Merge pull request #117 from expipiplus1/joe-const

Add const qualifier to handles where possible
diff --git a/src/vk_mem_alloc.h b/src/vk_mem_alloc.h
index 15eec84..abe6e5b 100644
--- a/src/vk_mem_alloc.h
+++ b/src/vk_mem_alloc.h
@@ -1,18653 +1,18653 @@
-//

-// Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved.

-//

-// Permission is hereby granted, free of charge, to any person obtaining a copy

-// of this software and associated documentation files (the "Software"), to deal

-// in the Software without restriction, including without limitation the rights

-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

-// copies of the Software, and to permit persons to whom the Software is

-// furnished to do so, subject to the following conditions:

-//

-// The above copyright notice and this permission notice shall be included in

-// all copies or substantial portions of the Software.

-//

-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE

-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

-// THE SOFTWARE.

-//

-

-#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H

-#define AMD_VULKAN_MEMORY_ALLOCATOR_H

-

-#ifdef __cplusplus

-extern "C" {

-#endif

-

-/** \mainpage Vulkan Memory Allocator

-

-<b>Version 3.0.0-development</b> (2020-03-23)

-

-Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved. \n

-License: MIT

-

-Documentation of all members: vk_mem_alloc.h

-

-\section main_table_of_contents Table of contents

-

-- <b>User guide</b>

-  - \subpage quick_start

-    - [Project setup](@ref quick_start_project_setup)

-    - [Initialization](@ref quick_start_initialization)

-    - [Resource allocation](@ref quick_start_resource_allocation)

-  - \subpage choosing_memory_type

-    - [Usage](@ref choosing_memory_type_usage)

-    - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)

-    - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)

-    - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)

-    - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)

-  - \subpage memory_mapping

-    - [Mapping functions](@ref memory_mapping_mapping_functions)

-    - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)

-    - [Cache flush and invalidate](@ref memory_mapping_cache_control)

-    - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)

-  - \subpage staying_within_budget

-    - [Querying for budget](@ref staying_within_budget_querying_for_budget)

-    - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)

-  - \subpage custom_memory_pools

-    - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)

-    - [Linear allocation algorithm](@ref linear_algorithm)

-      - [Free-at-once](@ref linear_algorithm_free_at_once)

-      - [Stack](@ref linear_algorithm_stack)

-      - [Double stack](@ref linear_algorithm_double_stack)

-      - [Ring buffer](@ref linear_algorithm_ring_buffer)

-    - [Buddy allocation algorithm](@ref buddy_algorithm)

-  - \subpage defragmentation

-  	- [Defragmenting CPU memory](@ref defragmentation_cpu)

-  	- [Defragmenting GPU memory](@ref defragmentation_gpu)

-  	- [Additional notes](@ref defragmentation_additional_notes)

-  	- [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)

-  - \subpage lost_allocations

-  - \subpage statistics

-    - [Numeric statistics](@ref statistics_numeric_statistics)

-    - [JSON dump](@ref statistics_json_dump)

-  - \subpage allocation_annotation

-    - [Allocation user data](@ref allocation_user_data)

-    - [Allocation names](@ref allocation_names)

-  - \subpage debugging_memory_usage

-    - [Memory initialization](@ref debugging_memory_usage_initialization)

-    - [Margins](@ref debugging_memory_usage_margins)

-    - [Corruption detection](@ref debugging_memory_usage_corruption_detection)

-  - \subpage record_and_replay

-- \subpage usage_patterns

-  - [Common mistakes](@ref usage_patterns_common_mistakes)

-  - [Simple patterns](@ref usage_patterns_simple)

-  - [Advanced patterns](@ref usage_patterns_advanced)

-- \subpage configuration

-  - [Pointers to Vulkan functions](@ref config_Vulkan_functions)

-  - [Custom host memory allocator](@ref custom_memory_allocator)

-  - [Device memory allocation callbacks](@ref allocation_callbacks)

-  - [Device heap memory limit](@ref heap_memory_limit)

-  - \subpage vk_khr_dedicated_allocation

-  - \subpage enabling_buffer_device_address

-  - \subpage vk_amd_device_coherent_memory

-- \subpage general_considerations

-  - [Thread safety](@ref general_considerations_thread_safety)

-  - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)

-  - [Allocation algorithm](@ref general_considerations_allocation_algorithm)

-  - [Features not supported](@ref general_considerations_features_not_supported)

-

-\section main_see_also See also

-

-- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)

-- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)

-

-

-

-

-\page quick_start Quick start

-

-\section quick_start_project_setup Project setup

-

-Vulkan Memory Allocator comes in form of a "stb-style" single header file.

-You don't need to build it as a separate library project.

-You can add this file directly to your project and submit it to code repository next to your other source files.

-

-"Single header" doesn't mean that everything is contained in C/C++ declarations,

-like it tends to be in case of inline functions or C++ templates.

-It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.

-If you don't do it properly, you will get linker errors.

-

-To do it properly:

-

--# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.

-   This includes declarations of all members of the library.

--# In exacly one CPP file define following macro before this include.

-   It enables also internal definitions.

-

-\code

-#define VMA_IMPLEMENTATION

-#include "vk_mem_alloc.h"

-\endcode

-

-It may be a good idea to create dedicated CPP file just for this purpose.

-

-Note on language: This library is written in C++, but has C-compatible interface.

-Thus you can include and use vk_mem_alloc.h in C or C++ code, but full

-implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.

-

-Please note that this library includes header `<vulkan/vulkan.h>`, which in turn

-includes `<windows.h>` on Windows. If you need some specific macros defined

-before including these headers (like `WIN32_LEAN_AND_MEAN` or

-`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define

-them before every `#include` of this library.

-

-

-\section quick_start_initialization Initialization

-

-At program startup:

-

--# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.

--# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by

-   calling vmaCreateAllocator().

-

-\code

-VmaAllocatorCreateInfo allocatorInfo = {};

-allocatorInfo.physicalDevice = physicalDevice;

-allocatorInfo.device = device;

-

-VmaAllocator allocator;

-vmaCreateAllocator(&allocatorInfo, &allocator);

-\endcode

-

-\section quick_start_resource_allocation Resource allocation

-

-When you want to create a buffer or image:

-

--# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.

--# Fill VmaAllocationCreateInfo structure.

--# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory

-   already allocated and bound to it.

-

-\code

-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufferInfo.size = 65536;

-bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-VmaAllocationCreateInfo allocInfo = {};

-allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-

-VkBuffer buffer;

-VmaAllocation allocation;

-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

-\endcode

-

-Don't forget to destroy your objects when no longer needed:

-

-\code

-vmaDestroyBuffer(allocator, buffer, allocation);

-vmaDestroyAllocator(allocator);

-\endcode

-

-

-\page choosing_memory_type Choosing memory type

-

-Physical devices in Vulkan support various combinations of memory heaps and

-types. Help with choosing correct and optimal memory type for your specific

-resource is one of the key features of this library. You can use it by filling

-appropriate members of VmaAllocationCreateInfo structure, as described below.

-You can also combine multiple methods.

-

--# If you just want to find memory type index that meets your requirements, you

-   can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),

-   vmaFindMemoryTypeIndexForImageInfo().

--# If you want to allocate a region of device memory without association with any

-   specific image or buffer, you can use function vmaAllocateMemory(). Usage of

-   this function is not recommended and usually not needed.

-   vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,

-   which may be useful for sparse binding.

--# If you already have a buffer or an image created, you want to allocate memory

-   for it and then you will bind it yourself, you can use function

-   vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().

-   For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()

-   or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().

--# If you want to create a buffer or an image, allocate memory for it and bind

-   them together, all in one call, you can use function vmaCreateBuffer(),

-   vmaCreateImage(). This is the easiest and recommended way to use this library.

-

-When using 3. or 4., the library internally queries Vulkan for memory types

-supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)

-and uses only one of these types.

-

-If no memory type can be found that meets all the requirements, these functions

-return `VK_ERROR_FEATURE_NOT_PRESENT`.

-

-You can leave VmaAllocationCreateInfo structure completely filled with zeros.

-It means no requirements are specified for memory type.

-It is valid, although not very useful.

-

-\section choosing_memory_type_usage Usage

-

-The easiest way to specify memory requirements is to fill member

-VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.

-It defines high level, common usage types.

-For more details, see description of this enum.

-

-For example, if you want to create a uniform buffer that will be filled using

-transfer only once or infrequently and used for rendering every frame, you can

-do it using following code:

-

-\code

-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufferInfo.size = 65536;

-bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-VmaAllocationCreateInfo allocInfo = {};

-allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-

-VkBuffer buffer;

-VmaAllocation allocation;

-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

-\endcode

-

-\section choosing_memory_type_required_preferred_flags Required and preferred flags

-

-You can specify more detailed requirements by filling members

-VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags

-with a combination of bits from enum `VkMemoryPropertyFlags`. For example,

-if you want to create a buffer that will be persistently mapped on host (so it

-must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,

-use following code:

-

-\code

-VmaAllocationCreateInfo allocInfo = {};

-allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

-allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;

-allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

-

-VkBuffer buffer;

-VmaAllocation allocation;

-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

-\endcode

-

-A memory type is chosen that has all the required flags and as many preferred

-flags set as possible.

-

-If you use VmaAllocationCreateInfo::usage, it is just internally converted to

-a set of required and preferred flags.

-

-\section choosing_memory_type_explicit_memory_types Explicit memory types

-

-If you inspected memory types available on the physical device and you have

-a preference for memory types that you want to use, you can fill member

-VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set

-means that a memory type with that index is allowed to be used for the

-allocation. Special value 0, just like `UINT32_MAX`, means there are no

-restrictions to memory type index.

-

-Please note that this member is NOT just a memory type index.

-Still you can use it to choose just one, specific memory type.

-For example, if you already determined that your buffer should be created in

-memory type 2, use following code:

-

-\code

-uint32_t memoryTypeIndex = 2;

-

-VmaAllocationCreateInfo allocInfo = {};

-allocInfo.memoryTypeBits = 1u << memoryTypeIndex;

-

-VkBuffer buffer;

-VmaAllocation allocation;

-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);

-\endcode

-

-\section choosing_memory_type_custom_memory_pools Custom memory pools

-

-If you allocate from custom memory pool, all the ways of specifying memory

-requirements described above are not applicable and the aforementioned members

-of VmaAllocationCreateInfo structure are ignored. Memory type is selected

-explicitly when creating the pool and then used to make all the allocations from

-that pool. For further details, see \ref custom_memory_pools.

-

-\section choosing_memory_type_dedicated_allocations Dedicated allocations

-

-Memory for allocations is reserved out of larger block of `VkDeviceMemory`

-allocated from Vulkan internally. That's the main feature of this whole library.

-You can still request a separate memory block to be created for an allocation,

-just like you would do in a trivial solution without using any allocator.

-In that case, a buffer or image is always bound to that memory at offset 0.

-This is called a "dedicated allocation".

-You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

-The library can also internally decide to use dedicated allocation in some cases, e.g.:

-

-- When the size of the allocation is large.

-- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled

-  and it reports that dedicated allocation is required or recommended for the resource.

-- When allocation of next big memory block fails due to not enough device memory,

-  but allocation with the exact requested size succeeds.

-

-

-\page memory_mapping Memory mapping

-

-To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,

-to be able to read from it or write to it in CPU code.

-Mapping is possible only of memory allocated from a memory type that has

-`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.

-Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.

-You can use them directly with memory allocated by this library,

-but it is not recommended because of following issue:

-Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.

-This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.

-Because of this, Vulkan Memory Allocator provides following facilities:

-

-\section memory_mapping_mapping_functions Mapping functions

-

-The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().

-They are safer and more convenient to use than standard Vulkan functions.

-You can map an allocation multiple times simultaneously - mapping is reference-counted internally.

-You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.

-The way it's implemented is that the library always maps entire memory block, not just region of the allocation.

-For further details, see description of vmaMapMemory() function.

-Example:

-

-\code

-// Having these objects initialized:

-

-struct ConstantBuffer

-{

-    ...

-};

-ConstantBuffer constantBufferData;

-

-VmaAllocator allocator;

-VkBuffer constantBuffer;

-VmaAllocation constantBufferAllocation;

-

-// You can map and fill your buffer using following code:

-

-void* mappedData;

-vmaMapMemory(allocator, constantBufferAllocation, &mappedData);

-memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));

-vmaUnmapMemory(allocator, constantBufferAllocation);

-\endcode

-

-When mapping, you may see a warning from Vulkan validation layer similar to this one:

-

-<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>

-

-It happens because the library maps entire `VkDeviceMemory` block, where different

-types of images and buffers may end up together, especially on GPUs with unified memory like Intel.

-You can safely ignore it if you are sure you access only memory of the intended

-object that you wanted to map.

-

-

-\section memory_mapping_persistently_mapped_memory Persistently mapped memory

-

-Kepping your memory persistently mapped is generally OK in Vulkan.

-You don't need to unmap it before using its data on the GPU.

-The library provides a special feature designed for that:

-Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in

-VmaAllocationCreateInfo::flags stay mapped all the time,

-so you can just access CPU pointer to it any time

-without a need to call any "map" or "unmap" function.

-Example:

-

-\code

-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufCreateInfo.size = sizeof(ConstantBuffer);

-bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;

-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

-

-VkBuffer buf;

-VmaAllocation alloc;

-VmaAllocationInfo allocInfo;

-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

-

-// Buffer is already mapped. You can access its memory.

-memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));

-\endcode

-

-There are some exceptions though, when you should consider mapping memory only for a short period of time:

-

-- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),

-  device is discrete AMD GPU,

-  and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory

-  (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),

-  then whenever a memory block allocated from this memory type stays mapped

-  for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this

-  block is migrated by WDDM to system RAM, which degrades performance. It doesn't

-  matter if that particular memory block is actually used by the command buffer

-  being submitted.

-- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175)

-  which requires unmapping before GPU can see updated texture.

-- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.

-

-\section memory_mapping_cache_control Cache flush and invalidate

-  

-Memory in Vulkan doesn't need to be unmapped before using it on GPU,

-but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,

-you need to manually **invalidate** cache before reading of mapped pointer

-and **flush** cache after writing to mapped pointer.

-Map/unmap operations don't do that automatically.

-Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,

-`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient

-functions that refer to given allocation object: vmaFlushAllocation(),

-vmaInvalidateAllocation().

-

-Regions of memory specified for flush/invalidate must be aligned to

-`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.

-In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations

-within blocks are aligned to this value, so their offsets are always multiply of

-`nonCoherentAtomSize` and two different allocations never share same "line" of this size.

-

-Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.

-

-Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA)

-currently provide `HOST_COHERENT` flag on all memory types that are

-`HOST_VISIBLE`, so on this platform you may not need to bother.

-

-\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable

-

-It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)

-despite it wasn't explicitly requested.

-For example, application may work on integrated graphics with unified memory (like Intel) or

-allocation from video memory might have failed, so the library chose system memory as fallback.

-

-You can detect this case and map such allocation to access its memory on CPU directly,

-instead of launching a transfer operation.

-In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),

-and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.

-

-\code

-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufCreateInfo.size = sizeof(ConstantBuffer);

-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

-

-VkBuffer buf;

-VmaAllocation alloc;

-VmaAllocationInfo allocInfo;

-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

-

-VkMemoryPropertyFlags memFlags;

-vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);

-if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

-{

-    // Allocation ended up in mappable memory. You can map it and access it directly.

-    void* mappedData;

-    vmaMapMemory(allocator, alloc, &mappedData);

-    memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));

-    vmaUnmapMemory(allocator, alloc);

-}

-else

-{

-    // Allocation ended up in non-mappable memory.

-    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.

-}

-\endcode

-

-You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations

-that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).

-If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.

-If not, the flag is just ignored.

-Example:

-

-\code

-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufCreateInfo.size = sizeof(ConstantBuffer);

-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;

-

-VkBuffer buf;

-VmaAllocation alloc;

-VmaAllocationInfo allocInfo;

-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

-

-if(allocInfo.pUserData != nullptr)

-{

-    // Allocation ended up in mappable memory.

-    // It's persistently mapped. You can access it directly.

-    memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));

-}

-else

-{

-    // Allocation ended up in non-mappable memory.

-    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.

-}

-\endcode

-

-

-\page staying_within_budget Staying within budget

-

-When developing a graphics-intensive game or program, it is important to avoid allocating

-more GPU memory than it's physically available. When the memory is over-committed,

-various bad things can happen, depending on the specific GPU, graphics driver, and

-operating system:

-

-- It may just work without any problems.

-- The application may slow down because some memory blocks are moved to system RAM

-  and the GPU has to access them through PCI Express bus.

-- A new allocation may take very long time to complete, even few seconds, and possibly

-  freeze entire system.

-- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`

-  returned somewhere later.

-

-\section staying_within_budget_querying_for_budget Querying for budget

-

-To query for current memory usage and available budget, use function vmaGetBudget().

-Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.

-

-Please note that this function returns different information and works faster than

-vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every

-allocation, while vmaCalculateStats() is intended to be used rarely,

-only to obtain statistical information, e.g. for debugging purposes.

-

-It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information

-about the budget from Vulkan device. VMA is able to use this extension automatically.

-When not enabled, the allocator behaves same way, but then it estimates current usage

-and available budget based on its internal information and Vulkan memory heap sizes,

-which may be less precise. In order to use this extension:

-

-1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2

-   required by it are available and enable them. Please note that the first is a device

-   extension and the second is instance extension!

-2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.

-3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from

-   Vulkan inside of it to avoid overhead of querying it with every allocation.

-

-\section staying_within_budget_controlling_memory_usage Controlling memory usage

-

-There are many ways in which you can try to stay within the budget.

-

-First, when making new allocation requires allocating a new memory block, the library

-tries not to exceed the budget automatically. If a block with default recommended size

-(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even

-dedicated memory for just this resource.

-

-If the size of the requested resource plus current memory usage is more than the

-budget, by default the library still tries to create it, leaving it to the Vulkan

-implementation whether the allocation succeeds or fails. You can change this behavior

-by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is

-not made if it would exceed the budget or if the budget is already exceeded.

-Some other allocations become lost instead to make room for it, if the mechanism of

-[lost allocations](@ref lost_allocations) is used.

-If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag

-when creating resources that are not essential for the application (e.g. the texture

-of a specific object) and not to pass it when creating critically important resources

-(e.g. render targets).

-

-Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure

-a new allocation is created only when it fits inside one of the existing memory blocks.

-If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-This also ensures that the function call is very fast because it never goes to Vulkan

-to obtain a new block.

-

-Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount

-set to more than 0 will try to allocate memory blocks without checking whether they

-fit within budget.

-

-

-\page custom_memory_pools Custom memory pools

-

-A memory pool contains a number of `VkDeviceMemory` blocks.

-The library automatically creates and manages default pool for each memory type available on the device.

-Default memory pool automatically grows in size.

-Size of allocated blocks is also variable and managed automatically.

-

-You can create custom pool and allocate memory out of it.

-It can be useful if you want to:

-

-- Keep certain kind of allocations separate from others.

-- Enforce particular, fixed size of Vulkan memory blocks.

-- Limit maximum amount of Vulkan memory allocated for that pool.

-- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.

-

-To use custom memory pools:

-

--# Fill VmaPoolCreateInfo structure.

--# Call vmaCreatePool() to obtain #VmaPool handle.

--# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.

-   You don't need to specify any other parameters of this structure, like `usage`.

-

-Example:

-

-\code

-// Create a pool that can have at most 2 blocks, 128 MiB each.

-VmaPoolCreateInfo poolCreateInfo = {};

-poolCreateInfo.memoryTypeIndex = ...

-poolCreateInfo.blockSize = 128ull * 1024 * 1024;

-poolCreateInfo.maxBlockCount = 2;

-

-VmaPool pool;

-vmaCreatePool(allocator, &poolCreateInfo, &pool);

-

-// Allocate a buffer out of it.

-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-bufCreateInfo.size = 1024;

-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.pool = pool;

-

-VkBuffer buf;

-VmaAllocation alloc;

-VmaAllocationInfo allocInfo;

-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);

-\endcode

-

-You have to free all allocations made from this pool before destroying it.

-

-\code

-vmaDestroyBuffer(allocator, buf, alloc);

-vmaDestroyPool(allocator, pool);

-\endcode

-

-\section custom_memory_pools_MemTypeIndex Choosing memory type index

-

-When creating a pool, you must explicitly specify memory type index.

-To find the one suitable for your buffers or images, you can use helper functions

-vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().

-You need to provide structures with example parameters of buffers or images

-that you are going to create in that pool.

-

-\code

-VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-exampleBufCreateInfo.size = 1024; // Whatever.

-exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.

-

-uint32_t memTypeIndex;

-vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);

-

-VmaPoolCreateInfo poolCreateInfo = {};

-poolCreateInfo.memoryTypeIndex = memTypeIndex;

-// ...

-\endcode

-

-When creating buffers/images allocated in that pool, provide following parameters:

-

-- `VkBufferCreateInfo`: Prefer to pass same parameters as above.

-  Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.

-  Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers

-  or the other way around.

-- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.

-  Other members are ignored anyway.

-

-\section linear_algorithm Linear allocation algorithm

-

-Each Vulkan memory block managed by this library has accompanying metadata that

-keeps track of used and unused regions. By default, the metadata structure and

-algorithm tries to find best place for new allocations among free regions to

-optimize memory usage. This way you can allocate and free objects in any order.

-

-![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)

-

-Sometimes there is a need to use simpler, linear allocation algorithm. You can

-create custom pool that uses such algorithm by adding flag

-#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating

-#VmaPool object. Then an alternative metadata management is used. It always

-creates new allocations after last one and doesn't reuse free regions after

-allocations freed in the middle. It results in better allocation performance and

-less memory consumed by metadata.

-

-![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)

-

-With this one flag, you can create a custom pool that can be used in many ways:

-free-at-once, stack, double stack, and ring buffer. See below for details.

-

-\subsection linear_algorithm_free_at_once Free-at-once

-

-In a pool that uses linear algorithm, you still need to free all the allocations

-individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free

-them in any order. New allocations are always made after last one - free space

-in the middle is not reused. However, when you release all the allocation and

-the pool becomes empty, allocation starts from the beginning again. This way you

-can use linear algorithm to speed up creation of allocations that you are going

-to release all at once.

-

-![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)

-

-This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount

-value that allows multiple memory blocks.

-

-\subsection linear_algorithm_stack Stack

-

-When you free an allocation that was created last, its space can be reused.

-Thanks to this, if you always release allocations in the order opposite to their

-creation (LIFO - Last In First Out), you can achieve behavior of a stack.

-

-![Stack](../gfx/Linear_allocator_4_stack.png)

-

-This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount

-value that allows multiple memory blocks.

-

-\subsection linear_algorithm_double_stack Double stack

-

-The space reserved by a custom pool with linear algorithm may be used by two

-stacks:

-

-- First, default one, growing up from offset 0.

-- Second, "upper" one, growing down from the end towards lower offsets.

-

-To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT

-to VmaAllocationCreateInfo::flags.

-

-![Double stack](../gfx/Linear_allocator_7_double_stack.png)

-

-Double stack is available only in pools with one memory block -

-VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.

-

-When the two stacks' ends meet so there is not enough space between them for a

-new allocation, such allocation fails with usual

-`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.

-

-\subsection linear_algorithm_ring_buffer Ring buffer

-

-When you free some allocations from the beginning and there is not enough free space

-for a new one at the end of a pool, allocator's "cursor" wraps around to the

-beginning and starts allocation there. Thanks to this, if you always release

-allocations in the same order as you created them (FIFO - First In First Out),

-you can achieve behavior of a ring buffer / queue.

-

-![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)

-

-Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.

-If there is not enough free space for a new allocation, but existing allocations

-from the front of the queue can become lost, they become lost and the allocation

-succeeds.

-

-![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)

-

-Ring buffer is available only in pools with one memory block -

-VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.

-

-\section buddy_algorithm Buddy allocation algorithm

-

-There is another allocation algorithm that can be used with custom pools, called

-"buddy". Its internal data structure is based on a tree of blocks, each having

-size that is a power of two and a half of its parent's size. When you want to

-allocate memory of certain size, a free node in the tree is located. If it's too

-large, it is recursively split into two halves (called "buddies"). However, if

-requested allocation size is not a power of two, the size of a tree node is

-aligned up to the nearest power of two and the remaining space is wasted. When

-two buddy nodes become free, they are merged back into one larger node.

-

-![Buddy allocator](../gfx/Buddy_allocator.png)

-

-The advantage of buddy allocation algorithm over default algorithm is faster

-allocation and deallocation, as well as smaller external fragmentation. The

-disadvantage is more wasted space (internal fragmentation).

-

-For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation)

-or other sources that describe this concept in general.

-

-To use buddy allocation algorithm with a custom pool, add flag

-#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating

-#VmaPool object.

-

-Several limitations apply to pools that use buddy algorithm:

-

-- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.

-  Otherwise, only largest power of two smaller than the size is used for

-  allocations. The remaining space always stays unused.

-- [Margins](@ref debugging_memory_usage_margins) and

-  [corruption detection](@ref debugging_memory_usage_corruption_detection)

-  don't work in such pools.

-- [Lost allocations](@ref lost_allocations) don't work in such pools. You can

-  use them, but they never become lost. Support may be added in the future.

-- [Defragmentation](@ref defragmentation) doesn't work with allocations made from

-  such pool.

-

-\page defragmentation Defragmentation

-

-Interleaved allocations and deallocations of many objects of varying size can

-cause fragmentation over time, which can lead to a situation where the library is unable

-to find a continuous range of free memory for a new allocation despite there is

-enough free space, just scattered across many small free ranges between existing

-allocations.

-

-To mitigate this problem, you can use defragmentation feature:

-structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().

-Given set of allocations, 

-this function can move them to compact used memory, ensure more continuous free

-space and possibly also free some `VkDeviceMemory` blocks.

-

-What the defragmentation does is:

-

-- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.

-  After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or

-  VmaAllocationInfo::offset changes. You must query them again using

-  vmaGetAllocationInfo() if you need them.

-- Moves actual data in memory.

-

-What it doesn't do, so you need to do it yourself:

-

-- Recreate buffers and images that were bound to allocations that were defragmented and

-  bind them with their new places in memory.

-  You must use `vkDestroyBuffer()`, `vkDestroyImage()`,

-  `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory()

-  for that purpose and NOT vmaDestroyBuffer(),

-  vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to

-  destroy or create allocation objects!

-- Recreate views and update descriptors that point to these buffers and images.

-

-\section defragmentation_cpu Defragmenting CPU memory

-

-Following example demonstrates how you can run defragmentation on CPU.

-Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.

-Others are ignored.

-

-The way it works is:

-

-- It temporarily maps entire memory blocks when necessary.

-- It moves data using `memmove()` function.

-

-\code

-// Given following variables already initialized:

-VkDevice device;

-VmaAllocator allocator;

-std::vector<VkBuffer> buffers;

-std::vector<VmaAllocation> allocations;

-

-

-const uint32_t allocCount = (uint32_t)allocations.size();

-std::vector<VkBool32> allocationsChanged(allocCount);

-

-VmaDefragmentationInfo2 defragInfo = {};

-defragInfo.allocationCount = allocCount;

-defragInfo.pAllocations = allocations.data();

-defragInfo.pAllocationsChanged = allocationsChanged.data();

-defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.

-defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.

-

-VmaDefragmentationContext defragCtx;

-vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);

-vmaDefragmentationEnd(allocator, defragCtx);

-

-for(uint32_t i = 0; i < allocCount; ++i)

-{

-    if(allocationsChanged[i])

-    {

-        // Destroy buffer that is immutably bound to memory region which is no longer valid.

-        vkDestroyBuffer(device, buffers[i], nullptr);

-

-        // Create new buffer with same parameters.

-        VkBufferCreateInfo bufferInfo = ...;

-        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);

-            

-        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.

-            

-        // Bind new buffer to new memory region. Data contained in it is already moved.

-        VmaAllocationInfo allocInfo;

-        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);

-        vmaBindBufferMemory(allocator, allocations[i], buffers[i]);

-    }

-}

-\endcode

-

-Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.

-This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index

-has been modified during defragmentation.

-You can pass null, but you then need to query every allocation passed to defragmentation

-for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.

-

-If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),

-you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools

-instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations

-to defragment all allocations in given pools.

-You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.

-You can also combine both methods.

-

-\section defragmentation_gpu Defragmenting GPU memory

-

-It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.

-To do that, you need to pass a command buffer that meets requirements as described in

-VmaDefragmentationInfo2::commandBuffer. The way it works is:

-

-- It creates temporary buffers and binds them to entire memory blocks when necessary.

-- It issues `vkCmdCopyBuffer()` to passed command buffer.

-

-Example:

-

-\code

-// Given following variables already initialized:

-VkDevice device;

-VmaAllocator allocator;

-VkCommandBuffer commandBuffer;

-std::vector<VkBuffer> buffers;

-std::vector<VmaAllocation> allocations;

-

-

-const uint32_t allocCount = (uint32_t)allocations.size();

-std::vector<VkBool32> allocationsChanged(allocCount);

-

-VkCommandBufferBeginInfo cmdBufBeginInfo = ...;

-vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);

-

-VmaDefragmentationInfo2 defragInfo = {};

-defragInfo.allocationCount = allocCount;

-defragInfo.pAllocations = allocations.data();

-defragInfo.pAllocationsChanged = allocationsChanged.data();

-defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time.

-defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time.

-defragInfo.commandBuffer = commandBuffer;

-

-VmaDefragmentationContext defragCtx;

-vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);

-

-vkEndCommandBuffer(commandBuffer);

-

-// Submit commandBuffer.

-// Wait for a fence that ensures commandBuffer execution finished.

-

-vmaDefragmentationEnd(allocator, defragCtx);

-

-for(uint32_t i = 0; i < allocCount; ++i)

-{

-    if(allocationsChanged[i])

-    {

-        // Destroy buffer that is immutably bound to memory region which is no longer valid.

-        vkDestroyBuffer(device, buffers[i], nullptr);

-

-        // Create new buffer with same parameters.

-        VkBufferCreateInfo bufferInfo = ...;

-        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);

-            

-        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.

-            

-        // Bind new buffer to new memory region. Data contained in it is already moved.

-        VmaAllocationInfo allocInfo;

-        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);

-        vmaBindBufferMemory(allocator, allocations[i], buffers[i]);

-    }

-}

-\endcode

-

-You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.

-The library automatically chooses best method to defragment each memory pool.

-

-You may try not to block your entire program to wait until defragmentation finishes,

-but do it in the background, as long as you carefully fullfill requirements described

-in function vmaDefragmentationBegin().

-

-\section defragmentation_additional_notes Additional notes

-

-It is only legal to defragment allocations bound to:

-

-- buffers

-- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and

-  being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.

-

-Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other

-layout may give undefined results.

-

-If you defragment allocations bound to images, new images to be bound to new

-memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`

-and then transitioned to their original layout from before defragmentation if

-needed using an image memory barrier.

-

-While using defragmentation, you may experience validation layer warnings, which you just need to ignore.

-See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).

-

-Please don't expect memory to be fully compacted after defragmentation.

-Algorithms inside are based on some heuristics that try to maximize number of Vulkan

-memory blocks to make totally empty to release them, as well as to maximimze continuous

-empty space inside remaining blocks, while minimizing the number and size of allocations that

-need to be moved. Some fragmentation may still remain - this is normal.

-

-\section defragmentation_custom_algorithm Writing custom defragmentation algorithm

-

-If you want to implement your own, custom defragmentation algorithm,

-there is infrastructure prepared for that,

-but it is not exposed through the library API - you need to hack its source code.

-Here are steps needed to do this:

-

--# Main thing you need to do is to define your own class derived from base abstract

-   class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.

-   See definition and comments of this class for details.

--# Your code needs to interact with device memory block metadata.

-   If you need more access to its data than it's provided by its public interface,

-   declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.

--# If you want to create a flag that would enable your algorithm or pass some additional

-   flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in

-   VmaDefragmentationInfo2::flags.

--# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object

-   of your new class whenever needed.

-

-

-\page lost_allocations Lost allocations

-

-If your game oversubscribes video memory, if may work OK in previous-generation

-graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically

-paged to system RAM. In Vulkan you can't do it because when you run out of

-memory, an allocation just fails. If you have more data (e.g. textures) that can

-fit into VRAM and you don't need it all at once, you may want to upload them to

-GPU on demand and "push out" ones that are not used for a long time to make room

-for the new ones, effectively using VRAM (or a cartain memory pool) as a form of

-cache. Vulkan Memory Allocator can help you with that by supporting a concept of

-"lost allocations".

-

-To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT

-flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to

-such allocation in every new frame, you need to query it if it's not lost.

-To check it, call vmaTouchAllocation().

-If the allocation is lost, you should not use it or buffer/image bound to it.

-You mustn't forget to destroy this allocation and this buffer/image.

-vmaGetAllocationInfo() can also be used for checking status of the allocation.

-Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.

-

-To create an allocation that can make some other allocations lost to make room

-for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will

-usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and

-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.

-

-Warning! Current implementation uses quite naive, brute force algorithm,

-which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT

-flag quite slow. A new, more optimal algorithm and data structure to speed this

-up is planned for the future.

-

-<b>Q: When interleaving creation of new allocations with usage of existing ones,

-how do you make sure that an allocation won't become lost while it's used in the

-current frame?</b>

-

-It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation

-status/parameters and checks whether it's not lost, but when it's not, it also

-atomically marks it as used in the current frame, which makes it impossible to

-become lost in that frame. It uses lockless algorithm, so it works fast and

-doesn't involve locking any internal mutex.

-

-<b>Q: What if my allocation may still be in use by the GPU when it's rendering a

-previous frame while I already submit new frame on the CPU?</b>

-

-You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not

-become lost for a number of additional frames back from the current one by

-specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default

-memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).

-

-<b>Q: How do you inform the library when new frame starts?</b>

-

-You need to call function vmaSetCurrentFrameIndex().

-

-Example code:

-

-\code

-struct MyBuffer

-{

-    VkBuffer m_Buf = nullptr;

-    VmaAllocation m_Alloc = nullptr;

-

-    // Called when the buffer is really needed in the current frame.

-    void EnsureBuffer();

-};

-

-void MyBuffer::EnsureBuffer()

-{

-    // Buffer has been created.

-    if(m_Buf != VK_NULL_HANDLE)

-    {

-        // Check if its allocation is not lost + mark it as used in current frame.

-        if(vmaTouchAllocation(allocator, m_Alloc))

-        {

-            // It's all OK - safe to use m_Buf.

-            return;

-        }

-    }

-

-    // Buffer not yet exists or lost - destroy and recreate it.

-

-    vmaDestroyBuffer(allocator, m_Buf, m_Alloc);

-

-    VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-    bufCreateInfo.size = 1024;

-    bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-

-    VmaAllocationCreateInfo allocCreateInfo = {};

-    allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-    allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |

-        VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;

-

-    vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);

-}

-\endcode

-

-When using lost allocations, you may see some Vulkan validation layer warnings

-about overlapping regions of memory bound to different kinds of buffers and

-images. This is still valid as long as you implement proper handling of lost

-allocations (like in the example above) and don't use them.

-

-You can create an allocation that is already in lost state from the beginning using function

-vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.

-

-You can call function vmaMakePoolAllocationsLost() to set all eligible allocations

-in a specified custom pool to lost state.

-Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back

-cannot become lost.

-

-<b>Q: Can I touch allocation that cannot become lost?</b>

-

-Yes, although it has no visible effect.

-Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index

-also for allocations that cannot become lost, but the only way to observe it is to dump

-internal allocator state using vmaBuildStatsString().

-You can use this feature for debugging purposes to explicitly mark allocations that you use

-in current frame and then analyze JSON dump to see for how long each allocation stays unused.

-

-

-\page statistics Statistics

-

-This library contains functions that return information about its internal state,

-especially the amount of memory allocated from Vulkan.

-Please keep in mind that these functions need to traverse all internal data structures

-to gather these information, so they may be quite time-consuming.

-Don't call them too often.

-

-\section statistics_numeric_statistics Numeric statistics

-

-You can query for overall statistics of the allocator using function vmaCalculateStats().

-Information are returned using structure #VmaStats.

-It contains #VmaStatInfo - number of allocated blocks, number of allocations

-(occupied ranges in these blocks), number of unused (free) ranges in these blocks,

-number of bytes used and unused (but still allocated from Vulkan) and other information.

-They are summed across memory heaps, memory types and total for whole allocator.

-

-You can query for statistics of a custom pool using function vmaGetPoolStats().

-Information are returned using structure #VmaPoolStats.

-

-You can query for information about specific allocation using function vmaGetAllocationInfo().

-It fill structure #VmaAllocationInfo.

-

-\section statistics_json_dump JSON dump

-

-You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().

-The result is guaranteed to be correct JSON.

-It uses ANSI encoding.

-Any strings provided by user (see [Allocation names](@ref allocation_names))

-are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,

-this JSON string can be treated as using this encoding.

-It must be freed using function vmaFreeStatsString().

-

-The format of this JSON string is not part of official documentation of the library,

-but it will not change in backward-incompatible way without increasing library major version number

-and appropriate mention in changelog.

-

-The JSON string contains all the data that can be obtained using vmaCalculateStats().

-It can also contain detailed map of allocated memory blocks and their regions -

-free and occupied by allocations.

-This allows e.g. to visualize the memory or assess fragmentation.

-

-

-\page allocation_annotation Allocation names and user data

-

-\section allocation_user_data Allocation user data

-

-You can annotate allocations with your own information, e.g. for debugging purposes.

-To do that, fill VmaAllocationCreateInfo::pUserData field when creating

-an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,

-some handle, index, key, ordinal number or any other value that would associate

-the allocation with your custom metadata.

-

-\code

-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };

-// Fill bufferInfo...

-

-MyBufferMetadata* pMetadata = CreateBufferMetadata();

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-allocCreateInfo.pUserData = pMetadata;

-

-VkBuffer buffer;

-VmaAllocation allocation;

-vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);

-\endcode

-

-The pointer may be later retrieved as VmaAllocationInfo::pUserData:

-

-\code

-VmaAllocationInfo allocInfo;

-vmaGetAllocationInfo(allocator, allocation, &allocInfo);

-MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;

-\endcode

-

-It can also be changed using function vmaSetAllocationUserData().

-

-Values of (non-zero) allocations' `pUserData` are printed in JSON report created by

-vmaBuildStatsString(), in hexadecimal form.

-

-\section allocation_names Allocation names

-

-There is alternative mode available where `pUserData` pointer is used to point to

-a null-terminated string, giving a name to the allocation. To use this mode,

-set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.

-Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to

-vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.

-The library creates internal copy of the string, so the pointer you pass doesn't need

-to be valid for whole lifetime of the allocation. You can free it after the call.

-

-\code

-VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };

-// Fill imageInfo...

-

-std::string imageName = "Texture: ";

-imageName += fileName;

-

-VmaAllocationCreateInfo allocCreateInfo = {};

-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;

-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;

-allocCreateInfo.pUserData = imageName.c_str();

-

-VkImage image;

-VmaAllocation allocation;

-vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);

-\endcode

-

-The value of `pUserData` pointer of the allocation will be different than the one

-you passed when setting allocation's name - pointing to a buffer managed

-internally that holds copy of the string.

-

-\code

-VmaAllocationInfo allocInfo;

-vmaGetAllocationInfo(allocator, allocation, &allocInfo);

-const char* imageName = (const char*)allocInfo.pUserData;

-printf("Image name: %s\n", imageName);

-\endcode

-

-That string is also printed in JSON report created by vmaBuildStatsString().

-

-\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.

-You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.

-

-

-\page debugging_memory_usage Debugging incorrect memory usage

-

-If you suspect a bug with memory usage, like usage of uninitialized memory or

-memory being overwritten out of bounds of an allocation,

-you can use debug features of this library to verify this.

-

-\section debugging_memory_usage_initialization Memory initialization

-

-If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,

-you can enable automatic memory initialization to verify this.

-To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.

-

-\code

-#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1

-#include "vk_mem_alloc.h"

-\endcode

-

-It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.

-Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.

-Memory is automatically mapped and unmapped if necessary.

-

-If you find these values while debugging your program, good chances are that you incorrectly

-read Vulkan memory that is allocated but not initialized, or already freed, respectively.

-

-Memory initialization works only with memory types that are `HOST_VISIBLE`.

-It works also with dedicated allocations.

-It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,

-as they cannot be mapped.

-

-\section debugging_memory_usage_margins Margins

-

-By default, allocations are laid out in memory blocks next to each other if possible

-(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).

-

-![Allocations without margin](../gfx/Margins_1.png)

-

-Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified

-number of bytes as a margin before and after every allocation.

-

-\code

-#define VMA_DEBUG_MARGIN 16

-#include "vk_mem_alloc.h"

-\endcode

-

-![Allocations with margin](../gfx/Margins_2.png)

-

-If your bug goes away after enabling margins, it means it may be caused by memory

-being overwritten outside of allocation boundaries. It is not 100% certain though.

-Change in application behavior may also be caused by different order and distribution

-of allocations across memory blocks after margins are applied.

-

-The margin is applied also before first and after last allocation in a block.

-It may occur only once between two adjacent allocations.

-

-Margins work with all types of memory.

-

-Margin is applied only to allocations made out of memory blocks and not to dedicated

-allocations, which have their own memory block of specific size.

-It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag

-or those automatically decided to put into dedicated allocations, e.g. due to its

-large size or recommended by VK_KHR_dedicated_allocation extension.

-Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.

-

-Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.

-

-Note that enabling margins increases memory usage and fragmentation.

-

-\section debugging_memory_usage_corruption_detection Corruption detection

-

-You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation

-of contents of the margins.

-

-\code

-#define VMA_DEBUG_MARGIN 16

-#define VMA_DEBUG_DETECT_CORRUPTION 1

-#include "vk_mem_alloc.h"

-\endcode

-

-When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`

-(it must be multiply of 4) before and after every allocation is filled with a magic number.

-This idea is also know as "canary".

-Memory is automatically mapped and unmapped if necessary.

-

-This number is validated automatically when the allocation is destroyed.

-If it's not equal to the expected value, `VMA_ASSERT()` is executed.

-It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,

-which indicates a serious bug.

-

-You can also explicitly request checking margins of all allocations in all memory blocks

-that belong to specified memory types by using function vmaCheckCorruption(),

-or in memory blocks that belong to specified custom pool, by using function 

-vmaCheckPoolCorruption().

-

-Margin validation (corruption detection) works only for memory types that are

-`HOST_VISIBLE` and `HOST_COHERENT`.

-

-

-\page record_and_replay Record and replay

-

-\section record_and_replay_introduction Introduction

-

-While using the library, sequence of calls to its functions together with their

-parameters can be recorded to a file and later replayed using standalone player

-application. It can be useful to:

-

-- Test correctness - check if same sequence of calls will not cause crash or

-  failures on a target platform.

-- Gather statistics - see number of allocations, peak memory usage, number of

-  calls etc.

-- Benchmark performance - see how much time it takes to replay the whole

-  sequence.

-

-\section record_and_replay_usage Usage

-

-Recording functionality is disabled by default.

-To enable it, define following macro before every include of this library:

-

-\code

-#define VMA_RECORDING_ENABLED 1

-\endcode

-

-<b>To record sequence of calls to a file:</b> Fill in

-VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator

-object. File is opened and written during whole lifetime of the allocator.

-

-<b>To replay file:</b> Use VmaReplay - standalone command-line program.

-Precompiled binary can be found in "bin" directory.

-Its source can be found in "src/VmaReplay" directory.

-Its project is generated by Premake.

-Command line syntax is printed when the program is launched without parameters.

-Basic usage:

-

-    VmaReplay.exe MyRecording.csv

-

-<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".

-It's a human-readable, text file in CSV format (Comma Separated Values).

-

-\section record_and_replay_additional_considerations Additional considerations

-

-- Replaying file that was recorded on a different GPU (with different parameters

-  like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different

-  set of memory heaps and types) may give different performance and memory usage

-  results, as well as issue some warnings and errors.

-- Current implementation of recording in VMA, as well as VmaReplay application, is

-  coded and tested only on Windows. Inclusion of recording code is driven by

-  `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to

-  add. Contributions are welcomed.

-

-

-\page usage_patterns Recommended usage patterns

-

-See also slides from talk:

-[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)

-

-

-\section usage_patterns_common_mistakes Common mistakes

-

-<b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b>

-

-#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be

-mapped and written by the CPU, as well as read directly by the GPU - like some

-buffers or textures updated every frame (dynamic). If you create a staging copy

-of a resource to be written by CPU and then used as a source of transfer to

-another resource placed in the GPU memory, that staging resource should be

-created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these

-enums carefully for details.

-

-<b>Unnecessary use of custom pools</b>

-

-\ref custom_memory_pools may be useful for special purposes - when you want to

-keep certain type of resources separate e.g. to reserve minimum amount of memory

-for them, limit maximum amount of memory they can occupy, or make some of them

-push out the other through the mechanism of \ref lost_allocations. For most

-resources this is not needed and so it is not recommended to create #VmaPool

-objects and allocations out of them. Allocating from the default pool is sufficient.

