_ ) {
return ReferenceHandler<cl_type>::retain(object_);
}
else {
return CL_SUCCESS;
}
}
cl_int release() const
{
if (object_ != nullptr && referenceCountable_) {
return ReferenceHandler<cl_type>::release(object_);
}
else {
return CL_SUCCESS;
}
}
};
template <typename T>
inline bool operator==(const Wrapper<T> &lhs, const Wrapper<T> &rhs)
{
return lhs() == rhs();
}
template <typename T>
inline bool operator!=(const Wrapper<T> &lhs, const Wrapper<T> &rhs)
{
return !operator==(lhs, rhs);
}
} // namespace detail
//! \endcond
using BuildLogType = vector<std::pair<cl::Device, typename detail::param_traits<detail::cl_program_build_info, CL_PROGRAM_BUILD_LOG>::param_type>>;
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
/**
* Exception class for build errors to carry build info
*/
class BuildError : public Error
{
private:
BuildLogType buildLogs;
public:
BuildError(cl_int err, const char * errStr, const BuildLogType &vec) : Error(err, errStr), buildLogs(vec)
{
}
BuildLogType getBuildLog() const
{
return buildLogs;
}
};
namespace detail {
static inline cl_int buildErrHandler(
cl_int err,
const char * errStr,
const BuildLogType &buildLogs)
{
if (err != CL_SUCCESS) {
throw BuildError(err, errStr, buildLogs);
}
return err;
}
} // namespace detail
#else
namespace detail {
static inline cl_int buildErrHandler(
cl_int err,
const char * errStr,
const BuildLogType &buildLogs)
{
(void)buildLogs; // suppress unused variable warning
(void)errStr;
return err;
}
} // namespace detail
#endif // #if defined(CL_HPP_ENABLE_EXCEPTIONS)
/*! \stuct ImageFormat
* \brief Adds constructors and member functions for cl_image_format.
*
* \see cl_image_format
*/
struct ImageFormat : public cl_image_format
{
//! \brief Default constructor - performs no initialization.
ImageFormat(){}
//! \brief Initializing constructor.
ImageFormat(cl_channel_order order, cl_channel_type type)
{
image_channel_order = order;
image_channel_data_type = type;
}
//! \brief Assignment operator.
ImageFormat& operator = (const ImageFormat& rhs)
{
if (this != &rhs) {
this->image_channel_data_type = rhs.image_channel_data_type;
this->image_channel_order = rhs.image_channel_order;
}
return *this;
}
};
/*! \brief Class interface for cl_device_id.
*
* \note Copies of these objects are inexpensive, since they don't 'own'
* any underlying resources or data structures.
*
* \see cl_device_id
*/
class Device : public detail::Wrapper<cl_device_id>
{
private:
static std::once_flag default_initialized_;
static Device default_;
static cl_int default_error_;
/*! \brief Create the default context.
*
* This sets @c default_ and @c default_error_. It does not throw
* @c cl::Error.
*/
static void makeDefault();
/*! \brief Create the default platform from a provided platform.
*
* This sets @c default_. It does not throw
* @c cl::Error.
*/
static void makeDefaultProvided(const Device &p) {
default_ = p;
}
public:
#ifdef CL_HPP_UNIT_TEST_ENABLE
/*! \brief Reset the default.
*
* This sets @c default_ to an empty value to support cleanup in
* the unit test framework.
* This function is not thread safe.
*/
static void unitTestClearDefault() {
default_ = Device();
}
#endif // #ifdef CL_HPP_UNIT_TEST_ENABLE
//! \brief Default constructor - initializes to NULL.
Device() : detail::Wrapper<cl_type>() { }
/*! \brief Constructor from cl_device_id.
*
* This simply copies the device ID value, which is an inexpensive operation.
*/
explicit Device(const cl_device_id &device, bool retainObject = false) :
detail::Wrapper<cl_type>(device, retainObject) { }
/*! \brief Returns the first device on the default context.
*
* \see Context::getDefault()
*/
static Device getDefault(
cl_int *errResult = NULL)
{
std::call_once(default_initialized_, makeDefault);
detail::errHandler(default_error_);
if (errResult != NULL) {
*errResult = default_error_;
}
return default_;
}
/**
* Modify the default device to be used by
* subsequent operations.
* Will only set the default if no default was previously created.
* @return updated default device.
* Should be compared to the passed value to ensure that it was updated.