-

-\section usage_patterns_simple Simple patterns

-

-\subsection usage_patterns_simple_render_targets Render targets

-

-<b>When:</b>

-Any resources that you frequently write and read on GPU,

-e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,

-images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").

-

-<b>What to do:</b>

-Create them in video memory that is fastest to access from GPU using

-#VMA_MEMORY_USAGE_GPU_ONLY.

-

-Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension

-and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,

-especially if they are large or if you plan to destroy and recreate them e.g. when

-display resolution changes.

-Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.

-

-\subsection usage_patterns_simple_immutable_resources Immutable resources

-

-<b>When:</b>

-Any resources that you fill on CPU only once (aka "immutable") or infrequently

-and then read frequently on GPU,

-e.g. textures, vertex and index buffers, constant buffers that don't change often.

-

-<b>What to do:</b>

-Create them in video memory that is fastest to access from GPU using

-#VMA_MEMORY_USAGE_GPU_ONLY.

-

-To initialize content of such resource, create a CPU-side (aka "staging") copy of it

-in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,

-and submit a transfer from it to the GPU resource.

-You can keep the staging copy if you need it for another upload transfer in the future.

-If you don't, you can destroy it or reuse this buffer for uploading different resource

-after the transfer finishes.

-

-Prefer to create just buffers in system memory rather than images, even for uploading textures.

-Use `vkCmdCopyBufferToImage()`.

-Dont use images with `VK_IMAGE_TILING_LINEAR`.

-

-\subsection usage_patterns_dynamic_resources Dynamic resources

-

-<b>When:</b>

-Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,

-written on CPU, read on GPU.

-

-<b>What to do:</b>

-Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.

-You can map it and write to it directly on CPU, as well as read from it on GPU.

-

-This is a more complex situation. Different solutions are possible,

-and the best one depends on specific GPU type, but you can use this simple approach for the start.

-Prefer to write to such resource sequentially (e.g. using `memcpy`).

-Don't perform random access or any reads from it on CPU, as it may be very slow.

-

-\subsection usage_patterns_readback Readback

-

-<b>When:</b>

-Resources that contain data written by GPU that you want to read back on CPU,

-e.g. results of some computations.

-

-<b>What to do:</b>

-Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.

-You can write to them directly on GPU, as well as map and read them on CPU.

-

-\section usage_patterns_advanced Advanced patterns

-

-\subsection usage_patterns_integrated_graphics Detecting integrated graphics

-

-You can support integrated graphics (like Intel HD Graphics, AMD APU) better

-by detecting it in Vulkan.

-To do it, call `vkGetPhysicalDeviceProperties()`, inspect

-`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.

-When you find it, you can assume that memory is unified and all memory types are comparably fast

-to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.

-

-You can then sum up sizes of all available memory heaps and treat them as useful for

-your GPU resources, instead of only `DEVICE_LOCAL` ones.

-You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them

-directly instead of submitting explicit transfer (see below).

-

-\subsection usage_patterns_direct_vs_transfer Direct access versus transfer

-

-For resources that you frequently write on CPU and read on GPU, many solutions are possible:

-

--# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,

-   second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.

--# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,

-   read it directly on GPU.

--# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,

-   read it directly on GPU.

-

-Which solution is the most efficient depends on your resource and especially on the GPU.

-It is best to measure it and then make the decision.

-Some general recommendations:

-

-- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead

-  related to using a second copy and making transfer.

-- For small resources (e.g. constant buffers) use (2).

-  Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.

-  Even if the resource ends up in system memory, its data may be cached on GPU after first

-  fetch over PCIe bus.

-- For larger resources (e.g. textures), decide between (1) and (2).

-  You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is

-  both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).

-

-Similarly, for resources that you frequently write on GPU and read on CPU, multiple

-solutions are possible:

-

--# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,

-   second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.

--# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,

-   map it and read it on CPU.

-

-You should take some measurements to decide which option is faster in case of your specific

-resource.

-

-If you don't want to specialize your code for specific types of GPUs, you can still make

-an simple optimization for cases when your resource ends up in mappable memory to use it

-directly in this case instead of creating CPU-side staging copy.

-For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).

-

-

-\page configuration Configuration

-

-Please check "CONFIGURATION SECTION" in the code to find macros that you can define

-before each include of this file or change directly in this file to provide

-your own implementation of basic facilities like assert, `min()` and `max()` functions,

-mutex, atomic etc.

-The library uses its own implementation of containers by default, but you can switch to using

-STL containers instead.

-

-For example, define `VMA_ASSERT(expr)` before including the library to provide

-custom implementation of the assertion, compatible with your project.

-By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration

-and empty otherwise.

-

-\section config_Vulkan_functions Pointers to Vulkan functions

-

-There are multiple ways to import pointers to Vulkan functions in the library.

-In the simplest case you don't need to do anything.

-If the compilation or linking of your program or the initialization of the #VmaAllocator

-doesn't work for you, you can try to reconfigure it.

-

-First, the allocator tries to fetch pointers to Vulkan functions linked statically,

-like this:

-

-\code

-m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;

-\endcode

-

-If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.

-

-Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.

-You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or

-by using a helper library like [volk](https://github.com/zeux/volk).

-

-Third, VMA tries to fetch remaining pointers that are still null by calling

-`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.

-If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.

-

-Finally, all the function pointers required by the library (considering selected

-Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.

-

-

-\section custom_memory_allocator Custom host memory allocator

-

-If you use custom allocator for CPU memory rather than default operator `new`

-and `delete` from C++, you can make this library using your allocator as well

-by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These

-functions will be passed to Vulkan, as well as used by the library itself to

-make any CPU-side allocations.

-

-\section allocation_callbacks Device memory allocation callbacks

-

-The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.

-You can setup callbacks to be informed about these calls, e.g. for the purpose

-of gathering some statistics. To do it, fill optional member

-VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.

-

-\section heap_memory_limit Device heap memory limit

-

-When device memory of certain heap runs out of free space, new allocations may

-fail (returning error code) or they may succeed, silently pushing some existing

-memory blocks from GPU VRAM to system RAM (which degrades performance). This

-behavior is implementation-dependant - it depends on GPU vendor and graphics

-driver.

-

-On AMD cards it can be controlled while creating Vulkan device object by using

-VK_AMD_memory_overallocation_behavior extension, if available.

-

-Alternatively, if you want to test how your program behaves with limited amount of Vulkan device

-memory available without switching your graphics card to one that really has

-smaller VRAM, you can use a feature of this library intended for this purpose.

-To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.

-

-

-

-\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation

-

-VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve

-performance on some GPUs. It augments Vulkan API with possibility to query

-driver whether it prefers particular buffer or image to have its own, dedicated

-allocation (separate `VkDeviceMemory` block) for better efficiency - to be able

-to do some internal optimizations.

-

-The extension is supported by this library. It will be used automatically when

-enabled. To enable it:

-

-1 . When creating Vulkan device, check if following 2 device extensions are

-supported (call `vkEnumerateDeviceExtensionProperties()`).

-If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).

-

-- VK_KHR_get_memory_requirements2

-- VK_KHR_dedicated_allocation

-

-If you enabled these extensions:

-

-2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating

-your #VmaAllocator`to inform the library that you enabled required extensions

-and you want the library to use them.

-

-\code

-allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;

-

-vmaCreateAllocator(&allocatorInfo, &allocator);

-\endcode

-

-That's all. The extension will be automatically used whenever you create a

-buffer using vmaCreateBuffer() or image using vmaCreateImage().

-

-When using the extension together with Vulkan Validation Layer, you will receive

-warnings like this:

-

-    vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.

-

-It is OK, you should just ignore it. It happens because you use function

-`vkGetBufferMemoryRequirements2KHR()` instead of standard

-`vkGetBufferMemoryRequirements()`, while the validation layer seems to be

-unaware of it.

-

-To learn more about this extension, see:

-

-- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_KHR_dedicated_allocation)

-- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)

-

-

-

-\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory

-

-VK_AMD_device_coherent_memory is a device extension that enables access to

-additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and

-`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for

-allocation of buffers intended for writing "breadcrumb markers" in between passes

-or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.

-

-When the extension is available but has not been enabled, Vulkan physical device

-still exposes those memory types, but their usage is forbidden. VMA automatically

-takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt

-to allocate memory of such type is made.

-

-If you want to use this extension in connection with VMA, follow these steps:

-

-\section vk_amd_device_coherent_memory_initialization Initialization

-

-1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.

-Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".

-

-2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.

-Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.

-Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.

-

-3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"

-to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.

-

-4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.

-Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.

-Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to

-`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.

-

-5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you

-have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT

-to VmaAllocatorCreateInfo::flags.

-

-\section vk_amd_device_coherent_memory_usage Usage

-

-After following steps described above, you can create VMA allocations and custom pools

-out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible

-devices. There are multiple ways to do it, for example:

-

-- You can request or prefer to allocate out of such memory types by adding

-  `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags

-  or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with

-  other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.

-- If you manually found memory type index to use for this purpose, force allocation

-  from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.

-

-\section vk_amd_device_coherent_memory_more_information More information

-

-To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_AMD_device_coherent_memory)

-

-Example use of this extension can be found in the code of the sample and test suite

-accompanying this library.

-

-

-\page enabling_buffer_device_address Enabling buffer device address

-

-Device extension VK_KHR_buffer_device_address

-allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.

-It is promoted to core Vulkan 1.2.

-

-If you want to use this feature in connection with VMA, follow these steps:

-

-\section enabling_buffer_device_address_initialization Initialization

-

-1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.

-Check if the extension is supported - if returned array of `VkExtensionProperties` contains

-"VK_KHR_buffer_device_address".

-

-2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.

-Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.

-Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress` is true.

-

-3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add

-"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.

-

-4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.

-Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.

-Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to

-`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.

-

-5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you

-have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT

-to VmaAllocatorCreateInfo::flags.

-

-\section enabling_buffer_device_address_usage Usage

-

-After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.

-The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to

-allocated memory blocks wherever it might be needed.

-

-Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.

-The second part of this functionality related to "capture and replay" is not supported,

-as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.

-

-\section enabling_buffer_device_address_more_information More information

-

-To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)

-

-Example use of this extension can be found in the code of the sample and test suite

-accompanying this library.

-

-\page general_considerations General considerations

-

-\section general_considerations_thread_safety Thread safety

-

-- The library has no global state, so separate #VmaAllocator objects can be used

-  independently.

-  There should be no need to create multiple such objects though - one per `VkDevice` is enough.

-- By default, all calls to functions that take #VmaAllocator as first parameter

-  are safe to call from multiple threads simultaneously because they are

-  synchronized internally when needed.

-- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT

-  flag, calls to functions that take such #VmaAllocator object must be

-  synchronized externally.

-- Access to a #VmaAllocation object must be externally synchronized. For example,

-  you must not call vmaGetAllocationInfo() and vmaMapMemory() from different

-  threads at the same time if you pass the same #VmaAllocation object to these

-  functions.

-

-\section general_considerations_validation_layer_warnings Validation layer warnings

-

-When using this library, you can meet following types of warnings issued by

-Vulkan validation layer. They don't necessarily indicate a bug, so you may need

-to just ignore them.

-

-- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*

-  - It happens when VK_KHR_dedicated_allocation extension is enabled.

-    `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.

-- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*

-  - It happens when you map a buffer or image, because the library maps entire

-    `VkDeviceMemory` block, where different types of images and buffers may end

-    up together, especially on GPUs with unified memory like Intel.

-- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*

-  - It happens when you use lost allocations, and a new image or buffer is

-    created in place of an existing object that bacame lost.

-  - It may happen also when you use [defragmentation](@ref defragmentation).

-

-\section general_considerations_allocation_algorithm Allocation algorithm

-

-The library uses following algorithm for allocation, in order:

-

--# Try to find free range of memory in existing blocks.

--# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.

--# If failed, try to create such block with size/2, size/4, size/8.

--# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was

-   specified, try to find space in existing blocks, possilby making some other

-   allocations lost.

--# If failed, try to allocate separate `VkDeviceMemory` for this allocation,

-   just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

--# If failed, choose other memory type that meets the requirements specified in

-   VmaAllocationCreateInfo and go to point 1.

--# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-

-\section general_considerations_features_not_supported Features not supported

-

-Features deliberately excluded from the scope of this library:

-

-- Data transfer. Uploading (straming) and downloading data of buffers and images

-  between CPU and GPU memory and related synchronization is responsibility of the user.

-  Defining some "texture" object that would automatically stream its data from a

-  staging copy in CPU memory to GPU memory would rather be a feature of another,

-  higher-level library implemented on top of VMA.

-- Allocations for imported/exported external memory. They tend to require

-  explicit memory type index and dedicated allocation anyway, so they don't

-  interact with main features of this library. Such special purpose allocations

-  should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`.

-- Recreation of buffers and images. Although the library has functions for

-  buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to

-  recreate these objects yourself after defragmentation. That's because the big

-  structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in

-  #VmaAllocation object.

-- Handling CPU memory allocation failures. When dynamically creating small C++

-  objects in CPU memory (not Vulkan memory), allocation failures are not checked

-  and handled gracefully, because that would complicate code significantly and

-  is usually not needed in desktop PC applications anyway.

-- Code free of any compiler warnings. Maintaining the library to compile and

-  work correctly on so many different platforms is hard enough. Being free of 

-  any warnings, on any version of any compiler, is simply not feasible.

-- This is a C++ library with C interface.

-  Bindings or ports to any other programming languages are welcomed as external projects and

-  are not going to be included into this repository.

-

-*/

-

-/*

-Define this macro to 0/1 to disable/enable support for recording functionality,

-available through VmaAllocatorCreateInfo::pRecordSettings.

-*/

-#ifndef VMA_RECORDING_ENABLED

-    #define VMA_RECORDING_ENABLED 0

-#endif

-

-#ifndef NOMINMAX

-    #define NOMINMAX // For windows.h

-#endif

-

-#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS

-    extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;

-    extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;

-    extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;

-    extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;

-    extern PFN_vkAllocateMemory vkAllocateMemory;

-    extern PFN_vkFreeMemory vkFreeMemory;

-    extern PFN_vkMapMemory vkMapMemory;

-    extern PFN_vkUnmapMemory vkUnmapMemory;

-    extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;

-    extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;

-    extern PFN_vkBindBufferMemory vkBindBufferMemory;

-    extern PFN_vkBindImageMemory vkBindImageMemory;

-    extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;

-    extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;

-    extern PFN_vkCreateBuffer vkCreateBuffer;

-    extern PFN_vkDestroyBuffer vkDestroyBuffer;

-    extern PFN_vkCreateImage vkCreateImage;

-    extern PFN_vkDestroyImage vkDestroyImage;

-    extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;

-    #if VMA_VULKAN_VERSION >= 1001000

-        extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;

-        extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;

-        extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;

-        extern PFN_vkBindImageMemory2 vkBindImageMemory2;

-        extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;

-    #endif // #if VMA_VULKAN_VERSION >= 1001000

-#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES

-

-#ifndef VULKAN_H_

-    #include <vulkan/vulkan.h>

-#endif

-

-#if VMA_RECORDING_ENABLED

-    #if defined(_WIN32)

-        #include <windows.h>

-    #else

-        #error VMA Recording functionality is not yet available for non-Windows platforms

-    #endif

-#endif

-

-// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,

-// where AAA = major, BBB = minor, CCC = patch.

-// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.

-#if !defined(VMA_VULKAN_VERSION)

-    #if defined(VK_VERSION_1_2)

-        #define VMA_VULKAN_VERSION 1002000

-    #elif defined(VK_VERSION_1_1)

-        #define VMA_VULKAN_VERSION 1001000

-    #else

-        #define VMA_VULKAN_VERSION 1000000

-    #endif

-#endif

-

-#if !defined(VMA_DEDICATED_ALLOCATION)

-    #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation

-        #define VMA_DEDICATED_ALLOCATION 1

-    #else

-        #define VMA_DEDICATED_ALLOCATION 0

-    #endif

-#endif

-

-#if !defined(VMA_BIND_MEMORY2)

-    #if VK_KHR_bind_memory2

-        #define VMA_BIND_MEMORY2 1

-    #else

-        #define VMA_BIND_MEMORY2 0

-    #endif

-#endif

-

-#if !defined(VMA_MEMORY_BUDGET)

-    #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)

-        #define VMA_MEMORY_BUDGET 1

-    #else

-        #define VMA_MEMORY_BUDGET 0

-    #endif

-#endif

-

-// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.

-#if !defined(VMA_BUFFER_DEVICE_ADDRESS)

-    #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000

-        #define VMA_BUFFER_DEVICE_ADDRESS 1

-    #else

-        #define VMA_BUFFER_DEVICE_ADDRESS 0

-    #endif

-#endif

-

-// Define these macros to decorate all public functions with additional code,

-// before and after returned type, appropriately. This may be useful for

-// exporing the functions when compiling VMA as a separate library. Example:

-// #define VMA_CALL_PRE  __declspec(dllexport)

-// #define VMA_CALL_POST __cdecl

-#ifndef VMA_CALL_PRE

-    #define VMA_CALL_PRE

-#endif

-#ifndef VMA_CALL_POST

-    #define VMA_CALL_POST

-#endif

-

-// Define this macro to decorate pointers with an attribute specifying the

-// length of the array they point to if they are not null.

-//

-// The length may be one of

-// - The name of another parameter in the argument list where the pointer is declared

-// - The name of another member in the struct where the pointer is declared

-// - The name of a member of a struct type, meaning the value of that member in

-//   the context of the call. For example

-//   VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),

-//   this means the number of memory heaps available in the device associated

-//   with the VmaAllocator being dealt with.

-#ifndef VMA_LEN_IF_NOT_NULL

-    #define VMA_LEN_IF_NOT_NULL(len)

-#endif

-

-// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.

-// see: https://clang.llvm.org/docs/AttributeReference.html#nullable

-#ifndef VMA_NULLABLE

-    #ifdef __clang__

-        #define VMA_NULLABLE _Nullable

-    #else

-        #define VMA_NULLABLE

-    #endif

-#endif

-

-// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.

-// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull

-#ifndef VMA_NOT_NULL

-    #ifdef __clang__

-        #define VMA_NOT_NULL _Nonnull

-    #else

-        #define VMA_NOT_NULL

-    #endif

-#endif

-

-// If non-dispatchable handles are represented as pointers then we can give

-// then nullability annotations

-#ifndef VMA_NOT_NULL_NON_DISPATCHABLE

-    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)

-        #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL

-    #else

-        #define VMA_NOT_NULL_NON_DISPATCHABLE

-    #endif

-#endif

-

-#ifndef VMA_NULLABLE_NON_DISPATCHABLE

-    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)

-        #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE

-    #else

-        #define VMA_NULLABLE_NON_DISPATCHABLE

-    #endif

-#endif

-

-/** \struct VmaAllocator

-\brief Represents main object of this library initialized.

-

-Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.

-Call function vmaDestroyAllocator() to destroy it.

-

-It is recommended to create just one object of this type per `VkDevice` object,

-right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.

-*/

-VK_DEFINE_HANDLE(VmaAllocator)

-

-/// Callback function called after successful vkAllocateMemory.

-typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(

-    VmaAllocator VMA_NOT_NULL                    allocator,

-    uint32_t                                     memoryType,

-    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,

-    VkDeviceSize                                 size,

-    void* VMA_NULLABLE                           pUserData);

-/// Callback function called before vkFreeMemory.

-typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(

-    VmaAllocator VMA_NOT_NULL                    allocator,

-    uint32_t                                     memoryType,

-    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,

-    VkDeviceSize                                 size,

-    void* VMA_NULLABLE                           pUserData);

-

-/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.

-

-Provided for informative purpose, e.g. to gather statistics about number of

-allocations or total amount of memory allocated in Vulkan.

-

-Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.

-*/

-typedef struct VmaDeviceMemoryCallbacks {

-    /// Optional, can be null.

-    PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;

-    /// Optional, can be null.

-    PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;

-    /// Optional, can be null.

-    void* VMA_NULLABLE pUserData;

-} VmaDeviceMemoryCallbacks;

-

-/// Flags for created #VmaAllocator.

-typedef enum VmaAllocatorCreateFlagBits {

-    /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.

-

-    Using this flag may increase performance because internal mutexes are not used.

-    */

-    VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,

-    /** \brief Enables usage of VK_KHR_dedicated_allocation extension.

-

-    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.

-    When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.

-

-    Using this extenion will automatically allocate dedicated blocks of memory for

-    some buffers and images instead of suballocating place for them out of bigger

-    memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT

-    flag) when it is recommended by the driver. It may improve performance on some

-    GPUs.

-

-    You may set this flag only if you found out that following device extensions are

-    supported, you enabled them while creating Vulkan device passed as

-    VmaAllocatorCreateInfo::device, and you want them to be used internally by this

-    library:

-

-    - VK_KHR_get_memory_requirements2 (device extension)

-    - VK_KHR_dedicated_allocation (device extension)

-

-    When this flag is set, you can experience following warnings reported by Vulkan

-    validation layer. You can ignore them.

-

-    > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.

-    */

-    VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,

-    /**

-    Enables usage of VK_KHR_bind_memory2 extension.

-

-    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.

-    When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.

-

-    You may set this flag only if you found out that this device extension is supported,

-    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,

-    and you want it to be used internally by this library.

-

-    The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,

-    which allow to pass a chain of `pNext` structures while binding.

-    This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().

-    */

-    VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,

-    /**

-    Enables usage of VK_EXT_memory_budget extension.

-

-    You may set this flag only if you found out that this device extension is supported,

-    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,

-    and you want it to be used internally by this library, along with another instance extension

-    VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).

-

-    The extension provides query for current memory usage and budget, which will probably

-    be more accurate than an estimation used by the library otherwise.

-    */

-    VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,

-    /**

-    Enables usage of VK_AMD_device_coherent_memory extension.

-    

-    You may set this flag only if you:

-

-    - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,

-    - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,

-    - want it to be used internally by this library.

-

-    The extension and accompanying device feature provide access to memory types with

-    `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.

-    They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.

-    

-    When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.

-    To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,

-    returning `VK_ERROR_FEATURE_NOT_PRESENT`.

-    */

-    VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,

-    /**

-    Enables usage of "buffer device address" feature, which allows you to use function

-    `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.

-

-    You may set this flag only if you:

-

-    1. (For Vulkan version < 1.2) Found as available and enabled device extension

-    VK_KHR_buffer_device_address.

-    This extension is promoted to core Vulkan 1.2.

-    2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress`.

-

-    When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.

-    The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to

-    allocated memory blocks wherever it might be needed.

-

-    For more information, see documentation chapter \ref enabling_buffer_device_address.

-    */

-    VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,

-

-    VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

-} VmaAllocatorCreateFlagBits;

-typedef VkFlags VmaAllocatorCreateFlags;

-

-/** \brief Pointers to some Vulkan functions - a subset used by the library.

-

-Used in VmaAllocatorCreateInfo::pVulkanFunctions.

-*/

-typedef struct VmaVulkanFunctions {

-    PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;

-    PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;

-    PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;

-    PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;

-    PFN_vkMapMemory VMA_NULLABLE vkMapMemory;

-    PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;

-    PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;

-    PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;

-    PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;

-    PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;

-    PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;

-    PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;

-    PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;

-    PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;

-    PFN_vkCreateImage VMA_NULLABLE vkCreateImage;

-    PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;

-    PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;

-    PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;

-#endif

-#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000

-    PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;

-    PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;

-#endif

-#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000

-    PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;

-#endif

-} VmaVulkanFunctions;

-

-/// Flags to be used in VmaRecordSettings::flags.

-typedef enum VmaRecordFlagBits {

-    /** \brief Enables flush after recording every function call.

-

-    Enable it if you expect your application to crash, which may leave recording file truncated.

-    It may degrade performance though.

-    */

-    VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,

-    

-    VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

-} VmaRecordFlagBits;

-typedef VkFlags VmaRecordFlags;

-

-/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.

-typedef struct VmaRecordSettings

-{

-    /// Flags for recording. Use #VmaRecordFlagBits enum.

-    VmaRecordFlags flags;

-    /** \brief Path to the file that should be written by the recording.

-

-    Suggested extension: "csv".

-    If the file already exists, it will be overwritten.

-    It will be opened for the whole time #VmaAllocator object is alive.

-    If opening this file fails, creation of the whole allocator object fails.

-    */

-    const char* VMA_NOT_NULL pFilePath;

-} VmaRecordSettings;

-

-/// Description of a Allocator to be created.

-typedef struct VmaAllocatorCreateInfo

-{

-    /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.

-    VmaAllocatorCreateFlags flags;

-    /// Vulkan physical device.

-    /** It must be valid throughout whole lifetime of created allocator. */

-    VkPhysicalDevice VMA_NOT_NULL physicalDevice;

-    /// Vulkan device.

-    /** It must be valid throughout whole lifetime of created allocator. */

-    VkDevice VMA_NOT_NULL device;

-    /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.

-    /** Set to 0 to use default, which is currently 256 MiB. */

-    VkDeviceSize preferredLargeHeapBlockSize;

-    /// Custom CPU memory allocation callbacks. Optional.

-    /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */

-    const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;

-    /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.

-    /** Optional, can be null. */

-    const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;

-    /** \brief Maximum number of additional frames that are in use at the same time as current frame.

-

-    This value is used only when you make allocations with

-    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become

-    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.

-

-    For example, if you double-buffer your command buffers, so resources used for

-    rendering in previous frame may still be in use by the GPU at the moment you

-    allocate resources needed for the current frame, set this value to 1.

-

-    If you want to allow any allocations other than used in the current frame to

-    become lost, set this value to 0.

-    */

-    uint32_t frameInUseCount;

-    /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.

-

-    If not NULL, it must be a pointer to an array of

-    `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on

-    maximum number of bytes that can be allocated out of particular Vulkan memory

-    heap.

-

-    Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that

-    heap. This is also the default in case of `pHeapSizeLimit` = NULL.

-

-    If there is a limit defined for a heap:

-

-    - If user tries to allocate more memory from that heap using this allocator,

-      the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-    - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the

-      value of this limit will be reported instead when using vmaGetMemoryProperties().

-

-    Warning! Using this feature may not be equivalent to installing a GPU with

-    smaller amount of memory, because graphics driver doesn't necessary fail new

-    allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is

-    exceeded. It may return success and just silently migrate some device memory

-    blocks to system RAM. This driver behavior can also be controlled using

-    VK_AMD_memory_overallocation_behavior extension.

-    */

-    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;

-

-    /** \brief Pointers to Vulkan functions. Can be null.

-

-    For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).

-    */

-    const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;

-    /** \brief Parameters for recording of VMA calls. Can be null.

-

-    If not null, it enables recording of calls to VMA functions to a file.

-    If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,

-    creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.

-    */

-    const VmaRecordSettings* VMA_NULLABLE pRecordSettings;

-    /** \brief Handle to Vulkan instance object.

-

-    Starting from version 3.0.0 this member is no longer optional, it must be set!

-    */

-    VkInstance VMA_NOT_NULL_NON_DISPATCHABLE instance;

-    /** \brief Optional. The highest version of Vulkan that the application is designed to use.

-    

-    It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.

-    The patch version number specified is ignored. Only the major and minor versions are considered.

-    It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.

-    Only versions 1.0 and 1.1 are supported by the current implementation.

-    Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.

-    */

-    uint32_t vulkanApiVersion;

-} VmaAllocatorCreateInfo;

-

-/// Creates Allocator object.

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(

-    const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,

-    VmaAllocator VMA_NULLABLE * VMA_NOT_NULL pAllocator);

-

-/// Destroys allocator object.

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(

-    VmaAllocator VMA_NULLABLE allocator);

-

-/** \brief Information about existing #VmaAllocator object.

-*/

-typedef struct VmaAllocatorInfo

-{

-    /** \brief Handle to Vulkan instance object.

-

-    This is the same value as has been passed through VmaAllocatorCreateInfo::instance.

-    */

-    VkInstance VMA_NOT_NULL instance;

-    /** \brief Handle to Vulkan physical device object.

-

-    This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.

-    */

-    VkPhysicalDevice VMA_NOT_NULL physicalDevice;

-    /** \brief Handle to Vulkan device object.

-

-    This is the same value as has been passed through VmaAllocatorCreateInfo::device.

-    */

-    VkDevice VMA_NOT_NULL device;

-} VmaAllocatorInfo;

-

-/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.

-

-It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to

-`VkPhysicalDevice`, `VkDevice` etc. every time using this function.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);

-

-/**

-PhysicalDeviceProperties are fetched from physicalDevice by the allocator.

-You can access it here, without fetching it again on your own.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkPhysicalDeviceProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceProperties);

-

-/**

-PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.

-You can access it here, without fetching it again on your own.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);

-

-/**

-\brief Given Memory Type Index, returns Property Flags of this memory type.

-

-This is just a convenience function. Same information can be obtained using

-vmaGetMemoryProperties().

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(

-    VmaAllocator VMA_NOT_NULL allocator,

-    uint32_t memoryTypeIndex,

-    VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);

-

-/** \brief Sets index of the current frame.

-

-This function must be used if you make allocations with

-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and

-#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator

-when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot

-become lost in the current frame.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(

-    VmaAllocator VMA_NOT_NULL allocator,

-    uint32_t frameIndex);

-

-/** \brief Calculated statistics of memory usage in entire allocator.

-*/

-typedef struct VmaStatInfo

-{

-    /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.

-    uint32_t blockCount;

-    /// Number of #VmaAllocation allocation objects allocated.

-    uint32_t allocationCount;

-    /// Number of free ranges of memory between allocations.

-    uint32_t unusedRangeCount;

-    /// Total number of bytes occupied by all allocations.

-    VkDeviceSize usedBytes;

-    /// Total number of bytes occupied by unused ranges.

-    VkDeviceSize unusedBytes;

-    VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;

-    VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;

-} VmaStatInfo;

-

-/// General statistics from current state of Allocator.

-typedef struct VmaStats

-{

-    VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];

-    VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];

-    VmaStatInfo total;

-} VmaStats;

-

-/** \brief Retrieves statistics from current state of the Allocator.

-

-This function is called "calculate" not "get" because it has to traverse all

-internal data structures, so it may be quite slow. For faster but more brief statistics

-suitable to be called every frame or every allocation, use vmaGetBudget().

-

-Note that when using allocator from multiple threads, returned information may immediately

-become outdated.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaStats* VMA_NOT_NULL pStats);

-

-/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap.

-*/

-typedef struct VmaBudget

-{

-    /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes.

-    */

-    VkDeviceSize blockBytes;

-    

-    /** \brief Sum size of all allocations created in particular heap, in bytes.

-    

-    Usually less or equal than `blockBytes`.

-    Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused -

-    available for new allocations or wasted due to fragmentation.

-    

-    It might be greater than `blockBytes` if there are some allocations in lost state, as they account

-    to this value as well.

-    */

-    VkDeviceSize allocationBytes;

-    

-    /** \brief Estimated current memory usage of the program, in bytes.

-    

-    Fetched from system using `VK_EXT_memory_budget` extension if enabled.

-    

-    It might be different than `blockBytes` (usually higher) due to additional implicit objects

-    also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or

-    `VkDeviceMemory` blocks allocated outside of this library, if any.

-    */

-    VkDeviceSize usage;

-    

-    /** \brief Estimated amount of memory available to the program, in bytes.

-    

-    Fetched from system using `VK_EXT_memory_budget` extension if enabled.

-    

-    It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors

-    external to the program, like other programs also consuming system resources.

-    Difference `budget - usage` is the amount of additional memory that can probably

-    be allocated without problems. Exceeding the budget may result in various problems.

-    */

-    VkDeviceSize budget;

-} VmaBudget;

-

-/** \brief Retrieves information about current memory budget for all memory heaps.

-

-\param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used.

-

-This function is called "get" not "calculate" because it is very fast, suitable to be called

-every frame or every allocation. For more detailed statistics use vmaCalculateStats().

-

-Note that when using allocator from multiple threads, returned information may immediately

-become outdated.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaBudget* VMA_NOT_NULL pBudget);

-

-#ifndef VMA_STATS_STRING_ENABLED

-#define VMA_STATS_STRING_ENABLED 1

-#endif

-

-#if VMA_STATS_STRING_ENABLED

-

-/// Builds and returns statistics as string in JSON format.

-/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(

-    VmaAllocator VMA_NOT_NULL allocator,

-    char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString,

-    VkBool32 detailedMap);

-

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(

-    VmaAllocator VMA_NOT_NULL allocator,

-    char* VMA_NULLABLE pStatsString);

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-/** \struct VmaPool

-\brief Represents custom memory pool

-

-Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.

-Call function vmaDestroyPool() to destroy it.

-

-For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).

-*/

-VK_DEFINE_HANDLE(VmaPool)

-

-typedef enum VmaMemoryUsage

-{

-    /** No intended memory usage specified.

-    Use other members of VmaAllocationCreateInfo to specify your requirements.

-    */

-    VMA_MEMORY_USAGE_UNKNOWN = 0,

-    /** Memory will be used on device only, so fast access from the device is preferred.

-    It usually means device-local GPU (video) memory.

-    No need to be mappable on host.

-    It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.

-

-    Usage:

-    

-    - Resources written and read by device, e.g. images used as attachments.

-    - Resources transferred from host once (immutable) or infrequently and read by

-      device multiple times, e.g. textures to be sampled, vertex buffers, uniform

-      (constant) buffers, and majority of other types of resources used on GPU.

-

-    Allocation may still end up in `HOST_VISIBLE` memory on some implementations.

-    In such case, you are free to map it.

-    You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.

-    */

-    VMA_MEMORY_USAGE_GPU_ONLY = 1,

-    /** Memory will be mappable on host.

-    It usually means CPU (system) memory.

-    Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.

-    CPU access is typically uncached. Writes may be write-combined.

-    Resources created in this pool may still be accessible to the device, but access to them can be slow.

-    It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.

-

-    Usage: Staging copy of resources used as transfer source.

-    */

-    VMA_MEMORY_USAGE_CPU_ONLY = 2,

-    /**

-    Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.

-    CPU access is typically uncached. Writes may be write-combined.

-

-    Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.

-    */

-    VMA_MEMORY_USAGE_CPU_TO_GPU = 3,

-    /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.

-    It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.

-

-    Usage:

-

-    - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.

-    - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.

-    */

-    VMA_MEMORY_USAGE_GPU_TO_CPU = 4,

-    /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`.

-

-    Usage: Staging copy of resources moved from GPU memory to CPU memory as part

-    of custom paging/residency mechanism, to be moved back to GPU memory when needed.

-    */

-    VMA_MEMORY_USAGE_CPU_COPY = 5,

-    /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.

-    Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.

-    

-    Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.

-

-    Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

-    */

-    VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,

-

-    VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF

-} VmaMemoryUsage;

-

-/// Flags to be passed as VmaAllocationCreateInfo::flags.

-typedef enum VmaAllocationCreateFlagBits {

-    /** \brief Set this flag if the allocation should have its own memory block.

-    

-    Use it for special, big resources, like fullscreen images used as attachments.

-   

-    You should not use this flag if VmaAllocationCreateInfo::pool is not null.

-    */

-    VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,

-

-    /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.

-    

-    If new allocation cannot be placed in any of the existing blocks, allocation

-    fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.

-    

-    You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and

-    #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.

-    

-    If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */

-    VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,

-    /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.

-    

-    Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.

-

-    Is it valid to use this flag for allocation made from memory type that is not

-    `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is

-    useful if you need an allocation that is efficient to use on GPU

-    (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that

-    support it (e.g. Intel GPU).

-

-    You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.

-    */

-    VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,

-    /** Allocation created with this flag can become lost as a result of another

-    allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you

-    must check it before use.

-

-    To check if allocation is not lost, call vmaGetAllocationInfo() and check if

-    VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.

-

-    For details about supporting lost allocations, see Lost Allocations

-    chapter of User Guide on Main Page.

-

-    You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.

-    */

-    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,

-    /** While creating allocation using this flag, other allocations that were

-    created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.

-

-    For details about supporting lost allocations, see Lost Allocations

-    chapter of User Guide on Main Page.

-    */

-    VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,

-    /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a

-    null-terminated string. Instead of copying pointer value, a local copy of the

-    string is made and stored in allocation's `pUserData`. The string is automatically

-    freed together with the allocation. It is also used in vmaBuildStatsString().

-    */

-    VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,

-    /** Allocation will be created from upper stack in a double stack pool.

-

-    This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.

-    */

-    VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,

-    /** Create both buffer/image and allocation, but don't bind them together.

-    It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.

-    The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().

-    Otherwise it is ignored.

-    */

-    VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,

-    /** Create allocation only if additional device memory required for it, if any, won't exceed

-    memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.

-    */

-    VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,

-

-    /** Allocation strategy that chooses smallest possible free range for the

-    allocation.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT  = 0x00010000,

-    /** Allocation strategy that chooses biggest possible free range for the

-    allocation.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,

-    /** Allocation strategy that chooses first suitable free range for the

-    allocation.

-

-    "First" doesn't necessarily means the one with smallest offset in memory,

-    but rather the one that is easiest and fastest to find.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,

-

-    /** Allocation strategy that tries to minimize memory usage.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,

-    /** Allocation strategy that tries to minimize allocation time.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,

-    /** Allocation strategy that tries to minimize memory fragmentation.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,

-

-    /** A bit mask to extract only `STRATEGY` bits from entire set of flags.

-    */

-    VMA_ALLOCATION_CREATE_STRATEGY_MASK =

-        VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |

-        VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |

-        VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,

-

-    VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

-} VmaAllocationCreateFlagBits;

-typedef VkFlags VmaAllocationCreateFlags;

-

-typedef struct VmaAllocationCreateInfo

-{

-    /// Use #VmaAllocationCreateFlagBits enum.

-    VmaAllocationCreateFlags flags;

-    /** \brief Intended usage of memory.

-    

-    You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n

-    If `pool` is not null, this member is ignored.

-    */

-    VmaMemoryUsage usage;

-    /** \brief Flags that must be set in a Memory Type chosen for an allocation.

-    

-    Leave 0 if you specify memory requirements in other way. \n

-    If `pool` is not null, this member is ignored.*/

-    VkMemoryPropertyFlags requiredFlags;

-    /** \brief Flags that preferably should be set in a memory type chosen for an allocation.

-    

-    Set to 0 if no additional flags are prefered. \n

-    If `pool` is not null, this member is ignored. */

-    VkMemoryPropertyFlags preferredFlags;

-    /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.

-

-    Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if

-    it meets other requirements specified by this structure, with no further

-    restrictions on memory type index. \n

-    If `pool` is not null, this member is ignored.

-    */

-    uint32_t memoryTypeBits;

-    /** \brief Pool that this allocation should be created in.

-

-    Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:

-    `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.

-    */

-    VmaPool VMA_NULLABLE pool;

-    /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().

-    

-    If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either

-    null or pointer to a null-terminated string. The string will be then copied to

-    internal buffer, so it doesn't need to be valid after allocation call.

-    */

-    void* VMA_NULLABLE pUserData;

-} VmaAllocationCreateInfo;

-

-/**

-\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.

-

-This algorithm tries to find a memory type that:

-

-- Is allowed by memoryTypeBits.

-- Contains all the flags from pAllocationCreateInfo->requiredFlags.

-- Matches intended usage.

-- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.

-

-\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result

-from this function or any other allocating function probably means that your

-device doesn't support any memory type with requested features for the specific

-type of resource you want to use it for. Please check parameters of your

-resource, like image layout (OPTIMAL versus LINEAR) or mip level count.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(

-    VmaAllocator VMA_NOT_NULL allocator,

-    uint32_t memoryTypeBits,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,

-    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);

-

-/**

-\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.

-

-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.

-It internally creates a temporary, dummy buffer that never has memory bound.

-It is just a convenience function, equivalent to calling:

-

-- `vkCreateBuffer`

-- `vkGetBufferMemoryRequirements`

-- `vmaFindMemoryTypeIndex`

-- `vkDestroyBuffer`

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,

-    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);

-

-/**

-\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.

-

-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.

-It internally creates a temporary, dummy image that never has memory bound.

-It is just a convenience function, equivalent to calling:

-

-- `vkCreateImage`

-- `vkGetImageMemoryRequirements`

-- `vmaFindMemoryTypeIndex`

-- `vkDestroyImage`

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,

-    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);

-

-/// Flags to be passed as VmaPoolCreateInfo::flags.

-typedef enum VmaPoolCreateFlagBits {

-    /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.

-

-    This is an optional optimization flag.

-

-    If you always allocate using vmaCreateBuffer(), vmaCreateImage(),

-    vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator

-    knows exact type of your allocations so it can handle Buffer-Image Granularity

-    in the optimal way.

-

-    If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),

-    exact type of such allocations is not known, so allocator must be conservative

-    in handling Buffer-Image Granularity, which can lead to suboptimal allocation

-    (wasted memory). In that case, if you can make sure you always allocate only

-    buffers and linear images or only optimal images out of this pool, use this flag

-    to make allocator disregard Buffer-Image Granularity and so make allocations

-    faster and more optimal.

-    */

-    VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,

-

-    /** \brief Enables alternative, linear allocation algorithm in this pool.

-

-    Specify this flag to enable linear allocation algorithm, which always creates

-    new allocations after last one and doesn't reuse space from allocations freed in

-    between. It trades memory consumption for simplified algorithm and data

-    structure, which has better performance and uses less memory for metadata.

-

-    By using this flag, you can achieve behavior of free-at-once, stack,

-    ring buffer, and double stack. For details, see documentation chapter

-    \ref linear_algorithm.

-

-    When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).

-

-    For more details, see [Linear allocation algorithm](@ref linear_algorithm).

-    */

-    VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,

-

-    /** \brief Enables alternative, buddy allocation algorithm in this pool.

-

-    It operates on a tree of blocks, each having size that is a power of two and

-    a half of its parent's size. Comparing to default algorithm, this one provides

-    faster allocation and deallocation and decreased external fragmentation,

-    at the expense of more memory wasted (internal fragmentation).

-

-    For more details, see [Buddy allocation algorithm](@ref buddy_algorithm).

-    */

-    VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,

-

-    /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.

-    */

-    VMA_POOL_CREATE_ALGORITHM_MASK =

-        VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |

-        VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,

-

-    VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

-} VmaPoolCreateFlagBits;

-typedef VkFlags VmaPoolCreateFlags;

-

-/** \brief Describes parameter of created #VmaPool.

-*/

-typedef struct VmaPoolCreateInfo {

-    /** \brief Vulkan memory type index to allocate this pool from.

-    */

-    uint32_t memoryTypeIndex;

-    /** \brief Use combination of #VmaPoolCreateFlagBits.

-    */

-    VmaPoolCreateFlags flags;

-    /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.

-

-    Specify nonzero to set explicit, constant size of memory blocks used by this

-    pool.

-

-    Leave 0 to use default and let the library manage block sizes automatically.

-    Sizes of particular blocks may vary.

-    */

-    VkDeviceSize blockSize;

-    /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.

-

-    Set to 0 to have no preallocated blocks and allow the pool be completely empty.

-    */

-    size_t minBlockCount;

-    /** \brief Maximum number of blocks that can be allocated in this pool. Optional.

-

-    Set to 0 to use default, which is `SIZE_MAX`, which means no limit.

-    

-    Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated

-    throughout whole lifetime of this pool.

-    */

-    size_t maxBlockCount;

-    /** \brief Maximum number of additional frames that are in use at the same time as current frame.

-

-    This value is used only when you make allocations with

-    #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become

-    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.

-

-    For example, if you double-buffer your command buffers, so resources used for

-    rendering in previous frame may still be in use by the GPU at the moment you

-    allocate resources needed for the current frame, set this value to 1.

-

-    If you want to allow any allocations other than used in the current frame to

-    become lost, set this value to 0.

-    */

-    uint32_t frameInUseCount;

-} VmaPoolCreateInfo;

-

-/** \brief Describes parameter of existing #VmaPool.

-*/

-typedef struct VmaPoolStats {

-    /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.

-    */

-    VkDeviceSize size;

-    /** \brief Total number of bytes in the pool not used by any #VmaAllocation.

-    */

-    VkDeviceSize unusedSize;

-    /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.

-    */

-    size_t allocationCount;

-    /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.

-    */

-    size_t unusedRangeCount;

-    /** \brief Size of the largest continuous free memory region available for new allocation.

-

-    Making a new allocation of that size is not guaranteed to succeed because of

-    possible additional margin required to respect alignment and buffer/image

-    granularity.

-    */

-    VkDeviceSize unusedRangeSizeMax;

-    /** \brief Number of `VkDeviceMemory` blocks allocated for this pool.

-    */

-    size_t blockCount;

-} VmaPoolStats;

-

-/** \brief Allocates Vulkan device memory and creates #VmaPool object.

-

-@param allocator Allocator object.

-@param pCreateInfo Parameters of pool to create.

-@param[out] pPool Handle to created pool.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(

-	VmaAllocator VMA_NOT_NULL allocator,

-	const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,

-	VmaPool VMA_NULLABLE * VMA_NOT_NULL pPool);

-

-/** \brief Destroys #VmaPool object and frees Vulkan device memory.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaPool VMA_NULLABLE pool);

-

-/** \brief Retrieves statistics of existing #VmaPool object.

-

-@param allocator Allocator object.

-@param pool Pool object.

-@param[out] pPoolStats Statistics of specified pool.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaPool VMA_NOT_NULL pool,

-    VmaPoolStats* VMA_NOT_NULL pPoolStats);

-

-/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.

-

-@param allocator Allocator object.

-@param pool Pool.

-@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaPool VMA_NOT_NULL pool,

-    size_t* VMA_NULLABLE pLostAllocationCount);

-

-/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.

-

-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,

-`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is

-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).

-

-Possible return values:

-

-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.

-- `VK_SUCCESS` - corruption detection has been performed and succeeded.

-- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.

-  `VMA_ASSERT` is also fired in that case.

-- Other value: Error returned by Vulkan, e.g. memory mapping failure.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool);

-

-/** \brief Retrieves name of a custom pool.

-

-After the call `ppName` is either null or points to an internally-owned null-terminated string

-containing name of the pool that was previously set. The pointer becomes invalid when the pool is

-destroyed or its name is changed using vmaSetPoolName().

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaPool VMA_NOT_NULL pool,

-    const char* VMA_NULLABLE * VMA_NOT_NULL ppName);

-

-/** \brief Sets name of a custom pool.

-

-`pName` can be either null or pointer to a null-terminated string with new name for the pool.

-Function makes internal copy of the string, so it can be changed or freed immediately after this call.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaPool VMA_NOT_NULL pool,

-    const char* VMA_NULLABLE pName);

-

-/** \struct VmaAllocation

-\brief Represents single memory allocation.

-

-It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type

-plus unique offset.

-

-There are multiple ways to create such object.

-You need to fill structure VmaAllocationCreateInfo.

-For more information see [Choosing memory type](@ref choosing_memory_type).

-

-Although the library provides convenience functions that create Vulkan buffer or image,

-allocate memory for it and bind them together,

-binding of the allocation to a buffer or an image is out of scope of the allocation itself.

-Allocation object can exist without buffer/image bound,

-binding can be done manually by the user, and destruction of it can be done

-independently of destruction of the allocation.

-

-The object also remembers its size and some other information.

-To retrieve this information, use function vmaGetAllocationInfo() and inspect

-returned structure VmaAllocationInfo.

-

-Some kinds allocations can be in lost state.

-For more information, see [Lost allocations](@ref lost_allocations).

-*/

-VK_DEFINE_HANDLE(VmaAllocation)

-

-/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().

-*/

-typedef struct VmaAllocationInfo {

-    /** \brief Memory type index that this allocation was allocated from.

-    

-    It never changes.

-    */

-    uint32_t memoryType;

-    /** \brief Handle to Vulkan memory object.

-

-    Same memory object can be shared by multiple allocations.

-    

-    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.

-

-    If the allocation is lost, it is equal to `VK_NULL_HANDLE`.

-    */

-    VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;

-    /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.

-

-    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.

-    */

-    VkDeviceSize offset;

-    /** \brief Size of this allocation, in bytes.

-

-    It never changes, unless allocation is lost.

-    */

-    VkDeviceSize size;

-    /** \brief Pointer to the beginning of this allocation as mapped data.

-

-    If the allocation hasn't been mapped using vmaMapMemory() and hasn't been

-    created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.

-

-    It can change after call to vmaMapMemory(), vmaUnmapMemory().

-    It can also change after call to vmaDefragment() if this allocation is passed to the function.

-    */

-    void* VMA_NULLABLE pMappedData;

-    /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().

-

-    It can change after call to vmaSetAllocationUserData() for this allocation.

-    */

-    void* VMA_NULLABLE pUserData;

-} VmaAllocationInfo;

-

-/** \brief General purpose memory allocation.

-

-@param[out] pAllocation Handle to allocated memory.

-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

-

-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().

-

-It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),

-vmaCreateBuffer(), vmaCreateImage() instead whenever possible.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,

-    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);

-

-/** \brief General purpose memory allocation for multiple allocation objects at once.

-

-@param allocator Allocator object.

-@param pVkMemoryRequirements Memory requirements for each allocation.

-@param pCreateInfo Creation parameters for each alloction.

-@param allocationCount Number of allocations to make.

-@param[out] pAllocations Pointer to array that will be filled with handles to created allocations.

-@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.

-

-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().

-

-Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.

-It is just a general purpose allocation function able to make multiple allocations at once.

-It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.

-

-All allocations are made using same parameters. All of them are created out of the same memory pool and type.

-If any allocation fails, all allocations already made within this function call are also freed, so that when

-returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,

-    size_t allocationCount,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,

-    VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);

-

-/**

-@param[out] pAllocation Handle to allocated memory.

-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

-

-You should free the memory using vmaFreeMemory().

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,

-    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);

-

-/// Function similar to vmaAllocateMemoryForBuffer().

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,

-    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);

-

-/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().

-

-Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VmaAllocation VMA_NULLABLE allocation);

-

-/** \brief Frees memory and destroys multiple allocations.

-

-Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.

-It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),

-vmaAllocateMemoryPages() and other functions.

-It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.

-

-Allocations in `pAllocations` array can come from any memory pools and types.

-Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(

-    VmaAllocator VMA_NOT_NULL allocator,

-    size_t allocationCount,

-    const VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);

-

-/** \brief Deprecated.

-

-\deprecated

-In version 2.2.0 it used to try to change allocation's size without moving or reallocating it.

-In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size.

-Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkDeviceSize newSize);

-

-/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.

-

-Current paramters of given allocation are returned in `pAllocationInfo`.

-

-This function also atomically "touches" allocation - marks it as used in current frame,

-just like vmaTouchAllocation().

-If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.

-

-Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,

-you can avoid calling it too often.

-

-- You can retrieve same VmaAllocationInfo structure while creating your resource, from function

-  vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change

-  (e.g. due to defragmentation or allocation becoming lost).

-- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);

-

-/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.

-

-If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,

-this function returns `VK_TRUE` if it's not in lost state, so it can still be used.

-It then also atomically "touches" the allocation - marks it as used in current frame,

-so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.

-

-If the allocation is in lost state, the function returns `VK_FALSE`.

-Memory of such allocation, as well as buffer or image bound to it, should not be used.

-Lost allocation and the buffer/image still need to be destroyed.

-

-If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,

-this function always returns `VK_TRUE`.

-*/

-VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation);

-

-/** \brief Sets pUserData in given allocation to new value.

-

-If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,

-pUserData must be either null, or pointer to a null-terminated string. The function

-makes local copy of the string and sets it as allocation's `pUserData`. String

-passed as pUserData doesn't need to be valid for whole lifetime of the allocation -

-you can free it after this call. String previously pointed by allocation's

-pUserData is freed from memory.

-

-If the flag was not used, the value of pointer `pUserData` is just copied to

-allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.

-as a pointer, ordinal number or some handle to you own data.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    void* VMA_NULLABLE pUserData);

-

-/** \brief Creates new allocation that is in lost state from the beginning.

-

-It can be useful if you need a dummy, non-null allocation.

-

-You still need to destroy created object using vmaFreeMemory().

-

-Returned allocation is not tied to any specific memory pool or memory type and

-not bound to any image or buffer. It has size = 0. It cannot be turned into

-a real, non-empty allocation.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation);

-

-/** \brief Maps memory represented by given allocation and returns pointer to it.

-

-Maps memory represented by given allocation to make it accessible to CPU code.

-When succeeded, `*ppData` contains pointer to first byte of this memory.

-If the allocation is part of bigger `VkDeviceMemory` block, the pointer is

-correctly offseted to the beginning of region assigned to this particular

-allocation.

-

-Mapping is internally reference-counted and synchronized, so despite raw Vulkan

-function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`

-multiple times simultaneously, it is safe to call this function on allocations

-assigned to the same memory block. Actual Vulkan memory will be mapped on first

-mapping and unmapped on last unmapping.

-

-If the function succeeded, you must call vmaUnmapMemory() to unmap the

-allocation when mapping is no longer needed or before freeing the allocation, at

-the latest.

-

-It also safe to call this function multiple times on the same allocation. You

-must call vmaUnmapMemory() same number of times as you called vmaMapMemory().

-

-It is also safe to call this function on allocation created with

-#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.

-You must still call vmaUnmapMemory() same number of times as you called

-vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the

-"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.

-

-This function fails when used on allocation made in memory type that is not

-`HOST_VISIBLE`.

-

-This function always fails when called for allocation that was created with

-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be

-mapped.

-

-This function doesn't automatically flush or invalidate caches.

-If the allocation is made from a memory types that is not `HOST_COHERENT`,

-you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    void* VMA_NULLABLE * VMA_NOT_NULL ppData);

-

-/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().

-

-For details, see description of vmaMapMemory().

-

-This function doesn't automatically flush or invalidate caches.

-If the allocation is made from a memory types that is not `HOST_COHERENT`,

-you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation);

-

-/** \brief Flushes memory of given allocation.

-

-Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.

-It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.

-Unmap operation doesn't do that automatically.

-

-- `offset` must be relative to the beginning of allocation.

-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.

-- `offset` and `size` don't have to be aligned.

-  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.

-- If `size` is 0, this call is ignored.

-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,

-  this call is ignored.

-

-Warning! `offset` and `size` are relative to the contents of given `allocation`.

-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.

-Do not pass allocation's offset as `offset`!!!

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkDeviceSize offset,

-    VkDeviceSize size);

-

-/** \brief Invalidates memory of given allocation.

-

-Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.

-It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.

-Map operation doesn't do that automatically.

-

-- `offset` must be relative to the beginning of allocation.

-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.

-- `offset` and `size` don't have to be aligned.

-  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.

-- If `size` is 0, this call is ignored.

-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,

-  this call is ignored.

-

-Warning! `offset` and `size` are relative to the contents of given `allocation`.

-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.

-Do not pass allocation's offset as `offset`!!!

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkDeviceSize offset,

-    VkDeviceSize size);

-

-/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.

-

-@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.

-

-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,

-`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are

-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).

-

-Possible return values:

-

-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.

-- `VK_SUCCESS` - corruption detection has been performed and succeeded.

-- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.

-  `VMA_ASSERT` is also fired in that case.

-- Other value: Error returned by Vulkan, e.g. memory mapping failure.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits);

-

-/** \struct VmaDefragmentationContext

-\brief Represents Opaque object that represents started defragmentation process.

-

-Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.

-Call function vmaDefragmentationEnd() to destroy it.

-*/

-VK_DEFINE_HANDLE(VmaDefragmentationContext)

-

-/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.

-typedef enum VmaDefragmentationFlagBits {

-    VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1,

-    VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

-} VmaDefragmentationFlagBits;

-typedef VkFlags VmaDefragmentationFlags;

-

-/** \brief Parameters for defragmentation.

-

-To be used with function vmaDefragmentationBegin().

-*/

-typedef struct VmaDefragmentationInfo2 {

-    /** \brief Reserved for future use. Should be 0.

-    */

-    VmaDefragmentationFlags flags;

-    /** \brief Number of allocations in `pAllocations` array.

-    */

-    uint32_t allocationCount;

-    /** \brief Pointer to array of allocations that can be defragmented.

-

-    The array should have `allocationCount` elements.

-    The array should not contain nulls.

-    Elements in the array should be unique - same allocation cannot occur twice.

-    It is safe to pass allocations that are in the lost state - they are ignored.

-    All allocations not present in this array are considered non-moveable during this defragmentation.

-    */

-    const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations;

-    /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.

-

-    The array should have `allocationCount` elements.

-    You can pass null if you are not interested in this information.

-    */

-    VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged;

-    /** \brief Numer of pools in `pPools` array.

-    */

-    uint32_t poolCount;

-    /** \brief Either null or pointer to array of pools to be defragmented.

-

-    All the allocations in the specified pools can be moved during defragmentation

-    and there is no way to check if they were really moved as in `pAllocationsChanged`,

-    so you must query all the allocations in all these pools for new `VkDeviceMemory`

-    and offset using vmaGetAllocationInfo() if you might need to recreate buffers

-    and images bound to them.

-

-    The array should have `poolCount` elements.

-    The array should not contain nulls.

-    Elements in the array should be unique - same pool cannot occur twice.

-

-    Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.

-    It might be more efficient.

-    */

-    const VmaPool VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools;

-    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.

-    

-    `VK_WHOLE_SIZE` means no limit.

-    */

-    VkDeviceSize maxCpuBytesToMove;

-    /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.

-

-    `UINT32_MAX` means no limit.

-    */

-    uint32_t maxCpuAllocationsToMove;

-    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.

-    

-    `VK_WHOLE_SIZE` means no limit.

-    */

-    VkDeviceSize maxGpuBytesToMove;

-    /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.

-

-    `UINT32_MAX` means no limit.

-    */

-    uint32_t maxGpuAllocationsToMove;

-    /** \brief Optional. Command buffer where GPU copy commands will be posted.

-

-    If not null, it must be a valid command buffer handle that supports Transfer queue type.

-    It must be in the recording state and outside of a render pass instance.

-    You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().

-

-    Passing null means that only CPU defragmentation will be performed.

-    */

-    VkCommandBuffer VMA_NULLABLE_NON_DISPATCHABLE commandBuffer;

-} VmaDefragmentationInfo2;

-

-typedef struct VmaDefragmentationPassMoveInfo {

-    VmaAllocation VMA_NOT_NULL allocation;

-    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory;

-    VkDeviceSize offset;

-} VmaDefragmentationPassMoveInfo;

-

-/** \brief Parameters for incremental defragmentation steps.

-

-To be used with function vmaBeginDefragmentationPass().

-*/

-typedef struct VmaDefragmentationPassInfo {

-    uint32_t moveCount;

-    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves;

-} VmaDefragmentationPassInfo;

-

-/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().

-

-\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.

-*/

-typedef struct VmaDefragmentationInfo {

-    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.

-    

-    Default is `VK_WHOLE_SIZE`, which means no limit.

-    */

-    VkDeviceSize maxBytesToMove;

-    /** \brief Maximum number of allocations that can be moved to different place.

-

-    Default is `UINT32_MAX`, which means no limit.

-    */

-    uint32_t maxAllocationsToMove;

-} VmaDefragmentationInfo;

-

-/** \brief Statistics returned by function vmaDefragment(). */

-typedef struct VmaDefragmentationStats {

-    /// Total number of bytes that have been copied while moving allocations to different places.

-    VkDeviceSize bytesMoved;

-    /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.

-    VkDeviceSize bytesFreed;

-    /// Number of allocations that have been moved to different places.

-    uint32_t allocationsMoved;

-    /// Number of empty `VkDeviceMemory` objects that have been released to the system.

-    uint32_t deviceMemoryBlocksFreed;

-} VmaDefragmentationStats;

-

-/** \brief Begins defragmentation process.

-

-@param allocator Allocator object.

-@param pInfo Structure filled with parameters of defragmentation.

-@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.

-@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.

-@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.

-

-Use this function instead of old, deprecated vmaDefragment().

-

-Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():

-

-- You should not use any of allocations passed as `pInfo->pAllocations` or

-  any allocations that belong to pools passed as `pInfo->pPools`,

-  including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access

-  their data.

-- Some mutexes protecting internal data structures may be locked, so trying to

-  make or free any allocations, bind buffers or images, map memory, or launch

-  another simultaneous defragmentation in between may cause stall (when done on

-  another thread) or deadlock (when done on the same thread), unless you are

-  100% sure that defragmented allocations are in different pools.

-- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.

-  They become valid after call to vmaDefragmentationEnd().

-- If `pInfo->commandBuffer` is not null, you must submit that command buffer

-  and make sure it finished execution before calling vmaDefragmentationEnd().

-

-For more information and important limitations regarding defragmentation, see documentation chapter:

-[Defragmentation](@ref defragmentation).

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo,

-    VmaDefragmentationStats* VMA_NULLABLE pStats,

-    VmaDefragmentationContext VMA_NULLABLE * VMA_NOT_NULL pContext);

-

-/** \brief Ends defragmentation process.

-

-Use this function to finish defragmentation started by vmaDefragmentationBegin().

-It is safe to pass `context == null`. The function then does nothing.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaDefragmentationContext VMA_NULLABLE context);

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaDefragmentationContext VMA_NULLABLE context,

-    VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo

-);

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaDefragmentationContext VMA_NULLABLE context

-);

-

-/** \brief Deprecated. Compacts memory by moving allocations.

-

-@param pAllocations Array of allocations that can be moved during this compation.

-@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.

-@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.

-@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.

-@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.

-@return `VK_SUCCESS` if completed, negative error code in case of error.

-

-\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.

-

-This function works by moving allocations to different places (different

-`VkDeviceMemory` objects and/or different offsets) in order to optimize memory

-usage. Only allocations that are in `pAllocations` array can be moved. All other

-allocations are considered nonmovable in this call. Basic rules:

-

-- Only allocations made in memory types that have

-  `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`

-  flags can be compacted. You may pass other allocations but it makes no sense -

-  these will never be moved.

-- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or

-  #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations

-  passed to this function that come from such pools are ignored.

-- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or

-  created as dedicated allocations for any other reason are also ignored.

-- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT

-  flag can be compacted. If not persistently mapped, memory will be mapped

-  temporarily inside this function if needed.

-- You must not pass same #VmaAllocation object multiple times in `pAllocations` array.

-

-The function also frees empty `VkDeviceMemory` blocks.

-

-Warning: This function may be time-consuming, so you shouldn't call it too often

-(like after every resource creation/destruction).

-You can call it on special occasions (like when reloading a game level or

-when you just destroyed a lot of objects). Calling it every frame may be OK, but

-you should measure that on your platform.

-

-For more information, see [Defragmentation](@ref defragmentation) chapter.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VmaAllocation VMA_NOT_NULL * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,

-    size_t allocationCount,

-    VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged,

-    const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo,

-    VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats);

-

-/** \brief Binds buffer to allocation.

-

-Binds specified buffer to region of memory represented by specified allocation.

-Gets `VkDeviceMemory` handle and offset from the allocation.

-If you want to create a buffer, allocate memory for it and bind them together separately,

-you should use this function for binding instead of standard `vkBindBufferMemory()`,

-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple

-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously

-(which is illegal in Vulkan).

-

-It is recommended to use function vmaCreateBuffer() instead of this one.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);

-

-/** \brief Binds buffer to allocation with additional parameters.

-

-@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.

-@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.

-

-This function is similar to vmaBindBufferMemory(), but it provides additional parameters.

-

-If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag

-or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkDeviceSize allocationLocalOffset,

-    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,

-    const void* VMA_NULLABLE pNext);

-

-/** \brief Binds image to allocation.

-

-Binds specified image to region of memory represented by specified allocation.

-Gets `VkDeviceMemory` handle and offset from the allocation.

-If you want to create an image, allocate memory for it and bind them together separately,

-you should use this function for binding instead of standard `vkBindImageMemory()`,

-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple

-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously

-(which is illegal in Vulkan).

-

-It is recommended to use function vmaCreateImage() instead of this one.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);

-

-/** \brief Binds image to allocation with additional parameters.

-

-@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.

-@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.

-

-This function is similar to vmaBindImageMemory(), but it provides additional parameters.

-

-If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag

-or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VmaAllocation VMA_NOT_NULL allocation,

-    VkDeviceSize allocationLocalOffset,

-    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,

-    const void* VMA_NULLABLE pNext);

-

-/**

-@param[out] pBuffer Buffer that was created.

-@param[out] pAllocation Allocation that was created.

-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().

-

-This function automatically:

-

--# Creates buffer.

--# Allocates appropriate memory for it.

--# Binds the buffer with the memory.

-

-If any of these operations fail, buffer and allocation are not created,

-returned value is negative error code, *pBuffer and *pAllocation are null.

-

-If the function succeeded, you must destroy both buffer and allocation when you

-no longer need them using either convenience function vmaDestroyBuffer() or

-separately, using `vkDestroyBuffer()` and vmaFreeMemory().

-

-If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,

-VK_KHR_dedicated_allocation extension is used internally to query driver whether

-it requires or prefers the new buffer to have dedicated allocation. If yes,

-and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null

-and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated

-allocation for this buffer, just like when using

-VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,

-    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pBuffer,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,

-    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);

-

-/** \brief Destroys Vulkan buffer and frees allocated memory.

-

-This is just a convenience function equivalent to:

-

-\code

-vkDestroyBuffer(device, buffer, allocationCallbacks);

-vmaFreeMemory(allocator, allocation);

-\endcode

-

-It it safe to pass null as buffer and/or allocation.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,

-    VmaAllocation VMA_NULLABLE allocation);

-

-/// Function similar to vmaCreateBuffer().

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(

-    VmaAllocator VMA_NOT_NULL allocator,

-    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,

-    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,

-    VkImage VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pImage,

-    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,

-    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);

-

-/** \brief Destroys Vulkan image and frees allocated memory.

-

-This is just a convenience function equivalent to:

-

-\code

-vkDestroyImage(device, image, allocationCallbacks);

-vmaFreeMemory(allocator, allocation);

-\endcode

-

-It it safe to pass null as image and/or allocation.

-*/

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(

-    VmaAllocator VMA_NOT_NULL allocator,

-    VkImage VMA_NULLABLE_NON_DISPATCHABLE image,

-    VmaAllocation VMA_NULLABLE allocation);

-

-#ifdef __cplusplus

-}

-#endif

-

-#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H

-

-// For Visual Studio IntelliSense.

-#if defined(__cplusplus) && defined(__INTELLISENSE__)

-#define VMA_IMPLEMENTATION

-#endif

-

-#ifdef VMA_IMPLEMENTATION

-#undef VMA_IMPLEMENTATION

-

-#include <cstdint>

-#include <cstdlib>

-#include <cstring>

-#include <utility>

-

-/*******************************************************************************

-CONFIGURATION SECTION

-

-Define some of these macros before each #include of this header or change them

-here if you need other then default behavior depending on your environment.

-*/

-

-/*

-Define this macro to 1 to make the library fetch pointers to Vulkan functions

-internally, like:

-

-    vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;

-*/

-#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)

-    #define VMA_STATIC_VULKAN_FUNCTIONS 1

-#endif

-

-/*

-Define this macro to 1 to make the library fetch pointers to Vulkan functions

-internally, like:

-

-    vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(m_hDevice, vkAllocateMemory);

-*/

-#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)

-    #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1

-#endif

-

-// Define this macro to 1 to make the library use STL containers instead of its own implementation.

-//#define VMA_USE_STL_CONTAINERS 1

-

-/* Set this macro to 1 to make the library including and using STL containers:

-std::pair, std::vector, std::list, std::unordered_map.

-

-Set it to 0 or undefined to make the library using its own implementation of

-the containers.

-*/

-#if VMA_USE_STL_CONTAINERS

-   #define VMA_USE_STL_VECTOR 1

-   #define VMA_USE_STL_UNORDERED_MAP 1

-   #define VMA_USE_STL_LIST 1

-#endif

-

-#ifndef VMA_USE_STL_SHARED_MUTEX

-    // Compiler conforms to C++17.

-    #if __cplusplus >= 201703L

-        #define VMA_USE_STL_SHARED_MUTEX 1

-    // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus

-    // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.

-    // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/

-    #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L

-        #define VMA_USE_STL_SHARED_MUTEX 1

-    #else

-        #define VMA_USE_STL_SHARED_MUTEX 0

-    #endif

-#endif

-

-/*

-THESE INCLUDES ARE NOT ENABLED BY DEFAULT.

-Library has its own container implementation.

-*/

-#if VMA_USE_STL_VECTOR

-   #include <vector>

-#endif

-

-#if VMA_USE_STL_UNORDERED_MAP

-   #include <unordered_map>

-#endif

-

-#if VMA_USE_STL_LIST

-   #include <list>

-#endif

-

-/*

-Following headers are used in this CONFIGURATION section only, so feel free to

-remove them if not needed.

-*/

-#include <cassert> // for assert

-#include <algorithm> // for min, max

-#include <mutex>

-

-#ifndef VMA_NULL

-   // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.

-   #define VMA_NULL   nullptr

-#endif

-

-#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)

-#include <cstdlib>

-void *aligned_alloc(size_t alignment, size_t size)

-{

-    // alignment must be >= sizeof(void*)

-    if(alignment < sizeof(void*))

-    {

-        alignment = sizeof(void*);

-    }

-

-    return memalign(alignment, size);

-}

-#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))

-#include <cstdlib>

-void *aligned_alloc(size_t alignment, size_t size)

-{

-    // alignment must be >= sizeof(void*)

-    if(alignment < sizeof(void*))

-    {

-        alignment = sizeof(void*);

-    }

-

-    void *pointer;

-    if(posix_memalign(&pointer, alignment, size) == 0)

-        return pointer;

-    return VMA_NULL;

-}

-#endif

-

-// If your compiler is not compatible with C++11 and definition of

-// aligned_alloc() function is missing, uncommeting following line may help:

-

-//#include <malloc.h>

-

-// Normal assert to check for programmer's errors, especially in Debug configuration.

-#ifndef VMA_ASSERT

-   #ifdef NDEBUG

-       #define VMA_ASSERT(expr)

-   #else

-       #define VMA_ASSERT(expr)         assert(expr)

-   #endif

-#endif

-

-// Assert that will be called very often, like inside data structures e.g. operator[].

-// Making it non-empty can make program slow.

-#ifndef VMA_HEAVY_ASSERT

-   #ifdef NDEBUG

-       #define VMA_HEAVY_ASSERT(expr)

-   #else

-       #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)

-   #endif

-#endif

-

-#ifndef VMA_ALIGN_OF

-   #define VMA_ALIGN_OF(type)       (__alignof(type))

-#endif

-

-#ifndef VMA_SYSTEM_ALIGNED_MALLOC

-   #if defined(_WIN32)

-       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (_aligned_malloc((size), (alignment)))

-   #else

-       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (aligned_alloc((alignment), (size) ))

-   #endif

-#endif

-

-#ifndef VMA_SYSTEM_FREE

-   #if defined(_WIN32)

-       #define VMA_SYSTEM_FREE(ptr)   _aligned_free(ptr)

-   #else

-       #define VMA_SYSTEM_FREE(ptr)   free(ptr)

-   #endif

-#endif

-

-#ifndef VMA_MIN

-   #define VMA_MIN(v1, v2)    (std::min((v1), (v2)))

-#endif

-

-#ifndef VMA_MAX

-   #define VMA_MAX(v1, v2)    (std::max((v1), (v2)))

-#endif

-

-#ifndef VMA_SWAP

-   #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))

-#endif

-

-#ifndef VMA_SORT

-   #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)

-#endif

-

-#ifndef VMA_DEBUG_LOG

-   #define VMA_DEBUG_LOG(format, ...)

-   /*

-   #define VMA_DEBUG_LOG(format, ...) do { \

-       printf(format, __VA_ARGS__); \

-       printf("\n"); \

-   } while(false)

-   */

-#endif

-

-// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.

-#if VMA_STATS_STRING_ENABLED

-    static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)

-    {

-        snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));

-    }

-    static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)

-    {

-        snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));

-    }

-    static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)

-    {

-        snprintf(outStr, strLen, "%p", ptr);

-    }

-#endif

-

-#ifndef VMA_MUTEX

-    class VmaMutex

-    {

-    public:

-        void Lock() { m_Mutex.lock(); }

-        void Unlock() { m_Mutex.unlock(); }

-        bool TryLock() { return m_Mutex.try_lock(); }

-    private:

-        std::mutex m_Mutex;

-    };

-    #define VMA_MUTEX VmaMutex

-#endif

-

-// Read-write mutex, where "read" is shared access, "write" is exclusive access.

-#ifndef VMA_RW_MUTEX

-    #if VMA_USE_STL_SHARED_MUTEX

-        // Use std::shared_mutex from C++17.

-        #include <shared_mutex>

-        class VmaRWMutex

-        {

-        public:

-            void LockRead() { m_Mutex.lock_shared(); }

-            void UnlockRead() { m_Mutex.unlock_shared(); }

-            bool TryLockRead() { return m_Mutex.try_lock_shared(); }

-            void LockWrite() { m_Mutex.lock(); }

-            void UnlockWrite() { m_Mutex.unlock(); }

-            bool TryLockWrite() { return m_Mutex.try_lock(); }

-        private:

-            std::shared_mutex m_Mutex;

-        };

-        #define VMA_RW_MUTEX VmaRWMutex

-    #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600

-        // Use SRWLOCK from WinAPI.

-        // Minimum supported client = Windows Vista, server = Windows Server 2008.

-        class VmaRWMutex

-        {

-        public:

-            VmaRWMutex() { InitializeSRWLock(&m_Lock); }

-            void LockRead() { AcquireSRWLockShared(&m_Lock); }

-            void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }

-            bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }

-            void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }

-            void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }

-            bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }

-        private:

-            SRWLOCK m_Lock;

-        };

-        #define VMA_RW_MUTEX VmaRWMutex

-    #else

-        // Less efficient fallback: Use normal mutex.

-        class VmaRWMutex

-        {

-        public:

-            void LockRead() { m_Mutex.Lock(); }

-            void UnlockRead() { m_Mutex.Unlock(); }

-            bool TryLockRead() { return m_Mutex.TryLock(); }

-            void LockWrite() { m_Mutex.Lock(); }

-            void UnlockWrite() { m_Mutex.Unlock(); }

-            bool TryLockWrite() { return m_Mutex.TryLock(); }

-        private:

-            VMA_MUTEX m_Mutex;

-        };

-        #define VMA_RW_MUTEX VmaRWMutex

-    #endif // #if VMA_USE_STL_SHARED_MUTEX

-#endif // #ifndef VMA_RW_MUTEX

-

-/*

-If providing your own implementation, you need to implement a subset of std::atomic.

-*/

-#ifndef VMA_ATOMIC_UINT32

-    #include <atomic>

-    #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>

-#endif

-

-#ifndef VMA_ATOMIC_UINT64

-    #include <atomic>

-    #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>

-#endif

-

-#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY

-    /**

-    Every allocation will have its own memory block.

-    Define to 1 for debugging purposes only.

-    */

-    #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)

-#endif

-

-#ifndef VMA_DEBUG_ALIGNMENT

-    /**

-    Minimum alignment of all allocations, in bytes.

-    Set to more than 1 for debugging purposes only. Must be power of two.

-    */

-    #define VMA_DEBUG_ALIGNMENT (1)

-#endif

-

-#ifndef VMA_DEBUG_MARGIN

-    /**

-    Minimum margin before and after every allocation, in bytes.

-    Set nonzero for debugging purposes only.

-    */

-    #define VMA_DEBUG_MARGIN (0)

-#endif

-

-#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS

-    /**

-    Define this macro to 1 to automatically fill new allocations and destroyed

-    allocations with some bit pattern.

-    */

-    #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)

-#endif

-

-#ifndef VMA_DEBUG_DETECT_CORRUPTION

-    /**

-    Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to

-    enable writing magic value to the margin before and after every allocation and

-    validating it, so that memory corruptions (out-of-bounds writes) are detected.

-    */

-    #define VMA_DEBUG_DETECT_CORRUPTION (0)

-#endif

-

-#ifndef VMA_DEBUG_GLOBAL_MUTEX

-    /**

-    Set this to 1 for debugging purposes only, to enable single mutex protecting all

-    entry calls to the library. Can be useful for debugging multithreading issues.

-    */

-    #define VMA_DEBUG_GLOBAL_MUTEX (0)

-#endif

-

-#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY

-    /**

-    Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.

-    Set to more than 1 for debugging purposes only. Must be power of two.

-    */

-    #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)

-#endif

-

-#ifndef VMA_SMALL_HEAP_MAX_SIZE

-   /// Maximum size of a memory heap in Vulkan to consider it "small".

-   #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)

-#endif

-

-#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE

-   /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.

-   #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)

-#endif

-

-#ifndef VMA_CLASS_NO_COPY

-    #define VMA_CLASS_NO_COPY(className) \

-        private: \

-            className(const className&) = delete; \

-            className& operator=(const className&) = delete;

-#endif

-

-static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;

-

-// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.

-static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;

-

-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED   = 0xDC;

-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;

-

-/*******************************************************************************

-END OF CONFIGURATION

-*/

-

-// # Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.

-

-static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;

-static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;

-static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;

-

-static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;

-

-static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {

-    VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };

-

-// Returns number of bits set to 1 in (v).

-static inline uint32_t VmaCountBitsSet(uint32_t v)

-{

-	uint32_t c = v - ((v >> 1) & 0x55555555);

-	c = ((c >>  2) & 0x33333333) + (c & 0x33333333);

-	c = ((c >>  4) + c) & 0x0F0F0F0F;

-	c = ((c >>  8) + c) & 0x00FF00FF;

-	c = ((c >> 16) + c) & 0x0000FFFF;

-	return c;

-}

-

-// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.

-// Use types like uint32_t, uint64_t as T.

-template <typename T>

-static inline T VmaAlignUp(T val, T align)

-{

-	return (val + align - 1) / align * align;

-}

-// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.

-// Use types like uint32_t, uint64_t as T.

-template <typename T>

-static inline T VmaAlignDown(T val, T align)

-{

-    return val / align * align;

-}

-

-// Division with mathematical rounding to nearest number.

-template <typename T>

-static inline T VmaRoundDiv(T x, T y)

-{

-	return (x + (y / (T)2)) / y;

-}

-

-/*

-Returns true if given number is a power of two.

-T must be unsigned integer number or signed integer but always nonnegative.

-For 0 returns true.

-*/

-template <typename T>

-inline bool VmaIsPow2(T x)

-{

-    return (x & (x-1)) == 0;

-}

-

-// Returns smallest power of 2 greater or equal to v.

-static inline uint32_t VmaNextPow2(uint32_t v)

-{

-	v--;

-    v |= v >> 1;

-    v |= v >> 2;

-    v |= v >> 4;

-    v |= v >> 8;

-    v |= v >> 16;

-    v++;

-    return v;

-}

-static inline uint64_t VmaNextPow2(uint64_t v)

-{

-	v--;

-    v |= v >> 1;

-    v |= v >> 2;

-    v |= v >> 4;

-    v |= v >> 8;

-    v |= v >> 16;

-    v |= v >> 32;

-    v++;

-    return v;

-}

-

-// Returns largest power of 2 less or equal to v.

-static inline uint32_t VmaPrevPow2(uint32_t v)

-{

-    v |= v >> 1;

-    v |= v >> 2;

-    v |= v >> 4;

-    v |= v >> 8;

-    v |= v >> 16;

-    v = v ^ (v >> 1);

-    return v;

-}

-static inline uint64_t VmaPrevPow2(uint64_t v)

-{

-    v |= v >> 1;

-    v |= v >> 2;

-    v |= v >> 4;

-    v |= v >> 8;

-    v |= v >> 16;

-    v |= v >> 32;

-    v = v ^ (v >> 1);

-    return v;

-}

-

-static inline bool VmaStrIsEmpty(const char* pStr)

-{

-    return pStr == VMA_NULL || *pStr == '\0';

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-static const char* VmaAlgorithmToStr(uint32_t algorithm)

-{

-    switch(algorithm)

-    {

-    case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:

-        return "Linear";

-    case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:

-        return "Buddy";

-    case 0:

-        return "Default";

-    default:

-        VMA_ASSERT(0);

-        return "";

-    }

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-#ifndef VMA_SORT

-

-template<typename Iterator, typename Compare>

-Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)

-{

-    Iterator centerValue = end; --centerValue;

-    Iterator insertIndex = beg;

-    for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)

-    {

-        if(cmp(*memTypeIndex, *centerValue))

-        {

-            if(insertIndex != memTypeIndex)

-            {

-                VMA_SWAP(*memTypeIndex, *insertIndex);

-            }

-            ++insertIndex;

-        }

-    }

-    if(insertIndex != centerValue)

-    {

-        VMA_SWAP(*insertIndex, *centerValue);

-    }

-    return insertIndex;

-}

-

-template<typename Iterator, typename Compare>

-void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)

-{

-    if(beg < end)

-    {

-        Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);

-        VmaQuickSort<Iterator, Compare>(beg, it, cmp);

-        VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);

-    }

-}

-

-#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)

-

-#endif // #ifndef VMA_SORT

-

-/*

-Returns true if two memory blocks occupy overlapping pages.

-ResourceA must be in less memory offset than ResourceB.

-

-Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"

-chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".

-*/

-static inline bool VmaBlocksOnSamePage(

-    VkDeviceSize resourceAOffset,

-    VkDeviceSize resourceASize,

-    VkDeviceSize resourceBOffset,

-    VkDeviceSize pageSize)

-{

-    VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);

-    VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;

-    VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);

-    VkDeviceSize resourceBStart = resourceBOffset;

-    VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);

-    return resourceAEndPage == resourceBStartPage;

-}

-

-enum VmaSuballocationType

-{

-    VMA_SUBALLOCATION_TYPE_FREE = 0,

-    VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,

-    VMA_SUBALLOCATION_TYPE_BUFFER = 2,

-    VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,

-    VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,

-    VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,

-    VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF

-};

-

-/*

-Returns true if given suballocation types could conflict and must respect

-VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer

-or linear image and another one is optimal image. If type is unknown, behave

-conservatively.

-*/

-static inline bool VmaIsBufferImageGranularityConflict(

-    VmaSuballocationType suballocType1,

-    VmaSuballocationType suballocType2)

-{

-    if(suballocType1 > suballocType2)

-    {

-        VMA_SWAP(suballocType1, suballocType2);

-    }

-    

-    switch(suballocType1)

-    {

-    case VMA_SUBALLOCATION_TYPE_FREE:

-        return false;

-    case VMA_SUBALLOCATION_TYPE_UNKNOWN:

-        return true;

-    case VMA_SUBALLOCATION_TYPE_BUFFER:

-        return

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

-    case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:

-        return

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

-    case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:

-        return

-            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;

-    case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:

-        return false;

-    default:

-        VMA_ASSERT(0);

-        return true;

-    }

-}

-

-static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)

-{

-#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION

-    uint32_t* pDst = (uint32_t*)((char*)pData + offset);

-    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);

-    for(size_t i = 0; i < numberCount; ++i, ++pDst)

-    {

-        *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;

-    }

-#else

-    // no-op

-#endif

-}

-

-static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)

-{

-#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION

-    const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);

-    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);

-    for(size_t i = 0; i < numberCount; ++i, ++pSrc)

-    {

-        if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)

-        {

-            return false;

-        }

-    }

-#endif

-    return true;

-}

-

-/*

-Fills structure with parameters of an example buffer to be used for transfers

-during GPU memory defragmentation.

-*/

-static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)

-{

-    memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));

-    outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;

-    outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;

-    outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.

-}

-

-// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).

-struct VmaMutexLock

-{

-    VMA_CLASS_NO_COPY(VmaMutexLock)

-public:

-    VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :

-        m_pMutex(useMutex ? &mutex : VMA_NULL)

-    { if(m_pMutex) { m_pMutex->Lock(); } }

-    ~VmaMutexLock()

-    { if(m_pMutex) { m_pMutex->Unlock(); } }

-private:

-    VMA_MUTEX* m_pMutex;

-};

-

-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.

-struct VmaMutexLockRead

-{

-    VMA_CLASS_NO_COPY(VmaMutexLockRead)

-public:

-    VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :

-        m_pMutex(useMutex ? &mutex : VMA_NULL)

-    { if(m_pMutex) { m_pMutex->LockRead(); } }

-    ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } }

-private:

-    VMA_RW_MUTEX* m_pMutex;

-};

-

-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.

-struct VmaMutexLockWrite

-{

-    VMA_CLASS_NO_COPY(VmaMutexLockWrite)

-public:

-    VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) :

-        m_pMutex(useMutex ? &mutex : VMA_NULL)

-    { if(m_pMutex) { m_pMutex->LockWrite(); } }

-    ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } }

-private:

-    VMA_RW_MUTEX* m_pMutex;

-};

-

-#if VMA_DEBUG_GLOBAL_MUTEX

-    static VMA_MUTEX gDebugGlobalMutex;

-    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);

-#else

-    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK

-#endif

-

-// Minimum size of a free suballocation to register it in the free suballocation collection.

-static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;

-

-/*

-Performs binary search and returns iterator to first element that is greater or

-equal to (key), according to comparison (cmp).

-

-Cmp should return true if first argument is less than second argument.

-

-Returned value is the found element, if present in the collection or place where

-new element with value (key) should be inserted.

-*/

-template <typename CmpLess, typename IterT, typename KeyT>

-static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp)

-{

-    size_t down = 0, up = (end - beg);

-    while(down < up)

-    {

-        const size_t mid = (down + up) / 2;

-        if(cmp(*(beg+mid), key))

-        {

-            down = mid + 1;

-        }

-        else

-        {

-            up = mid;

-        }

-    }

-    return beg + down;

-}

-

-template<typename CmpLess, typename IterT, typename KeyT>

-IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)

-{

-    IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(

-        beg, end, value, cmp);

-    if(it == end ||

-        (!cmp(*it, value) && !cmp(value, *it)))

-    {

-        return it;

-    }

-    return end;

-}

-

-/*

-Returns true if all pointers in the array are not-null and unique.

-Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.

-T must be pointer type, e.g. VmaAllocation, VmaPool.

-*/

-template<typename T>

-static bool VmaValidatePointerArray(uint32_t count, const T* arr)

-{

-    for(uint32_t i = 0; i < count; ++i)

-    {

-        const T iPtr = arr[i];

-        if(iPtr == VMA_NULL)

-        {

-            return false;

-        }

-        for(uint32_t j = i + 1; j < count; ++j)

-        {

-            if(iPtr == arr[j])

-            {

-                return false;

-            }

-        }

-    }

-    return true;

-}

-

-template<typename MainT, typename NewT>

-static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)

-{

-    newStruct->pNext = mainStruct->pNext;

-    mainStruct->pNext = newStruct;

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// Memory allocation

-

-static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)

-{

-    if((pAllocationCallbacks != VMA_NULL) &&

-        (pAllocationCallbacks->pfnAllocation != VMA_NULL))

-    {

-        return (*pAllocationCallbacks->pfnAllocation)(

-            pAllocationCallbacks->pUserData,

-            size,

-            alignment,

-            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);

-    }

-    else

-    {

-        return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);

-    }

-}

-

-static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)

-{

-    if((pAllocationCallbacks != VMA_NULL) &&

-        (pAllocationCallbacks->pfnFree != VMA_NULL))

-    {

-        (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);

-    }

-    else

-    {

-        VMA_SYSTEM_FREE(ptr);

-    }

-}

-

-template<typename T>

-static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)

-{

-    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));

-}

-

-template<typename T>

-static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)

-{

-    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));

-}

-

-#define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)

-

-#define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)

-

-template<typename T>

-static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)

-{

-    ptr->~T();

-    VmaFree(pAllocationCallbacks, ptr);

-}

-

-template<typename T>

-static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)

-{

-    if(ptr != VMA_NULL)

-    {

-        for(size_t i = count; i--; )

-        {

-            ptr[i].~T();

-        }

-        VmaFree(pAllocationCallbacks, ptr);

-    }

-}

-

-static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)

-{

-    if(srcStr != VMA_NULL)

-    {

-        const size_t len = strlen(srcStr);

-        char* const result = vma_new_array(allocs, char, len + 1);

-        memcpy(result, srcStr, len + 1);

-        return result;

-    }

-    else

-    {

-        return VMA_NULL;

-    }

-}

-

-static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)

-{

-    if(str != VMA_NULL)

-    {

-        const size_t len = strlen(str);

-        vma_delete_array(allocs, str, len + 1);

-    }

-}

-

-// STL-compatible allocator.

-template<typename T>

-class VmaStlAllocator

-{

-public:

-    const VkAllocationCallbacks* const m_pCallbacks;

-    typedef T value_type;

-    

-    VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }

-    template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }

-

-    T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }

-    void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }

-

-    template<typename U>

-    bool operator==(const VmaStlAllocator<U>& rhs) const

-    {

-        return m_pCallbacks == rhs.m_pCallbacks;

-    }

-    template<typename U>

-    bool operator!=(const VmaStlAllocator<U>& rhs) const

-    {

-        return m_pCallbacks != rhs.m_pCallbacks;

-    }

-

-    VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;

-};

-

-#if VMA_USE_STL_VECTOR

-

-#define VmaVector std::vector

-

-template<typename T, typename allocatorT>

-static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)

-{

-    vec.insert(vec.begin() + index, item);

-}

-

-template<typename T, typename allocatorT>

-static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)

-{

-    vec.erase(vec.begin() + index);

-}

-

-#else // #if VMA_USE_STL_VECTOR

-

-/* Class with interface compatible with subset of std::vector.