*/
static Device setDefault(const Device &default_device)
{
std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_device));
detail::errHandler(default_error_);
return default_;
}
/*! \brief Assignment operator from cl_device_id.
*
* This simply copies the device ID value, which is an inexpensive operation.
*/
Device& operator = (const cl_device_id& rhs)
{
detail::Wrapper<cl_type>::operator=(rhs);
return *this;
}
/*! \brief Copy constructor to forward copy to the superclass correctly.
* Required for MSVC.
*/
Device(const Device& dev) : detail::Wrapper<cl_type>(dev) {}
/*! \brief Copy assignment to forward copy to the superclass correctly.
* Required for MSVC.
*/
Device& operator = (const Device &dev)
{
detail::Wrapper<cl_type>::operator=(dev);
return *this;
}
/*! \brief Move constructor to forward move to the superclass correctly.
* Required for MSVC.
*/
Device(Device&& dev) CL_HPP_NOEXCEPT_ : detail::Wrapper<cl_type>(std::move(dev)) {}
/*! \brief Move assignment to forward move to the superclass correctly.
* Required for MSVC.
*/
Device& operator = (Device &&dev)
{
detail::Wrapper<cl_type>::operator=(std::move(dev));
return *this;
}
//! \brief Wrapper for clGetDeviceInfo().
template <typename T>
cl_int getInfo(cl_device_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetDeviceInfo, object_, name, param),
__GET_DEVICE_INFO_ERR);
}
//! \brief Wrapper for clGetDeviceInfo() that returns by value.
template <cl_int name> typename
detail::param_traits<detail::cl_device_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_device_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
/**
* CL 1.2 version
*/
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
//! \brief Wrapper for clCreateSubDevices().
cl_int createSubDevices(
const cl_device_partition_property * properties,
vector<Device>* devices)
{
cl_uint n = 0;
cl_int err = clCreateSubDevices(object_, properties, 0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR);
}
vector<cl_device_id> ids(n);
err = clCreateSubDevices(object_, properties, n, ids.data(), NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR);
}
// Cannot trivially assign because we need to capture intermediates
// with safe construction
if (devices) {
devices->resize(ids.size());
// Assign to param, constructing with retain behaviour
// to correctly capture each underlying CL object
for (size_type i = 0; i < ids.size(); i++) {
// We do not need to retain because this device is being created
// by the runtime
(*devices)[i] = Device(ids[i], false);
}
}
return CL_SUCCESS;
}
#elif defined(CL_HPP_USE_CL_DEVICE_FISSION)
/**
* CL 1.1 version that uses device fission extension.
*/
cl_int createSubDevices(
const cl_device_partition_property_ext * properties,
vector<Device>* devices)
{
typedef CL_API_ENTRY cl_int
( CL_API_CALL * PFN_clCreateSubDevicesEXT)(
cl_device_id /*in_device*/,
const cl_device_partition_property_ext * /* properties */,
cl_uint /*num_entries*/,
cl_device_id * /*out_devices*/,
cl_uint * /*num_devices*/ ) CL_EXT_SUFFIX__VERSION_1_1;
static PFN_clCreateSubDevicesEXT pfn_clCreateSubDevicesEXT = NULL;
CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateSubDevicesEXT);
cl_uint n = 0;
cl_int err = pfn_clCreateSubDevicesEXT(object_, properties, 0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR);
}
vector<cl_device_id> ids(n);
err = pfn_clCreateSubDevicesEXT(object_, properties, n, ids.data(), NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR);
}
// Cannot trivially assign because we need to capture intermediates
// with safe construction
if (devices) {
devices->resize(ids.size());
// Assign to param, constructing with retain behaviour
// to correctly capture each underlying CL object
for (size_type i = 0; i < ids.size(); i++) {
// We do not need to retain because this device is being created
// by the runtime
(*devices)[i] = Device(ids[i], false);
}
}
return CL_SUCCESS;
}
#endif // defined(CL_HPP_USE_CL_DEVICE_FISSION)
};
CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Device::default_initialized_;
CL_HPP_DEFINE_STATIC_MEMBER_ Device Device::default_;
CL_HPP_DEFINE_STATIC_MEMBER_ cl_int Device::default_error_ = CL_SUCCESS;
/*! \brief Class interface for cl_platform_id.
*
* \note Copies of these objects are inexpensive, since they don't 'own'
* any underlying resources or data structures.