-T must be POD because constructors and destructors are not called and memcpy is

-used for these objects. */

-template<typename T, typename AllocatorT>

-class VmaVector

-{

-public:

-    typedef T value_type;

-

-    VmaVector(const AllocatorT& allocator) :

-        m_Allocator(allocator),

-        m_pArray(VMA_NULL),

-        m_Count(0),

-        m_Capacity(0)

-    {

-    }

-

-    VmaVector(size_t count, const AllocatorT& allocator) :

-        m_Allocator(allocator),

-        m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),

-        m_Count(count),

-        m_Capacity(count)

-    {

-    }

-    

-    // This version of the constructor is here for compatibility with pre-C++14 std::vector.

-    // value is unused.

-    VmaVector(size_t count, const T& value, const AllocatorT& allocator)

-        : VmaVector(count, allocator) {}

-    

-    VmaVector(const VmaVector<T, AllocatorT>& src) :

-        m_Allocator(src.m_Allocator),

-        m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),

-        m_Count(src.m_Count),

-        m_Capacity(src.m_Count)

-    {

-        if(m_Count != 0)

-        {

-            memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));

-        }

-    }

-    

-    ~VmaVector()

-    {

-        VmaFree(m_Allocator.m_pCallbacks, m_pArray);

-    }

-

-    VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)

-    {

-        if(&rhs != this)

-        {

-            resize(rhs.m_Count);

-            if(m_Count != 0)

-            {

-                memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));

-            }

-        }

-        return *this;

-    }

-    

-    bool empty() const { return m_Count == 0; }

-    size_t size() const { return m_Count; }

-    T* data() { return m_pArray; }

-    const T* data() const { return m_pArray; }

-    

-    T& operator[](size_t index)

-    {

-        VMA_HEAVY_ASSERT(index < m_Count);

-        return m_pArray[index];

-    }

-    const T& operator[](size_t index) const

-    {

-        VMA_HEAVY_ASSERT(index < m_Count);

-        return m_pArray[index];

-    }

-

-    T& front()

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        return m_pArray[0];

-    }

-    const T& front() const

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        return m_pArray[0];

-    }

-    T& back()

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        return m_pArray[m_Count - 1];

-    }

-    const T& back() const

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        return m_pArray[m_Count - 1];

-    }

-

-    void reserve(size_t newCapacity, bool freeMemory = false)

-    {

-        newCapacity = VMA_MAX(newCapacity, m_Count);

-        

-        if((newCapacity < m_Capacity) && !freeMemory)

-        {

-            newCapacity = m_Capacity;

-        }

-        

-        if(newCapacity != m_Capacity)

-        {

-            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;

-            if(m_Count != 0)

-            {

-                memcpy(newArray, m_pArray, m_Count * sizeof(T));

-            }

-            VmaFree(m_Allocator.m_pCallbacks, m_pArray);

-            m_Capacity = newCapacity;

-            m_pArray = newArray;

-        }

-    }

-

-    void resize(size_t newCount, bool freeMemory = false)

-    {

-        size_t newCapacity = m_Capacity;

-        if(newCount > m_Capacity)

-        {

-            newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));

-        }

-        else if(freeMemory)

-        {

-            newCapacity = newCount;

-        }

-

-        if(newCapacity != m_Capacity)

-        {

-            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;

-            const size_t elementsToCopy = VMA_MIN(m_Count, newCount);

-            if(elementsToCopy != 0)

-            {

-                memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));

-            }

-            VmaFree(m_Allocator.m_pCallbacks, m_pArray);

-            m_Capacity = newCapacity;

-            m_pArray = newArray;

-        }

-

-        m_Count = newCount;

-    }

-

-    void clear(bool freeMemory = false)

-    {

-        resize(0, freeMemory);

-    }

-

-    void insert(size_t index, const T& src)

-    {

-        VMA_HEAVY_ASSERT(index <= m_Count);

-        const size_t oldCount = size();

-        resize(oldCount + 1);

-        if(index < oldCount)

-        {

-            memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));

-        }

-        m_pArray[index] = src;

-    }

-

-    void remove(size_t index)

-    {

-        VMA_HEAVY_ASSERT(index < m_Count);

-        const size_t oldCount = size();

-        if(index < oldCount - 1)

-        {

-            memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));

-        }

-        resize(oldCount - 1);

-    }

-

-    void push_back(const T& src)

-    {

-        const size_t newIndex = size();

-        resize(newIndex + 1);

-        m_pArray[newIndex] = src;

-    }

-

-    void pop_back()

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        resize(size() - 1);

-    }

-

-    void push_front(const T& src)

-    {

-        insert(0, src);

-    }

-

-    void pop_front()

-    {

-        VMA_HEAVY_ASSERT(m_Count > 0);

-        remove(0);

-    }

-

-    typedef T* iterator;

-

-    iterator begin() { return m_pArray; }

-    iterator end() { return m_pArray + m_Count; }

-

-private:

-    AllocatorT m_Allocator;

-    T* m_pArray;

-    size_t m_Count;

-    size_t m_Capacity;

-};

-

-template<typename T, typename allocatorT>

-static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)

-{

-    vec.insert(index, item);

-}

-

-template<typename T, typename allocatorT>

-static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)

-{

-    vec.remove(index);

-}

-

-#endif // #if VMA_USE_STL_VECTOR

-

-template<typename CmpLess, typename VectorT>

-size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)

-{

-    const size_t indexToInsert = VmaBinaryFindFirstNotLess(

-        vector.data(),

-        vector.data() + vector.size(),

-        value,

-        CmpLess()) - vector.data();

-    VmaVectorInsert(vector, indexToInsert, value);

-    return indexToInsert;

-}

-

-template<typename CmpLess, typename VectorT>

-bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)

-{

-    CmpLess comparator;

-    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(

-        vector.begin(),

-        vector.end(),

-        value,

-        comparator);

-    if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))

-    {

-        size_t indexToRemove = it - vector.begin();

-        VmaVectorRemove(vector, indexToRemove);

-        return true;

-    }

-    return false;

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaPoolAllocator

-

-/*

-Allocator for objects of type T using a list of arrays (pools) to speed up

-allocation. Number of elements that can be allocated is not bounded because

-allocator can create multiple blocks.

-*/

-template<typename T>

-class VmaPoolAllocator

-{

-    VMA_CLASS_NO_COPY(VmaPoolAllocator)

-public:

-    VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);

-    ~VmaPoolAllocator();

-    template<typename... Types> T* Alloc(Types... args);

-    void Free(T* ptr);

-

-private:

-    union Item

-    {

-        uint32_t NextFreeIndex;

-        alignas(T) char Value[sizeof(T)];

-    };

-

-    struct ItemBlock

-    {

-        Item* pItems;

-        uint32_t Capacity;

-        uint32_t FirstFreeIndex;

-    };

-    

-    const VkAllocationCallbacks* m_pAllocationCallbacks;

-    const uint32_t m_FirstBlockCapacity;

-    VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;

-

-    ItemBlock& CreateNewBlock();

-};

-

-template<typename T>

-VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) :

-    m_pAllocationCallbacks(pAllocationCallbacks),

-    m_FirstBlockCapacity(firstBlockCapacity),

-    m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))

-{

-    VMA_ASSERT(m_FirstBlockCapacity > 1);

-}

-

-template<typename T>

-VmaPoolAllocator<T>::~VmaPoolAllocator()

-{

-    for(size_t i = m_ItemBlocks.size(); i--; )

-        vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);

-    m_ItemBlocks.clear();

-}

-

-template<typename T>

-template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types... args)

-{

-    for(size_t i = m_ItemBlocks.size(); i--; )

-    {

-        ItemBlock& block = m_ItemBlocks[i];

-        // This block has some free items: Use first one.

-        if(block.FirstFreeIndex != UINT32_MAX)

-        {

-            Item* const pItem = &block.pItems[block.FirstFreeIndex];

-            block.FirstFreeIndex = pItem->NextFreeIndex;

-            T* result = (T*)&pItem->Value;

-            new(result)T(std::forward<Types>(args)...); // Explicit constructor call.

-            return result;

-        }

-    }

-

-    // No block has free item: Create new one and use it.

-    ItemBlock& newBlock = CreateNewBlock();

-    Item* const pItem = &newBlock.pItems[0];

-    newBlock.FirstFreeIndex = pItem->NextFreeIndex;

-    T* result = (T*)&pItem->Value;

-    new(result)T(std::forward<Types>(args)...); // Explicit constructor call.

-    return result;

-}

-

-template<typename T>

-void VmaPoolAllocator<T>::Free(T* ptr)

-{

-    // Search all memory blocks to find ptr.

-    for(size_t i = m_ItemBlocks.size(); i--; )

-    {

-        ItemBlock& block = m_ItemBlocks[i];

-        

-        // Casting to union.

-        Item* pItemPtr;

-        memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));

-        

-        // Check if pItemPtr is in address range of this block.

-        if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))

-        {

-            ptr->~T(); // Explicit destructor call.

-            const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);

-            pItemPtr->NextFreeIndex = block.FirstFreeIndex;

-            block.FirstFreeIndex = index;

-            return;

-        }

-    }

-    VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");

-}

-

-template<typename T>

-typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()

-{

-    const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?

-        m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;

-

-    const ItemBlock newBlock = {

-        vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),

-        newBlockCapacity,

-        0 };

-

-    m_ItemBlocks.push_back(newBlock);

-

-    // Setup singly-linked list of all free items in this block.

-    for(uint32_t i = 0; i < newBlockCapacity - 1; ++i)

-        newBlock.pItems[i].NextFreeIndex = i + 1;

-    newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;

-    return m_ItemBlocks.back();

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaRawList, VmaList

-

-#if VMA_USE_STL_LIST

-

-#define VmaList std::list

-

-#else // #if VMA_USE_STL_LIST

-

-template<typename T>

-struct VmaListItem

-{

-    VmaListItem* pPrev;

-    VmaListItem* pNext;

-    T Value;

-};

-

-// Doubly linked list.

-template<typename T>

-class VmaRawList

-{

-    VMA_CLASS_NO_COPY(VmaRawList)

-public:

-    typedef VmaListItem<T> ItemType;

-

-    VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);

-    ~VmaRawList();

-    void Clear();

-

-    size_t GetCount() const { return m_Count; }

-    bool IsEmpty() const { return m_Count == 0; }

-

-    ItemType* Front() { return m_pFront; }

-    const ItemType* Front() const { return m_pFront; }

-    ItemType* Back() { return m_pBack; }

-    const ItemType* Back() const { return m_pBack; }

-

-    ItemType* PushBack();

-    ItemType* PushFront();

-    ItemType* PushBack(const T& value);

-    ItemType* PushFront(const T& value);

-    void PopBack();

-    void PopFront();

-    

-    // Item can be null - it means PushBack.

-    ItemType* InsertBefore(ItemType* pItem);

-    // Item can be null - it means PushFront.

-    ItemType* InsertAfter(ItemType* pItem);

-

-    ItemType* InsertBefore(ItemType* pItem, const T& value);

-    ItemType* InsertAfter(ItemType* pItem, const T& value);

-

-    void Remove(ItemType* pItem);

-

-private:

-    const VkAllocationCallbacks* const m_pAllocationCallbacks;

-    VmaPoolAllocator<ItemType> m_ItemAllocator;

-    ItemType* m_pFront;

-    ItemType* m_pBack;

-    size_t m_Count;

-};

-

-template<typename T>

-VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :

-    m_pAllocationCallbacks(pAllocationCallbacks),

-    m_ItemAllocator(pAllocationCallbacks, 128),

-    m_pFront(VMA_NULL),

-    m_pBack(VMA_NULL),

-    m_Count(0)

-{

-}

-

-template<typename T>

-VmaRawList<T>::~VmaRawList()

-{

-    // Intentionally not calling Clear, because that would be unnecessary

-    // computations to return all items to m_ItemAllocator as free.

-}

-

-template<typename T>

-void VmaRawList<T>::Clear()

-{

-    if(IsEmpty() == false)

-    {

-        ItemType* pItem = m_pBack;

-        while(pItem != VMA_NULL)

-        {

-            ItemType* const pPrevItem = pItem->pPrev;

-            m_ItemAllocator.Free(pItem);

-            pItem = pPrevItem;

-        }

-        m_pFront = VMA_NULL;

-        m_pBack = VMA_NULL;

-        m_Count = 0;

-    }

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::PushBack()

-{

-    ItemType* const pNewItem = m_ItemAllocator.Alloc();

-    pNewItem->pNext = VMA_NULL;

-    if(IsEmpty())

-    {

-        pNewItem->pPrev = VMA_NULL;

-        m_pFront = pNewItem;

-        m_pBack = pNewItem;

-        m_Count = 1;

-    }

-    else

-    {

-        pNewItem->pPrev = m_pBack;

-        m_pBack->pNext = pNewItem;

-        m_pBack = pNewItem;

-        ++m_Count;

-    }

-    return pNewItem;

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::PushFront()

-{

-    ItemType* const pNewItem = m_ItemAllocator.Alloc();

-    pNewItem->pPrev = VMA_NULL;

-    if(IsEmpty())

-    {

-        pNewItem->pNext = VMA_NULL;

-        m_pFront = pNewItem;

-        m_pBack = pNewItem;

-        m_Count = 1;

-    }

-    else

-    {

-        pNewItem->pNext = m_pFront;

-        m_pFront->pPrev = pNewItem;

-        m_pFront = pNewItem;

-        ++m_Count;

-    }

-    return pNewItem;

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)

-{

-    ItemType* const pNewItem = PushBack();

-    pNewItem->Value = value;

-    return pNewItem;

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)

-{

-    ItemType* const pNewItem = PushFront();

-    pNewItem->Value = value;

-    return pNewItem;

-}

-

-template<typename T>

-void VmaRawList<T>::PopBack()

-{

-    VMA_HEAVY_ASSERT(m_Count > 0);

-    ItemType* const pBackItem = m_pBack;

-    ItemType* const pPrevItem = pBackItem->pPrev;

-    if(pPrevItem != VMA_NULL)

-    {

-        pPrevItem->pNext = VMA_NULL;

-    }

-    m_pBack = pPrevItem;

-    m_ItemAllocator.Free(pBackItem);

-    --m_Count;

-}

-

-template<typename T>

-void VmaRawList<T>::PopFront()

-{

-    VMA_HEAVY_ASSERT(m_Count > 0);

-    ItemType* const pFrontItem = m_pFront;

-    ItemType* const pNextItem = pFrontItem->pNext;

-    if(pNextItem != VMA_NULL)

-    {

-        pNextItem->pPrev = VMA_NULL;

-    }

-    m_pFront = pNextItem;

-    m_ItemAllocator.Free(pFrontItem);

-    --m_Count;

-}

-

-template<typename T>

-void VmaRawList<T>::Remove(ItemType* pItem)

-{

-    VMA_HEAVY_ASSERT(pItem != VMA_NULL);

-    VMA_HEAVY_ASSERT(m_Count > 0);

-

-    if(pItem->pPrev != VMA_NULL)

-    {

-        pItem->pPrev->pNext = pItem->pNext;

-    }

-    else

-    {

-        VMA_HEAVY_ASSERT(m_pFront == pItem);

-        m_pFront = pItem->pNext;

-    }

-

-    if(pItem->pNext != VMA_NULL)

-    {

-        pItem->pNext->pPrev = pItem->pPrev;

-    }

-    else

-    {

-        VMA_HEAVY_ASSERT(m_pBack == pItem);

-        m_pBack = pItem->pPrev;

-    }

-

-    m_ItemAllocator.Free(pItem);

-    --m_Count;

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)

-{

-    if(pItem != VMA_NULL)

-    {

-        ItemType* const prevItem = pItem->pPrev;

-        ItemType* const newItem = m_ItemAllocator.Alloc();

-        newItem->pPrev = prevItem;

-        newItem->pNext = pItem;

-        pItem->pPrev = newItem;

-        if(prevItem != VMA_NULL)

-        {

-            prevItem->pNext = newItem;

-        }

-        else

-        {

-            VMA_HEAVY_ASSERT(m_pFront == pItem);

-            m_pFront = newItem;

-        }

-        ++m_Count;

-        return newItem;

-    }

-    else

-        return PushBack();

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)

-{

-    if(pItem != VMA_NULL)

-    {

-        ItemType* const nextItem = pItem->pNext;

-        ItemType* const newItem = m_ItemAllocator.Alloc();

-        newItem->pNext = nextItem;

-        newItem->pPrev = pItem;

-        pItem->pNext = newItem;

-        if(nextItem != VMA_NULL)

-        {

-            nextItem->pPrev = newItem;

-        }

-        else

-        {

-            VMA_HEAVY_ASSERT(m_pBack == pItem);

-            m_pBack = newItem;

-        }

-        ++m_Count;

-        return newItem;

-    }

-    else

-        return PushFront();

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)

-{

-    ItemType* const newItem = InsertBefore(pItem);

-    newItem->Value = value;

-    return newItem;

-}

-

-template<typename T>

-VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)

-{

-    ItemType* const newItem = InsertAfter(pItem);

-    newItem->Value = value;

-    return newItem;

-}

-

-template<typename T, typename AllocatorT>

-class VmaList

-{

-    VMA_CLASS_NO_COPY(VmaList)

-public:

-    class iterator

-    {

-    public:

-        iterator() :

-            m_pList(VMA_NULL),

-            m_pItem(VMA_NULL)

-        {

-        }

-

-        T& operator*() const

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            return m_pItem->Value;

-        }

-        T* operator->() const

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            return &m_pItem->Value;

-        }

-

-        iterator& operator++()

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            m_pItem = m_pItem->pNext;

-            return *this;

-        }

-        iterator& operator--()

-        {

-            if(m_pItem != VMA_NULL)

-            {

-                m_pItem = m_pItem->pPrev;

-            }

-            else

-            {

-                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());

-                m_pItem = m_pList->Back();

-            }

-            return *this;

-        }

-

-        iterator operator++(int)

-        {

-            iterator result = *this;

-            ++*this;

-            return result;

-        }

-        iterator operator--(int)

-        {

-            iterator result = *this;

-            --*this;

-            return result;

-        }

-

-        bool operator==(const iterator& rhs) const

-        {

-            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

-            return m_pItem == rhs.m_pItem;

-        }

-        bool operator!=(const iterator& rhs) const

-        {

-            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

-            return m_pItem != rhs.m_pItem;

-        }

-        

-    private:

-        VmaRawList<T>* m_pList;

-        VmaListItem<T>* m_pItem;

-

-        iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :

-            m_pList(pList),

-            m_pItem(pItem)

-        {

-        }

-

-        friend class VmaList<T, AllocatorT>;

-    };

-

-    class const_iterator

-    {

-    public:

-        const_iterator() :

-            m_pList(VMA_NULL),

-            m_pItem(VMA_NULL)

-        {

-        }

-

-        const_iterator(const iterator& src) :

-            m_pList(src.m_pList),

-            m_pItem(src.m_pItem)

-        {

-        }

-        

-        const T& operator*() const

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            return m_pItem->Value;

-        }

-        const T* operator->() const

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            return &m_pItem->Value;

-        }

-

-        const_iterator& operator++()

-        {

-            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);

-            m_pItem = m_pItem->pNext;

-            return *this;

-        }

-        const_iterator& operator--()

-        {

-            if(m_pItem != VMA_NULL)

-            {

-                m_pItem = m_pItem->pPrev;

-            }

-            else

-            {

-                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());

-                m_pItem = m_pList->Back();

-            }

-            return *this;

-        }

-

-        const_iterator operator++(int)

-        {

-            const_iterator result = *this;

-            ++*this;

-            return result;

-        }

-        const_iterator operator--(int)

-        {

-            const_iterator result = *this;

-            --*this;

-            return result;

-        }

-

-        bool operator==(const const_iterator& rhs) const

-        {

-            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

-            return m_pItem == rhs.m_pItem;

-        }

-        bool operator!=(const const_iterator& rhs) const

-        {

-            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);

-            return m_pItem != rhs.m_pItem;

-        }

-        

-    private:

-        const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :

-            m_pList(pList),

-            m_pItem(pItem)

-        {

-        }

-

-        const VmaRawList<T>* m_pList;

-        const VmaListItem<T>* m_pItem;

-

-        friend class VmaList<T, AllocatorT>;

-    };

-

-    VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }

-

-    bool empty() const { return m_RawList.IsEmpty(); }

-    size_t size() const { return m_RawList.GetCount(); }

-

-    iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }

-    iterator end() { return iterator(&m_RawList, VMA_NULL); }

-

-    const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }

-    const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }

-

-    void clear() { m_RawList.Clear(); }

-    void push_back(const T& value) { m_RawList.PushBack(value); }

-    void erase(iterator it) { m_RawList.Remove(it.m_pItem); }

-    iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }

-

-private:

-    VmaRawList<T> m_RawList;

-};

-

-#endif // #if VMA_USE_STL_LIST

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaMap

-

-// Unused in this version.

-#if 0

-

-#if VMA_USE_STL_UNORDERED_MAP

-

-#define VmaPair std::pair

-

-#define VMA_MAP_TYPE(KeyT, ValueT) \

-    std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >

-

-#else // #if VMA_USE_STL_UNORDERED_MAP

-

-template<typename T1, typename T2>

-struct VmaPair

-{

-    T1 first;

-    T2 second;

-

-    VmaPair() : first(), second() { }

-    VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }

-};

-

-/* Class compatible with subset of interface of std::unordered_map.

-KeyT, ValueT must be POD because they will be stored in VmaVector.

-*/

-template<typename KeyT, typename ValueT>

-class VmaMap

-{

-public:

-    typedef VmaPair<KeyT, ValueT> PairType;

-    typedef PairType* iterator;

-

-    VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }

-

-    iterator begin() { return m_Vector.begin(); }

-    iterator end() { return m_Vector.end(); }

-

-    void insert(const PairType& pair);

-    iterator find(const KeyT& key);

-    void erase(iterator it);

-    

-private:

-    VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;

-};

-

-#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>

-

-template<typename FirstT, typename SecondT>

-struct VmaPairFirstLess

-{

-    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const

-    {

-        return lhs.first < rhs.first;

-    }

-    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const

-    {

-        return lhs.first < rhsFirst;

-    }

-};

-

-template<typename KeyT, typename ValueT>

-void VmaMap<KeyT, ValueT>::insert(const PairType& pair)

-{

-    const size_t indexToInsert = VmaBinaryFindFirstNotLess(

-        m_Vector.data(),

-        m_Vector.data() + m_Vector.size(),

-        pair,

-        VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();

-    VmaVectorInsert(m_Vector, indexToInsert, pair);

-}

-

-template<typename KeyT, typename ValueT>

-VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)

-{

-    PairType* it = VmaBinaryFindFirstNotLess(

-        m_Vector.data(),

-        m_Vector.data() + m_Vector.size(),

-        key,

-        VmaPairFirstLess<KeyT, ValueT>());

-    if((it != m_Vector.end()) && (it->first == key))

-    {

-        return it;

-    }

-    else

-    {

-        return m_Vector.end();

-    }

-}

-

-template<typename KeyT, typename ValueT>

-void VmaMap<KeyT, ValueT>::erase(iterator it)

-{

-    VmaVectorRemove(m_Vector, it - m_Vector.begin());

-}

-

-#endif // #if VMA_USE_STL_UNORDERED_MAP

-

-#endif // #if 0

-

-////////////////////////////////////////////////////////////////////////////////

-

-class VmaDeviceMemoryBlock;

-

-enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE };

-

-struct VmaAllocation_T

-{

-private:

-    static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;

-

-    enum FLAGS

-    {

-        FLAG_USER_DATA_STRING = 0x01,

-    };

-

-public:

-    enum ALLOCATION_TYPE

-    {

-        ALLOCATION_TYPE_NONE,

-        ALLOCATION_TYPE_BLOCK,

-        ALLOCATION_TYPE_DEDICATED,

-    };

-

-    /*

-    This struct is allocated using VmaPoolAllocator.

-    */

-

-    VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :

-        m_Alignment{1},

-        m_Size{0},

-        m_pUserData{VMA_NULL},

-        m_LastUseFrameIndex{currentFrameIndex},

-        m_MemoryTypeIndex{0},

-        m_Type{(uint8_t)ALLOCATION_TYPE_NONE},

-        m_SuballocationType{(uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN},

-        m_MapCount{0},

-        m_Flags{userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0}

-    {

-#if VMA_STATS_STRING_ENABLED

-        m_CreationFrameIndex = currentFrameIndex;

-        m_BufferImageUsage = 0;

-#endif

-    }

-

-    ~VmaAllocation_T()

-    {

-        VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");

-

-        // Check if owned string was freed.

-        VMA_ASSERT(m_pUserData == VMA_NULL);

-    }

-

-    void InitBlockAllocation(

-        VmaDeviceMemoryBlock* block,

-        VkDeviceSize offset,

-        VkDeviceSize alignment,

-        VkDeviceSize size,

-        uint32_t memoryTypeIndex,

-        VmaSuballocationType suballocationType,

-        bool mapped,

-        bool canBecomeLost)

-    {

-        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

-        VMA_ASSERT(block != VMA_NULL);

-        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;

-        m_Alignment = alignment;

-        m_Size = size;

-        m_MemoryTypeIndex = memoryTypeIndex;

-        m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;

-        m_SuballocationType = (uint8_t)suballocationType;

-        m_BlockAllocation.m_Block = block;

-        m_BlockAllocation.m_Offset = offset;

-        m_BlockAllocation.m_CanBecomeLost = canBecomeLost;

-    }

-

-    void InitLost()

-    {

-        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

-        VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);

-        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;

-        m_MemoryTypeIndex = 0;

-        m_BlockAllocation.m_Block = VMA_NULL;

-        m_BlockAllocation.m_Offset = 0;

-        m_BlockAllocation.m_CanBecomeLost = true;

-    }

-

-    void ChangeBlockAllocation(

-        VmaAllocator hAllocator,

-        VmaDeviceMemoryBlock* block,

-        VkDeviceSize offset); 

-

-    void ChangeOffset(VkDeviceSize newOffset);

-

-    // pMappedData not null means allocation is created with MAPPED flag.

-    void InitDedicatedAllocation(

-        uint32_t memoryTypeIndex,

-        VkDeviceMemory hMemory,

-        VmaSuballocationType suballocationType,

-        void* pMappedData,

-        VkDeviceSize size)

-    {

-        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);

-        VMA_ASSERT(hMemory != VK_NULL_HANDLE);

-        m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;

-        m_Alignment = 0;

-        m_Size = size;

-        m_MemoryTypeIndex = memoryTypeIndex;

-        m_SuballocationType = (uint8_t)suballocationType;

-        m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;

-        m_DedicatedAllocation.m_hMemory = hMemory;

-        m_DedicatedAllocation.m_pMappedData = pMappedData;

-    }

-

-    ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }

-    VkDeviceSize GetAlignment() const { return m_Alignment; }

-    VkDeviceSize GetSize() const { return m_Size; }

-    bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }

-    void* GetUserData() const { return m_pUserData; }

-    void SetUserData(VmaAllocator hAllocator, void* pUserData);

-    VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }

-

-    VmaDeviceMemoryBlock* GetBlock() const

-    {

-        VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

-        return m_BlockAllocation.m_Block;

-    }

-    VkDeviceSize GetOffset() const;

-    VkDeviceMemory GetMemory() const;

-    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }

-    bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }

-    void* GetMappedData() const;

-    bool CanBecomeLost() const;

-    

-    uint32_t GetLastUseFrameIndex() const

-    {

-        return m_LastUseFrameIndex.load();

-    }

-    bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)

-    {

-        return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);

-    }

-    /*

-    - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,

-      makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.

-    - Else, returns false.

-    

-    If hAllocation is already lost, assert - you should not call it then.

-    If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.

-    */

-    bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

-

-    void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)

-    {

-        VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);

-        outInfo.blockCount = 1;

-        outInfo.allocationCount = 1;

-        outInfo.unusedRangeCount = 0;

-        outInfo.usedBytes = m_Size;

-        outInfo.unusedBytes = 0;

-        outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;

-        outInfo.unusedRangeSizeMin = UINT64_MAX;

-        outInfo.unusedRangeSizeMax = 0;

-    }

-

-    void BlockAllocMap();

-    void BlockAllocUnmap();

-    VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);

-    void DedicatedAllocUnmap(VmaAllocator hAllocator);

-

-#if VMA_STATS_STRING_ENABLED

-    uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }

-    uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }

-

-    void InitBufferImageUsage(uint32_t bufferImageUsage)

-    {

-        VMA_ASSERT(m_BufferImageUsage == 0);

-        m_BufferImageUsage = bufferImageUsage;

-    }

-

-    void PrintParameters(class VmaJsonWriter& json) const;

-#endif

-

-private:

-    VkDeviceSize m_Alignment;

-    VkDeviceSize m_Size;

-    void* m_pUserData;

-    VMA_ATOMIC_UINT32 m_LastUseFrameIndex;

-    uint32_t m_MemoryTypeIndex;

-    uint8_t m_Type; // ALLOCATION_TYPE

-    uint8_t m_SuballocationType; // VmaSuballocationType

-    // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.

-    // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().

-    uint8_t m_MapCount;

-    uint8_t m_Flags; // enum FLAGS

-

-    // Allocation out of VmaDeviceMemoryBlock.

-    struct BlockAllocation

-    {

-        VmaDeviceMemoryBlock* m_Block;

-        VkDeviceSize m_Offset;

-        bool m_CanBecomeLost;

-    };

-

-    // Allocation for an object that has its own private VkDeviceMemory.

-    struct DedicatedAllocation

-    {

-        VkDeviceMemory m_hMemory;

-        void* m_pMappedData; // Not null means memory is mapped.

-    };

-

-    union

-    {

-        // Allocation out of VmaDeviceMemoryBlock.

-        BlockAllocation m_BlockAllocation;

-        // Allocation for an object that has its own private VkDeviceMemory.

-        DedicatedAllocation m_DedicatedAllocation;

-    };

-

-#if VMA_STATS_STRING_ENABLED

-    uint32_t m_CreationFrameIndex;

-    uint32_t m_BufferImageUsage; // 0 if unknown.

-#endif

-

-    void FreeUserDataString(VmaAllocator hAllocator);

-};

-

-/*

-Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as

-allocated memory block or free.

-*/

-struct VmaSuballocation

-{

-    VkDeviceSize offset;

-    VkDeviceSize size;

-    VmaAllocation hAllocation;

-    VmaSuballocationType type;

-};

-

-// Comparator for offsets.

-struct VmaSuballocationOffsetLess

-{

-    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const

-    {

-        return lhs.offset < rhs.offset;

-    }

-};

-struct VmaSuballocationOffsetGreater

-{

-    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const

-    {

-        return lhs.offset > rhs.offset;

-    }

-};

-

-typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;

-

-// Cost of one additional allocation lost, as equivalent in bytes.

-static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;

-

-enum class VmaAllocationRequestType

-{

-    Normal,

-    // Used by "Linear" algorithm.

-    UpperAddress,

-    EndOf1st,

-    EndOf2nd,

-};

-

-/*

-Parameters of planned allocation inside a VmaDeviceMemoryBlock.

-

-If canMakeOtherLost was false:

-- item points to a FREE suballocation.

-- itemsToMakeLostCount is 0.

-

-If canMakeOtherLost was true:

-- item points to first of sequence of suballocations, which are either FREE,

-  or point to VmaAllocations that can become lost.

-- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for

-  the requested allocation to succeed.

-*/

-struct VmaAllocationRequest

-{

-    VkDeviceSize offset;

-    VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.

-    VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.

-    VmaSuballocationList::iterator item;

-    size_t itemsToMakeLostCount;

-    void* customData;

-    VmaAllocationRequestType type;

-

-    VkDeviceSize CalcCost() const

-    {

-        return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;

-    }

-};

-

-/*

-Data structure used for bookkeeping of allocations and unused ranges of memory

-in a single VkDeviceMemory block.

-*/

-class VmaBlockMetadata

-{

-public:

-    VmaBlockMetadata(VmaAllocator hAllocator);

-    virtual ~VmaBlockMetadata() { }

-    virtual void Init(VkDeviceSize size) { m_Size = size; }

-

-    // Validates all data structures inside this object. If not valid, returns false.

-    virtual bool Validate() const = 0;

-    VkDeviceSize GetSize() const { return m_Size; }

-    virtual size_t GetAllocationCount() const = 0;

-    virtual VkDeviceSize GetSumFreeSize() const = 0;

-    virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;

-    // Returns true if this block is empty - contains only single free suballocation.

-    virtual bool IsEmpty() const = 0;

-

-    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;

-    // Shouldn't modify blockCount.

-    virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;

-

-#if VMA_STATS_STRING_ENABLED

-    virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;

-#endif

-

-    // Tries to find a place for suballocation with given parameters inside this block.

-    // If succeeded, fills pAllocationRequest and returns true.

-    // If failed, returns false.

-    virtual bool CreateAllocationRequest(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        bool upperAddress,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest) = 0;

-

-    virtual bool MakeRequestedAllocationsLost(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VmaAllocationRequest* pAllocationRequest) = 0;

-

-    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;

-

-    virtual VkResult CheckCorruption(const void* pBlockData) = 0;

-

-    // Makes actual allocation based on request. Request must already be checked and valid.

-    virtual void Alloc(

-        const VmaAllocationRequest& request,

-        VmaSuballocationType type,

-        VkDeviceSize allocSize,

-        VmaAllocation hAllocation) = 0;

-

-    // Frees suballocation assigned to given memory region.

-    virtual void Free(const VmaAllocation allocation) = 0;

-    virtual void FreeAtOffset(VkDeviceSize offset) = 0;

-

-protected:

-    const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }

-

-#if VMA_STATS_STRING_ENABLED

-    void PrintDetailedMap_Begin(class VmaJsonWriter& json,

-        VkDeviceSize unusedBytes,

-        size_t allocationCount,

-        size_t unusedRangeCount) const;

-    void PrintDetailedMap_Allocation(class VmaJsonWriter& json,

-        VkDeviceSize offset,

-        VmaAllocation hAllocation) const;

-    void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,

-        VkDeviceSize offset,

-        VkDeviceSize size) const;

-    void PrintDetailedMap_End(class VmaJsonWriter& json) const;

-#endif

-

-private:

-    VkDeviceSize m_Size;

-    const VkAllocationCallbacks* m_pAllocationCallbacks;

-};

-

-#define VMA_VALIDATE(cond) do { if(!(cond)) { \

-        VMA_ASSERT(0 && "Validation failed: " #cond); \

-        return false; \

-    } } while(false)

-

-class VmaBlockMetadata_Generic : public VmaBlockMetadata

-{

-    VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)

-public:

-    VmaBlockMetadata_Generic(VmaAllocator hAllocator);

-    virtual ~VmaBlockMetadata_Generic();

-    virtual void Init(VkDeviceSize size);

-

-    virtual bool Validate() const;

-    virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }

-    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }

-    virtual VkDeviceSize GetUnusedRangeSizeMax() const;

-    virtual bool IsEmpty() const;

-

-    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;

-    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;

-

-#if VMA_STATS_STRING_ENABLED

-    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;

-#endif

-

-    virtual bool CreateAllocationRequest(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        bool upperAddress,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual bool MakeRequestedAllocationsLost(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

-

-    virtual VkResult CheckCorruption(const void* pBlockData);

-

-    virtual void Alloc(

-        const VmaAllocationRequest& request,

-        VmaSuballocationType type,

-        VkDeviceSize allocSize,

-        VmaAllocation hAllocation);

-

-    virtual void Free(const VmaAllocation allocation);

-    virtual void FreeAtOffset(VkDeviceSize offset);

-

-    ////////////////////////////////////////////////////////////////////////////////

-    // For defragmentation

-    

-    bool IsBufferImageGranularityConflictPossible(

-        VkDeviceSize bufferImageGranularity,

-        VmaSuballocationType& inOutPrevSuballocType) const;

-

-private:

-    friend class VmaDefragmentationAlgorithm_Generic;

-    friend class VmaDefragmentationAlgorithm_Fast;

-

-    uint32_t m_FreeCount;

-    VkDeviceSize m_SumFreeSize;

-    VmaSuballocationList m_Suballocations;

-    // Suballocations that are free and have size greater than certain threshold.

-    // Sorted by size, ascending.

-    VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;

-

-    bool ValidateFreeSuballocationList() const;

-

-    // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.

-    // If yes, fills pOffset and returns true. If no, returns false.

-    bool CheckAllocation(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        VmaSuballocationType allocType,

-        VmaSuballocationList::const_iterator suballocItem,

-        bool canMakeOtherLost,

-        VkDeviceSize* pOffset,

-        size_t* itemsToMakeLostCount,

-        VkDeviceSize* pSumFreeSize,

-        VkDeviceSize* pSumItemSize) const;

-    // Given free suballocation, it merges it with following one, which must also be free.

-    void MergeFreeWithNext(VmaSuballocationList::iterator item);

-    // Releases given suballocation, making it free.

-    // Merges it with adjacent free suballocations if applicable.

-    // Returns iterator to new free suballocation at this place.

-    VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);

-    // Given free suballocation, it inserts it into sorted list of

-    // m_FreeSuballocationsBySize if it's suitable.

-    void RegisterFreeSuballocation(VmaSuballocationList::iterator item);

-    // Given free suballocation, it removes it from sorted list of

-    // m_FreeSuballocationsBySize if it's suitable.

-    void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);

-};

-

-/*

-Allocations and their references in internal data structure look like this:

-

-if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):

-

-        0 +-------+

-          |       |

-          |       |

-          |       |

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount]

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount + 1]

-          +-------+

-          |  ...  |

-          +-------+

-          | Alloc |  1st[1st.size() - 1]

-          +-------+

-          |       |

-          |       |

-          |       |

-GetSize() +-------+

-

-if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):

-

-        0 +-------+

-          | Alloc |  2nd[0]

-          +-------+

-          | Alloc |  2nd[1]

-          +-------+

-          |  ...  |

-          +-------+

-          | Alloc |  2nd[2nd.size() - 1]

-          +-------+

-          |       |

-          |       |

-          |       |

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount]

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount + 1]

-          +-------+

-          |  ...  |

-          +-------+

-          | Alloc |  1st[1st.size() - 1]

-          +-------+

-          |       |

-GetSize() +-------+

-

-if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):

-

-        0 +-------+

-          |       |

-          |       |

-          |       |

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount]

-          +-------+

-          | Alloc |  1st[m_1stNullItemsBeginCount + 1]

-          +-------+

-          |  ...  |

-          +-------+

-          | Alloc |  1st[1st.size() - 1]

-          +-------+

-          |       |

-          |       |

-          |       |

-          +-------+

-          | Alloc |  2nd[2nd.size() - 1]

-          +-------+

-          |  ...  |

-          +-------+

-          | Alloc |  2nd[1]

-          +-------+

-          | Alloc |  2nd[0]

-GetSize() +-------+

-

-*/

-class VmaBlockMetadata_Linear : public VmaBlockMetadata

-{

-    VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)

-public:

-    VmaBlockMetadata_Linear(VmaAllocator hAllocator);

-    virtual ~VmaBlockMetadata_Linear();

-    virtual void Init(VkDeviceSize size);

-

-    virtual bool Validate() const;

-    virtual size_t GetAllocationCount() const;

-    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }

-    virtual VkDeviceSize GetUnusedRangeSizeMax() const;

-    virtual bool IsEmpty() const { return GetAllocationCount() == 0; }

-

-    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;

-    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;

-

-#if VMA_STATS_STRING_ENABLED

-    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;

-#endif

-

-    virtual bool CreateAllocationRequest(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        bool upperAddress,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual bool MakeRequestedAllocationsLost(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

-

-    virtual VkResult CheckCorruption(const void* pBlockData);

-

-    virtual void Alloc(

-        const VmaAllocationRequest& request,

-        VmaSuballocationType type,

-        VkDeviceSize allocSize,

-        VmaAllocation hAllocation);

-

-    virtual void Free(const VmaAllocation allocation);

-    virtual void FreeAtOffset(VkDeviceSize offset);

-

-private:

-    /*

-    There are two suballocation vectors, used in ping-pong way.

-    The one with index m_1stVectorIndex is called 1st.

-    The one with index (m_1stVectorIndex ^ 1) is called 2nd.

-    2nd can be non-empty only when 1st is not empty.

-    When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.

-    */

-    typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;

-

-    enum SECOND_VECTOR_MODE

-    {

-        SECOND_VECTOR_EMPTY,

-        /*

-        Suballocations in 2nd vector are created later than the ones in 1st, but they

-        all have smaller offset.

-        */

-        SECOND_VECTOR_RING_BUFFER,

-        /*

-        Suballocations in 2nd vector are upper side of double stack.

-        They all have offsets higher than those in 1st vector.

-        Top of this stack means smaller offsets, but higher indices in this vector.

-        */

-        SECOND_VECTOR_DOUBLE_STACK,

-    };

-

-    VkDeviceSize m_SumFreeSize;

-    SuballocationVectorType m_Suballocations0, m_Suballocations1;

-    uint32_t m_1stVectorIndex;

-    SECOND_VECTOR_MODE m_2ndVectorMode;

-

-    SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }

-    SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }

-    const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }

-    const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }

-    

-    // Number of items in 1st vector with hAllocation = null at the beginning.

-    size_t m_1stNullItemsBeginCount;

-    // Number of other items in 1st vector with hAllocation = null somewhere in the middle.

-    size_t m_1stNullItemsMiddleCount;

-    // Number of items in 2nd vector with hAllocation = null.

-    size_t m_2ndNullItemsCount;

-

-    bool ShouldCompact1st() const;

-    void CleanupAfterFree();

-

-    bool CreateAllocationRequest_LowerAddress(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest);

-    bool CreateAllocationRequest_UpperAddress(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest);

-};

-

-/*

-- GetSize() is the original size of allocated memory block.

-- m_UsableSize is this size aligned down to a power of two.

-  All allocations and calculations happen relative to m_UsableSize.

-- GetUnusableSize() is the difference between them.

-  It is repoted as separate, unused range, not available for allocations.

-

-Node at level 0 has size = m_UsableSize.

-Each next level contains nodes with size 2 times smaller than current level.

-m_LevelCount is the maximum number of levels to use in the current object.

-*/

-class VmaBlockMetadata_Buddy : public VmaBlockMetadata

-{

-    VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)

-public:

-    VmaBlockMetadata_Buddy(VmaAllocator hAllocator);

-    virtual ~VmaBlockMetadata_Buddy();

-    virtual void Init(VkDeviceSize size);

-

-    virtual bool Validate() const;

-    virtual size_t GetAllocationCount() const { return m_AllocationCount; }

-    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }

-    virtual VkDeviceSize GetUnusedRangeSizeMax() const;

-    virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }

-

-    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;

-    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;

-

-#if VMA_STATS_STRING_ENABLED

-    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;

-#endif

-

-    virtual bool CreateAllocationRequest(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VkDeviceSize bufferImageGranularity,

-        VkDeviceSize allocSize,

-        VkDeviceSize allocAlignment,

-        bool upperAddress,

-        VmaSuballocationType allocType,

-        bool canMakeOtherLost,

-        uint32_t strategy,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual bool MakeRequestedAllocationsLost(

-        uint32_t currentFrameIndex,

-        uint32_t frameInUseCount,

-        VmaAllocationRequest* pAllocationRequest);

-

-    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);

-

-    virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }

-

-    virtual void Alloc(

-        const VmaAllocationRequest& request,

-        VmaSuballocationType type,

-        VkDeviceSize allocSize,

-        VmaAllocation hAllocation);

-

-    virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); }

-    virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); }

-

-private:

-    static const VkDeviceSize MIN_NODE_SIZE = 32;

-    static const size_t MAX_LEVELS = 30;

-

-    struct ValidationContext

-    {

-        size_t calculatedAllocationCount;

-        size_t calculatedFreeCount;

-        VkDeviceSize calculatedSumFreeSize;

-

-        ValidationContext() :

-            calculatedAllocationCount(0),

-            calculatedFreeCount(0),

-            calculatedSumFreeSize(0) { }

-    };

-

-    struct Node

-    {

-        VkDeviceSize offset;

-        enum TYPE

-        {

-            TYPE_FREE,

-            TYPE_ALLOCATION,

-            TYPE_SPLIT,

-            TYPE_COUNT

-        } type;

-        Node* parent;

-        Node* buddy;

-

-        union

-        {

-            struct

-            {

-                Node* prev;

-                Node* next;

-            } free;

-            struct

-            {

-                VmaAllocation alloc;

-            } allocation;

-            struct

-            {

-                Node* leftChild;

-            } split;

-        };

-    };

-

-    // Size of the memory block aligned down to a power of two.

-    VkDeviceSize m_UsableSize;

-    uint32_t m_LevelCount;

-

-    Node* m_Root;

-    struct {

-        Node* front;

-        Node* back;

-    } m_FreeList[MAX_LEVELS];

-    // Number of nodes in the tree with type == TYPE_ALLOCATION.

-    size_t m_AllocationCount;

-    // Number of nodes in the tree with type == TYPE_FREE.