*
* \see cl_platform_id
*/
class Platform : public detail::Wrapper<cl_platform_id>
{
private:
static std::once_flag default_initialized_;
static Platform default_;
static cl_int default_error_;
/*! \brief Create the default context.
*
* This sets @c default_ and @c default_error_. It does not throw
* @c cl::Error.
*/
static void makeDefault() {
/* Throwing an exception from a call_once invocation does not do
* what we wish, so we catch it and save the error.
*/
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
try
#endif
{
// If default wasn't passed ,generate one
// Otherwise set it
cl_uint n = 0;
cl_int err = ::clGetPlatformIDs(0, NULL, &n);
if (err != CL_SUCCESS) {
default_error_ = err;
return;
}
if (n == 0) {
default_error_ = CL_INVALID_PLATFORM;
return;
}
vector<cl_platform_id> ids(n);
err = ::clGetPlatformIDs(n, ids.data(), NULL);
if (err != CL_SUCCESS) {
default_error_ = err;
return;
}
default_ = Platform(ids[0]);
}
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
catch (cl::Error &e) {
default_error_ = e.err();
}
#endif
}
/*! \brief Create the default platform from a provided platform.
*
* This sets @c default_. It does not throw
* @c cl::Error.
*/
static void makeDefaultProvided(const Platform &p) {
default_ = p;
}
public:
#ifdef CL_HPP_UNIT_TEST_ENABLE
/*! \brief Reset the default.
*
* This sets @c default_ to an empty value to support cleanup in
* the unit test framework.
* This function is not thread safe.
*/
static void unitTestClearDefault() {
default_ = Platform();
}
#endif // #ifdef CL_HPP_UNIT_TEST_ENABLE
//! \brief Default constructor - initializes to NULL.
Platform() : detail::Wrapper<cl_type>() { }
/*! \brief Constructor from cl_platform_id.
*
* \param retainObject will cause the constructor to retain its cl object.
* Defaults to false to maintain compatibility with
* earlier versions.
* This simply copies the platform ID value, which is an inexpensive operation.
*/
explicit Platform(const cl_platform_id &platform, bool retainObject = false) :
detail::Wrapper<cl_type>(platform, retainObject) { }
/*! \brief Assignment operator from cl_platform_id.
*
* This simply copies the platform ID value, which is an inexpensive operation.
*/
Platform& operator = (const cl_platform_id& rhs)
{
detail::Wrapper<cl_type>::operator=(rhs);
return *this;
}
static Platform getDefault(
cl_int *errResult = NULL)
{
std::call_once(default_initialized_, makeDefault);
detail::errHandler(default_error_);
if (errResult != NULL) {
*errResult = default_error_;
}
return default_;
}
/**
* Modify the default platform to be used by
* subsequent operations.
* Will only set the default if no default was previously created.
* @return updated default platform.
* Should be compared to the passed value to ensure that it was updated.
*/
static Platform setDefault(const Platform &default_platform)
{
std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_platform));
detail::errHandler(default_error_);
return default_;
}
//! \brief Wrapper for clGetPlatformInfo().
cl_int getInfo(cl_platform_info name, string* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetPlatformInfo, object_, name, param),
__GET_PLATFORM_INFO_ERR);
}
//! \brief Wrapper for clGetPlatformInfo() that returns by value.
template <cl_int name> typename
detail::param_traits<detail::cl_platform_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_platform_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
/*! \brief Gets a list of devices for this platform.
*
* Wraps clGetDeviceIDs().
*/
cl_int getDevices(
cl_device_type type,
vector<Device>* devices) const
{
cl_uint n = 0;
if( devices == NULL ) {
return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_DEVICE_IDS_ERR);
}
cl_int err = ::clGetDeviceIDs(object_, type, 0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
vector<cl_device_id> ids(n);
err = ::clGetDeviceIDs(object_, type, n, ids.data(), NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
// Cannot trivially assign because we need to capture intermediates
// with safe construction
// We must retain things we obtain from the API to avoid releasing
// API-owned objects.
if (devices) {
devices->resize(ids.size());
// Assign to param, constructing with retain behaviour
// to correctly capture each underlying CL object
for (size_type i = 0; i < ids.size(); i++) {
(*devices)[i] = Device(ids[i], true);
}
}
return CL_SUCCESS;
}
#if defined(CL_HPP_USE_DX_INTEROP)
/*! \brief Get the list of available D3D10 devices.
*
* \param d3d_device_source.
*
* \param d3d_object.
*
* \param d3d_device_set.