-    size_t m_FreeCount;

-    // This includes space wasted due to internal fragmentation. Doesn't include unusable size.

-    VkDeviceSize m_SumFreeSize;

-

-    VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }

-    void DeleteNode(Node* node);

-    bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;

-    uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;

-    inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }

-    // Alloc passed just for validation. Can be null.

-    void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset);

-    void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const;

-    // Adds node to the front of FreeList at given level.

-    // node->type must be FREE.

-    // node->free.prev, next can be undefined.

-    void AddToFreeListFront(uint32_t level, Node* node);

-    // Removes node from FreeList at given level.

-    // node->type must be FREE.

-    // node->free.prev, next stay untouched.

-    void RemoveFromFreeList(uint32_t level, Node* node);

-

-#if VMA_STATS_STRING_ENABLED

-    void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;

-#endif

-};

-

-/*

-Represents a single block of device memory (`VkDeviceMemory`) with all the

-data about its regions (aka suballocations, #VmaAllocation), assigned and free.

-

-Thread-safety: This class must be externally synchronized.

-*/

-class VmaDeviceMemoryBlock

-{

-    VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)

-public:

-    VmaBlockMetadata* m_pMetadata;

-

-    VmaDeviceMemoryBlock(VmaAllocator hAllocator);

-

-    ~VmaDeviceMemoryBlock()

-    {

-        VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");

-        VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);

-    }

-

-    // Always call after construction.

-    void Init(

-        VmaAllocator hAllocator,

-        VmaPool hParentPool,

-        uint32_t newMemoryTypeIndex,

-        VkDeviceMemory newMemory,

-        VkDeviceSize newSize,

-        uint32_t id,

-        uint32_t algorithm);

-    // Always call before destruction.

-    void Destroy(VmaAllocator allocator);

-    

-    VmaPool GetParentPool() const { return m_hParentPool; }

-    VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }

-    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }

-    uint32_t GetId() const { return m_Id; }

-    void* GetMappedData() const { return m_pMappedData; }

-

-    // Validates all data structures inside this object. If not valid, returns false.

-    bool Validate() const;

-

-    VkResult CheckCorruption(VmaAllocator hAllocator);

-

-    // ppData can be null.

-    VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);

-    void Unmap(VmaAllocator hAllocator, uint32_t count);

-

-    VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);

-    VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);

-

-    VkResult BindBufferMemory(

-        const VmaAllocator hAllocator,

-        const VmaAllocation hAllocation,

-        VkDeviceSize allocationLocalOffset,

-        VkBuffer hBuffer,

-        const void* pNext);

-    VkResult BindImageMemory(

-        const VmaAllocator hAllocator,

-        const VmaAllocation hAllocation,

-        VkDeviceSize allocationLocalOffset,

-        VkImage hImage,

-        const void* pNext);

-

-private:

-    VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.

-    uint32_t m_MemoryTypeIndex;

-    uint32_t m_Id;

-    VkDeviceMemory m_hMemory;

-

-    /*

-    Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.

-    Also protects m_MapCount, m_pMappedData.

-    Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.

-    */

-    VMA_MUTEX m_Mutex;

-    uint32_t m_MapCount;

-    void* m_pMappedData;

-};

-

-struct VmaPointerLess

-{

-    bool operator()(const void* lhs, const void* rhs) const

-    {

-        return lhs < rhs;

-    }

-};

-

-struct VmaDefragmentationMove

-{

-    size_t srcBlockIndex;

-    size_t dstBlockIndex;

-    VkDeviceSize srcOffset;

-    VkDeviceSize dstOffset;

-    VkDeviceSize size;

-    VmaAllocation hAllocation;

-    VmaDeviceMemoryBlock* pSrcBlock;

-    VmaDeviceMemoryBlock* pDstBlock;

-};

-

-class VmaDefragmentationAlgorithm;

-

-/*

-Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific

-Vulkan memory type.

-

-Synchronized internally with a mutex.

-*/

-struct VmaBlockVector

-{

-    VMA_CLASS_NO_COPY(VmaBlockVector)

-public:

-    VmaBlockVector(

-        VmaAllocator hAllocator,

-        VmaPool hParentPool,

-        uint32_t memoryTypeIndex,

-        VkDeviceSize preferredBlockSize,

-        size_t minBlockCount,

-        size_t maxBlockCount,

-        VkDeviceSize bufferImageGranularity,

-        uint32_t frameInUseCount,

-        bool explicitBlockSize,

-        uint32_t algorithm);

-    ~VmaBlockVector();

-

-    VkResult CreateMinBlocks();

-

-    VmaAllocator GetAllocator() const { return m_hAllocator; }

-    VmaPool GetParentPool() const { return m_hParentPool; }

-    bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }

-    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }

-    VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }

-    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }

-    uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }

-    uint32_t GetAlgorithm() const { return m_Algorithm; }

-

-    void GetPoolStats(VmaPoolStats* pStats);

-

-    bool IsEmpty();

-    bool IsCorruptionDetectionEnabled() const;

-

-    VkResult Allocate(

-        uint32_t currentFrameIndex,

-        VkDeviceSize size,

-        VkDeviceSize alignment,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaSuballocationType suballocType,

-        size_t allocationCount,

-        VmaAllocation* pAllocations);

-

-    void Free(const VmaAllocation hAllocation);

-

-    // Adds statistics of this BlockVector to pStats.

-    void AddStats(VmaStats* pStats);

-

-#if VMA_STATS_STRING_ENABLED

-    void PrintDetailedMap(class VmaJsonWriter& json);

-#endif

-

-    void MakePoolAllocationsLost(

-        uint32_t currentFrameIndex,

-        size_t* pLostAllocationCount);

-    VkResult CheckCorruption();

-

-    // Saves results in pCtx->res.

-    void Defragment(

-        class VmaBlockVectorDefragmentationContext* pCtx,

-        VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,

-        VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,

-        VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,

-        VkCommandBuffer commandBuffer);

-    void DefragmentationEnd(

-        class VmaBlockVectorDefragmentationContext* pCtx,

-        uint32_t flags,

-        VmaDefragmentationStats* pStats);

-

-    uint32_t ProcessDefragmentations(

-        class VmaBlockVectorDefragmentationContext *pCtx,

-        VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves);

-

-    void CommitDefragmentations(

-        class VmaBlockVectorDefragmentationContext *pCtx,

-        VmaDefragmentationStats* pStats);

-

-    ////////////////////////////////////////////////////////////////////////////////

-    // To be used only while the m_Mutex is locked. Used during defragmentation.

-

-    size_t GetBlockCount() const { return m_Blocks.size(); }

-    VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }

-    size_t CalcAllocationCount() const;

-    bool IsBufferImageGranularityConflictPossible() const;

-

-private:

-    friend class VmaDefragmentationAlgorithm_Generic;

-

-    const VmaAllocator m_hAllocator;

-    const VmaPool m_hParentPool;

-    const uint32_t m_MemoryTypeIndex;

-    const VkDeviceSize m_PreferredBlockSize;

-    const size_t m_MinBlockCount;

-    const size_t m_MaxBlockCount;

-    const VkDeviceSize m_BufferImageGranularity;

-    const uint32_t m_FrameInUseCount;

-    const bool m_ExplicitBlockSize;

-    const uint32_t m_Algorithm;

-    VMA_RW_MUTEX m_Mutex;

-

-    /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) -

-    a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */

-    bool m_HasEmptyBlock;

-    // Incrementally sorted by sumFreeSize, ascending.

-    VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;

-    uint32_t m_NextBlockId;

-

-    VkDeviceSize CalcMaxBlockSize() const;

-

-    // Finds and removes given block from vector.

-    void Remove(VmaDeviceMemoryBlock* pBlock);

-

-    // Performs single step in sorting m_Blocks. They may not be fully sorted

-    // after this call.

-    void IncrementallySortBlocks();

-

-    VkResult AllocatePage(

-        uint32_t currentFrameIndex,

-        VkDeviceSize size,

-        VkDeviceSize alignment,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaSuballocationType suballocType,

-        VmaAllocation* pAllocation);

-

-    // To be used only without CAN_MAKE_OTHER_LOST flag.

-    VkResult AllocateFromBlock(

-        VmaDeviceMemoryBlock* pBlock,

-        uint32_t currentFrameIndex,

-        VkDeviceSize size,

-        VkDeviceSize alignment,

-        VmaAllocationCreateFlags allocFlags,

-        void* pUserData,

-        VmaSuballocationType suballocType,

-        uint32_t strategy,

-        VmaAllocation* pAllocation);

-

-    VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);

-

-    // Saves result to pCtx->res.

-    void ApplyDefragmentationMovesCpu(

-        class VmaBlockVectorDefragmentationContext* pDefragCtx,

-        const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);

-    // Saves result to pCtx->res.

-    void ApplyDefragmentationMovesGpu(

-        class VmaBlockVectorDefragmentationContext* pDefragCtx,

-        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-        VkCommandBuffer commandBuffer);

-

-    /*

-    Used during defragmentation. pDefragmentationStats is optional. It's in/out

-    - updated with new data.

-    */

-    void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);

-

-    void UpdateHasEmptyBlock();

-};

-

-struct VmaPool_T

-{

-    VMA_CLASS_NO_COPY(VmaPool_T)

-public:

-    VmaBlockVector m_BlockVector;

-

-    VmaPool_T(

-        VmaAllocator hAllocator,

-        const VmaPoolCreateInfo& createInfo,

-        VkDeviceSize preferredBlockSize);

-    ~VmaPool_T();

-

-    uint32_t GetId() const { return m_Id; }

-    void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }

-

-    const char* GetName() const { return m_Name; }

-    void SetName(const char* pName);

-

-#if VMA_STATS_STRING_ENABLED

-    //void PrintDetailedMap(class VmaStringBuilder& sb);

-#endif

-

-private:

-    uint32_t m_Id;

-    char* m_Name;

-};

-

-/*

-Performs defragmentation:

-

-- Updates `pBlockVector->m_pMetadata`.

-- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().

-- Does not move actual data, only returns requested moves as `moves`.

-*/

-class VmaDefragmentationAlgorithm

-{

-    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)

-public:

-    VmaDefragmentationAlgorithm(

-        VmaAllocator hAllocator,

-        VmaBlockVector* pBlockVector,

-        uint32_t currentFrameIndex) :

-        m_hAllocator(hAllocator),

-        m_pBlockVector(pBlockVector),

-        m_CurrentFrameIndex(currentFrameIndex)

-    {

-    }

-    virtual ~VmaDefragmentationAlgorithm()

-    {

-    }

-

-    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0;

-    virtual void AddAll() = 0;

-

-    virtual VkResult Defragment(

-        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-        VkDeviceSize maxBytesToMove,

-        uint32_t maxAllocationsToMove,

-        VmaDefragmentationFlags flags) = 0;

-

-    virtual VkDeviceSize GetBytesMoved() const = 0;

-    virtual uint32_t GetAllocationsMoved() const = 0;

-

-protected:

-    VmaAllocator const m_hAllocator;

-    VmaBlockVector* const m_pBlockVector;

-    const uint32_t m_CurrentFrameIndex;

-

-    struct AllocationInfo

-    {

-        VmaAllocation m_hAllocation;

-        VkBool32* m_pChanged;

-

-        AllocationInfo() :

-            m_hAllocation(VK_NULL_HANDLE),

-            m_pChanged(VMA_NULL)

-        {

-        }

-        AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) :

-            m_hAllocation(hAlloc),

-            m_pChanged(pChanged)

-        {

-        }

-    };

-};

-

-class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm

-{

-    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)

-public:

-    VmaDefragmentationAlgorithm_Generic(

-        VmaAllocator hAllocator,

-        VmaBlockVector* pBlockVector,

-        uint32_t currentFrameIndex,

-        bool overlappingMoveSupported);

-    virtual ~VmaDefragmentationAlgorithm_Generic();

-

-    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);

-    virtual void AddAll() { m_AllAllocations = true; }

-

-    virtual VkResult Defragment(

-        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-        VkDeviceSize maxBytesToMove,

-        uint32_t maxAllocationsToMove,

-        VmaDefragmentationFlags flags);

-

-    virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }

-    virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }

-

-private:

-    uint32_t m_AllocationCount;

-    bool m_AllAllocations;

-

-    VkDeviceSize m_BytesMoved;

-    uint32_t m_AllocationsMoved;

-

-    struct AllocationInfoSizeGreater

-    {

-        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const

-        {

-            return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();

-        }

-    };

-

-    struct AllocationInfoOffsetGreater

-    {

-        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const

-        {

-            return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();

-        }

-    };

-

-    struct BlockInfo

-    {

-        size_t m_OriginalBlockIndex;

-        VmaDeviceMemoryBlock* m_pBlock;

-        bool m_HasNonMovableAllocations;

-        VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;

-

-        BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :

-            m_OriginalBlockIndex(SIZE_MAX),

-            m_pBlock(VMA_NULL),

-            m_HasNonMovableAllocations(true),

-            m_Allocations(pAllocationCallbacks)

-        {

-        }

-

-        void CalcHasNonMovableAllocations()

-        {

-            const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();

-            const size_t defragmentAllocCount = m_Allocations.size();

-            m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;

-        }

-

-        void SortAllocationsBySizeDescending()

-        {

-            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());

-        }

-

-        void SortAllocationsByOffsetDescending()

-        {

-            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());

-        }

-    };

-

-    struct BlockPointerLess

-    {

-        bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const

-        {

-            return pLhsBlockInfo->m_pBlock < pRhsBlock;

-        }

-        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const

-        {

-            return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;

-        }

-    };

-

-    // 1. Blocks with some non-movable allocations go first.

-    // 2. Blocks with smaller sumFreeSize go first.

-    struct BlockInfoCompareMoveDestination

-    {

-        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const

-        {

-            if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)

-            {

-                return true;

-            }

-            if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)

-            {

-                return false;

-            }

-            if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize())

-            {

-                return true;

-            }

-            return false;

-        }

-    };

-

-    typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;

-    BlockInfoVector m_Blocks;

-

-    VkResult DefragmentRound(

-        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-        VkDeviceSize maxBytesToMove,

-        uint32_t maxAllocationsToMove,

-        bool freeOldAllocations);

-

-    size_t CalcBlocksWithNonMovableCount() const;

-

-    static bool MoveMakesSense(

-        size_t dstBlockIndex, VkDeviceSize dstOffset,

-        size_t srcBlockIndex, VkDeviceSize srcOffset);

-};

-

-class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm

-{

-    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)

-public:

-    VmaDefragmentationAlgorithm_Fast(

-        VmaAllocator hAllocator,

-        VmaBlockVector* pBlockVector,

-        uint32_t currentFrameIndex,

-        bool overlappingMoveSupported);

-    virtual ~VmaDefragmentationAlgorithm_Fast();

-

-    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; }

-    virtual void AddAll() { m_AllAllocations = true; }

-

-    virtual VkResult Defragment(

-        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-        VkDeviceSize maxBytesToMove,

-        uint32_t maxAllocationsToMove,

-        VmaDefragmentationFlags flags);

-

-    virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }

-    virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }

-

-private:

-    struct BlockInfo

-    {

-        size_t origBlockIndex;

-    };

-

-    class FreeSpaceDatabase

-    {

-    public:

-        FreeSpaceDatabase()

-        {

-            FreeSpace s = {};

-            s.blockInfoIndex = SIZE_MAX;

-            for(size_t i = 0; i < MAX_COUNT; ++i)

-            {

-                m_FreeSpaces[i] = s;

-            }

-        }

-

-        void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size)

-        {

-            if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-            {

-                return;

-            }

-

-            // Find first invalid or the smallest structure.

-            size_t bestIndex = SIZE_MAX;

-            for(size_t i = 0; i < MAX_COUNT; ++i)

-            {

-                // Empty structure.

-                if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX)

-                {

-                    bestIndex = i;

-                    break;

-                }

-                if(m_FreeSpaces[i].size < size &&

-                    (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size))

-                {

-                    bestIndex = i;

-                }

-            }

-

-            if(bestIndex != SIZE_MAX)

-            {

-                m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;

-                m_FreeSpaces[bestIndex].offset = offset;

-                m_FreeSpaces[bestIndex].size = size;

-            }

-        }

-

-        bool Fetch(VkDeviceSize alignment, VkDeviceSize size,

-            size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset)

-        {

-            size_t bestIndex = SIZE_MAX;

-            VkDeviceSize bestFreeSpaceAfter = 0;

-            for(size_t i = 0; i < MAX_COUNT; ++i)

-            {

-                // Structure is valid.

-                if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX)

-                {

-                    const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);

-                    // Allocation fits into this structure.

-                    if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size)

-                    {

-                        const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -

-                            (dstOffset + size);

-                        if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter)

-                        {

-                            bestIndex = i;

-                            bestFreeSpaceAfter = freeSpaceAfter;

-                        }

-                    }

-                }

-            }

-            

-            if(bestIndex != SIZE_MAX)

-            {

-                outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;

-                outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);

-

-                if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-                {

-                    // Leave this structure for remaining empty space.

-                    const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;

-                    m_FreeSpaces[bestIndex].offset += alignmentPlusSize;

-                    m_FreeSpaces[bestIndex].size -= alignmentPlusSize;

-                }

-                else

-                {

-                    // This structure becomes invalid.

-                    m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX;

-                }

-

-                return true;

-            }

-

-            return false;

-        }

-

-    private:

-        static const size_t MAX_COUNT = 4;

-

-        struct FreeSpace

-        {

-            size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.

-            VkDeviceSize offset;

-            VkDeviceSize size;

-        } m_FreeSpaces[MAX_COUNT];

-    };

-

-    const bool m_OverlappingMoveSupported;

-

-    uint32_t m_AllocationCount;

-    bool m_AllAllocations;

-

-    VkDeviceSize m_BytesMoved;

-    uint32_t m_AllocationsMoved;

-

-    VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;

-

-    void PreprocessMetadata();

-    void PostprocessMetadata();

-    void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc);

-};

-

-struct VmaBlockDefragmentationContext

-{

-    enum BLOCK_FLAG

-    {

-        BLOCK_FLAG_USED = 0x00000001,

-    };

-    uint32_t flags;

-    VkBuffer hBuffer;

-};

-

-class VmaBlockVectorDefragmentationContext

-{

-    VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)

-public:

-    VkResult res;

-    bool mutexLocked;

-    VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;

-    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > defragmentationMoves;

-    uint32_t defragmentationMovesProcessed;

-    uint32_t defragmentationMovesCommitted;

-    bool hasDefragmentationPlan;

-

-    VmaBlockVectorDefragmentationContext(

-        VmaAllocator hAllocator,

-        VmaPool hCustomPool, // Optional.

-        VmaBlockVector* pBlockVector,

-        uint32_t currFrameIndex);

-    ~VmaBlockVectorDefragmentationContext();

-

-    VmaPool GetCustomPool() const { return m_hCustomPool; }

-    VmaBlockVector* GetBlockVector() const { return m_pBlockVector; }

-    VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; }

-

-    void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);

-    void AddAll() { m_AllAllocations = true; }

-

-    void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags);

-

-private:

-    const VmaAllocator m_hAllocator;

-    // Null if not from custom pool.

-    const VmaPool m_hCustomPool;

-    // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.

-    VmaBlockVector* const m_pBlockVector;

-    const uint32_t m_CurrFrameIndex;

-    // Owner of this object.

-    VmaDefragmentationAlgorithm* m_pAlgorithm;

-

-    struct AllocInfo

-    {

-        VmaAllocation hAlloc;

-        VkBool32* pChanged;

-    };

-    // Used between constructor and Begin.

-    VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;

-    bool m_AllAllocations;

-};

-

-struct VmaDefragmentationContext_T

-{

-private:

-    VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)

-public:

-    VmaDefragmentationContext_T(

-        VmaAllocator hAllocator,

-        uint32_t currFrameIndex,

-        uint32_t flags,

-        VmaDefragmentationStats* pStats);

-    ~VmaDefragmentationContext_T();

-

-    void AddPools(uint32_t poolCount, const VmaPool* pPools);

-    void AddAllocations(

-        uint32_t allocationCount,

-        const VmaAllocation* pAllocations,

-        VkBool32* pAllocationsChanged);

-

-    /*

-    Returns:

-    - `VK_SUCCESS` if succeeded and object can be destroyed immediately.

-    - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().

-    - Negative value if error occured and object can be destroyed immediately.

-    */

-    VkResult Defragment(

-        VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,

-        VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,

-        VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags);

-

-    VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo);

-    VkResult DefragmentPassEnd();

-

-private:

-    const VmaAllocator m_hAllocator;

-    const uint32_t m_CurrFrameIndex;

-    const uint32_t m_Flags;

-    VmaDefragmentationStats* const m_pStats;

-

-    VkDeviceSize m_MaxCpuBytesToMove;

-    uint32_t m_MaxCpuAllocationsToMove;

-    VkDeviceSize m_MaxGpuBytesToMove;

-    uint32_t m_MaxGpuAllocationsToMove;

-

-    // Owner of these objects.

-    VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];

-    // Owner of these objects.

-    VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts;

-};

-

-#if VMA_RECORDING_ENABLED

-

-class VmaRecorder

-{

-public:

-    VmaRecorder();

-    VkResult Init(const VmaRecordSettings& settings, bool useMutex);

-    void WriteConfiguration(

-        const VkPhysicalDeviceProperties& devProps,

-        const VkPhysicalDeviceMemoryProperties& memProps,

-        uint32_t vulkanApiVersion,

-        bool dedicatedAllocationExtensionEnabled,

-        bool bindMemory2ExtensionEnabled,

-        bool memoryBudgetExtensionEnabled,

-        bool deviceCoherentMemoryExtensionEnabled);

-    ~VmaRecorder();

-

-    void RecordCreateAllocator(uint32_t frameIndex);

-    void RecordDestroyAllocator(uint32_t frameIndex);

-    void RecordCreatePool(uint32_t frameIndex,

-        const VmaPoolCreateInfo& createInfo,

-        VmaPool pool);

-    void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);

-    void RecordAllocateMemory(uint32_t frameIndex,

-        const VkMemoryRequirements& vkMemReq,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaAllocation allocation);

-    void RecordAllocateMemoryPages(uint32_t frameIndex,

-        const VkMemoryRequirements& vkMemReq,

-        const VmaAllocationCreateInfo& createInfo,

-        uint64_t allocationCount,

-        const VmaAllocation* pAllocations);

-    void RecordAllocateMemoryForBuffer(uint32_t frameIndex,

-        const VkMemoryRequirements& vkMemReq,

-        bool requiresDedicatedAllocation,

-        bool prefersDedicatedAllocation,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaAllocation allocation);

-    void RecordAllocateMemoryForImage(uint32_t frameIndex,

-        const VkMemoryRequirements& vkMemReq,

-        bool requiresDedicatedAllocation,

-        bool prefersDedicatedAllocation,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaAllocation allocation);

-    void RecordFreeMemory(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordFreeMemoryPages(uint32_t frameIndex,

-        uint64_t allocationCount,

-        const VmaAllocation* pAllocations);

-    void RecordSetAllocationUserData(uint32_t frameIndex,

-        VmaAllocation allocation,

-        const void* pUserData);

-    void RecordCreateLostAllocation(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordMapMemory(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordUnmapMemory(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordFlushAllocation(uint32_t frameIndex,

-        VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);

-    void RecordInvalidateAllocation(uint32_t frameIndex,

-        VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);

-    void RecordCreateBuffer(uint32_t frameIndex,

-        const VkBufferCreateInfo& bufCreateInfo,

-        const VmaAllocationCreateInfo& allocCreateInfo,

-        VmaAllocation allocation);

-    void RecordCreateImage(uint32_t frameIndex,

-        const VkImageCreateInfo& imageCreateInfo,

-        const VmaAllocationCreateInfo& allocCreateInfo,

-        VmaAllocation allocation);

-    void RecordDestroyBuffer(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordDestroyImage(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordTouchAllocation(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordGetAllocationInfo(uint32_t frameIndex,

-        VmaAllocation allocation);

-    void RecordMakePoolAllocationsLost(uint32_t frameIndex,

-        VmaPool pool);

-    void RecordDefragmentationBegin(uint32_t frameIndex,

-        const VmaDefragmentationInfo2& info,

-        VmaDefragmentationContext ctx);

-    void RecordDefragmentationEnd(uint32_t frameIndex,

-        VmaDefragmentationContext ctx);

-    void RecordSetPoolName(uint32_t frameIndex,

-        VmaPool pool,

-        const char* name);

-

-private:

-    struct CallParams

-    {

-        uint32_t threadId;

-        double time;

-    };

-

-    class UserDataString

-    {

-    public:

-        UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData);

-        const char* GetString() const { return m_Str; }

-

-    private:

-        char m_PtrStr[17];

-        const char* m_Str;

-    };

-

-    bool m_UseMutex;

-    VmaRecordFlags m_Flags;

-    FILE* m_File;

-    VMA_MUTEX m_FileMutex;

-    int64_t m_Freq;

-    int64_t m_StartCounter;

-

-    void GetBasicParams(CallParams& outParams);

-

-    // T must be a pointer type, e.g. VmaAllocation, VmaPool.

-    template<typename T>

-    void PrintPointerList(uint64_t count, const T* pItems)

-    {

-        if(count)

-        {

-            fprintf(m_File, "%p", pItems[0]);

-            for(uint64_t i = 1; i < count; ++i)

-            {

-                fprintf(m_File, " %p", pItems[i]);

-            }

-        }

-    }

-

-    void PrintPointerList(uint64_t count, const VmaAllocation* pItems);

-    void Flush();

-};

-

-#endif // #if VMA_RECORDING_ENABLED

-

-/*

-Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.

-*/

-class VmaAllocationObjectAllocator

-{

-    VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)

-public:

-    VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks);

-

-    template<typename... Types> VmaAllocation Allocate(Types... args);

-    void Free(VmaAllocation hAlloc);

-

-private:

-    VMA_MUTEX m_Mutex;

-    VmaPoolAllocator<VmaAllocation_T> m_Allocator;

-};

-

-struct VmaCurrentBudgetData

-{

-    VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];

-    VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];

-

-#if VMA_MEMORY_BUDGET

-    VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;

-    VMA_RW_MUTEX m_BudgetMutex;

-    uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];

-    uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];

-    uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];

-#endif // #if VMA_MEMORY_BUDGET

-

-    VmaCurrentBudgetData()

-    {

-        for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)

-        {

-            m_BlockBytes[heapIndex] = 0;

-            m_AllocationBytes[heapIndex] = 0;

-#if VMA_MEMORY_BUDGET

-            m_VulkanUsage[heapIndex] = 0;

-            m_VulkanBudget[heapIndex] = 0;

-            m_BlockBytesAtBudgetFetch[heapIndex] = 0;

-#endif

-        }

-

-#if VMA_MEMORY_BUDGET

-        m_OperationsSinceBudgetFetch = 0;

-#endif

-    }

-

-    void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)

-    {

-        m_AllocationBytes[heapIndex] += allocationSize;

-#if VMA_MEMORY_BUDGET

-        ++m_OperationsSinceBudgetFetch;

-#endif

-    }

-

-    void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)

-    {

-        VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME

-        m_AllocationBytes[heapIndex] -= allocationSize;

-#if VMA_MEMORY_BUDGET

-        ++m_OperationsSinceBudgetFetch;

-#endif

-    }

-};

-

-// Main allocator object.

-struct VmaAllocator_T

-{

-    VMA_CLASS_NO_COPY(VmaAllocator_T)

-public:

-    bool m_UseMutex;

-    uint32_t m_VulkanApiVersion;

-    bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).

-    bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).

-    bool m_UseExtMemoryBudget;

-    bool m_UseAmdDeviceCoherentMemory;

-    bool m_UseKhrBufferDeviceAddress;

-    VkDevice m_hDevice;

-    VkInstance m_hInstance;

-    bool m_AllocationCallbacksSpecified;

-    VkAllocationCallbacks m_AllocationCallbacks;

-    VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;

-    VmaAllocationObjectAllocator m_AllocationObjectAllocator;

-    

-    // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.

-    uint32_t m_HeapSizeLimitMask;

-

-    VkPhysicalDeviceProperties m_PhysicalDeviceProperties;

-    VkPhysicalDeviceMemoryProperties m_MemProps;

-

-    // Default pools.

-    VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];

-

-    // Each vector is sorted by memory (handle value).

-    typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;

-    AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];

-    VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];

-

-    VmaCurrentBudgetData m_Budget;

-

-    VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);

-    VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);

-    ~VmaAllocator_T();

-

-    const VkAllocationCallbacks* GetAllocationCallbacks() const

-    {

-        return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;

-    }

-    const VmaVulkanFunctions& GetVulkanFunctions() const

-    {

-        return m_VulkanFunctions;

-    }

-

-    VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }

-

-    VkDeviceSize GetBufferImageGranularity() const

-    {

-        return VMA_MAX(

-            static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),

-            m_PhysicalDeviceProperties.limits.bufferImageGranularity);

-    }

-

-    uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }

-    uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }

-

-    uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const

-    {

-        VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);

-        return m_MemProps.memoryTypes[memTypeIndex].heapIndex;

-    }

-    // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.

-    bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const

-    {

-        return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==

-            VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

-    }

-    // Minimum alignment for all allocations in specific memory type.

-    VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const

-    {

-        return IsMemoryTypeNonCoherent(memTypeIndex) ?

-            VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :

-            (VkDeviceSize)VMA_DEBUG_ALIGNMENT;

-    }

-

-    bool IsIntegratedGpu() const

-    {

-        return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;

-    }

-

-    uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }

-

-#if VMA_RECORDING_ENABLED

-    VmaRecorder* GetRecorder() const { return m_pRecorder; }

-#endif

-

-    void GetBufferMemoryRequirements(

-        VkBuffer hBuffer,

-        VkMemoryRequirements& memReq,

-        bool& requiresDedicatedAllocation,

-        bool& prefersDedicatedAllocation) const;

-    void GetImageMemoryRequirements(

-        VkImage hImage,

-        VkMemoryRequirements& memReq,

-        bool& requiresDedicatedAllocation,

-        bool& prefersDedicatedAllocation) const;

-

-    // Main allocation function.

-    VkResult AllocateMemory(

-        const VkMemoryRequirements& vkMemReq,

-        bool requiresDedicatedAllocation,

-        bool prefersDedicatedAllocation,

-        VkBuffer dedicatedBuffer,

-        VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown.

-        VkImage dedicatedImage,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaSuballocationType suballocType,

-        size_t allocationCount,

-        VmaAllocation* pAllocations);

-

-    // Main deallocation function.

-    void FreeMemory(

-        size_t allocationCount,

-        const VmaAllocation* pAllocations);

-

-    VkResult ResizeAllocation(

-        const VmaAllocation alloc,

-        VkDeviceSize newSize);

-

-    void CalculateStats(VmaStats* pStats);

-

-    void GetBudget(

-        VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount);

-

-#if VMA_STATS_STRING_ENABLED

-    void PrintDetailedMap(class VmaJsonWriter& json);

-#endif

-

-    VkResult DefragmentationBegin(

-        const VmaDefragmentationInfo2& info,

-        VmaDefragmentationStats* pStats,

-        VmaDefragmentationContext* pContext);

-    VkResult DefragmentationEnd(

-        VmaDefragmentationContext context);

-

-    VkResult DefragmentationPassBegin(

-        VmaDefragmentationPassInfo* pInfo,

-        VmaDefragmentationContext context);

-    VkResult DefragmentationPassEnd(

-        VmaDefragmentationContext context);

-

-    void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);

-    bool TouchAllocation(VmaAllocation hAllocation);

-

-    VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);

-    void DestroyPool(VmaPool pool);

-    void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);

-

-    void SetCurrentFrameIndex(uint32_t frameIndex);

-    uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }

-

-    void MakePoolAllocationsLost(

-        VmaPool hPool,

-        size_t* pLostAllocationCount);

-    VkResult CheckPoolCorruption(VmaPool hPool);

-    VkResult CheckCorruption(uint32_t memoryTypeBits);

-

-    void CreateLostAllocation(VmaAllocation* pAllocation);

-

-    // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.

-    VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);

-    // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.

-    void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);

-    // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.

-    VkResult BindVulkanBuffer(

-        VkDeviceMemory memory,

-        VkDeviceSize memoryOffset,

-        VkBuffer buffer,

-        const void* pNext);

-    // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.

-    VkResult BindVulkanImage(

-        VkDeviceMemory memory,

-        VkDeviceSize memoryOffset,

-        VkImage image,

-        const void* pNext);

-

-    VkResult Map(VmaAllocation hAllocation, void** ppData);

-    void Unmap(VmaAllocation hAllocation);

-

-    VkResult BindBufferMemory(

-        VmaAllocation hAllocation,

-        VkDeviceSize allocationLocalOffset,

-        VkBuffer hBuffer,

-        const void* pNext);

-    VkResult BindImageMemory(

-        VmaAllocation hAllocation,

-        VkDeviceSize allocationLocalOffset,

-        VkImage hImage,

-        const void* pNext);

-

-    void FlushOrInvalidateAllocation(

-        VmaAllocation hAllocation,

-        VkDeviceSize offset, VkDeviceSize size,

-        VMA_CACHE_OPERATION op);

-

-    void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);

-

-    /*

-    Returns bit mask of memory types that can support defragmentation on GPU as

-    they support creation of required buffer for copy operations.

-    */

-    uint32_t GetGpuDefragmentationMemoryTypeBits();

-

-private:

-    VkDeviceSize m_PreferredLargeHeapBlockSize;

-

-    VkPhysicalDevice m_PhysicalDevice;

-    VMA_ATOMIC_UINT32 m_CurrentFrameIndex;

-    VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.

-    

-    VMA_RW_MUTEX m_PoolsMutex;

-    // Protected by m_PoolsMutex. Sorted by pointer value.

-    VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;

-    uint32_t m_NextPoolId;

-

-    VmaVulkanFunctions m_VulkanFunctions;

-

-    // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.

-    uint32_t m_GlobalMemoryTypeBits;

-

-#if VMA_RECORDING_ENABLED

-    VmaRecorder* m_pRecorder;

-#endif

-

-    void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);

-

-#if VMA_STATIC_VULKAN_FUNCTIONS == 1

-    void ImportVulkanFunctions_Static();

-#endif

-

-    void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);

-

-#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1

-    void ImportVulkanFunctions_Dynamic();

-#endif

-

-    void ValidateVulkanFunctions();

-

-    VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);

-

-    VkResult AllocateMemoryOfType(

-        VkDeviceSize size,

-        VkDeviceSize alignment,

-        bool dedicatedAllocation,

-        VkBuffer dedicatedBuffer,

-        VkBufferUsageFlags dedicatedBufferUsage,

-        VkImage dedicatedImage,

-        const VmaAllocationCreateInfo& createInfo,

-        uint32_t memTypeIndex,

-        VmaSuballocationType suballocType,

-        size_t allocationCount,

-        VmaAllocation* pAllocations);

-

-    // Helper function only to be used inside AllocateDedicatedMemory.

-    VkResult AllocateDedicatedMemoryPage(

-        VkDeviceSize size,

-        VmaSuballocationType suballocType,

-        uint32_t memTypeIndex,

-        const VkMemoryAllocateInfo& allocInfo,

-        bool map,

-        bool isUserDataString,

-        void* pUserData,

-        VmaAllocation* pAllocation);

-

-    // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.

-    VkResult AllocateDedicatedMemory(

-        VkDeviceSize size,

-        VmaSuballocationType suballocType,

-        uint32_t memTypeIndex,

-        bool withinBudget,

-        bool map,

-        bool isUserDataString,

-        void* pUserData,

-        VkBuffer dedicatedBuffer,

-        VkBufferUsageFlags dedicatedBufferUsage,

-        VkImage dedicatedImage,

-        size_t allocationCount,

-        VmaAllocation* pAllocations);

-

-    void FreeDedicatedMemory(const VmaAllocation allocation);

-

-    /*

-    Calculates and returns bit mask of memory types that can support defragmentation

-    on GPU as they support creation of required buffer for copy operations.

-    */

-    uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;

-

-    uint32_t CalculateGlobalMemoryTypeBits() const;

-

-#if VMA_MEMORY_BUDGET

-    void UpdateVulkanBudget();

-#endif // #if VMA_MEMORY_BUDGET

-};

-

-////////////////////////////////////////////////////////////////////////////////

-// Memory allocation #2 after VmaAllocator_T definition

-

-static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)

-{

-    return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);

-}

-

-static void VmaFree(VmaAllocator hAllocator, void* ptr)

-{

-    VmaFree(&hAllocator->m_AllocationCallbacks, ptr);

-}

-

-template<typename T>

-static T* VmaAllocate(VmaAllocator hAllocator)

-{

-    return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));

-}

-

-template<typename T>

-static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)

-{

-    return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));

-}

-

-template<typename T>

-static void vma_delete(VmaAllocator hAllocator, T* ptr)

-{

-    if(ptr != VMA_NULL)

-    {

-        ptr->~T();

-        VmaFree(hAllocator, ptr);

-    }

-}

-

-template<typename T>

-static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)

-{

-    if(ptr != VMA_NULL)

-    {

-        for(size_t i = count; i--; )

-            ptr[i].~T();

-        VmaFree(hAllocator, ptr);

-    }

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaStringBuilder

-

-#if VMA_STATS_STRING_ENABLED

-

-class VmaStringBuilder

-{

-public:

-    VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }

-    size_t GetLength() const { return m_Data.size(); }

-    const char* GetData() const { return m_Data.data(); }

-

-    void Add(char ch) { m_Data.push_back(ch); }

-    void Add(const char* pStr);

-    void AddNewLine() { Add('\n'); }

-    void AddNumber(uint32_t num);

-    void AddNumber(uint64_t num);

-    void AddPointer(const void* ptr);

-

-private:

-    VmaVector< char, VmaStlAllocator<char> > m_Data;

-};

-

-void VmaStringBuilder::Add(const char* pStr)

-{

-    const size_t strLen = strlen(pStr);

-    if(strLen > 0)

-    {

-        const size_t oldCount = m_Data.size();

-        m_Data.resize(oldCount + strLen);

-        memcpy(m_Data.data() + oldCount, pStr, strLen);

-    }

-}

-

-void VmaStringBuilder::AddNumber(uint32_t num)

-{

-    char buf[11];

-    buf[10] = '\0';

-    char *p = &buf[10];

-    do

-    {

-        *--p = '0' + (num % 10);

-        num /= 10;

-    }

-    while(num);

-    Add(p);

-}

-

-void VmaStringBuilder::AddNumber(uint64_t num)

-{

-    char buf[21];

-    buf[20] = '\0';

-    char *p = &buf[20];

-    do

-    {

-        *--p = '0' + (num % 10);

-        num /= 10;

-    }

-    while(num);

-    Add(p);

-}

-

-void VmaStringBuilder::AddPointer(const void* ptr)

-{

-    char buf[21];

-    VmaPtrToStr(buf, sizeof(buf), ptr);

-    Add(buf);

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaJsonWriter

-

-#if VMA_STATS_STRING_ENABLED

-

-class VmaJsonWriter

-{

-    VMA_CLASS_NO_COPY(VmaJsonWriter)

-public:

-    VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);

-    ~VmaJsonWriter();

-

-    void BeginObject(bool singleLine = false);

-    void EndObject();

-    

-    void BeginArray(bool singleLine = false);

-    void EndArray();

-    

-    void WriteString(const char* pStr);

-    void BeginString(const char* pStr = VMA_NULL);

-    void ContinueString(const char* pStr);

-    void ContinueString(uint32_t n);

-    void ContinueString(uint64_t n);

-    void ContinueString_Pointer(const void* ptr);

-    void EndString(const char* pStr = VMA_NULL);

-    

-    void WriteNumber(uint32_t n);

-    void WriteNumber(uint64_t n);

-    void WriteBool(bool b);

-    void WriteNull();

-

-private:

-    static const char* const INDENT;

-

-    enum COLLECTION_TYPE

-    {

-        COLLECTION_TYPE_OBJECT,

-        COLLECTION_TYPE_ARRAY,

-    };

-    struct StackItem

-    {

-        COLLECTION_TYPE type;

-        uint32_t valueCount;

-        bool singleLineMode;

-    };

-

-    VmaStringBuilder& m_SB;

-    VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;

-    bool m_InsideString;

-

-    void BeginValue(bool isString);

-    void WriteIndent(bool oneLess = false);

-};

-

-const char* const VmaJsonWriter::INDENT = "  ";

-

-VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :

-    m_SB(sb),

-    m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),

-    m_InsideString(false)

-{

-}

-

-VmaJsonWriter::~VmaJsonWriter()

-{

-    VMA_ASSERT(!m_InsideString);

-    VMA_ASSERT(m_Stack.empty());

-}

-

-void VmaJsonWriter::BeginObject(bool singleLine)

-{

-    VMA_ASSERT(!m_InsideString);

-

-    BeginValue(false);

-    m_SB.Add('{');

-

-    StackItem item;

-    item.type = COLLECTION_TYPE_OBJECT;

-    item.valueCount = 0;

-    item.singleLineMode = singleLine;

-    m_Stack.push_back(item);

-}

-

-void VmaJsonWriter::EndObject()

-{

-    VMA_ASSERT(!m_InsideString);

-

-    WriteIndent(true);

-    m_SB.Add('}');

-

-    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);

-    m_Stack.pop_back();

-}

-

-void VmaJsonWriter::BeginArray(bool singleLine)

-{

-    VMA_ASSERT(!m_InsideString);

-

-    BeginValue(false);

-    m_SB.Add('[');

-

-    StackItem item;

-    item.type = COLLECTION_TYPE_ARRAY;

-    item.valueCount = 0;

-    item.singleLineMode = singleLine;

-    m_Stack.push_back(item);

-}

-

-void VmaJsonWriter::EndArray()

-{

-    VMA_ASSERT(!m_InsideString);

-

-    WriteIndent(true);

-    m_SB.Add(']');

-

-    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);

-    m_Stack.pop_back();

-}

-

-void VmaJsonWriter::WriteString(const char* pStr)

-{

-    BeginString(pStr);

-    EndString();

-}

-

-void VmaJsonWriter::BeginString(const char* pStr)

-{

-    VMA_ASSERT(!m_InsideString);

-

-    BeginValue(true);

-    m_SB.Add('"');

-    m_InsideString = true;

-    if(pStr != VMA_NULL && pStr[0] != '\0')

-    {

-        ContinueString(pStr);

-    }

-}

-

-void VmaJsonWriter::ContinueString(const char* pStr)

-{

-    VMA_ASSERT(m_InsideString);

-

-    const size_t strLen = strlen(pStr);

-    for(size_t i = 0; i < strLen; ++i)

-    {

-        char ch = pStr[i];

-        if(ch == '\\')

-        {

-            m_SB.Add("\\\\");

-        }

-        else if(ch == '"')

-        {

-            m_SB.Add("\\\"");

-        }

-        else if(ch >= 32)

-        {

-            m_SB.Add(ch);

-        }

-        else switch(ch)

-        {

-        case '\b':

-            m_SB.Add("\\b");

-            break;

-        case '\f':

-            m_SB.Add("\\f");

-            break;

-        case '\n':

-            m_SB.Add("\\n");

-            break;

-        case '\r':

-            m_SB.Add("\\r");

-            break;

-        case '\t':

-            m_SB.Add("\\t");

-            break;

-        default:

-            VMA_ASSERT(0 && "Character not currently supported.");

-            break;

-        }

-    }

-}

-

-void VmaJsonWriter::ContinueString(uint32_t n)

-{

-    VMA_ASSERT(m_InsideString);

-    m_SB.AddNumber(n);

-}

-

-void VmaJsonWriter::ContinueString(uint64_t n)

-{

-    VMA_ASSERT(m_InsideString);

-    m_SB.AddNumber(n);

-}

-

-void VmaJsonWriter::ContinueString_Pointer(const void* ptr)

-{

-    VMA_ASSERT(m_InsideString);

-    m_SB.AddPointer(ptr);

-}

-

-void VmaJsonWriter::EndString(const char* pStr)

-{

-    VMA_ASSERT(m_InsideString);

-    if(pStr != VMA_NULL && pStr[0] != '\0')

-    {

-        ContinueString(pStr);

-    }

-    m_SB.Add('"');

-    m_InsideString = false;

-}

-

-void VmaJsonWriter::WriteNumber(uint32_t n)

-{

-    VMA_ASSERT(!m_InsideString);

-    BeginValue(false);

-    m_SB.AddNumber(n);

-}

-

-void VmaJsonWriter::WriteNumber(uint64_t n)

-{

-    VMA_ASSERT(!m_InsideString);

-    BeginValue(false);

-    m_SB.AddNumber(n);

-}

-

-void VmaJsonWriter::WriteBool(bool b)

-{

-    VMA_ASSERT(!m_InsideString);

-    BeginValue(false);

-    m_SB.Add(b ? "true" : "false");

-}

-

-void VmaJsonWriter::WriteNull()

-{

-    VMA_ASSERT(!m_InsideString);

-    BeginValue(false);

-    m_SB.Add("null");

-}

-

-void VmaJsonWriter::BeginValue(bool isString)

-{

-    if(!m_Stack.empty())

-    {

-        StackItem& currItem = m_Stack.back();

-        if(currItem.type == COLLECTION_TYPE_OBJECT &&

-            currItem.valueCount % 2 == 0)

-        {

-            VMA_ASSERT(isString);

-        }

-

-        if(currItem.type == COLLECTION_TYPE_OBJECT &&

-            currItem.valueCount % 2 != 0)

-        {

-            m_SB.Add(": ");

-        }

-        else if(currItem.valueCount > 0)

-        {

-            m_SB.Add(", ");

-            WriteIndent();

-        }

-        else

-        {

-            WriteIndent();

-        }

-        ++currItem.valueCount;

-    }

-}

-

-void VmaJsonWriter::WriteIndent(bool oneLess)

-{

-    if(!m_Stack.empty() && !m_Stack.back().singleLineMode)

-    {

-        m_SB.AddNewLine();

-        

-        size_t count = m_Stack.size();

-        if(count > 0 && oneLess)

-        {

-            --count;

-        }

-        for(size_t i = 0; i < count; ++i)

-        {

-            m_SB.Add(INDENT);

-        }

-    }

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-////////////////////////////////////////////////////////////////////////////////

-

-void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)

-{

-    if(IsUserDataString())

-    {

-        VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);

-

-        FreeUserDataString(hAllocator);

-

-        if(pUserData != VMA_NULL)

-        {

-            m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData);

-        }

-    }

-    else

-    {

-        m_pUserData = pUserData;

-    }

-}

-

-void VmaAllocation_T::ChangeBlockAllocation(

-    VmaAllocator hAllocator,

-    VmaDeviceMemoryBlock* block,

-    VkDeviceSize offset)

-{

-    VMA_ASSERT(block != VMA_NULL);

-    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

-

-    // Move mapping reference counter from old block to new block.

-    if(block != m_BlockAllocation.m_Block)

-    {

-        uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;

-        if(IsPersistentMap())

-            ++mapRefCount;

-        m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);

-        block->Map(hAllocator, mapRefCount, VMA_NULL);

-    }

-

-    m_BlockAllocation.m_Block = block;

-    m_BlockAllocation.m_Offset = offset;

-}

-

-void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset)

-{

-    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);

-    m_BlockAllocation.m_Offset = newOffset;

-}

-

-VkDeviceSize VmaAllocation_T::GetOffset() const

-{

-    switch(m_Type)

-    {

-    case ALLOCATION_TYPE_BLOCK:

-        return m_BlockAllocation.m_Offset;

-    case ALLOCATION_TYPE_DEDICATED:

-        return 0;

-    default:

-        VMA_ASSERT(0);

-        return 0;

-    }

-}

-

-VkDeviceMemory VmaAllocation_T::GetMemory() const

-{

-    switch(m_Type)

-    {

-    case ALLOCATION_TYPE_BLOCK:

-        return m_BlockAllocation.m_Block->GetDeviceMemory();

-    case ALLOCATION_TYPE_DEDICATED:

-        return m_DedicatedAllocation.m_hMemory;

-    default:

-        VMA_ASSERT(0);

-        return VK_NULL_HANDLE;

-    }

-}

-

-void* VmaAllocation_T::GetMappedData() const

-{

-    switch(m_Type)

-    {

-    case ALLOCATION_TYPE_BLOCK:

-        if(m_MapCount != 0)

-        {

-            void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();

-            VMA_ASSERT(pBlockData != VMA_NULL);

-            return (char*)pBlockData + m_BlockAllocation.m_Offset;

-        }

-        else

-        {

-            return VMA_NULL;

-        }

-        break;

-    case ALLOCATION_TYPE_DEDICATED:

-        VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));

-        return m_DedicatedAllocation.m_pMappedData;

-    default:

-        VMA_ASSERT(0);

-        return VMA_NULL;

-    }

-}

-

-bool VmaAllocation_T::CanBecomeLost() const

-{

-    switch(m_Type)

-    {

-    case ALLOCATION_TYPE_BLOCK:

-        return m_BlockAllocation.m_CanBecomeLost;

-    case ALLOCATION_TYPE_DEDICATED:

-        return false;

-    default:

-        VMA_ASSERT(0);

-        return false;

-    }

-}

-

-bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

-{

-    VMA_ASSERT(CanBecomeLost());

-

-    /*

-    Warning: This is a carefully designed algorithm.

-    Do not modify unless you really know what you're doing :)

-    */

-    uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();

-    for(;;)

-    {

-        if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

-        {

-            VMA_ASSERT(0);

-            return false;

-        }

-        else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)

-        {

-            return false;

-        }

-        else // Last use time earlier than current time.

-        {

-            if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))

-            {

-                // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.

-                // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.

-                return true;

-            }

-        }

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-// Correspond to values of enum VmaSuballocationType.

-static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {

-    "FREE",

-    "UNKNOWN",

-    "BUFFER",

-    "IMAGE_UNKNOWN",

-    "IMAGE_LINEAR",

-    "IMAGE_OPTIMAL",

-};

-

-void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const

-{

-    json.WriteString("Type");

-    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);

-

-    json.WriteString("Size");

-    json.WriteNumber(m_Size);

-

-    if(m_pUserData != VMA_NULL)

-    {

-        json.WriteString("UserData");

-        if(IsUserDataString())

-        {

-            json.WriteString((const char*)m_pUserData);

-        }

-        else

-        {

-            json.BeginString();

-            json.ContinueString_Pointer(m_pUserData);

-            json.EndString();

-        }

-    }

-

-    json.WriteString("CreationFrameIndex");

-    json.WriteNumber(m_CreationFrameIndex);

-

-    json.WriteString("LastUseFrameIndex");

-    json.WriteNumber(GetLastUseFrameIndex());

-

-    if(m_BufferImageUsage != 0)

-    {

-        json.WriteString("Usage");

-        json.WriteNumber(m_BufferImageUsage);

-    }

-}

-

-#endif

-

-void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)

-{

-    VMA_ASSERT(IsUserDataString());

-    VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData);

-    m_pUserData = VMA_NULL;

-}

-

-void VmaAllocation_T::BlockAllocMap()

-{

-    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);

-

-    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)

-    {

-        ++m_MapCount;

-    }

-    else

-    {

-        VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");

-    }

-}

-

-void VmaAllocation_T::BlockAllocUnmap()

-{

-    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);

-

-    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)

-    {

-        --m_MapCount;

-    }

-    else

-    {

-        VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");

-    }

-}

-

-VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)

-{

-    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);

-

-    if(m_MapCount != 0)

-    {

-        if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)

-        {

-            VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);

-            *ppData = m_DedicatedAllocation.m_pMappedData;

-            ++m_MapCount;

-            return VK_SUCCESS;

-        }

-        else

-        {

-            VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");

-            return VK_ERROR_MEMORY_MAP_FAILED;

-        }

-    }

-    else

-    {

-        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(

-            hAllocator->m_hDevice,

-            m_DedicatedAllocation.m_hMemory,

-            0, // offset

-            VK_WHOLE_SIZE,

-            0, // flags

-            ppData);

-        if(result == VK_SUCCESS)

-        {

-            m_DedicatedAllocation.m_pMappedData = *ppData;

-            m_MapCount = 1;

-        }

-        return result;

-    }

-}

-

-void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)

-{

-    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);

-

-    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)

-    {

-        --m_MapCount;

-        if(m_MapCount == 0)

-        {

-            m_DedicatedAllocation.m_pMappedData = VMA_NULL;

-            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(

-                hAllocator->m_hDevice,

-                m_DedicatedAllocation.m_hMemory);

-        }

-    }

-    else

-    {

-        VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)

-{

-    json.BeginObject();

-

-    json.WriteString("Blocks");

-    json.WriteNumber(stat.blockCount);

-

-    json.WriteString("Allocations");

-    json.WriteNumber(stat.allocationCount);

-

-    json.WriteString("UnusedRanges");

-    json.WriteNumber(stat.unusedRangeCount);

-

-    json.WriteString("UsedBytes");

-    json.WriteNumber(stat.usedBytes);

-

-    json.WriteString("UnusedBytes");

-    json.WriteNumber(stat.unusedBytes);

-

-    if(stat.allocationCount > 1)

-    {

-        json.WriteString("AllocationSize");

-        json.BeginObject(true);

-        json.WriteString("Min");

-        json.WriteNumber(stat.allocationSizeMin);

-        json.WriteString("Avg");

-        json.WriteNumber(stat.allocationSizeAvg);

-        json.WriteString("Max");

-        json.WriteNumber(stat.allocationSizeMax);

-        json.EndObject();

-    }

-

-    if(stat.unusedRangeCount > 1)

-    {

-        json.WriteString("UnusedRangeSize");

-        json.BeginObject(true);

-        json.WriteString("Min");

-        json.WriteNumber(stat.unusedRangeSizeMin);

-        json.WriteString("Avg");

-        json.WriteNumber(stat.unusedRangeSizeAvg);

-        json.WriteString("Max");

-        json.WriteNumber(stat.unusedRangeSizeMax);

-        json.EndObject();

-    }

-

-    json.EndObject();

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-struct VmaSuballocationItemSizeLess

-{

-    bool operator()(

-        const VmaSuballocationList::iterator lhs,

-        const VmaSuballocationList::iterator rhs) const

-    {

-        return lhs->size < rhs->size;

-    }

-    bool operator()(

-        const VmaSuballocationList::iterator lhs,

-        VkDeviceSize rhsSize) const

-    {

-        return lhs->size < rhsSize;

-    }

-};

-

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaBlockMetadata

-

-VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :

-    m_Size(0),

-    m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks())

-{

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,

-    VkDeviceSize unusedBytes,

-    size_t allocationCount,

-    size_t unusedRangeCount) const

-{

-    json.BeginObject();

-

-    json.WriteString("TotalBytes");

-    json.WriteNumber(GetSize());

-

-    json.WriteString("UnusedBytes");

-    json.WriteNumber(unusedBytes);

-

-    json.WriteString("Allocations");

-    json.WriteNumber((uint64_t)allocationCount);

-

-    json.WriteString("UnusedRanges");

-    json.WriteNumber((uint64_t)unusedRangeCount);

-

-    json.WriteString("Suballocations");

-    json.BeginArray();

-}

-

-void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,

-    VkDeviceSize offset,

-    VmaAllocation hAllocation) const

-{

-    json.BeginObject(true);

-        

-    json.WriteString("Offset");

-    json.WriteNumber(offset);

-

-    hAllocation->PrintParameters(json);

-

-    json.EndObject();

-}

-

-void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,

-    VkDeviceSize offset,

-    VkDeviceSize size) const

-{

-    json.BeginObject(true);

-        

-    json.WriteString("Offset");

-    json.WriteNumber(offset);

-

-    json.WriteString("Type");

-    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);

-

-    json.WriteString("Size");

-    json.WriteNumber(size);

-

-    json.EndObject();

-}

-

-void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const

-{

-    json.EndArray();

-    json.EndObject();

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaBlockMetadata_Generic

-

-VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) :

-    VmaBlockMetadata(hAllocator),

-    m_FreeCount(0),

-    m_SumFreeSize(0),

-    m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),

-    m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))

-{

-}

-

-VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic()

-{

-}

-

-void VmaBlockMetadata_Generic::Init(VkDeviceSize size)

-{

-    VmaBlockMetadata::Init(size);

-

-    m_FreeCount = 1;

-    m_SumFreeSize = size;

-

-    VmaSuballocation suballoc = {};

-    suballoc.offset = 0;

-    suballoc.size = size;

-    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-    suballoc.hAllocation = VK_NULL_HANDLE;

-

-    VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);

-    m_Suballocations.push_back(suballoc);

-    VmaSuballocationList::iterator suballocItem = m_Suballocations.end();

-    --suballocItem;

-    m_FreeSuballocationsBySize.push_back(suballocItem);

-}

-

-bool VmaBlockMetadata_Generic::Validate() const

-{

-    VMA_VALIDATE(!m_Suballocations.empty());

-    

-    // Expected offset of new suballocation as calculated from previous ones.

-    VkDeviceSize calculatedOffset = 0;

-    // Expected number of free suballocations as calculated from traversing their list.

-    uint32_t calculatedFreeCount = 0;

-    // Expected sum size of free suballocations as calculated from traversing their list.

-    VkDeviceSize calculatedSumFreeSize = 0;

-    // Expected number of free suballocations that should be registered in

-    // m_FreeSuballocationsBySize calculated from traversing their list.

-    size_t freeSuballocationsToRegister = 0;

-    // True if previous visited suballocation was free.

-    bool prevFree = false;

-

-    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

-        suballocItem != m_Suballocations.cend();

-        ++suballocItem)

-    {

-        const VmaSuballocation& subAlloc = *suballocItem;

-        

-        // Actual offset of this suballocation doesn't match expected one.

-        VMA_VALIDATE(subAlloc.offset == calculatedOffset);

-

-        const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);

-        // Two adjacent free suballocations are invalid. They should be merged.

-        VMA_VALIDATE(!prevFree || !currFree);

-

-        VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE));

-

-        if(currFree)

-        {

-            calculatedSumFreeSize += subAlloc.size;

-            ++calculatedFreeCount;

-            if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-            {

-                ++freeSuballocationsToRegister;

-            }

-

-            // Margin required between allocations - every free space must be at least that large.

-            VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN);

-        }

-        else

-        {

-            VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset);

-            VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size);

-

-            // Margin required between allocations - previous allocation must be free.

-            VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree);

-        }

-

-        calculatedOffset += subAlloc.size;

-        prevFree = currFree;

-    }

-

-    // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't

-    // match expected one.

-    VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);

-

-    VkDeviceSize lastSize = 0;

-    for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)

-    {

-        VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];

-        

-        // Only free suballocations can be registered in m_FreeSuballocationsBySize.

-        VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);

-        // They must be sorted by size ascending.

-        VMA_VALIDATE(suballocItem->size >= lastSize);

-

-        lastSize = suballocItem->size;

-    }

-

-    // Check if totals match calculacted values.

-    VMA_VALIDATE(ValidateFreeSuballocationList());

-    VMA_VALIDATE(calculatedOffset == GetSize());

-    VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);

-    VMA_VALIDATE(calculatedFreeCount == m_FreeCount);

-

-    return true;

-}

-

-VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const

-{

-    if(!m_FreeSuballocationsBySize.empty())

-    {

-        return m_FreeSuballocationsBySize.back()->size;

-    }

-    else

-    {

-        return 0;

-    }

-}

-

-bool VmaBlockMetadata_Generic::IsEmpty() const

-{

-    return (m_Suballocations.size() == 1) && (m_FreeCount == 1);

-}

-

-void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const

-{

-    outInfo.blockCount = 1;

-

-    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();

-    outInfo.allocationCount = rangeCount - m_FreeCount;

-    outInfo.unusedRangeCount = m_FreeCount;

-    

-    outInfo.unusedBytes = m_SumFreeSize;

-    outInfo.usedBytes = GetSize() - outInfo.unusedBytes;

-

-    outInfo.allocationSizeMin = UINT64_MAX;

-    outInfo.allocationSizeMax = 0;

-    outInfo.unusedRangeSizeMin = UINT64_MAX;

-    outInfo.unusedRangeSizeMax = 0;

-

-    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

-        suballocItem != m_Suballocations.cend();

-        ++suballocItem)

-    {

-        const VmaSuballocation& suballoc = *suballocItem;

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);

-            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);

-        }

-        else

-        {

-            outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);

-            outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);

-        }

-    }

-}

-

-void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const

-{

-    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();

-

-    inoutStats.size += GetSize();

-    inoutStats.unusedSize += m_SumFreeSize;

-    inoutStats.allocationCount += rangeCount - m_FreeCount;

-    inoutStats.unusedRangeCount += m_FreeCount;

-    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const

-{

-    PrintDetailedMap_Begin(json,

-        m_SumFreeSize, // unusedBytes

-        m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount

-        m_FreeCount); // unusedRangeCount

-

-    size_t i = 0;

-    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();

-        suballocItem != m_Suballocations.cend();

-        ++suballocItem, ++i)

-    {

-        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size);

-        }

-        else

-        {

-            PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation);

-        }

-    }

-

-    PrintDetailedMap_End(json);

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-bool VmaBlockMetadata_Generic::CreateAllocationRequest(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    bool upperAddress,

-    VmaSuballocationType allocType,

-    bool canMakeOtherLost,

-    uint32_t strategy,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    VMA_ASSERT(allocSize > 0);

-    VMA_ASSERT(!upperAddress);

-    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);

-    VMA_ASSERT(pAllocationRequest != VMA_NULL);

-    VMA_HEAVY_ASSERT(Validate());

-

-    pAllocationRequest->type = VmaAllocationRequestType::Normal;

-

-    // There is not enough total free space in this block to fullfill the request: Early return.

-    if(canMakeOtherLost == false &&

-        m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN)

-    {

-        return false;

-    }

-

-    // New algorithm, efficiently searching freeSuballocationsBySize.

-    const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();

-    if(freeSuballocCount > 0)

-    {

-        if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)

-        {

-            // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN.

-            VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(

-                m_FreeSuballocationsBySize.data(),

-                m_FreeSuballocationsBySize.data() + freeSuballocCount,

-                allocSize + 2 * VMA_DEBUG_MARGIN,

-                VmaSuballocationItemSizeLess());

-            size_t index = it - m_FreeSuballocationsBySize.data();

-            for(; index < freeSuballocCount; ++index)

-            {

-                if(CheckAllocation(

-                    currentFrameIndex,

-                    frameInUseCount,

-                    bufferImageGranularity,

-                    allocSize,

-                    allocAlignment,

-                    allocType,

-                    m_FreeSuballocationsBySize[index],

-                    false, // canMakeOtherLost

-                    &pAllocationRequest->offset,

-                    &pAllocationRequest->itemsToMakeLostCount,

-                    &pAllocationRequest->sumFreeSize,

-                    &pAllocationRequest->sumItemSize))

-                {

-                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];

-                    return true;

-                }

-            }

-        }

-        else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)

-        {

-            for(VmaSuballocationList::iterator it = m_Suballocations.begin();

-                it != m_Suballocations.end();

-                ++it)

-            {

-                if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(

-                    currentFrameIndex,

-                    frameInUseCount,

-                    bufferImageGranularity,

-                    allocSize,

-                    allocAlignment,

-                    allocType,

-                    it,

-                    false, // canMakeOtherLost

-                    &pAllocationRequest->offset,

-                    &pAllocationRequest->itemsToMakeLostCount,

-                    &pAllocationRequest->sumFreeSize,

-                    &pAllocationRequest->sumItemSize))

-                {

-                    pAllocationRequest->item = it;

-                    return true;

-                }

-            }

-        }

-        else // WORST_FIT, FIRST_FIT

-        {

-            // Search staring from biggest suballocations.

-            for(size_t index = freeSuballocCount; index--; )

-            {

-                if(CheckAllocation(

-                    currentFrameIndex,

-                    frameInUseCount,

-                    bufferImageGranularity,

-                    allocSize,

-                    allocAlignment,

-                    allocType,

-                    m_FreeSuballocationsBySize[index],

-                    false, // canMakeOtherLost

-                    &pAllocationRequest->offset,

-                    &pAllocationRequest->itemsToMakeLostCount,

-                    &pAllocationRequest->sumFreeSize,

-                    &pAllocationRequest->sumItemSize))

-                {

-                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];

-                    return true;

-                }

-            }

-        }

-    }

-

-    if(canMakeOtherLost)

-    {

-        // Brute-force algorithm. TODO: Come up with something better.

-

-        bool found = false;

-        VmaAllocationRequest tmpAllocRequest = {};

-        tmpAllocRequest.type = VmaAllocationRequestType::Normal;

-        for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();

-            suballocIt != m_Suballocations.end();

-            ++suballocIt)

-        {

-            if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||

-                suballocIt->hAllocation->CanBecomeLost())

-            {

-                if(CheckAllocation(

-                    currentFrameIndex,

-                    frameInUseCount,

-                    bufferImageGranularity,

-                    allocSize,

-                    allocAlignment,

-                    allocType,

-                    suballocIt,

-                    canMakeOtherLost,

-                    &tmpAllocRequest.offset,

-                    &tmpAllocRequest.itemsToMakeLostCount,

-                    &tmpAllocRequest.sumFreeSize,

-                    &tmpAllocRequest.sumItemSize))

-                {

-                    if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)

-                    {

-                        *pAllocationRequest = tmpAllocRequest;

-                        pAllocationRequest->item = suballocIt;

-                        break;

-                    }

-                    if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())

-                    {

-                        *pAllocationRequest = tmpAllocRequest;

-                        pAllocationRequest->item = suballocIt;

-                        found = true;

-                    }

-                }

-            }

-        }

-

-        return found;

-    }

-

-    return false;

-}

-

-bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);

-

-    while(pAllocationRequest->itemsToMakeLostCount > 0)

-    {

-        if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            ++pAllocationRequest->item;

-        }

-        VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());

-        VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);

-        VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());

-        if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

-        {

-            pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);

-            --pAllocationRequest->itemsToMakeLostCount;

-        }

-        else

-        {

-            return false;

-        }

-    }

-

-    VMA_HEAVY_ASSERT(Validate());

-    VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());

-    VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);

-    

-    return true;

-}

-

-uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

-{

-    uint32_t lostAllocationCount = 0;

-    for(VmaSuballocationList::iterator it = m_Suballocations.begin();

-        it != m_Suballocations.end();

-        ++it)

-    {

-        if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&

-            it->hAllocation->CanBecomeLost() &&

-            it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

-        {

-            it = FreeSuballocation(it);

-            ++lostAllocationCount;

-        }

-    }

-    return lostAllocationCount;

-}

-

-VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)

-{

-    for(VmaSuballocationList::iterator it = m_Suballocations.begin();

-        it != m_Suballocations.end();

-        ++it)

-    {

-        if(it->type != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-            if(!VmaValidateMagicValue(pBlockData, it->offset + it->size))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-        }

-    }

-

-    return VK_SUCCESS;

-}

-

-void VmaBlockMetadata_Generic::Alloc(

-    const VmaAllocationRequest& request,

-    VmaSuballocationType type,

-    VkDeviceSize allocSize,

-    VmaAllocation hAllocation)

-{

-    VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);

-    VMA_ASSERT(request.item != m_Suballocations.end());

-    VmaSuballocation& suballoc = *request.item;

-    // Given suballocation is a free block.

-    VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

-    // Given offset is inside this suballocation.

-    VMA_ASSERT(request.offset >= suballoc.offset);

-    const VkDeviceSize paddingBegin = request.offset - suballoc.offset;

-    VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);

-    const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;

-

-    // Unregister this free suballocation from m_FreeSuballocationsBySize and update

-    // it to become used.

-    UnregisterFreeSuballocation(request.item);

-

-    suballoc.offset = request.offset;

-    suballoc.size = allocSize;

-    suballoc.type = type;

-    suballoc.hAllocation = hAllocation;

-

-    // If there are any free bytes remaining at the end, insert new free suballocation after current one.

-    if(paddingEnd)

-    {

-        VmaSuballocation paddingSuballoc = {};

-        paddingSuballoc.offset = request.offset + allocSize;

-        paddingSuballoc.size = paddingEnd;

-        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-        VmaSuballocationList::iterator next = request.item;

-        ++next;

-        const VmaSuballocationList::iterator paddingEndItem =

-            m_Suballocations.insert(next, paddingSuballoc);

-        RegisterFreeSuballocation(paddingEndItem);

-    }

-

-    // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.

-    if(paddingBegin)

-    {

-        VmaSuballocation paddingSuballoc = {};

-        paddingSuballoc.offset = request.offset - paddingBegin;

-        paddingSuballoc.size = paddingBegin;

-        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-        const VmaSuballocationList::iterator paddingBeginItem =

-            m_Suballocations.insert(request.item, paddingSuballoc);

-        RegisterFreeSuballocation(paddingBeginItem);

-    }

-

-    // Update totals.

-    m_FreeCount = m_FreeCount - 1;

-    if(paddingBegin > 0)

-    {

-        ++m_FreeCount;

-    }

-    if(paddingEnd > 0)

-    {

-        ++m_FreeCount;

-    }

-    m_SumFreeSize -= allocSize;

-}

-

-void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation)

-{

-    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();

-        suballocItem != m_Suballocations.end();

-        ++suballocItem)

-    {

-        VmaSuballocation& suballoc = *suballocItem;

-        if(suballoc.hAllocation == allocation)

-        {

-            FreeSuballocation(suballocItem);

-            VMA_HEAVY_ASSERT(Validate());

-            return;

-        }

-    }

-    VMA_ASSERT(0 && "Not found!");

-}

-

-void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset)

-{

-    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();

-        suballocItem != m_Suballocations.end();

-        ++suballocItem)

-    {

-        VmaSuballocation& suballoc = *suballocItem;

-        if(suballoc.offset == offset)

-        {

-            FreeSuballocation(suballocItem);

-            return;

-        }

-    }

-    VMA_ASSERT(0 && "Not found!");

-}

-

-bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const

-{

-    VkDeviceSize lastSize = 0;

-    for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)

-    {

-        const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];

-

-        VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);

-        VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);

-        VMA_VALIDATE(it->size >= lastSize);

-        lastSize = it->size;

-    }

-    return true;

-}

-

-bool VmaBlockMetadata_Generic::CheckAllocation(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    VmaSuballocationType allocType,

-    VmaSuballocationList::const_iterator suballocItem,

-    bool canMakeOtherLost,

-    VkDeviceSize* pOffset,

-    size_t* itemsToMakeLostCount,

-    VkDeviceSize* pSumFreeSize,

-    VkDeviceSize* pSumItemSize) const

-{

-    VMA_ASSERT(allocSize > 0);

-    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);

-    VMA_ASSERT(suballocItem != m_Suballocations.cend());

-    VMA_ASSERT(pOffset != VMA_NULL);

-    

-    *itemsToMakeLostCount = 0;

-    *pSumFreeSize = 0;

-    *pSumItemSize = 0;

-

-    if(canMakeOtherLost)

-    {

-        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            *pSumFreeSize = suballocItem->size;

-        }

-        else

-        {

-            if(suballocItem->hAllocation->CanBecomeLost() &&

-                suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

-            {

-                ++*itemsToMakeLostCount;

-                *pSumItemSize = suballocItem->size;

-            }

-            else

-            {

-                return false;

-            }

-        }

-

-        // Remaining size is too small for this request: Early return.

-        if(GetSize() - suballocItem->offset < allocSize)

-        {

-            return false;

-        }

-

-        // Start from offset equal to beginning of this suballocation.

-        *pOffset = suballocItem->offset;

-    

-        // Apply VMA_DEBUG_MARGIN at the beginning.

-        if(VMA_DEBUG_MARGIN > 0)

-        {

-            *pOffset += VMA_DEBUG_MARGIN;

-        }

-    

-        // Apply alignment.

-        *pOffset = VmaAlignUp(*pOffset, allocAlignment);

-

-        // Check previous suballocations for BufferImageGranularity conflicts.

-        // Make bigger alignment if necessary.

-        if(bufferImageGranularity > 1)

-        {

-            bool bufferImageGranularityConflict = false;

-            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;

-            while(prevSuballocItem != m_Suballocations.cbegin())

-            {

-                --prevSuballocItem;

-                const VmaSuballocation& prevSuballoc = *prevSuballocItem;

-                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

-                    {

-                        bufferImageGranularityConflict = true;

-                        break;

-                    }

-                }

-                else

-                    // Already on previous page.

-                    break;

-            }

-            if(bufferImageGranularityConflict)

-            {

-                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);

-            }

-        }

-    

-        // Now that we have final *pOffset, check if we are past suballocItem.

-        // If yes, return false - this function should be called for another suballocItem as starting point.

-        if(*pOffset >= suballocItem->offset + suballocItem->size)

-        {

-            return false;

-        }

-    

-        // Calculate padding at the beginning based on current offset.

-        const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;

-

-        // Calculate required margin at the end.

-        const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;

-

-        const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;

-        // Another early return check.

-        if(suballocItem->offset + totalSize > GetSize())

-        {

-            return false;

-        }

-

-        // Advance lastSuballocItem until desired size is reached.

-        // Update itemsToMakeLostCount.

-        VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;

-        if(totalSize > suballocItem->size)

-        {

-            VkDeviceSize remainingSize = totalSize - suballocItem->size;

-            while(remainingSize > 0)

-            {

-                ++lastSuballocItem;

-                if(lastSuballocItem == m_Suballocations.cend())

-                {

-                    return false;

-                }

-                if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)

-                {

-                    *pSumFreeSize += lastSuballocItem->size;

-                }

-                else

-                {

-                    VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);

-                    if(lastSuballocItem->hAllocation->CanBecomeLost() &&

-                        lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

-                    {

-                        ++*itemsToMakeLostCount;

-                        *pSumItemSize += lastSuballocItem->size;

-                    }

-                    else

-                    {

-                        return false;

-                    }

-                }

-                remainingSize = (lastSuballocItem->size < remainingSize) ?

-                    remainingSize - lastSuballocItem->size : 0;

-            }

-        }

-

-        // Check next suballocations for BufferImageGranularity conflicts.

-        // If conflict exists, we must mark more allocations lost or fail.

-        if(bufferImageGranularity > 1)

-        {

-            VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;

-            ++nextSuballocItem;

-            while(nextSuballocItem != m_Suballocations.cend())

-            {

-                const VmaSuballocation& nextSuballoc = *nextSuballocItem;

-                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

-                    {

-                        VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);

-                        if(nextSuballoc.hAllocation->CanBecomeLost() &&

-                            nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

-                        {

-                            ++*itemsToMakeLostCount;

-                        }

-                        else

-                        {

-                            return false;

-                        }

-                    }

-                }

-                else

-                {

-                    // Already on next page.

-                    break;

-                }

-                ++nextSuballocItem;

-            }

-        }

-    }

-    else

-    {

-        const VmaSuballocation& suballoc = *suballocItem;

-        VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

-

-        *pSumFreeSize = suballoc.size;

-

-        // Size of this suballocation is too small for this request: Early return.

-        if(suballoc.size < allocSize)

-        {

-            return false;

-        }

-

-        // Start from offset equal to beginning of this suballocation.

-        *pOffset = suballoc.offset;

-    

-        // Apply VMA_DEBUG_MARGIN at the beginning.

-        if(VMA_DEBUG_MARGIN > 0)

-        {

-            *pOffset += VMA_DEBUG_MARGIN;

-        }

-    

-        // Apply alignment.

-        *pOffset = VmaAlignUp(*pOffset, allocAlignment);

-    

-        // Check previous suballocations for BufferImageGranularity conflicts.

-        // Make bigger alignment if necessary.

-        if(bufferImageGranularity > 1)

-        {

-            bool bufferImageGranularityConflict = false;

-            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;

-            while(prevSuballocItem != m_Suballocations.cbegin())

-            {

-                --prevSuballocItem;

-                const VmaSuballocation& prevSuballoc = *prevSuballocItem;

-                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

-                    {

-                        bufferImageGranularityConflict = true;

-                        break;

-                    }

-                }

-                else

-                    // Already on previous page.

-                    break;

-            }

-            if(bufferImageGranularityConflict)

-            {

-                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);

-            }

-        }

-    

-        // Calculate padding at the beginning based on current offset.

-        const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;

-

-        // Calculate required margin at the end.

-        const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;

-

-        // Fail if requested size plus margin before and after is bigger than size of this suballocation.

-        if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)

-        {

-            return false;

-        }

-

-        // Check next suballocations for BufferImageGranularity conflicts.

-        // If conflict exists, allocation cannot be made here.

-        if(bufferImageGranularity > 1)

-        {

-            VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;

-            ++nextSuballocItem;

-            while(nextSuballocItem != m_Suballocations.cend())

-            {

-                const VmaSuballocation& nextSuballoc = *nextSuballocItem;

-                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

-                    {

-                        return false;

-                    }

-                }

-                else

-                {

-                    // Already on next page.

-                    break;

-                }

-                ++nextSuballocItem;

-            }

-        }

-    }

-

-    // All tests passed: Success. pOffset is already filled.

-    return true;

-}

-

-void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)

-{

-    VMA_ASSERT(item != m_Suballocations.end());

-    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

-    

-    VmaSuballocationList::iterator nextItem = item;

-    ++nextItem;

-    VMA_ASSERT(nextItem != m_Suballocations.end());

-    VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);

-

-    item->size += nextItem->size;

-    --m_FreeCount;

-    m_Suballocations.erase(nextItem);

-}

-

-VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)

-{

-    // Change this suballocation to be marked as free.

-    VmaSuballocation& suballoc = *suballocItem;

-    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-    suballoc.hAllocation = VK_NULL_HANDLE;

-    

-    // Update totals.

-    ++m_FreeCount;

-    m_SumFreeSize += suballoc.size;

-

-    // Merge with previous and/or next suballocation if it's also free.

-    bool mergeWithNext = false;

-    bool mergeWithPrev = false;

-    

-    VmaSuballocationList::iterator nextItem = suballocItem;

-    ++nextItem;

-    if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))

-    {

-        mergeWithNext = true;

-    }

-

-    VmaSuballocationList::iterator prevItem = suballocItem;

-    if(suballocItem != m_Suballocations.begin())

-    {

-        --prevItem;

-        if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            mergeWithPrev = true;

-        }

-    }

-

-    if(mergeWithNext)

-    {

-        UnregisterFreeSuballocation(nextItem);

-        MergeFreeWithNext(suballocItem);

-    }

-

-    if(mergeWithPrev)

-    {

-        UnregisterFreeSuballocation(prevItem);

-        MergeFreeWithNext(prevItem);

-        RegisterFreeSuballocation(prevItem);

-        return prevItem;

-    }

-    else

-    {

-        RegisterFreeSuballocation(suballocItem);

-        return suballocItem;

-    }

-}

-

-void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)

-{

-    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

-    VMA_ASSERT(item->size > 0);

-

-    // You may want to enable this validation at the beginning or at the end of

-    // this function, depending on what do you want to check.

-    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

-

-    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-    {

-        if(m_FreeSuballocationsBySize.empty())

-        {

-            m_FreeSuballocationsBySize.push_back(item);

-        }

-        else

-        {

-            VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);

-        }

-    }

-

-    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

-}

-

-

-void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)

-{

-    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);

-    VMA_ASSERT(item->size > 0);

-

-    // You may want to enable this validation at the beginning or at the end of

-    // this function, depending on what do you want to check.

-    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

-

-    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-    {

-        VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(

-            m_FreeSuballocationsBySize.data(),

-            m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),

-            item,

-            VmaSuballocationItemSizeLess());

-        for(size_t index = it - m_FreeSuballocationsBySize.data();

-            index < m_FreeSuballocationsBySize.size();

-            ++index)

-        {

-            if(m_FreeSuballocationsBySize[index] == item)

-            {

-                VmaVectorRemove(m_FreeSuballocationsBySize, index);

-                return;

-            }

-            VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");

-        }

-        VMA_ASSERT(0 && "Not found.");

-    }

-

-    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());

-}

-

-bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(

-    VkDeviceSize bufferImageGranularity,

-    VmaSuballocationType& inOutPrevSuballocType) const

-{

-    if(bufferImageGranularity == 1 || IsEmpty())

-    {

-        return false;

-    }

-

-    VkDeviceSize minAlignment = VK_WHOLE_SIZE;

-    bool typeConflictFound = false;

-    for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin();

-        it != m_Suballocations.cend();

-        ++it)

-    {

-        const VmaSuballocationType suballocType = it->type;

-        if(suballocType != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment());

-            if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType))

-            {

-                typeConflictFound = true;

-            }

-            inOutPrevSuballocType = suballocType;

-        }

-    }

-

-    return typeConflictFound || minAlignment >= bufferImageGranularity;

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaBlockMetadata_Linear

-

-VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) :

-    VmaBlockMetadata(hAllocator),

-    m_SumFreeSize(0),

-    m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),

-    m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),

-    m_1stVectorIndex(0),

-    m_2ndVectorMode(SECOND_VECTOR_EMPTY),

-    m_1stNullItemsBeginCount(0),

-    m_1stNullItemsMiddleCount(0),

-    m_2ndNullItemsCount(0)

-{

-}

-

-VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear()

-{

-}

-

-void VmaBlockMetadata_Linear::Init(VkDeviceSize size)

-{

-    VmaBlockMetadata::Init(size);

-    m_SumFreeSize = size;

-}

-

-bool VmaBlockMetadata_Linear::Validate() const

-{

-    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-    VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));

-    VMA_VALIDATE(!suballocations1st.empty() ||

-        suballocations2nd.empty() ||

-        m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);

-

-    if(!suballocations1st.empty())

-    {

-        // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.

-        VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE);

-        // Null item at the end should be just pop_back().

-        VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE);

-    }

-    if(!suballocations2nd.empty())

-    {

-        // Null item at the end should be just pop_back().

-        VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE);

-    }

-

-    VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());

-    VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());

-

-    VkDeviceSize sumUsedSize = 0;

-    const size_t suballoc1stCount = suballocations1st.size();

-    VkDeviceSize offset = VMA_DEBUG_MARGIN;

-

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        const size_t suballoc2ndCount = suballocations2nd.size();

-        size_t nullItem2ndCount = 0;

-        for(size_t i = 0; i < suballoc2ndCount; ++i)

-        {

-            const VmaSuballocation& suballoc = suballocations2nd[i];

-            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

-

-            VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));

-            VMA_VALIDATE(suballoc.offset >= offset);

-

-            if(!currFree)

-            {

-                VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);

-                VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);

-                sumUsedSize += suballoc.size;

-            }

-            else

-            {

-                ++nullItem2ndCount;

-            }

-

-            offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;

-        }

-

-        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);

-    }

-

-    for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i)

-    {

-        const VmaSuballocation& suballoc = suballocations1st[i];

-        VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&

-            suballoc.hAllocation == VK_NULL_HANDLE);

-    }

-

-    size_t nullItem1stCount = m_1stNullItemsBeginCount;

-

-    for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)

-    {

-        const VmaSuballocation& suballoc = suballocations1st[i];

-        const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

-

-        VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));

-        VMA_VALIDATE(suballoc.offset >= offset);

-        VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);

-

-        if(!currFree)

-        {

-            VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);

-            VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);

-            sumUsedSize += suballoc.size;

-        }

-        else

-        {

-            ++nullItem1stCount;

-        }

-

-        offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;

-    }

-    VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);

-

-    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        const size_t suballoc2ndCount = suballocations2nd.size();

-        size_t nullItem2ndCount = 0;

-        for(size_t i = suballoc2ndCount; i--; )

-        {

-            const VmaSuballocation& suballoc = suballocations2nd[i];

-            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);

-

-            VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));

-            VMA_VALIDATE(suballoc.offset >= offset);

-

-            if(!currFree)

-            {

-                VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);

-                VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);

-                sumUsedSize += suballoc.size;

-            }

-            else

-            {

-                ++nullItem2ndCount;

-            }

-

-            offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;

-        }

-

-        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);

-    }

-

-    VMA_VALIDATE(offset <= GetSize());

-    VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);

-

-    return true;

-}

-

-size_t VmaBlockMetadata_Linear::GetAllocationCount() const

-{

-    return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) +

-        AccessSuballocations2nd().size() - m_2ndNullItemsCount;

-}

-

-VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const

-{

-    const VkDeviceSize size = GetSize();

-

-    /*

-    We don't consider gaps inside allocation vectors with freed allocations because

-    they are not suitable for reuse in linear allocator. We consider only space that

-    is available for new allocations.

-    */

-    if(IsEmpty())

-    {

-        return size;

-    }

-    

-    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-

-    switch(m_2ndVectorMode)

-    {

-    case SECOND_VECTOR_EMPTY:

-        /*

-        Available space is after end of 1st, as well as before beginning of 1st (which

-        whould make it a ring buffer).

-        */

-        {

-            const size_t suballocations1stCount = suballocations1st.size();

-            VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);

-            const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];

-            const VmaSuballocation& lastSuballoc  = suballocations1st[suballocations1stCount - 1];

-            return VMA_MAX(

-                firstSuballoc.offset,

-                size - (lastSuballoc.offset + lastSuballoc.size));

-        }

-        break;

-

-    case SECOND_VECTOR_RING_BUFFER:

-        /*

-        Available space is only between end of 2nd and beginning of 1st.

-        */

-        {

-            const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-            const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back();

-            const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];

-            return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);

-        }

-        break;

-

-    case SECOND_VECTOR_DOUBLE_STACK:

-        /*

-        Available space is only between end of 1st and top of 2nd.

-        */

-        {

-            const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-            const VmaSuballocation& topSuballoc2nd = suballocations2nd.back();

-            const VmaSuballocation& lastSuballoc1st = suballocations1st.back();

-            return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);

-        }

-        break;

-

-    default:

-        VMA_ASSERT(0);

-        return 0;

-    }

-}

-

-void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const

-{

-    const VkDeviceSize size = GetSize();

-    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-    const size_t suballoc1stCount = suballocations1st.size();

-    const size_t suballoc2ndCount = suballocations2nd.size();

-

-    outInfo.blockCount = 1;

-    outInfo.allocationCount = (uint32_t)GetAllocationCount();

-    outInfo.unusedRangeCount = 0;

-    outInfo.usedBytes = 0;

-    outInfo.allocationSizeMin = UINT64_MAX;

-    outInfo.allocationSizeMax = 0;

-    outInfo.unusedRangeSizeMin = UINT64_MAX;

-    outInfo.unusedRangeSizeMax = 0;

-

-    VkDeviceSize lastOffset = 0;

-

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;

-        size_t nextAlloc2ndIndex = 0;

-        while(lastOffset < freeSpace2ndTo1stEnd)

-        {

-            // Find next non-null allocation or move nextAllocIndex to the end.

-            while(nextAlloc2ndIndex < suballoc2ndCount &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                ++nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex < suballoc2ndCount)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    ++outInfo.unusedRangeCount;

-                    outInfo.unusedBytes += unusedRangeSize;

-                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                outInfo.usedBytes += suballoc.size;

-                outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);

-                outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                ++nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                // There is free space from lastOffset to freeSpace2ndTo1stEnd.

-                if(lastOffset < freeSpace2ndTo1stEnd)

-                {

-                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;

-                    ++outInfo.unusedRangeCount;

-                    outInfo.unusedBytes += unusedRangeSize;

-                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-               }

-

-                // End of loop.

-                lastOffset = freeSpace2ndTo1stEnd;

-            }

-        }

-    }

-

-    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;

-    const VkDeviceSize freeSpace1stTo2ndEnd =

-        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;

-    while(lastOffset < freeSpace1stTo2ndEnd)

-    {

-        // Find next non-null allocation or move nextAllocIndex to the end.

-        while(nextAlloc1stIndex < suballoc1stCount &&

-            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)

-        {

-            ++nextAlloc1stIndex;

-        }

-

-        // Found non-null allocation.

-        if(nextAlloc1stIndex < suballoc1stCount)

-        {

-            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];

-            

-            // 1. Process free space before this allocation.

-            if(lastOffset < suballoc.offset)

-            {

-                // There is free space from lastOffset to suballoc.offset.

-                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                ++outInfo.unusedRangeCount;

-                outInfo.unusedBytes += unusedRangeSize;

-                outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-            }

-            

-            // 2. Process this allocation.

-            // There is allocation with suballoc.offset, suballoc.size.

-            outInfo.usedBytes += suballoc.size;

-            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);

-            outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);

-            

-            // 3. Prepare for next iteration.

-            lastOffset = suballoc.offset + suballoc.size;

-            ++nextAlloc1stIndex;

-        }

-        // We are at the end.

-        else

-        {

-            // There is free space from lastOffset to freeSpace1stTo2ndEnd.

-            if(lastOffset < freeSpace1stTo2ndEnd)

-            {

-                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;

-                ++outInfo.unusedRangeCount;

-                outInfo.unusedBytes += unusedRangeSize;

-                outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-           }

-

-            // End of loop.

-            lastOffset = freeSpace1stTo2ndEnd;

-        }

-    }

-

-    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;

-        while(lastOffset < size)

-        {

-            // Find next non-null allocation or move nextAllocIndex to the end.

-            while(nextAlloc2ndIndex != SIZE_MAX &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                --nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex != SIZE_MAX)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    ++outInfo.unusedRangeCount;

-                    outInfo.unusedBytes += unusedRangeSize;

-                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                outInfo.usedBytes += suballoc.size;

-                outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);

-                outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                --nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                // There is free space from lastOffset to size.

-                if(lastOffset < size)

-                {

-                    const VkDeviceSize unusedRangeSize = size - lastOffset;

-                    ++outInfo.unusedRangeCount;

-                    outInfo.unusedBytes += unusedRangeSize;

-                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);

-                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);

-               }

-

-                // End of loop.