*
* \param devices returns a vector of OpenCL D3D10 devices found. The cl::Device
* values returned in devices can be used to identify a specific OpenCL
* device. If \a devices argument is NULL, this argument is ignored.
*
* \return One of the following values:
* - CL_SUCCESS if the function is executed successfully.
*
* The application can query specific capabilities of the OpenCL device(s)
* returned by cl::getDevices. This can be used by the application to
* determine which device(s) to use.
*
* \note In the case that exceptions are enabled and a return value
* other than CL_SUCCESS is generated, then cl::Error exception is
* generated.
*/
cl_int getDevices(
cl_d3d10_device_source_khr d3d_device_source,
void * d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
vector<Device>* devices) const
{
typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clGetDeviceIDsFromD3D10KHR)(
cl_platform_id platform,
cl_d3d10_device_source_khr d3d_device_source,
void * d3d_object,
cl_d3d10_device_set_khr d3d_device_set,
cl_uint num_entries,
cl_device_id * devices,
cl_uint* num_devices);
if( devices == NULL ) {
return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_DEVICE_IDS_ERR);
}
static PFN_clGetDeviceIDsFromD3D10KHR pfn_clGetDeviceIDsFromD3D10KHR = NULL;
CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(object_, clGetDeviceIDsFromD3D10KHR);
cl_uint n = 0;
cl_int err = pfn_clGetDeviceIDsFromD3D10KHR(
object_,
d3d_device_source,
d3d_object,
d3d_device_set,
0,
NULL,
&n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
vector<cl_device_id> ids(n);
err = pfn_clGetDeviceIDsFromD3D10KHR(
object_,
d3d_device_source,
d3d_object,
d3d_device_set,
n,
ids.data(),
NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_DEVICE_IDS_ERR);
}
// Cannot trivially assign because we need to capture intermediates
// with safe construction
// We must retain things we obtain from the API to avoid releasing
// API-owned objects.
if (devices) {
devices->resize(ids.size());
// Assign to param, constructing with retain behaviour
// to correctly capture each underlying CL object
for (size_type i = 0; i < ids.size(); i++) {
(*devices)[i] = Device(ids[i], true);
}
}
return CL_SUCCESS;
}
#endif
/*! \brief Gets a list of available platforms.
*
* Wraps clGetPlatformIDs().
*/
static cl_int get(
vector<Platform>* platforms)
{
cl_uint n = 0;
if( platforms == NULL ) {
return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_PLATFORM_IDS_ERR);
}
cl_int err = ::clGetPlatformIDs(0, NULL, &n);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_PLATFORM_IDS_ERR);
}
vector<cl_platform_id> ids(n);
err = ::clGetPlatformIDs(n, ids.data(), NULL);
if (err != CL_SUCCESS) {
return detail::errHandler(err, __GET_PLATFORM_IDS_ERR);
}
if (platforms) {
platforms->resize(ids.size());
// Platforms don't reference count
for (size_type i = 0; i < ids.size(); i++) {
(*platforms)[i] = Platform(ids[i]);
}
}
return CL_SUCCESS;
}
/*! \brief Gets the first available platform.
*
* Wraps clGetPlatformIDs(), returning the first result.
*/
static cl_int get(
Platform * platform)
{
cl_int err;
Platform default_platform = Platform::getDefault(&err);
if (platform) {
*platform = default_platform;
}
return err;
}
/*! \brief Gets the first available platform, returning it by value.
*
* \return Returns a valid platform if one is available.
* If no platform is available will return a null platform.
* Throws an exception if no platforms are available
* or an error condition occurs.
* Wraps clGetPlatformIDs(), returning the first result.
*/
static Platform get(
cl_int * errResult = NULL)
{
cl_int err;
Platform default_platform = Platform::getDefault(&err);
if (errResult) {
*errResult = err;
}
return default_platform;
}
#if CL_HPP_TARGET_OPENCL_VERSION >= 120
//! \brief Wrapper for clUnloadCompiler().
cl_int
unloadCompiler()
{
return ::clUnloadPlatformCompiler(object_);
}
#endif // CL_HPP_TARGET_OPENCL_VERSION >= 120
}; // class Platform
CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Platform::default_initialized_;
CL_HPP_DEFINE_STATIC_MEMBER_ Platform Platform::default_;
CL_HPP_DEFINE_STATIC_MEMBER_ cl_int Platform::default_error_ = CL_SUCCESS;
/**
* Deprecated APIs for 1.2
*/
#if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
/**
* Unload the OpenCL compiler.