-                lastOffset = size;

-            }

-        }

-    }

-

-    outInfo.unusedBytes = size - outInfo.usedBytes;

-}

-

-void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const

-{

-    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-    const VkDeviceSize size = GetSize();

-    const size_t suballoc1stCount = suballocations1st.size();

-    const size_t suballoc2ndCount = suballocations2nd.size();

-

-    inoutStats.size += size;

-

-    VkDeviceSize lastOffset = 0;

-

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;

-        size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;

-        while(lastOffset < freeSpace2ndTo1stEnd)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex < suballoc2ndCount &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                ++nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex < suballoc2ndCount)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    inoutStats.unusedSize += unusedRangeSize;

-                    ++inoutStats.unusedRangeCount;

-                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                ++inoutStats.allocationCount;

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                ++nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < freeSpace2ndTo1stEnd)

-                {

-                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.

-                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;

-                    inoutStats.unusedSize += unusedRangeSize;

-                    ++inoutStats.unusedRangeCount;

-                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-                }

-

-                // End of loop.

-                lastOffset = freeSpace2ndTo1stEnd;

-            }

-        }

-    }

-

-    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;

-    const VkDeviceSize freeSpace1stTo2ndEnd =

-        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;

-    while(lastOffset < freeSpace1stTo2ndEnd)

-    {

-        // Find next non-null allocation or move nextAllocIndex to the end.

-        while(nextAlloc1stIndex < suballoc1stCount &&

-            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)

-        {

-            ++nextAlloc1stIndex;

-        }

-

-        // Found non-null allocation.

-        if(nextAlloc1stIndex < suballoc1stCount)

-        {

-            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];

-            

-            // 1. Process free space before this allocation.

-            if(lastOffset < suballoc.offset)

-            {

-                // There is free space from lastOffset to suballoc.offset.

-                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                inoutStats.unusedSize += unusedRangeSize;

-                ++inoutStats.unusedRangeCount;

-                inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-            }

-            

-            // 2. Process this allocation.

-            // There is allocation with suballoc.offset, suballoc.size.

-            ++inoutStats.allocationCount;

-            

-            // 3. Prepare for next iteration.

-            lastOffset = suballoc.offset + suballoc.size;

-            ++nextAlloc1stIndex;

-        }

-        // We are at the end.

-        else

-        {

-            if(lastOffset < freeSpace1stTo2ndEnd)

-            {

-                // There is free space from lastOffset to freeSpace1stTo2ndEnd.

-                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;

-                inoutStats.unusedSize += unusedRangeSize;

-                ++inoutStats.unusedRangeCount;

-                inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-            }

-

-            // End of loop.

-            lastOffset = freeSpace1stTo2ndEnd;

-        }

-    }

-

-    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;

-        while(lastOffset < size)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex != SIZE_MAX &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                --nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex != SIZE_MAX)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    inoutStats.unusedSize += unusedRangeSize;

-                    ++inoutStats.unusedRangeCount;

-                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                ++inoutStats.allocationCount;

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                --nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < size)

-                {

-                    // There is free space from lastOffset to size.

-                    const VkDeviceSize unusedRangeSize = size - lastOffset;

-                    inoutStats.unusedSize += unusedRangeSize;

-                    ++inoutStats.unusedRangeCount;

-                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);

-                }

-

-                // End of loop.

-                lastOffset = size;

-            }

-        }

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const

-{

-    const VkDeviceSize size = GetSize();

-    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-    const size_t suballoc1stCount = suballocations1st.size();

-    const size_t suballoc2ndCount = suballocations2nd.size();

-

-    // FIRST PASS

-

-    size_t unusedRangeCount = 0;

-    VkDeviceSize usedBytes = 0;

-

-    VkDeviceSize lastOffset = 0;

-

-    size_t alloc2ndCount = 0;

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;

-        size_t nextAlloc2ndIndex = 0;

-        while(lastOffset < freeSpace2ndTo1stEnd)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex < suballoc2ndCount &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                ++nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex < suballoc2ndCount)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    ++unusedRangeCount;

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                ++alloc2ndCount;

-                usedBytes += suballoc.size;

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                ++nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < freeSpace2ndTo1stEnd)

-                {

-                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.

-                    ++unusedRangeCount;

-                }

-

-                // End of loop.

-                lastOffset = freeSpace2ndTo1stEnd;

-            }

-        }

-    }

-

-    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;

-    size_t alloc1stCount = 0;

-    const VkDeviceSize freeSpace1stTo2ndEnd =

-        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;

-    while(lastOffset < freeSpace1stTo2ndEnd)

-    {

-        // Find next non-null allocation or move nextAllocIndex to the end.

-        while(nextAlloc1stIndex < suballoc1stCount &&

-            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)

-        {

-            ++nextAlloc1stIndex;

-        }

-

-        // Found non-null allocation.

-        if(nextAlloc1stIndex < suballoc1stCount)

-        {

-            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];

-            

-            // 1. Process free space before this allocation.

-            if(lastOffset < suballoc.offset)

-            {

-                // There is free space from lastOffset to suballoc.offset.

-                ++unusedRangeCount;

-            }

-            

-            // 2. Process this allocation.

-            // There is allocation with suballoc.offset, suballoc.size.

-            ++alloc1stCount;

-            usedBytes += suballoc.size;

-            

-            // 3. Prepare for next iteration.

-            lastOffset = suballoc.offset + suballoc.size;

-            ++nextAlloc1stIndex;

-        }

-        // We are at the end.

-        else

-        {

-            if(lastOffset < size)

-            {

-                // There is free space from lastOffset to freeSpace1stTo2ndEnd.

-                ++unusedRangeCount;

-            }

-

-            // End of loop.

-            lastOffset = freeSpace1stTo2ndEnd;

-        }

-    }

-

-    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;

-        while(lastOffset < size)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex != SIZE_MAX &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                --nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex != SIZE_MAX)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    ++unusedRangeCount;

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                ++alloc2ndCount;

-                usedBytes += suballoc.size;

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                --nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < size)

-                {

-                    // There is free space from lastOffset to size.

-                    ++unusedRangeCount;

-                }

-

-                // End of loop.

-                lastOffset = size;

-            }

-        }

-    }

-

-    const VkDeviceSize unusedBytes = size - usedBytes;

-    PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);

-

-    // SECOND PASS

-    lastOffset = 0;

-

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;

-        size_t nextAlloc2ndIndex = 0;

-        while(lastOffset < freeSpace2ndTo1stEnd)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex < suballoc2ndCount &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                ++nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex < suballoc2ndCount)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                ++nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < freeSpace2ndTo1stEnd)

-                {

-                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.

-                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;

-                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-                }

-

-                // End of loop.

-                lastOffset = freeSpace2ndTo1stEnd;

-            }

-        }

-    }

-

-    nextAlloc1stIndex = m_1stNullItemsBeginCount;

-    while(lastOffset < freeSpace1stTo2ndEnd)

-    {

-        // Find next non-null allocation or move nextAllocIndex to the end.

-        while(nextAlloc1stIndex < suballoc1stCount &&

-            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)

-        {

-            ++nextAlloc1stIndex;

-        }

-

-        // Found non-null allocation.

-        if(nextAlloc1stIndex < suballoc1stCount)

-        {

-            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];

-            

-            // 1. Process free space before this allocation.

-            if(lastOffset < suballoc.offset)

-            {

-                // There is free space from lastOffset to suballoc.offset.

-                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-            }

-            

-            // 2. Process this allocation.

-            // There is allocation with suballoc.offset, suballoc.size.

-            PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);

-            

-            // 3. Prepare for next iteration.

-            lastOffset = suballoc.offset + suballoc.size;

-            ++nextAlloc1stIndex;

-        }

-        // We are at the end.

-        else

-        {

-            if(lastOffset < freeSpace1stTo2ndEnd)

-            {

-                // There is free space from lastOffset to freeSpace1stTo2ndEnd.

-                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;

-                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-            }

-

-            // End of loop.

-            lastOffset = freeSpace1stTo2ndEnd;

-        }

-    }

-

-    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;

-        while(lastOffset < size)

-        {

-            // Find next non-null allocation or move nextAlloc2ndIndex to the end.

-            while(nextAlloc2ndIndex != SIZE_MAX &&

-                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)

-            {

-                --nextAlloc2ndIndex;

-            }

-

-            // Found non-null allocation.

-            if(nextAlloc2ndIndex != SIZE_MAX)

-            {

-                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];

-            

-                // 1. Process free space before this allocation.

-                if(lastOffset < suballoc.offset)

-                {

-                    // There is free space from lastOffset to suballoc.offset.

-                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;

-                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-                }

-            

-                // 2. Process this allocation.

-                // There is allocation with suballoc.offset, suballoc.size.

-                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);

-            

-                // 3. Prepare for next iteration.

-                lastOffset = suballoc.offset + suballoc.size;

-                --nextAlloc2ndIndex;

-            }

-            // We are at the end.

-            else

-            {

-                if(lastOffset < size)

-                {

-                    // There is free space from lastOffset to size.

-                    const VkDeviceSize unusedRangeSize = size - lastOffset;

-                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);

-                }

-

-                // End of loop.

-                lastOffset = size;

-            }

-        }

-    }

-

-    PrintDetailedMap_End(json);

-}

-#endif // #if VMA_STATS_STRING_ENABLED

-

-bool VmaBlockMetadata_Linear::CreateAllocationRequest(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    bool upperAddress,

-    VmaSuballocationType allocType,

-    bool canMakeOtherLost,

-    uint32_t strategy,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    VMA_ASSERT(allocSize > 0);

-    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);

-    VMA_ASSERT(pAllocationRequest != VMA_NULL);

-    VMA_HEAVY_ASSERT(Validate());

-    return upperAddress ?

-        CreateAllocationRequest_UpperAddress(

-            currentFrameIndex, frameInUseCount, bufferImageGranularity,

-            allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :

-        CreateAllocationRequest_LowerAddress(

-            currentFrameIndex, frameInUseCount, bufferImageGranularity,

-            allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);

-}

-

-bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    VmaSuballocationType allocType,

-    bool canMakeOtherLost,

-    uint32_t strategy,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    const VkDeviceSize size = GetSize();

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");

-        return false;

-    }

-

-    // Try to allocate before 2nd.back(), or end of block if 2nd.empty().

-    if(allocSize > size)

-    {

-        return false;

-    }

-    VkDeviceSize resultBaseOffset = size - allocSize;

-    if(!suballocations2nd.empty())

-    {

-        const VmaSuballocation& lastSuballoc = suballocations2nd.back();

-        resultBaseOffset = lastSuballoc.offset - allocSize;

-        if(allocSize > lastSuballoc.offset)

-        {

-            return false;

-        }

-    }

-

-    // Start from offset equal to end of free space.

-    VkDeviceSize resultOffset = resultBaseOffset;

-

-    // Apply VMA_DEBUG_MARGIN at the end.

-    if(VMA_DEBUG_MARGIN > 0)

-    {

-        if(resultOffset < VMA_DEBUG_MARGIN)

-        {

-            return false;

-        }

-        resultOffset -= VMA_DEBUG_MARGIN;

-    }

-

-    // Apply alignment.

-    resultOffset = VmaAlignDown(resultOffset, allocAlignment);

-

-    // Check next suballocations from 2nd for BufferImageGranularity conflicts.

-    // Make bigger alignment if necessary.

-    if(bufferImageGranularity > 1 && !suballocations2nd.empty())

-    {

-        bool bufferImageGranularityConflict = false;

-        for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )

-        {

-            const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];

-            if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

-            {

-                if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))

-                {

-                    bufferImageGranularityConflict = true;

-                    break;

-                }

-            }

-            else

-                // Already on previous page.

-                break;

-        }

-        if(bufferImageGranularityConflict)

-        {

-            resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);

-        }

-    }

-

-    // There is enough free space.

-    const VkDeviceSize endOf1st = !suballocations1st.empty() ?

-        suballocations1st.back().offset + suballocations1st.back().size :

-        0;

-    if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset)

-    {

-        // Check previous suballocations for BufferImageGranularity conflicts.

-        // If conflict exists, allocation cannot be made here.

-        if(bufferImageGranularity > 1)

-        {

-            for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )

-            {

-                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];

-                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))

-                    {

-                        return false;

-                    }

-                }

-                else

-                {

-                    // Already on next page.

-                    break;

-                }

-            }

-        }

-

-        // All tests passed: Success.

-        pAllocationRequest->offset = resultOffset;

-        pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;

-        pAllocationRequest->sumItemSize = 0;

-        // pAllocationRequest->item unused.

-        pAllocationRequest->itemsToMakeLostCount = 0;

-        pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;

-        return true;

-    }

-

-    return false;

-}

-

-bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    VmaSuballocationType allocType,

-    bool canMakeOtherLost,

-    uint32_t strategy,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    const VkDeviceSize size = GetSize();

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-    if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        // Try to allocate at the end of 1st vector.

-

-        VkDeviceSize resultBaseOffset = 0;

-        if(!suballocations1st.empty())

-        {

-            const VmaSuballocation& lastSuballoc = suballocations1st.back();

-            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;

-        }

-

-        // Start from offset equal to beginning of free space.

-        VkDeviceSize resultOffset = resultBaseOffset;

-

-        // Apply VMA_DEBUG_MARGIN at the beginning.

-        if(VMA_DEBUG_MARGIN > 0)

-        {

-            resultOffset += VMA_DEBUG_MARGIN;

-        }

-

-        // Apply alignment.

-        resultOffset = VmaAlignUp(resultOffset, allocAlignment);

-

-        // Check previous suballocations for BufferImageGranularity conflicts.

-        // Make bigger alignment if necessary.

-        if(bufferImageGranularity > 1 && !suballocations1st.empty())

-        {

-            bool bufferImageGranularityConflict = false;

-            for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )

-            {

-                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];

-                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

-                    {

-                        bufferImageGranularityConflict = true;

-                        break;

-                    }

-                }

-                else

-                    // Already on previous page.

-                    break;

-            }

-            if(bufferImageGranularityConflict)

-            {

-                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);

-            }

-        }

-

-        const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?

-            suballocations2nd.back().offset : size;

-

-        // There is enough free space at the end after alignment.

-        if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd)

-        {

-            // Check next suballocations for BufferImageGranularity conflicts.

-            // If conflict exists, allocation cannot be made here.

-            if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-            {

-                for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )

-                {

-                    const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];

-                    if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

-                    {

-                        if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

-                        {

-                            return false;

-                        }

-                    }

-                    else

-                    {

-                        // Already on previous page.

-                        break;

-                    }

-                }

-            }

-

-            // All tests passed: Success.

-            pAllocationRequest->offset = resultOffset;

-            pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;

-            pAllocationRequest->sumItemSize = 0;

-            // pAllocationRequest->item, customData unused.

-            pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;

-            pAllocationRequest->itemsToMakeLostCount = 0;

-            return true;

-        }

-    }

-

-    // Wrap-around to end of 2nd vector. Try to allocate there, watching for the

-    // beginning of 1st vector as the end of free space.

-    if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-    {

-        VMA_ASSERT(!suballocations1st.empty());

-

-        VkDeviceSize resultBaseOffset = 0;

-        if(!suballocations2nd.empty())

-        {

-            const VmaSuballocation& lastSuballoc = suballocations2nd.back();

-            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;

-        }

-

-        // Start from offset equal to beginning of free space.

-        VkDeviceSize resultOffset = resultBaseOffset;

-

-        // Apply VMA_DEBUG_MARGIN at the beginning.

-        if(VMA_DEBUG_MARGIN > 0)

-        {

-            resultOffset += VMA_DEBUG_MARGIN;

-        }

-

-        // Apply alignment.

-        resultOffset = VmaAlignUp(resultOffset, allocAlignment);

-

-        // Check previous suballocations for BufferImageGranularity conflicts.

-        // Make bigger alignment if necessary.

-        if(bufferImageGranularity > 1 && !suballocations2nd.empty())

-        {

-            bool bufferImageGranularityConflict = false;

-            for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )

-            {

-                const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];

-                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))

-                {

-                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))

-                    {

-                        bufferImageGranularityConflict = true;

-                        break;

-                    }

-                }

-                else

-                    // Already on previous page.

-                    break;

-            }

-            if(bufferImageGranularityConflict)

-            {

-                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);

-            }

-        }

-

-        pAllocationRequest->itemsToMakeLostCount = 0;

-        pAllocationRequest->sumItemSize = 0;

-        size_t index1st = m_1stNullItemsBeginCount;

-

-        if(canMakeOtherLost)

-        {

-            while(index1st < suballocations1st.size() &&

-                resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset)

-            {

-                // Next colliding allocation at the beginning of 1st vector found. Try to make it lost.

-                const VmaSuballocation& suballoc = suballocations1st[index1st];

-                if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)

-                {

-                    // No problem.

-                }

-                else

-                {

-                    VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);

-                    if(suballoc.hAllocation->CanBecomeLost() &&

-                        suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

-                    {

-                        ++pAllocationRequest->itemsToMakeLostCount;

-                        pAllocationRequest->sumItemSize += suballoc.size;

-                    }

-                    else

-                    {

-                        return false;

-                    }

-                }

-                ++index1st;

-            }

-

-            // Check next suballocations for BufferImageGranularity conflicts.

-            // If conflict exists, we must mark more allocations lost or fail.

-            if(bufferImageGranularity > 1)

-            {

-                while(index1st < suballocations1st.size())

-                {

-                    const VmaSuballocation& suballoc = suballocations1st[index1st];

-                    if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity))

-                    {

-                        if(suballoc.hAllocation != VK_NULL_HANDLE)

-                        {

-                            // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).

-                            if(suballoc.hAllocation->CanBecomeLost() &&

-                                suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)

-                            {

-                                ++pAllocationRequest->itemsToMakeLostCount;

-                                pAllocationRequest->sumItemSize += suballoc.size;

-                            }

-                            else

-                            {

-                                return false;

-                            }

-                        }

-                    }

-                    else

-                    {

-                        // Already on next page.

-                        break;

-                    }

-                    ++index1st;

-                }

-            }

-

-            // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.

-            if(index1st == suballocations1st.size() &&

-                resultOffset + allocSize + VMA_DEBUG_MARGIN > size)

-            {

-                // TODO: This is a known bug that it's not yet implemented and the allocation is failing.

-                VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");

-            }

-        }

-

-        // There is enough free space at the end after alignment.

-        if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) ||

-            (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset))

-        {

-            // Check next suballocations for BufferImageGranularity conflicts.

-            // If conflict exists, allocation cannot be made here.

-            if(bufferImageGranularity > 1)

-            {

-                for(size_t nextSuballocIndex = index1st;

-                    nextSuballocIndex < suballocations1st.size();

-                    nextSuballocIndex++)

-                {

-                    const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];

-                    if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))

-                    {

-                        if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))

-                        {

-                            return false;

-                        }

-                    }

-                    else

-                    {

-                        // Already on next page.

-                        break;

-                    }

-                }

-            }

-

-            // All tests passed: Success.

-            pAllocationRequest->offset = resultOffset;

-            pAllocationRequest->sumFreeSize =

-                (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size)

-                - resultBaseOffset

-                - pAllocationRequest->sumItemSize;

-            pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;

-            // pAllocationRequest->item, customData unused.

-            return true;

-        }

-    }

-

-    return false;

-}

-

-bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    if(pAllocationRequest->itemsToMakeLostCount == 0)

-    {

-        return true;

-    }

-

-    VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);

-    

-    // We always start from 1st.

-    SuballocationVectorType* suballocations = &AccessSuballocations1st();

-    size_t index = m_1stNullItemsBeginCount;

-    size_t madeLostCount = 0;

-    while(madeLostCount < pAllocationRequest->itemsToMakeLostCount)

-    {

-        if(index == suballocations->size())

-        {

-            index = 0;

-            // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.

-            if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-            {

-                suballocations = &AccessSuballocations2nd();

-            }

-            // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:

-            // suballocations continues pointing at AccessSuballocations1st().

-            VMA_ASSERT(!suballocations->empty());

-        }

-        VmaSuballocation& suballoc = (*suballocations)[index];

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);

-            VMA_ASSERT(suballoc.hAllocation->CanBecomeLost());

-            if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

-            {

-                suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-                suballoc.hAllocation = VK_NULL_HANDLE;

-                m_SumFreeSize += suballoc.size;

-                if(suballocations == &AccessSuballocations1st())

-                {

-                    ++m_1stNullItemsMiddleCount;

-                }

-                else

-                {

-                    ++m_2ndNullItemsCount;

-                }

-                ++madeLostCount;

-            }

-            else

-            {

-                return false;

-            }

-        }

-        ++index;

-    }

-

-    CleanupAfterFree();

-    //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree().

-    

-    return true;

-}

-

-uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

-{

-    uint32_t lostAllocationCount = 0;

-    

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)

-    {

-        VmaSuballocation& suballoc = suballocations1st[i];

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&

-            suballoc.hAllocation->CanBecomeLost() &&

-            suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

-        {

-            suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-            suballoc.hAllocation = VK_NULL_HANDLE;

-            ++m_1stNullItemsMiddleCount;

-            m_SumFreeSize += suballoc.size;

-            ++lostAllocationCount;

-        }

-    }

-

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-    for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)

-    {

-        VmaSuballocation& suballoc = suballocations2nd[i];

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&

-            suballoc.hAllocation->CanBecomeLost() &&

-            suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))

-        {

-            suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-            suballoc.hAllocation = VK_NULL_HANDLE;

-            ++m_2ndNullItemsCount;

-            m_SumFreeSize += suballoc.size;

-            ++lostAllocationCount;

-        }

-    }

-

-    if(lostAllocationCount)

-    {

-        CleanupAfterFree();

-    }

-

-    return lostAllocationCount;

-}

-

-VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)

-{

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)

-    {

-        const VmaSuballocation& suballoc = suballocations1st[i];

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-            if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-        }

-    }

-

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-    for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)

-    {

-        const VmaSuballocation& suballoc = suballocations2nd[i];

-        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)

-        {

-            if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-            if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))

-            {

-                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");

-                return VK_ERROR_VALIDATION_FAILED_EXT;

-            }

-        }

-    }

-

-    return VK_SUCCESS;

-}

-

-void VmaBlockMetadata_Linear::Alloc(

-    const VmaAllocationRequest& request,

-    VmaSuballocationType type,

-    VkDeviceSize allocSize,

-    VmaAllocation hAllocation)

-{

-    const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type };

-

-    switch(request.type)

-    {

-    case VmaAllocationRequestType::UpperAddress:

-        {

-            VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&

-                "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");

-            SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-            suballocations2nd.push_back(newSuballoc);

-            m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;

-        }

-        break;

-    case VmaAllocationRequestType::EndOf1st:

-        {

-            SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-

-            VMA_ASSERT(suballocations1st.empty() ||

-                request.offset >= suballocations1st.back().offset + suballocations1st.back().size);

-            // Check if it fits before the end of the block.

-            VMA_ASSERT(request.offset + allocSize <= GetSize());

-

-            suballocations1st.push_back(newSuballoc);

-        }

-        break;

-    case VmaAllocationRequestType::EndOf2nd:

-        {

-            SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-            // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.

-            VMA_ASSERT(!suballocations1st.empty() &&

-                request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset);

-            SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-            switch(m_2ndVectorMode)

-            {

-            case SECOND_VECTOR_EMPTY:

-                // First allocation from second part ring buffer.

-                VMA_ASSERT(suballocations2nd.empty());

-                m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;

-                break;

-            case SECOND_VECTOR_RING_BUFFER:

-                // 2-part ring buffer is already started.

-                VMA_ASSERT(!suballocations2nd.empty());

-                break;

-            case SECOND_VECTOR_DOUBLE_STACK:

-                VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");

-                break;

-            default:

-                VMA_ASSERT(0);

-            }

-

-            suballocations2nd.push_back(newSuballoc);

-        }

-        break;

-    default:

-        VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");

-    }

-

-    m_SumFreeSize -= newSuballoc.size;

-}

-

-void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation)

-{

-    FreeAtOffset(allocation->GetOffset());

-}

-

-void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset)

-{

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-    if(!suballocations1st.empty())

-    {

-        // First allocation: Mark it as next empty at the beginning.

-        VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];

-        if(firstSuballoc.offset == offset)

-        {

-            firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;

-            firstSuballoc.hAllocation = VK_NULL_HANDLE;

-            m_SumFreeSize += firstSuballoc.size;

-            ++m_1stNullItemsBeginCount;

-            CleanupAfterFree();

-            return;

-        }

-    }

-

-    // Last allocation in 2-part ring buffer or top of upper stack (same logic).

-    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||

-        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)

-    {

-        VmaSuballocation& lastSuballoc = suballocations2nd.back();

-        if(lastSuballoc.offset == offset)

-        {

-            m_SumFreeSize += lastSuballoc.size;

-            suballocations2nd.pop_back();

-            CleanupAfterFree();

-            return;

-        }

-    }

-    // Last allocation in 1st vector.

-    else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY)

-    {

-        VmaSuballocation& lastSuballoc = suballocations1st.back();

-        if(lastSuballoc.offset == offset)

-        {

-            m_SumFreeSize += lastSuballoc.size;

-            suballocations1st.pop_back();

-            CleanupAfterFree();

-            return;

-        }

-    }

-

-    // Item from the middle of 1st vector.

-    {

-        VmaSuballocation refSuballoc;

-        refSuballoc.offset = offset;

-        // Rest of members stays uninitialized intentionally for better performance.

-        SuballocationVectorType::iterator it = VmaBinaryFindSorted(

-            suballocations1st.begin() + m_1stNullItemsBeginCount,

-            suballocations1st.end(),

-            refSuballoc,

-            VmaSuballocationOffsetLess());

-        if(it != suballocations1st.end())

-        {

-            it->type = VMA_SUBALLOCATION_TYPE_FREE;

-            it->hAllocation = VK_NULL_HANDLE;

-            ++m_1stNullItemsMiddleCount;

-            m_SumFreeSize += it->size;

-            CleanupAfterFree();

-            return;

-        }

-    }

-

-    if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)

-    {

-        // Item from the middle of 2nd vector.

-        VmaSuballocation refSuballoc;

-        refSuballoc.offset = offset;

-        // Rest of members stays uninitialized intentionally for better performance.

-        SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?

-            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :

-            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());

-        if(it != suballocations2nd.end())

-        {

-            it->type = VMA_SUBALLOCATION_TYPE_FREE;

-            it->hAllocation = VK_NULL_HANDLE;

-            ++m_2ndNullItemsCount;

-            m_SumFreeSize += it->size;

-            CleanupAfterFree();

-            return;

-        }

-    }

-

-    VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");

-}

-

-bool VmaBlockMetadata_Linear::ShouldCompact1st() const

-{

-    const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;

-    const size_t suballocCount = AccessSuballocations1st().size();

-    return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;

-}

-

-void VmaBlockMetadata_Linear::CleanupAfterFree()

-{

-    SuballocationVectorType& suballocations1st = AccessSuballocations1st();

-    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();

-

-    if(IsEmpty())

-    {

-        suballocations1st.clear();

-        suballocations2nd.clear();

-        m_1stNullItemsBeginCount = 0;

-        m_1stNullItemsMiddleCount = 0;

-        m_2ndNullItemsCount = 0;

-        m_2ndVectorMode = SECOND_VECTOR_EMPTY;

-    }

-    else

-    {

-        const size_t suballoc1stCount = suballocations1st.size();

-        const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;

-        VMA_ASSERT(nullItem1stCount <= suballoc1stCount);

-

-        // Find more null items at the beginning of 1st vector.

-        while(m_1stNullItemsBeginCount < suballoc1stCount &&

-            suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)

-        {

-            ++m_1stNullItemsBeginCount;

-            --m_1stNullItemsMiddleCount;

-        }

-

-        // Find more null items at the end of 1st vector.

-        while(m_1stNullItemsMiddleCount > 0 &&

-            suballocations1st.back().hAllocation == VK_NULL_HANDLE)

-        {

-            --m_1stNullItemsMiddleCount;

-            suballocations1st.pop_back();

-        }

-

-        // Find more null items at the end of 2nd vector.

-        while(m_2ndNullItemsCount > 0 &&

-            suballocations2nd.back().hAllocation == VK_NULL_HANDLE)

-        {

-            --m_2ndNullItemsCount;

-            suballocations2nd.pop_back();

-        }

-

-        // Find more null items at the beginning of 2nd vector.

-        while(m_2ndNullItemsCount > 0 &&

-            suballocations2nd[0].hAllocation == VK_NULL_HANDLE)

-        {

-            --m_2ndNullItemsCount;

-            VmaVectorRemove(suballocations2nd, 0);

-        }

-

-        if(ShouldCompact1st())

-        {

-            const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;

-            size_t srcIndex = m_1stNullItemsBeginCount;

-            for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)

-            {

-                while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE)

-                {

-                    ++srcIndex;

-                }

-                if(dstIndex != srcIndex)

-                {

-                    suballocations1st[dstIndex] = suballocations1st[srcIndex];

-                }

-                ++srcIndex;

-            }

-            suballocations1st.resize(nonNullItemCount);

-            m_1stNullItemsBeginCount = 0;

-            m_1stNullItemsMiddleCount = 0;

-        }

-

-        // 2nd vector became empty.

-        if(suballocations2nd.empty())

-        {

-            m_2ndVectorMode = SECOND_VECTOR_EMPTY;

-        }

-

-        // 1st vector became empty.

-        if(suballocations1st.size() - m_1stNullItemsBeginCount == 0)

-        {

-            suballocations1st.clear();

-            m_1stNullItemsBeginCount = 0;

-

-            if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)

-            {

-                // Swap 1st with 2nd. Now 2nd is empty.

-                m_2ndVectorMode = SECOND_VECTOR_EMPTY;

-                m_1stNullItemsMiddleCount = m_2ndNullItemsCount;

-                while(m_1stNullItemsBeginCount < suballocations2nd.size() &&

-                    suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)

-                {

-                    ++m_1stNullItemsBeginCount;

-                    --m_1stNullItemsMiddleCount;

-                }

-                m_2ndNullItemsCount = 0;

-                m_1stVectorIndex ^= 1;

-            }

-        }

-    }

-

-    VMA_HEAVY_ASSERT(Validate());

-}

-

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaBlockMetadata_Buddy

-

-VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) :

-    VmaBlockMetadata(hAllocator),

-    m_Root(VMA_NULL),

-    m_AllocationCount(0),

-    m_FreeCount(1),

-    m_SumFreeSize(0)

-{

-    memset(m_FreeList, 0, sizeof(m_FreeList));

-}

-

-VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()

-{

-    DeleteNode(m_Root);

-}

-

-void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)

-{

-    VmaBlockMetadata::Init(size);

-

-    m_UsableSize = VmaPrevPow2(size);

-    m_SumFreeSize = m_UsableSize;

-

-    // Calculate m_LevelCount.

-    m_LevelCount = 1;

-    while(m_LevelCount < MAX_LEVELS &&

-        LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE)

-    {

-        ++m_LevelCount;

-    }

-

-    Node* rootNode = vma_new(GetAllocationCallbacks(), Node)();

-    rootNode->offset = 0;

-    rootNode->type = Node::TYPE_FREE;

-    rootNode->parent = VMA_NULL;

-    rootNode->buddy = VMA_NULL;

-

-    m_Root = rootNode;

-    AddToFreeListFront(0, rootNode);

-}

-

-bool VmaBlockMetadata_Buddy::Validate() const

-{

-    // Validate tree.

-    ValidationContext ctx;

-    if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))

-    {

-        VMA_VALIDATE(false && "ValidateNode failed.");

-    }

-    VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);

-    VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);

-

-    // Validate free node lists.

-    for(uint32_t level = 0; level < m_LevelCount; ++level)

-    {

-        VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||

-            m_FreeList[level].front->free.prev == VMA_NULL);

-

-        for(Node* node = m_FreeList[level].front;

-            node != VMA_NULL;

-            node = node->free.next)

-        {

-            VMA_VALIDATE(node->type == Node::TYPE_FREE);

-            

-            if(node->free.next == VMA_NULL)

-            {

-                VMA_VALIDATE(m_FreeList[level].back == node);

-            }

-            else

-            {

-                VMA_VALIDATE(node->free.next->free.prev == node);

-            }

-        }

-    }

-

-    // Validate that free lists ar higher levels are empty.

-    for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)

-    {

-        VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);

-    }

-

-    return true;

-}

-

-VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const

-{

-    for(uint32_t level = 0; level < m_LevelCount; ++level)

-    {

-        if(m_FreeList[level].front != VMA_NULL)

-        {

-            return LevelToNodeSize(level);

-        }

-    }

-    return 0;

-}

-

-void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const

-{

-    const VkDeviceSize unusableSize = GetUnusableSize();

-

-    outInfo.blockCount = 1;

-

-    outInfo.allocationCount = outInfo.unusedRangeCount = 0;

-    outInfo.usedBytes = outInfo.unusedBytes = 0;

-

-    outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0;

-    outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX;

-    outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused.

-

-    CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));

-

-    if(unusableSize > 0)

-    {

-        ++outInfo.unusedRangeCount;

-        outInfo.unusedBytes += unusableSize;

-        outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize);

-        outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize);

-    }

-}

-

-void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const

-{

-    const VkDeviceSize unusableSize = GetUnusableSize();

-

-    inoutStats.size += GetSize();

-    inoutStats.unusedSize += m_SumFreeSize + unusableSize;

-    inoutStats.allocationCount += m_AllocationCount;

-    inoutStats.unusedRangeCount += m_FreeCount;

-    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());

-

-    if(unusableSize > 0)

-    {

-        ++inoutStats.unusedRangeCount;

-        // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const

-{

-    // TODO optimize

-    VmaStatInfo stat;

-    CalcAllocationStatInfo(stat);

-

-    PrintDetailedMap_Begin(

-        json,

-        stat.unusedBytes,

-        stat.allocationCount,

-        stat.unusedRangeCount);

-

-    PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));

-

-    const VkDeviceSize unusableSize = GetUnusableSize();

-    if(unusableSize > 0)

-    {

-        PrintDetailedMap_UnusedRange(json,

-            m_UsableSize, // offset

-            unusableSize); // size

-    }

-

-    PrintDetailedMap_End(json);

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-bool VmaBlockMetadata_Buddy::CreateAllocationRequest(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VkDeviceSize bufferImageGranularity,

-    VkDeviceSize allocSize,

-    VkDeviceSize allocAlignment,

-    bool upperAddress,

-    VmaSuballocationType allocType,

-    bool canMakeOtherLost,

-    uint32_t strategy,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");

-

-    // Simple way to respect bufferImageGranularity. May be optimized some day.

-    // Whenever it might be an OPTIMAL image...

-    if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||

-        allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||

-        allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)

-    {

-        allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);

-        allocSize = VMA_MAX(allocSize, bufferImageGranularity);

-    }

-

-    if(allocSize > m_UsableSize)

-    {

-        return false;

-    }

-

-    const uint32_t targetLevel = AllocSizeToLevel(allocSize);

-    for(uint32_t level = targetLevel + 1; level--; )

-    {

-        for(Node* freeNode = m_FreeList[level].front;

-            freeNode != VMA_NULL;

-            freeNode = freeNode->free.next)

-        {

-            if(freeNode->offset % allocAlignment == 0)

-            {

-                pAllocationRequest->type = VmaAllocationRequestType::Normal;

-                pAllocationRequest->offset = freeNode->offset;

-                pAllocationRequest->sumFreeSize = LevelToNodeSize(level);

-                pAllocationRequest->sumItemSize = 0;

-                pAllocationRequest->itemsToMakeLostCount = 0;

-                pAllocationRequest->customData = (void*)(uintptr_t)level;

-                return true;

-            }

-        }

-    }

-

-    return false;

-}

-

-bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(

-    uint32_t currentFrameIndex,

-    uint32_t frameInUseCount,

-    VmaAllocationRequest* pAllocationRequest)

-{

-    /*

-    Lost allocations are not supported in buddy allocator at the moment.

-    Support might be added in the future.

-    */

-    return pAllocationRequest->itemsToMakeLostCount == 0;

-}

-

-uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)

-{

-    /*

-    Lost allocations are not supported in buddy allocator at the moment.

-    Support might be added in the future.

-    */

-    return 0;

-}

-

-void VmaBlockMetadata_Buddy::Alloc(

-    const VmaAllocationRequest& request,

-    VmaSuballocationType type,

-    VkDeviceSize allocSize,

-    VmaAllocation hAllocation)

-{

-    VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);

-

-    const uint32_t targetLevel = AllocSizeToLevel(allocSize);

-    uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;

-    

-    Node* currNode = m_FreeList[currLevel].front;

-    VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);

-    while(currNode->offset != request.offset)

-    {

-        currNode = currNode->free.next;

-        VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);

-    }

-    

-    // Go down, splitting free nodes.

-    while(currLevel < targetLevel)

-    {

-        // currNode is already first free node at currLevel.

-        // Remove it from list of free nodes at this currLevel.

-        RemoveFromFreeList(currLevel, currNode);

-         

-        const uint32_t childrenLevel = currLevel + 1;

-

-        // Create two free sub-nodes.

-        Node* leftChild = vma_new(GetAllocationCallbacks(), Node)();

-        Node* rightChild = vma_new(GetAllocationCallbacks(), Node)();

-

-        leftChild->offset = currNode->offset;

-        leftChild->type = Node::TYPE_FREE;

-        leftChild->parent = currNode;

-        leftChild->buddy = rightChild;

-

-        rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);

-        rightChild->type = Node::TYPE_FREE;

-        rightChild->parent = currNode;

-        rightChild->buddy = leftChild;

-

-        // Convert current currNode to split type.

-        currNode->type = Node::TYPE_SPLIT;

-        currNode->split.leftChild = leftChild;

-

-        // Add child nodes to free list. Order is important!

-        AddToFreeListFront(childrenLevel, rightChild);

-        AddToFreeListFront(childrenLevel, leftChild);

-

-        ++m_FreeCount;

-        //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2.

-        ++currLevel;

-        currNode = m_FreeList[currLevel].front;

-

-        /*

-        We can be sure that currNode, as left child of node previously split,

-        also fullfills the alignment requirement.

-        */

-    }

-

-    // Remove from free list.

-    VMA_ASSERT(currLevel == targetLevel &&

-        currNode != VMA_NULL &&

-        currNode->type == Node::TYPE_FREE);

-    RemoveFromFreeList(currLevel, currNode);

-

-    // Convert to allocation node.

-    currNode->type = Node::TYPE_ALLOCATION;

-    currNode->allocation.alloc = hAllocation;

-

-    ++m_AllocationCount;

-    --m_FreeCount;

-    m_SumFreeSize -= allocSize;

-}

-

-void VmaBlockMetadata_Buddy::DeleteNode(Node* node)

-{

-    if(node->type == Node::TYPE_SPLIT)

-    {

-        DeleteNode(node->split.leftChild->buddy);

-        DeleteNode(node->split.leftChild);

-    }

-

-    vma_delete(GetAllocationCallbacks(), node);

-}

-

-bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const

-{

-    VMA_VALIDATE(level < m_LevelCount);

-    VMA_VALIDATE(curr->parent == parent);

-    VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));

-    VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);

-    switch(curr->type)

-    {

-    case Node::TYPE_FREE:

-        // curr->free.prev, next are validated separately.

-        ctx.calculatedSumFreeSize += levelNodeSize;

-        ++ctx.calculatedFreeCount;

-        break;

-    case Node::TYPE_ALLOCATION:

-        ++ctx.calculatedAllocationCount;

-        ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize();

-        VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE);

-        break;

-    case Node::TYPE_SPLIT:

-        {

-            const uint32_t childrenLevel = level + 1;

-            const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2;

-            const Node* const leftChild = curr->split.leftChild;

-            VMA_VALIDATE(leftChild != VMA_NULL);

-            VMA_VALIDATE(leftChild->offset == curr->offset);

-            if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))

-            {

-                VMA_VALIDATE(false && "ValidateNode for left child failed.");

-            }

-            const Node* const rightChild = leftChild->buddy;

-            VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);

-            if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))

-            {

-                VMA_VALIDATE(false && "ValidateNode for right child failed.");

-            }

-        }

-        break;

-    default:

-        return false;

-    }

-

-    return true;

-}

-

-uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const

-{

-    // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.

-    uint32_t level = 0;

-    VkDeviceSize currLevelNodeSize = m_UsableSize;

-    VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;

-    while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)

-    {

-        ++level;

-        currLevelNodeSize = nextLevelNodeSize;

-        nextLevelNodeSize = currLevelNodeSize >> 1;

-    }

-    return level;

-}

-

-void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset)

-{

-    // Find node and level.

-    Node* node = m_Root;

-    VkDeviceSize nodeOffset = 0;

-    uint32_t level = 0;

-    VkDeviceSize levelNodeSize = LevelToNodeSize(0);

-    while(node->type == Node::TYPE_SPLIT)

-    {

-        const VkDeviceSize nextLevelSize = levelNodeSize >> 1;

-        if(offset < nodeOffset + nextLevelSize)

-        {

-            node = node->split.leftChild;

-        }

-        else

-        {

-            node = node->split.leftChild->buddy;

-            nodeOffset += nextLevelSize;

-        }

-        ++level;

-        levelNodeSize = nextLevelSize;

-    }

-

-    VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);

-    VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc);

-

-    ++m_FreeCount;

-    --m_AllocationCount;

-    m_SumFreeSize += alloc->GetSize();

-

-    node->type = Node::TYPE_FREE;

-

-    // Join free nodes if possible.

-    while(level > 0 && node->buddy->type == Node::TYPE_FREE)

-    {

-        RemoveFromFreeList(level, node->buddy);

-        Node* const parent = node->parent;

-

-        vma_delete(GetAllocationCallbacks(), node->buddy);

-        vma_delete(GetAllocationCallbacks(), node);

-        parent->type = Node::TYPE_FREE;

-        

-        node = parent;

-        --level;

-        //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2.

-        --m_FreeCount;

-    }

-

-    AddToFreeListFront(level, node);

-}

-

-void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const

-{

-    switch(node->type)

-    {

-    case Node::TYPE_FREE:

-        ++outInfo.unusedRangeCount;

-        outInfo.unusedBytes += levelNodeSize;

-        outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize);

-        outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize);

-        break;

-    case Node::TYPE_ALLOCATION:

-        {

-            const VkDeviceSize allocSize = node->allocation.alloc->GetSize();

-            ++outInfo.allocationCount;

-            outInfo.usedBytes += allocSize;

-            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize);

-            outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize);

-

-            const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize;

-            if(unusedRangeSize > 0)

-            {

-                ++outInfo.unusedRangeCount;

-                outInfo.unusedBytes += unusedRangeSize;

-                outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize);

-                outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize);

-            }

-        }

-        break;

-    case Node::TYPE_SPLIT:

-        {

-            const VkDeviceSize childrenNodeSize = levelNodeSize / 2;

-            const Node* const leftChild = node->split.leftChild;

-            CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize);

-            const Node* const rightChild = leftChild->buddy;

-            CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize);

-        }

-        break;

-    default:

-        VMA_ASSERT(0);

-    }

-}

-

-void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)

-{

-    VMA_ASSERT(node->type == Node::TYPE_FREE);

-

-    // List is empty.

-    Node* const frontNode = m_FreeList[level].front;

-    if(frontNode == VMA_NULL)

-    {

-        VMA_ASSERT(m_FreeList[level].back == VMA_NULL);

-        node->free.prev = node->free.next = VMA_NULL;

-        m_FreeList[level].front = m_FreeList[level].back = node;

-    }

-    else

-    {

-        VMA_ASSERT(frontNode->free.prev == VMA_NULL);

-        node->free.prev = VMA_NULL;

-        node->free.next = frontNode;

-        frontNode->free.prev = node;

-        m_FreeList[level].front = node;

-    }

-}

-

-void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)

-{

-    VMA_ASSERT(m_FreeList[level].front != VMA_NULL);

-

-    // It is at the front.

-    if(node->free.prev == VMA_NULL)

-    {

-        VMA_ASSERT(m_FreeList[level].front == node);

-        m_FreeList[level].front = node->free.next;

-    }

-    else

-    {

-        Node* const prevFreeNode = node->free.prev;

-        VMA_ASSERT(prevFreeNode->free.next == node);

-        prevFreeNode->free.next = node->free.next;

-    }

-

-    // It is at the back.