* \note Deprecated for OpenCL 1.2. Use Platform::unloadCompiler instead.
*/
inline CL_EXT_PREFIX__VERSION_1_1_DEPRECATED cl_int
UnloadCompiler() CL_EXT_SUFFIX__VERSION_1_1_DEPRECATED;
inline cl_int
UnloadCompiler()
{
return ::clUnloadCompiler();
}
#endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS)
/*! \brief Class interface for cl_context.
*
* \note Copies of these objects are shallow, meaning that the copy will refer
* to the same underlying cl_context as the original. For details, see
* clRetainContext() and clReleaseContext().
*
* \see cl_context
*/
class Context
: public detail::Wrapper<cl_context>
{
private:
static std::once_flag default_initialized_;
static Context default_;
static cl_int default_error_;
/*! \brief Create the default context from the default device type in the default platform.
*
* This sets @c default_ and @c default_error_. It does not throw
* @c cl::Error.
*/
static void makeDefault() {
/* Throwing an exception from a call_once invocation does not do
* what we wish, so we catch it and save the error.
*/
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
try
#endif
{
#if !defined(__APPLE__) && !defined(__MACOS)
const Platform &p = Platform::getDefault();
cl_platform_id defaultPlatform = p();
cl_context_properties properties[3] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)defaultPlatform, 0
};
#else // #if !defined(__APPLE__) && !defined(__MACOS)
cl_context_properties *properties = nullptr;
#endif // #if !defined(__APPLE__) && !defined(__MACOS)
default_ = Context(
CL_DEVICE_TYPE_DEFAULT,
properties,
NULL,
NULL,
&default_error_);
}
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
catch (cl::Error &e) {
default_error_ = e.err();
}
#endif
}
/*! \brief Create the default context from a provided Context.
*
* This sets @c default_. It does not throw
* @c cl::Error.
*/
static void makeDefaultProvided(const Context &c) {
default_ = c;
}
public:
#ifdef CL_HPP_UNIT_TEST_ENABLE
/*! \brief Reset the default.
*
* This sets @c default_ to an empty value to support cleanup in
* the unit test framework.
* This function is not thread safe.
*/
static void unitTestClearDefault() {
default_ = Context();
}
#endif // #ifdef CL_HPP_UNIT_TEST_ENABLE
/*! \brief Constructs a context including a list of specified devices.
*
* Wraps clCreateContext().
*/
Context(
const vector<Device>& devices,
cl_context_properties* properties = NULL,
void (CL_CALLBACK * notifyFptr)(
const char *,
const void *,
size_type,
void *) = NULL,
void* data = NULL,
cl_int* err = NULL)
{
cl_int error;
size_type numDevices = devices.size();
vector<cl_device_id> deviceIDs(numDevices);
for( size_type deviceIndex = 0; deviceIndex < numDevices; ++deviceIndex ) {
deviceIDs[deviceIndex] = (devices[deviceIndex])();
}
object_ = ::clCreateContext(
properties, (cl_uint) numDevices,
deviceIDs.data(),
notifyFptr, data, &error);
detail::errHandler(error, __CREATE_CONTEXT_ERR);
if (err != NULL) {
*err = error;
}
}
Context(
const Device& device,
cl_context_properties* properties = NULL,
void (CL_CALLBACK * notifyFptr)(
const char *,
const void *,
size_type,
void *) = NULL,
void* data = NULL,
cl_int* err = NULL)
{
cl_int error;
cl_device_id deviceID = device();
object_ = ::clCreateContext(
properties, 1,
&deviceID,
notifyFptr, data, &error);
detail::errHandler(error, __CREATE_CONTEXT_ERR);
if (err != NULL) {
*err = error;
}
}
/*! \brief Constructs a context including all or a subset of devices of a specified type.
*
* Wraps clCreateContextFromType().
*/
Context(
cl_device_type type,
cl_context_properties* properties = NULL,
void (CL_CALLBACK * notifyFptr)(
const char *,
const void *,
size_type,
void *) = NULL,
void* data = NULL,
cl_int* err = NULL)
{
cl_int error;
#if !defined(__APPLE__) && !defined(__MACOS)
cl_context_properties prop[4] = {CL_CONTEXT_PLATFORM, 0, 0, 0 };
if (properties == NULL) {
// Get a valid platform ID as we cannot send in a blank one
vector<Platform> platforms;
error = Platform::get(&platforms);
if (error != CL_SUCCESS) {
detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = error;
}
return;
}
// Check the platforms we found for a device of our specified type
cl_context_properties platform_id = 0;
for (unsigned int i = 0; i < platforms.size(); i++) {
vector<Device> devices;
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
try {
#endif
error = platforms[i].getDevices(type, &devices);
#if defined(CL_HPP_ENABLE_EXCEPTIONS)
} catch (Error) {}
// Catch if exceptions are enabled as we don't want to exit if first platform has no devices of type
// We do error checking next anyway, and can throw there if needed
#endif
// Only squash CL_SUCCESS and CL_DEVICE_NOT_FOUND
if (error != CL_SUCCESS && error != CL_DEVICE_NOT_FOUND) {
detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = error;
}
}
if (devices.size() > 0) {
platform_id = (cl_context_properties)platforms[i]();
break;
}
}
if (platform_id == 0) {
detail::errHandler(CL_DEVICE_NOT_FOUND, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = CL_DEVICE_NOT_FOUND;
}
return;
}
prop[1] = platform_id;
properties = &prop[0];
}
#endif
object_ = ::clCreateContextFromType(
properties, type, notifyFptr, data, &error);
detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR);
if (err != NULL) {
*err = error;
}
}
/*! \brief Copy constructor to forward copy to the superclass correctly.
* Required for MSVC.
*/
Context(const Context& ctx) : detail::Wrapper<cl_type>(ctx) {}
/*! \brief Copy assignment to forward copy to the superclass correctly.
* Required for MSVC.
*/
Context& operator = (const Context &ctx)
{
detail::Wrapper<cl_type>::operator=(ctx);
return *this;
}
/*! \brief Move constructor to forward move to the superclass correctly.
* Required for MSVC.
*/
Context(Context&& ctx) CL_HPP_NOEXCEPT_ : detail::Wrapper<cl_type>(std::move(ctx)) {}
/*! \brief Move assignment to forward move to the superclass correctly.
* Required for MSVC.
*/
Context& operator = (Context &&ctx)
{
detail::Wrapper<cl_type>::operator=(std::move(ctx));
return *this;
}
/*! \brief Returns a singleton context including all devices of CL_DEVICE_TYPE_DEFAULT.
*
* \note All calls to this function return the same cl_context as the first.
*/
static Context getDefault(cl_int * err = NULL)
{
std::call_once(default_initialized_, makeDefault);
detail::errHandler(default_error_);
if (err != NULL) {
*err = default_error_;
}
return default_;
}
/**
* Modify the default context to be used by
* subsequent operations.
* Will only set the default if no default was previously created.
* @return updated default context.
* Should be compared to the passed value to ensure that it was updated.
*/
static Context setDefault(const Context &default_context)
{
std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_context));
detail::errHandler(default_error_);
return default_;
}
//! \brief Default constructor - initializes to NULL.
Context() : detail::Wrapper<cl_type>() { }
/*! \brief Constructor from cl_context - takes ownership.
*
* This effectively transfers ownership of a refcount on the cl_context
* into the new Context object.
*/
explicit Context(const cl_context& context, bool retainObject = false) :
detail::Wrapper<cl_type>(context, retainObject) { }
/*! \brief Assignment operator from cl_context - takes ownership.
*
* This effectively transfers ownership of a refcount on the rhs and calls
* clReleaseContext() on the value previously held by this instance.
*/
Context& operator = (const cl_context& rhs)
{
detail::Wrapper<cl_type>::operator=(rhs);
return *this;
}
//! \brief Wrapper for clGetContextInfo().
template <typename T>
cl_int getInfo(cl_context_info name, T* param) const
{
return detail::errHandler(
detail::getInfo(&::clGetContextInfo, object_, name, param),
__GET_CONTEXT_INFO_ERR);
}
//! \brief Wrapper for clGetContextInfo() that returns by value.
template <cl_int name> typename
detail::param_traits<detail::cl_context_info, name>::param_type
getInfo(cl_int* err = NULL) const
{
typename detail::param_traits<
detail::cl_context_info, name>::param_type param;
cl_int result = getInfo(name, &param);
if (err != NULL) {
*err = result;
}
return param;
}
/*! \brief Gets a list of supported image formats.
*
* Wraps clGetSupportedImageFormats().
*/
cl_int getSupportedImageFormats(
cl_mem_flags flags,
cl_mem_object_type type,