-    if(node->free.next == VMA_NULL)

-    {

-        VMA_ASSERT(m_FreeList[level].back == node);

-        m_FreeList[level].back = node->free.prev;

-    }

-    else

-    {

-        Node* const nextFreeNode = node->free.next;

-        VMA_ASSERT(nextFreeNode->free.prev == node);

-        nextFreeNode->free.prev = node->free.prev;

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const

-{

-    switch(node->type)

-    {

-    case Node::TYPE_FREE:

-        PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);

-        break;

-    case Node::TYPE_ALLOCATION:

-        {   

-            PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc);

-            const VkDeviceSize allocSize = node->allocation.alloc->GetSize();

-            if(allocSize < levelNodeSize)

-            {

-                PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize);

-            }

-        }

-        break;

-    case Node::TYPE_SPLIT:

-        {

-            const VkDeviceSize childrenNodeSize = levelNodeSize / 2;

-            const Node* const leftChild = node->split.leftChild;

-            PrintDetailedMapNode(json, leftChild, childrenNodeSize);

-            const Node* const rightChild = leftChild->buddy;

-            PrintDetailedMapNode(json, rightChild, childrenNodeSize);

-        }

-        break;

-    default:

-        VMA_ASSERT(0);

-    }

-}

-#endif // #if VMA_STATS_STRING_ENABLED

-

-

-////////////////////////////////////////////////////////////////////////////////

-// class VmaDeviceMemoryBlock

-

-VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :

-    m_pMetadata(VMA_NULL),

-    m_MemoryTypeIndex(UINT32_MAX),

-    m_Id(0),

-    m_hMemory(VK_NULL_HANDLE),

-    m_MapCount(0),

-    m_pMappedData(VMA_NULL)

-{

-}

-

-void VmaDeviceMemoryBlock::Init(

-    VmaAllocator hAllocator,

-    VmaPool hParentPool,

-    uint32_t newMemoryTypeIndex,

-    VkDeviceMemory newMemory,

-    VkDeviceSize newSize,

-    uint32_t id,

-    uint32_t algorithm)

-{

-    VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);

-

-    m_hParentPool = hParentPool;

-    m_MemoryTypeIndex = newMemoryTypeIndex;

-    m_Id = id;

-    m_hMemory = newMemory;

-

-    switch(algorithm)

-    {

-    case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:

-        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator);

-        break;

-    case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:

-        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator);

-        break;

-    default:

-        VMA_ASSERT(0);

-        // Fall-through.

-    case 0:

-        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator);

-    }

-    m_pMetadata->Init(newSize);

-}

-

-void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)

-{

-    // This is the most important assert in the entire library.

-    // Hitting it means you have some memory leak - unreleased VmaAllocation objects.

-    VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");

-

-    VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);

-    allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);

-    m_hMemory = VK_NULL_HANDLE;

-

-    vma_delete(allocator, m_pMetadata);

-    m_pMetadata = VMA_NULL;

-}

-

-bool VmaDeviceMemoryBlock::Validate() const

-{

-    VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&

-        (m_pMetadata->GetSize() != 0));

-    

-    return m_pMetadata->Validate();

-}

-

-VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)

-{

-    void* pData = nullptr;

-    VkResult res = Map(hAllocator, 1, &pData);

-    if(res != VK_SUCCESS)

-    {

-        return res;

-    }

-

-    res = m_pMetadata->CheckCorruption(pData);

-

-    Unmap(hAllocator, 1);

-

-    return res;

-}

-

-VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)

-{

-    if(count == 0)

-    {

-        return VK_SUCCESS;

-    }

-

-    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

-    if(m_MapCount != 0)

-    {

-        m_MapCount += count;

-        VMA_ASSERT(m_pMappedData != VMA_NULL);

-        if(ppData != VMA_NULL)

-        {

-            *ppData = m_pMappedData;

-        }

-        return VK_SUCCESS;

-    }

-    else

-    {

-        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(

-            hAllocator->m_hDevice,

-            m_hMemory,

-            0, // offset

-            VK_WHOLE_SIZE,

-            0, // flags

-            &m_pMappedData);

-        if(result == VK_SUCCESS)

-        {

-            if(ppData != VMA_NULL)

-            {

-                *ppData = m_pMappedData;

-            }

-            m_MapCount = count;

-        }

-        return result;

-    }

-}

-

-void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)

-{

-    if(count == 0)

-    {

-        return;

-    }

-

-    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

-    if(m_MapCount >= count)

-    {

-        m_MapCount -= count;

-        if(m_MapCount == 0)

-        {

-            m_pMappedData = VMA_NULL;

-            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);

-        }

-    }

-    else

-    {

-        VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");

-    }

-}

-

-VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)

-{

-    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);

-    VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);

-

-    void* pData;

-    VkResult res = Map(hAllocator, 1, &pData);

-    if(res != VK_SUCCESS)

-    {

-        return res;

-    }

-

-    VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);

-    VmaWriteMagicValue(pData, allocOffset + allocSize);

-

-    Unmap(hAllocator, 1);

-

-    return VK_SUCCESS;

-}

-

-VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)

-{

-    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);

-    VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);

-

-    void* pData;

-    VkResult res = Map(hAllocator, 1, &pData);

-    if(res != VK_SUCCESS)

-    {

-        return res;

-    }

-

-    if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN))

-    {

-        VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");

-    }

-    else if(!VmaValidateMagicValue(pData, allocOffset + allocSize))

-    {

-        VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");

-    }

-

-    Unmap(hAllocator, 1);

-

-    return VK_SUCCESS;

-}

-

-VkResult VmaDeviceMemoryBlock::BindBufferMemory(

-    const VmaAllocator hAllocator,

-    const VmaAllocation hAllocation,

-    VkDeviceSize allocationLocalOffset,

-    VkBuffer hBuffer,

-    const void* pNext)

-{

-    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&

-        hAllocation->GetBlock() == this);

-    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&

-        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");

-    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;

-    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.

-    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

-    return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);

-}

-

-VkResult VmaDeviceMemoryBlock::BindImageMemory(

-    const VmaAllocator hAllocator,

-    const VmaAllocation hAllocation,

-    VkDeviceSize allocationLocalOffset,

-    VkImage hImage,

-    const void* pNext)

-{

-    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&

-        hAllocation->GetBlock() == this);

-    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&

-        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");

-    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;

-    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.

-    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);

-    return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);

-}

-

-static void InitStatInfo(VmaStatInfo& outInfo)

-{

-    memset(&outInfo, 0, sizeof(outInfo));

-    outInfo.allocationSizeMin = UINT64_MAX;

-    outInfo.unusedRangeSizeMin = UINT64_MAX;

-}

-

-// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.

-static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)

-{

-    inoutInfo.blockCount += srcInfo.blockCount;

-    inoutInfo.allocationCount += srcInfo.allocationCount;

-    inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;

-    inoutInfo.usedBytes += srcInfo.usedBytes;

-    inoutInfo.unusedBytes += srcInfo.unusedBytes;

-    inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);

-    inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);

-    inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);

-    inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);

-}

-

-static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)

-{

-    inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?

-        VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;

-    inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?

-        VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;

-}

-

-VmaPool_T::VmaPool_T(

-    VmaAllocator hAllocator,

-    const VmaPoolCreateInfo& createInfo,

-    VkDeviceSize preferredBlockSize) :

-    m_BlockVector(

-        hAllocator,

-        this, // hParentPool

-        createInfo.memoryTypeIndex,

-        createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,

-        createInfo.minBlockCount,

-        createInfo.maxBlockCount,

-        (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),

-        createInfo.frameInUseCount,

-        createInfo.blockSize != 0, // explicitBlockSize

-        createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm

-    m_Id(0),

-    m_Name(VMA_NULL)

-{

-}

-

-VmaPool_T::~VmaPool_T()

-{

-}

-

-void VmaPool_T::SetName(const char* pName)

-{

-    const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();

-    VmaFreeString(allocs, m_Name);

-    

-    if(pName != VMA_NULL)

-    {

-        m_Name = VmaCreateStringCopy(allocs, pName);

-    }

-    else

-    {

-        m_Name = VMA_NULL;

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-VmaBlockVector::VmaBlockVector(

-    VmaAllocator hAllocator,

-    VmaPool hParentPool,

-    uint32_t memoryTypeIndex,

-    VkDeviceSize preferredBlockSize,

-    size_t minBlockCount,

-    size_t maxBlockCount,

-    VkDeviceSize bufferImageGranularity,

-    uint32_t frameInUseCount,

-    bool explicitBlockSize,

-    uint32_t algorithm) :

-    m_hAllocator(hAllocator),

-    m_hParentPool(hParentPool),

-    m_MemoryTypeIndex(memoryTypeIndex),

-    m_PreferredBlockSize(preferredBlockSize),

-    m_MinBlockCount(minBlockCount),

-    m_MaxBlockCount(maxBlockCount),

-    m_BufferImageGranularity(bufferImageGranularity),

-    m_FrameInUseCount(frameInUseCount),

-    m_ExplicitBlockSize(explicitBlockSize),

-    m_Algorithm(algorithm),

-    m_HasEmptyBlock(false),

-    m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),

-    m_NextBlockId(0)

-{

-}

-

-VmaBlockVector::~VmaBlockVector()

-{

-    for(size_t i = m_Blocks.size(); i--; )

-    {

-        m_Blocks[i]->Destroy(m_hAllocator);

-        vma_delete(m_hAllocator, m_Blocks[i]);

-    }

-}

-

-VkResult VmaBlockVector::CreateMinBlocks()

-{

-    for(size_t i = 0; i < m_MinBlockCount; ++i)

-    {

-        VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);

-        if(res != VK_SUCCESS)

-        {

-            return res;

-        }

-    }

-    return VK_SUCCESS;

-}

-

-void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)

-{

-    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);

-

-    const size_t blockCount = m_Blocks.size();

-

-    pStats->size = 0;

-    pStats->unusedSize = 0;

-    pStats->allocationCount = 0;

-    pStats->unusedRangeCount = 0;

-    pStats->unusedRangeSizeMax = 0;

-    pStats->blockCount = blockCount;

-

-    for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

-    {

-        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

-        VMA_ASSERT(pBlock);

-        VMA_HEAVY_ASSERT(pBlock->Validate());

-        pBlock->m_pMetadata->AddPoolStats(*pStats);

-    }

-}

-

-bool VmaBlockVector::IsEmpty()

-{

-    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);

-    return m_Blocks.empty();

-}

-

-bool VmaBlockVector::IsCorruptionDetectionEnabled() const

-{

-    const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;

-    return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&

-        (VMA_DEBUG_MARGIN > 0) &&

-        (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&

-        (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;

-}

-

-static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;

-

-VkResult VmaBlockVector::Allocate(

-    uint32_t currentFrameIndex,

-    VkDeviceSize size,

-    VkDeviceSize alignment,

-    const VmaAllocationCreateInfo& createInfo,

-    VmaSuballocationType suballocType,

-    size_t allocationCount,

-    VmaAllocation* pAllocations)

-{

-    size_t allocIndex;

-    VkResult res = VK_SUCCESS;

-

-    if(IsCorruptionDetectionEnabled())

-    {

-        size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));

-        alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));

-    }

-

-    {

-        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);

-        for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)

-        {

-            res = AllocatePage(

-                currentFrameIndex,

-                size,

-                alignment,

-                createInfo,

-                suballocType,

-                pAllocations + allocIndex);

-            if(res != VK_SUCCESS)

-            {

-                break;

-            }

-        }

-    }

-

-    if(res != VK_SUCCESS)

-    {

-        // Free all already created allocations.

-        while(allocIndex--)

-        {

-            Free(pAllocations[allocIndex]);

-        }

-        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);

-    }

-

-    return res;

-}

-

-VkResult VmaBlockVector::AllocatePage(

-    uint32_t currentFrameIndex,

-    VkDeviceSize size,

-    VkDeviceSize alignment,

-    const VmaAllocationCreateInfo& createInfo,

-    VmaSuballocationType suballocType,

-    VmaAllocation* pAllocation)

-{

-    const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;

-    bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;

-    const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;

-    const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;

-    

-    VkDeviceSize freeMemory;

-    {

-        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);

-        VmaBudget heapBudget = {};

-        m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);

-        freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;

-    }

-    

-    const bool canFallbackToDedicated = !IsCustomPool();

-    const bool canCreateNewBlock =

-        ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&

-        (m_Blocks.size() < m_MaxBlockCount) &&

-        (freeMemory >= size || !canFallbackToDedicated);

-    uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;

-

-    // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.

-    // Which in turn is available only when maxBlockCount = 1.

-    if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1)

-    {

-        canMakeOtherLost = false;

-    }

-

-    // Upper address can only be used with linear allocator and within single memory block.

-    if(isUpperAddress &&

-        (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))

-    {

-        return VK_ERROR_FEATURE_NOT_PRESENT;

-    }

-

-    // Validate strategy.

-    switch(strategy)

-    {

-    case 0:

-        strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;

-        break;

-    case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:

-    case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:

-    case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:

-        break;

-    default:

-        return VK_ERROR_FEATURE_NOT_PRESENT;

-    }

-

-    // Early reject: requested allocation size is larger that maximum block size for this block vector.

-    if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize)

-    {

-        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-    }

-

-    /*

-    Under certain condition, this whole section can be skipped for optimization, so

-    we move on directly to trying to allocate with canMakeOtherLost. That's the case

-    e.g. for custom pools with linear algorithm.

-    */

-    if(!canMakeOtherLost || canCreateNewBlock)

-    {

-        // 1. Search existing allocations. Try to allocate without making other allocations lost.

-        VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;

-        allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;

-

-        if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)

-        {

-            // Use only last block.

-            if(!m_Blocks.empty())

-            {

-                VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();

-                VMA_ASSERT(pCurrBlock);

-                VkResult res = AllocateFromBlock(

-                    pCurrBlock,

-                    currentFrameIndex,

-                    size,

-                    alignment,

-                    allocFlagsCopy,

-                    createInfo.pUserData,

-                    suballocType,

-                    strategy,

-                    pAllocation);

-                if(res == VK_SUCCESS)

-                {

-                    VMA_DEBUG_LOG("    Returned from last block #%u", pCurrBlock->GetId());

-                    return VK_SUCCESS;

-                }

-            }

-        }

-        else

-        {

-            if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)

-            {

-                // Forward order in m_Blocks - prefer blocks with smallest amount of free space.

-                for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )

-                {

-                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

-                    VMA_ASSERT(pCurrBlock);

-                    VkResult res = AllocateFromBlock(

-                        pCurrBlock,

-                        currentFrameIndex,

-                        size,

-                        alignment,

-                        allocFlagsCopy,

-                        createInfo.pUserData,

-                        suballocType,

-                        strategy,

-                        pAllocation);

-                    if(res == VK_SUCCESS)

-                    {

-                        VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());

-                        return VK_SUCCESS;

-                    }

-                }

-            }

-            else // WORST_FIT, FIRST_FIT

-            {

-                // Backward order in m_Blocks - prefer blocks with largest amount of free space.

-                for(size_t blockIndex = m_Blocks.size(); blockIndex--; )

-                {

-                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

-                    VMA_ASSERT(pCurrBlock);

-                    VkResult res = AllocateFromBlock(

-                        pCurrBlock,

-                        currentFrameIndex,

-                        size,

-                        alignment,

-                        allocFlagsCopy,

-                        createInfo.pUserData,

-                        suballocType,

-                        strategy,

-                        pAllocation);

-                    if(res == VK_SUCCESS)

-                    {

-                        VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());

-                        return VK_SUCCESS;

-                    }

-                }

-            }

-        }

-

-        // 2. Try to create new block.

-        if(canCreateNewBlock)

-        {

-            // Calculate optimal size for new block.

-            VkDeviceSize newBlockSize = m_PreferredBlockSize;

-            uint32_t newBlockSizeShift = 0;

-            const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;

-

-            if(!m_ExplicitBlockSize)

-            {

-                // Allocate 1/8, 1/4, 1/2 as first blocks.

-                const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();

-                for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)

-                {

-                    const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;

-                    if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)

-                    {

-                        newBlockSize = smallerNewBlockSize;

-                        ++newBlockSizeShift;

-                    }

-                    else

-                    {

-                        break;

-                    }

-                }

-            }

-

-            size_t newBlockIndex = 0;

-            VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?

-                CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;

-            // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.

-            if(!m_ExplicitBlockSize)

-            {

-                while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)

-                {

-                    const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;

-                    if(smallerNewBlockSize >= size)

-                    {

-                        newBlockSize = smallerNewBlockSize;

-                        ++newBlockSizeShift;

-                        res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?

-                            CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;

-                    }

-                    else

-                    {

-                        break;

-                    }

-                }

-            }

-

-            if(res == VK_SUCCESS)

-            {

-                VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];

-                VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);

-

-                res = AllocateFromBlock(

-                    pBlock,

-                    currentFrameIndex,

-                    size,

-                    alignment,

-                    allocFlagsCopy,

-                    createInfo.pUserData,

-                    suballocType,

-                    strategy,

-                    pAllocation);

-                if(res == VK_SUCCESS)

-                {

-                    VMA_DEBUG_LOG("    Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);

-                    return VK_SUCCESS;

-                }

-                else

-                {

-                    // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.

-                    return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-                }

-            }

-        }

-    }

-

-    // 3. Try to allocate from existing blocks with making other allocations lost.

-    if(canMakeOtherLost)

-    {

-        uint32_t tryIndex = 0;

-        for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)

-        {

-            VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;

-            VmaAllocationRequest bestRequest = {};

-            VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;

-

-            // 1. Search existing allocations.

-            if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)

-            {

-                // Forward order in m_Blocks - prefer blocks with smallest amount of free space.

-                for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )

-                {

-                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

-                    VMA_ASSERT(pCurrBlock);

-                    VmaAllocationRequest currRequest = {};

-                    if(pCurrBlock->m_pMetadata->CreateAllocationRequest(

-                        currentFrameIndex,

-                        m_FrameInUseCount,

-                        m_BufferImageGranularity,

-                        size,

-                        alignment,

-                        (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,

-                        suballocType,

-                        canMakeOtherLost,

-                        strategy,

-                        &currRequest))

-                    {

-                        const VkDeviceSize currRequestCost = currRequest.CalcCost();

-                        if(pBestRequestBlock == VMA_NULL ||

-                            currRequestCost < bestRequestCost)

-                        {

-                            pBestRequestBlock = pCurrBlock;

-                            bestRequest = currRequest;

-                            bestRequestCost = currRequestCost;

-

-                            if(bestRequestCost == 0)

-                            {

-                                break;

-                            }

-                        }

-                    }

-                }

-            }

-            else // WORST_FIT, FIRST_FIT

-            {

-                // Backward order in m_Blocks - prefer blocks with largest amount of free space.

-                for(size_t blockIndex = m_Blocks.size(); blockIndex--; )

-                {

-                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];

-                    VMA_ASSERT(pCurrBlock);

-                    VmaAllocationRequest currRequest = {};

-                    if(pCurrBlock->m_pMetadata->CreateAllocationRequest(

-                        currentFrameIndex,

-                        m_FrameInUseCount,

-                        m_BufferImageGranularity,

-                        size,

-                        alignment,

-                        (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,

-                        suballocType,

-                        canMakeOtherLost,

-                        strategy,

-                        &currRequest))

-                    {

-                        const VkDeviceSize currRequestCost = currRequest.CalcCost();

-                        if(pBestRequestBlock == VMA_NULL ||

-                            currRequestCost < bestRequestCost ||

-                            strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)

-                        {

-                            pBestRequestBlock = pCurrBlock;

-                            bestRequest = currRequest;

-                            bestRequestCost = currRequestCost;

-

-                            if(bestRequestCost == 0 ||

-                                strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)

-                            {

-                                break;

-                            }

-                        }

-                    }

-                }

-            }

-

-            if(pBestRequestBlock != VMA_NULL)

-            {

-                if(mapped)

-                {

-                    VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);

-                    if(res != VK_SUCCESS)

-                    {

-                        return res;

-                    }

-                }

-

-                if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(

-                    currentFrameIndex,

-                    m_FrameInUseCount,

-                    &bestRequest))

-                {

-                    // Allocate from this pBlock.

-                    *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);

-                    pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation);

-                    UpdateHasEmptyBlock();

-                    (*pAllocation)->InitBlockAllocation(

-                        pBestRequestBlock,

-                        bestRequest.offset,

-                        alignment,

-                        size,

-                        m_MemoryTypeIndex,

-                        suballocType,

-                        mapped,

-                        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);

-                    VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());

-                    VMA_DEBUG_LOG("    Returned from existing block");

-                    (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);

-                    m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);

-                    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)

-                    {

-                        m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);

-                    }

-                    if(IsCorruptionDetectionEnabled())

-                    {

-                        VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size);

-                        VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");

-                    }

-                    return VK_SUCCESS;

-                }

-                // else: Some allocations must have been touched while we are here. Next try.

-            }

-            else

-            {

-                // Could not find place in any of the blocks - break outer loop.

-                break;

-            }

-        }

-        /* Maximum number of tries exceeded - a very unlike event when many other

-        threads are simultaneously touching allocations making it impossible to make

-        lost at the same time as we try to allocate. */

-        if(tryIndex == VMA_ALLOCATION_TRY_COUNT)

-        {

-            return VK_ERROR_TOO_MANY_OBJECTS;

-        }

-    }

-

-    return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-}

-

-void VmaBlockVector::Free(

-    const VmaAllocation hAllocation)

-{

-    VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;

-

-    bool budgetExceeded = false;

-    {

-        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);

-        VmaBudget heapBudget = {};

-        m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);

-        budgetExceeded = heapBudget.usage >= heapBudget.budget;

-    }

-

-    // Scope for lock.

-    {

-        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);

-

-        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();

-

-        if(IsCorruptionDetectionEnabled())

-        {

-            VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());

-            VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");

-        }

-

-        if(hAllocation->IsPersistentMap())

-        {

-            pBlock->Unmap(m_hAllocator, 1);

-        }

-

-        pBlock->m_pMetadata->Free(hAllocation);

-        VMA_HEAVY_ASSERT(pBlock->Validate());

-

-        VMA_DEBUG_LOG("  Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);

-

-        const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;

-        // pBlock became empty after this deallocation.

-        if(pBlock->m_pMetadata->IsEmpty())

-        {

-            // Already has empty block. We don't want to have two, so delete this one.

-            if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock)

-            {

-                pBlockToDelete = pBlock;

-                Remove(pBlock);

-            }

-            // else: We now have an empty block - leave it.

-        }

-        // pBlock didn't become empty, but we have another empty block - find and free that one.

-        // (This is optional, heuristics.)

-        else if(m_HasEmptyBlock && canDeleteBlock)

-        {

-            VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();

-            if(pLastBlock->m_pMetadata->IsEmpty())

-            {

-                pBlockToDelete = pLastBlock;

-                m_Blocks.pop_back();

-            }

-        }

-

-        UpdateHasEmptyBlock();

-        IncrementallySortBlocks();

-    }

-

-    // Destruction of a free block. Deferred until this point, outside of mutex

-    // lock, for performance reason.

-    if(pBlockToDelete != VMA_NULL)

-    {

-        VMA_DEBUG_LOG("    Deleted empty block");

-        pBlockToDelete->Destroy(m_hAllocator);

-        vma_delete(m_hAllocator, pBlockToDelete);

-    }

-}

-

-VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const

-{

-    VkDeviceSize result = 0;

-    for(size_t i = m_Blocks.size(); i--; )

-    {

-        result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());

-        if(result >= m_PreferredBlockSize)

-        {

-            break;

-        }

-    }

-    return result;

-}

-

-void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)

-{

-    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

-    {

-        if(m_Blocks[blockIndex] == pBlock)

-        {

-            VmaVectorRemove(m_Blocks, blockIndex);

-            return;

-        }

-    }

-    VMA_ASSERT(0);

-}

-

-void VmaBlockVector::IncrementallySortBlocks()

-{

-    if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)

-    {

-        // Bubble sort only until first swap.

-        for(size_t i = 1; i < m_Blocks.size(); ++i)

-        {

-            if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())

-            {

-                VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);

-                return;

-            }

-        }

-    }

-}

-

-VkResult VmaBlockVector::AllocateFromBlock(

-    VmaDeviceMemoryBlock* pBlock,

-    uint32_t currentFrameIndex,

-    VkDeviceSize size,

-    VkDeviceSize alignment,

-    VmaAllocationCreateFlags allocFlags,

-    void* pUserData,

-    VmaSuballocationType suballocType,

-    uint32_t strategy,

-    VmaAllocation* pAllocation)

-{

-    VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);

-    const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;

-    const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;

-    const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;

-

-    VmaAllocationRequest currRequest = {};

-    if(pBlock->m_pMetadata->CreateAllocationRequest(

-        currentFrameIndex,

-        m_FrameInUseCount,

-        m_BufferImageGranularity,

-        size,

-        alignment,

-        isUpperAddress,

-        suballocType,

-        false, // canMakeOtherLost

-        strategy,

-        &currRequest))

-    {

-        // Allocate from pCurrBlock.

-        VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);

-

-        if(mapped)

-        {

-            VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);

-            if(res != VK_SUCCESS)

-            {

-                return res;

-            }

-        }

-            

-        *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);

-        pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation);

-        UpdateHasEmptyBlock();

-        (*pAllocation)->InitBlockAllocation(

-            pBlock,

-            currRequest.offset,

-            alignment,

-            size,

-            m_MemoryTypeIndex,

-            suballocType,

-            mapped,

-            (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);

-        VMA_HEAVY_ASSERT(pBlock->Validate());

-        (*pAllocation)->SetUserData(m_hAllocator, pUserData);

-        m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);

-        if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)

-        {

-            m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);

-        }

-        if(IsCorruptionDetectionEnabled())

-        {

-            VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);

-            VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");

-        }

-        return VK_SUCCESS;

-    }

-    return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-}

-

-VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)

-{

-    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };

-    allocInfo.memoryTypeIndex = m_MemoryTypeIndex;

-    allocInfo.allocationSize = blockSize;

-

-#if VMA_BUFFER_DEVICE_ADDRESS

-    // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.

-    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };

-    if(m_hAllocator->m_UseKhrBufferDeviceAddress)

-    {

-        allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;

-        VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);

-    }

-#endif // #if VMA_BUFFER_DEVICE_ADDRESS

-

-    VkDeviceMemory mem = VK_NULL_HANDLE;

-    VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);

-    if(res < 0)

-    {

-        return res;

-    }

-

-    // New VkDeviceMemory successfully created.

-

-    // Create new Allocation for it.

-    VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);

-    pBlock->Init(

-        m_hAllocator,

-        m_hParentPool,

-        m_MemoryTypeIndex,

-        mem,

-        allocInfo.allocationSize,

-        m_NextBlockId++,

-        m_Algorithm);

-

-    m_Blocks.push_back(pBlock);

-    if(pNewBlockIndex != VMA_NULL)

-    {

-        *pNewBlockIndex = m_Blocks.size() - 1;

-    }

-

-    return VK_SUCCESS;

-}

-

-void VmaBlockVector::ApplyDefragmentationMovesCpu(

-    class VmaBlockVectorDefragmentationContext* pDefragCtx,

-    const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)

-{

-    const size_t blockCount = m_Blocks.size();

-    const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);

-

-    enum BLOCK_FLAG

-    {

-        BLOCK_FLAG_USED = 0x00000001,

-        BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,

-    };

-

-    struct BlockInfo

-    {

-        uint32_t flags;

-        void* pMappedData;

-    };

-    VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >

-        blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));

-    memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));

-

-    // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.

-    const size_t moveCount = moves.size();

-    for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)

-    {

-        const VmaDefragmentationMove& move = moves[moveIndex];

-        blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;

-        blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;

-    }

-

-    VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);

-

-    // Go over all blocks. Get mapped pointer or map if necessary.

-    for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)

-    {

-        BlockInfo& currBlockInfo = blockInfo[blockIndex];

-        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];

-        if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)

-        {

-            currBlockInfo.pMappedData = pBlock->GetMappedData();

-            // It is not originally mapped - map it.

-            if(currBlockInfo.pMappedData == VMA_NULL)

-            {

-                pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);

-                if(pDefragCtx->res == VK_SUCCESS)

-                {

-                    currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;

-                }

-            }

-        }

-    }

-

-    // Go over all moves. Do actual data transfer.

-    if(pDefragCtx->res == VK_SUCCESS)

-    {

-        const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;

-        VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };

-

-        for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)

-        {

-            const VmaDefragmentationMove& move = moves[moveIndex];

-

-            const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];

-            const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];

-

-            VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);

-

-            // Invalidate source.

-            if(isNonCoherent)

-            {

-                VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];

-                memRange.memory = pSrcBlock->GetDeviceMemory();

-                memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);

-                memRange.size = VMA_MIN(

-                    VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),

-                    pSrcBlock->m_pMetadata->GetSize() - memRange.offset);

-                (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);

-            }

-

-            // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.

-            memmove(

-                reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,

-                reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,

-                static_cast<size_t>(move.size));

-

-            if(IsCorruptionDetectionEnabled())

-            {

-                VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);

-                VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);

-            }

-

-            // Flush destination.

-            if(isNonCoherent)

-            {

-                VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];

-                memRange.memory = pDstBlock->GetDeviceMemory();

-                memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);

-                memRange.size = VMA_MIN(

-                    VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),

-                    pDstBlock->m_pMetadata->GetSize() - memRange.offset);

-                (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);

-            }

-        }

-    }

-

-    // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.

-    // Regardless of pCtx->res == VK_SUCCESS.

-    for(size_t blockIndex = blockCount; blockIndex--; )

-    {

-        const BlockInfo& currBlockInfo = blockInfo[blockIndex];

-        if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)

-        {

-            VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];

-            pBlock->Unmap(m_hAllocator, 1);

-        }

-    }

-}

-

-void VmaBlockVector::ApplyDefragmentationMovesGpu(

-    class VmaBlockVectorDefragmentationContext* pDefragCtx,

-    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-    VkCommandBuffer commandBuffer)

-{

-    const size_t blockCount = m_Blocks.size();

-

-    pDefragCtx->blockContexts.resize(blockCount);

-    memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));

-

-    // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.

-    const size_t moveCount = moves.size();

-    for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)

-    {

-        const VmaDefragmentationMove& move = moves[moveIndex];

-

-        //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN)

-        {

-            // Old school move still require us to map the whole block

-            pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;

-            pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;

-        }

-    }

-

-    VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);

-

-    // Go over all blocks. Create and bind buffer for whole block if necessary.

-    {

-        VkBufferCreateInfo bufCreateInfo;

-        VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);

-

-        for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)

-        {

-            VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex];

-            VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];

-            if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0)

-            {

-                bufCreateInfo.size = pBlock->m_pMetadata->GetSize();

-                pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(

-                    m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);

-                if(pDefragCtx->res == VK_SUCCESS)

-                {

-                    pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(

-                        m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);

-                }

-            }

-        }

-    }

-

-    // Go over all moves. Post data transfer commands to command buffer.

-    if(pDefragCtx->res == VK_SUCCESS)

-    {

-        for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)

-        {

-            const VmaDefragmentationMove& move = moves[moveIndex];

-

-            const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];

-            const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];

-

-            VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);

-

-            VkBufferCopy region = {

-                move.srcOffset,

-                move.dstOffset,

-                move.size };

-            (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(

-                commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, &region);

-        }

-    }

-

-    // Save buffers to defrag context for later destruction.

-    if(pDefragCtx->res == VK_SUCCESS && moveCount > 0)

-    {

-        pDefragCtx->res = VK_NOT_READY;

-    }

-}

-

-void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)

-{

-    for(size_t blockIndex = m_Blocks.size(); blockIndex--; )

-    {

-        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];

-        if(pBlock->m_pMetadata->IsEmpty())

-        {

-            if(m_Blocks.size() > m_MinBlockCount)

-            {

-                if(pDefragmentationStats != VMA_NULL)

-                {

-                    ++pDefragmentationStats->deviceMemoryBlocksFreed;

-                    pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();

-                }

-

-                VmaVectorRemove(m_Blocks, blockIndex);

-                pBlock->Destroy(m_hAllocator);

-                vma_delete(m_hAllocator, pBlock);

-            }

-            else

-            {

-                break;

-            }

-        }

-    }

-    UpdateHasEmptyBlock();

-}

-

-void VmaBlockVector::UpdateHasEmptyBlock()

-{

-    m_HasEmptyBlock = false;

-    for(size_t index = 0, count = m_Blocks.size(); index < count; ++index)

-    {

-        VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];

-        if(pBlock->m_pMetadata->IsEmpty())

-        {

-            m_HasEmptyBlock = true;

-            break;

-        }

-    }

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)

-{

-    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);

-

-    json.BeginObject();

-

-    if(IsCustomPool())

-    {

-        const char* poolName = m_hParentPool->GetName();

-        if(poolName != VMA_NULL && poolName[0] != '\0')

-        {

-            json.WriteString("Name");

-            json.WriteString(poolName);

-        }

-

-        json.WriteString("MemoryTypeIndex");

-        json.WriteNumber(m_MemoryTypeIndex);

-

-        json.WriteString("BlockSize");

-        json.WriteNumber(m_PreferredBlockSize);

-

-        json.WriteString("BlockCount");

-        json.BeginObject(true);

-        if(m_MinBlockCount > 0)

-        {

-            json.WriteString("Min");

-            json.WriteNumber((uint64_t)m_MinBlockCount);

-        }

-        if(m_MaxBlockCount < SIZE_MAX)

-        {

-            json.WriteString("Max");

-            json.WriteNumber((uint64_t)m_MaxBlockCount);

-        }

-        json.WriteString("Cur");

-        json.WriteNumber((uint64_t)m_Blocks.size());

-        json.EndObject();

-

-        if(m_FrameInUseCount > 0)

-        {

-            json.WriteString("FrameInUseCount");

-            json.WriteNumber(m_FrameInUseCount);

-        }

-

-        if(m_Algorithm != 0)

-        {

-            json.WriteString("Algorithm");

-            json.WriteString(VmaAlgorithmToStr(m_Algorithm));

-        }

-    }

-    else

-    {

-        json.WriteString("PreferredBlockSize");

-        json.WriteNumber(m_PreferredBlockSize);

-    }

-

-    json.WriteString("Blocks");

-    json.BeginObject();

-    for(size_t i = 0; i < m_Blocks.size(); ++i)

-    {

-        json.BeginString();

-        json.ContinueString(m_Blocks[i]->GetId());

-        json.EndString();

-

-        m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);

-    }

-    json.EndObject();

-

-    json.EndObject();

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-void VmaBlockVector::Defragment(

-    class VmaBlockVectorDefragmentationContext* pCtx,

-    VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,

-    VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,

-    VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,

-    VkCommandBuffer commandBuffer)

-{

-    pCtx->res = VK_SUCCESS;

-    

-    const VkMemoryPropertyFlags memPropFlags =

-        m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;

-    const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;

-

-    const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&

-        isHostVisible;

-    const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&

-        !IsCorruptionDetectionEnabled() &&

-        ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;

-

-    // There are options to defragment this memory type.

-    if(canDefragmentOnCpu || canDefragmentOnGpu)

-    {

-        bool defragmentOnGpu;

-        // There is only one option to defragment this memory type.

-        if(canDefragmentOnGpu != canDefragmentOnCpu)

-        {

-            defragmentOnGpu = canDefragmentOnGpu;

-        }

-        // Both options are available: Heuristics to choose the best one.

-        else

-        {

-            defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||

-                m_hAllocator->IsIntegratedGpu();

-        }

-

-        bool overlappingMoveSupported = !defragmentOnGpu;

-

-        if(m_hAllocator->m_UseMutex)

-        {

-            if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)

-            {

-                if(!m_Mutex.TryLockWrite())

-                {

-                    pCtx->res = VK_ERROR_INITIALIZATION_FAILED;

-                    return;

-                }

-            }

-            else

-            {

-                m_Mutex.LockWrite();

-                pCtx->mutexLocked = true;

-            }

-        }

-

-        pCtx->Begin(overlappingMoveSupported, flags);

-

-        // Defragment.

-

-        const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;

-        const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;

-        pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags);

-

-        // Accumulate statistics.

-        if(pStats != VMA_NULL)

-        {

-            const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved();

-            const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved();

-            pStats->bytesMoved += bytesMoved;

-            pStats->allocationsMoved += allocationsMoved;

-            VMA_ASSERT(bytesMoved <= maxBytesToMove);

-            VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);

-            if(defragmentOnGpu)

-            {

-                maxGpuBytesToMove -= bytesMoved;

-                maxGpuAllocationsToMove -= allocationsMoved;

-            }

-            else

-            {

-                maxCpuBytesToMove -= bytesMoved;

-                maxCpuAllocationsToMove -= allocationsMoved;

-            }

-        }

-

-        if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)

-        {

-            if(m_hAllocator->m_UseMutex)

-                m_Mutex.UnlockWrite();

-            

-            if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty())

-                pCtx->res = VK_NOT_READY;

-

-            return;

-        }

-    

-        if(pCtx->res >= VK_SUCCESS)

-        {

-            if(defragmentOnGpu)

-            {

-                ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer);

-            }

-            else

-            {

-                ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves);

-            }

-        }

-    }

-}

-

-void VmaBlockVector::DefragmentationEnd(

-    class VmaBlockVectorDefragmentationContext* pCtx,

-    uint32_t flags,

-    VmaDefragmentationStats* pStats)

-{

-    if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex)

-    {

-        VMA_ASSERT(pCtx->mutexLocked == false);

-

-        // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any

-        // lock protecting us. Since we mutate state here, we have to take the lock out now

-        m_Mutex.LockWrite();

-        pCtx->mutexLocked = true;

-    }

-

-    // If the mutex isn't locked we didn't do any work and there is nothing to delete.

-    if(pCtx->mutexLocked || !m_hAllocator->m_UseMutex)

-    {

-        // Destroy buffers.

-        for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;)

-        {

-            VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex];

-            if(blockCtx.hBuffer)

-            {

-                (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());

-            }

-        }

-

-        if(pCtx->res >= VK_SUCCESS)

-        {

-            FreeEmptyBlocks(pStats);

-        }

-    }

-

-    if(pCtx->mutexLocked)

-    {

-        VMA_ASSERT(m_hAllocator->m_UseMutex);

-        m_Mutex.UnlockWrite();

-    }

-}

-

-uint32_t VmaBlockVector::ProcessDefragmentations(

-    class VmaBlockVectorDefragmentationContext *pCtx,

-    VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves)

-{

-    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);

-    

-    const uint32_t moveCount = std::min(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves);

-

-    for(uint32_t i = 0; i < moveCount; ++ i)

-    {

-        VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i];

-

-        pMove->allocation = move.hAllocation;

-        pMove->memory = move.pDstBlock->GetDeviceMemory();

-        pMove->offset = move.dstOffset;

-

-        ++ pMove;

-    }

-

-    pCtx->defragmentationMovesProcessed += moveCount;

-

-    return moveCount;

-}

-

-void VmaBlockVector::CommitDefragmentations(

-    class VmaBlockVectorDefragmentationContext *pCtx,

-    VmaDefragmentationStats* pStats)

-{

-    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);

-    

-    for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i)

-    {

-        const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i];

-

-        move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset);

-        move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset);

-    }

-

-    pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed;

-    FreeEmptyBlocks(pStats);

-}

-

-size_t VmaBlockVector::CalcAllocationCount() const

-{

-    size_t result = 0;

-    for(size_t i = 0; i < m_Blocks.size(); ++i)

-    {

-        result += m_Blocks[i]->m_pMetadata->GetAllocationCount();

-    }

-    return result;

-}

-

-bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const

-{

-    if(m_BufferImageGranularity == 1)

-    {

-        return false;

-    }

-    VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;

-    for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)

-    {

-        VmaDeviceMemoryBlock* const pBlock = m_Blocks[i];

-        VMA_ASSERT(m_Algorithm == 0);

-        VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata;

-        if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType))

-        {

-            return true;

-        }

-    }

-    return false;

-}

-

-void VmaBlockVector::MakePoolAllocationsLost(

-    uint32_t currentFrameIndex,

-    size_t* pLostAllocationCount)

-{

-    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);

-    size_t lostAllocationCount = 0;

-    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

-    {

-        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

-        VMA_ASSERT(pBlock);

-        lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);

-    }

-    if(pLostAllocationCount != VMA_NULL)

-    {

-        *pLostAllocationCount = lostAllocationCount;

-    }

-}

-

-VkResult VmaBlockVector::CheckCorruption()

-{

-    if(!IsCorruptionDetectionEnabled())

-    {

-        return VK_ERROR_FEATURE_NOT_PRESENT;

-    }

-

-    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);

-    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

-    {

-        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

-        VMA_ASSERT(pBlock);

-        VkResult res = pBlock->CheckCorruption(m_hAllocator);

-        if(res != VK_SUCCESS)

-        {

-            return res;

-        }

-    }

-    return VK_SUCCESS;

-}

-

-void VmaBlockVector::AddStats(VmaStats* pStats)

-{

-    const uint32_t memTypeIndex = m_MemoryTypeIndex;

-    const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);

-

-    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);

-

-    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)

-    {

-        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];

-        VMA_ASSERT(pBlock);

-        VMA_HEAVY_ASSERT(pBlock->Validate());

-        VmaStatInfo allocationStatInfo;

-        pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);

-        VmaAddStatInfo(pStats->total, allocationStatInfo);

-        VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);

-        VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);

-    }

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaDefragmentationAlgorithm_Generic members definition

-

-VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(

-    VmaAllocator hAllocator,

-    VmaBlockVector* pBlockVector,

-    uint32_t currentFrameIndex,

-    bool overlappingMoveSupported) :

-    VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),

-    m_AllocationCount(0),

-    m_AllAllocations(false),

-    m_BytesMoved(0),

-    m_AllocationsMoved(0),

-    m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))

-{

-    // Create block info for each block.

-    const size_t blockCount = m_pBlockVector->m_Blocks.size();

-    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

-    {

-        BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());

-        pBlockInfo->m_OriginalBlockIndex = blockIndex;

-        pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];

-        m_Blocks.push_back(pBlockInfo);

-    }

-

-    // Sort them by m_pBlock pointer value.

-    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());

-}

-

-VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic()

-{

-    for(size_t i = m_Blocks.size(); i--; )

-    {

-        vma_delete(m_hAllocator, m_Blocks[i]);

-    }

-}

-

-void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)

-{

-    // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.

-    if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)

-    {

-        VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock();

-        BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());

-        if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)

-        {

-            AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);

-            (*it)->m_Allocations.push_back(allocInfo);

-        }

-        else

-        {

-            VMA_ASSERT(0);

-        }

-

-        ++m_AllocationCount;

-    }

-}

-

-VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(

-    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-    VkDeviceSize maxBytesToMove,

-    uint32_t maxAllocationsToMove,

-    bool freeOldAllocations)

-{

-    if(m_Blocks.empty())

-    {

-        return VK_SUCCESS;

-    }

-

-    // This is a choice based on research.

-    // Option 1:

-    uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;

-    // Option 2:

-    //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;

-    // Option 3:

-    //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;

-

-    size_t srcBlockMinIndex = 0;

-    // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.

-    /*

-    if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)

-    {

-        const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();

-        if(blocksWithNonMovableCount > 0)

-        {

-            srcBlockMinIndex = blocksWithNonMovableCount - 1;

-        }

-    }

-    */

-

-    size_t srcBlockIndex = m_Blocks.size() - 1;

-    size_t srcAllocIndex = SIZE_MAX;

-    for(;;)

-    {

-        // 1. Find next allocation to move.

-        // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".

-        // 1.2. Then start from last to first m_Allocations.

-        while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())

-        {

-            if(m_Blocks[srcBlockIndex]->m_Allocations.empty())

-            {

-                // Finished: no more allocations to process.

-                if(srcBlockIndex == srcBlockMinIndex)

-                {

-                    return VK_SUCCESS;

-                }

-                else

-                {

-                    --srcBlockIndex;

-                    srcAllocIndex = SIZE_MAX;

-                }

-            }

-            else

-            {

-                srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;

-            }

-        }

-        

-        BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];

-        AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];

-

-        const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();

-        const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();

-        const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();

-        const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();

-

-        // 2. Try to find new place for this allocation in preceding or current block.

-        for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)

-        {

-            BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];

-            VmaAllocationRequest dstAllocRequest;

-            if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(

-                m_CurrentFrameIndex,

-                m_pBlockVector->GetFrameInUseCount(),

-                m_pBlockVector->GetBufferImageGranularity(),

-                size,

-                alignment,

-                false, // upperAddress

-                suballocType,

-                false, // canMakeOtherLost

-                strategy,

-                &dstAllocRequest) &&

-            MoveMakesSense(

-                dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))

-            {

-                VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);

-

-                // Reached limit on number of allocations or bytes to move.

-                if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||

-                    (m_BytesMoved + size > maxBytesToMove))

-                {

-                    return VK_SUCCESS;

-                }

-

-                VmaDefragmentationMove move = {};

-                move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;

-                move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;

-                move.srcOffset = srcOffset;

-                move.dstOffset = dstAllocRequest.offset;

-                move.size = size;

-                move.hAllocation = allocInfo.m_hAllocation;

-                move.pSrcBlock = pSrcBlockInfo->m_pBlock;

-                move.pDstBlock = pDstBlockInfo->m_pBlock;

-

-                moves.push_back(move);

-

-                pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(

-                    dstAllocRequest,

-                    suballocType,

-                    size,

-                    allocInfo.m_hAllocation);

-

-                if(freeOldAllocations)

-                {

-                    pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);

-                    allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);

-                }

-                

-                if(allocInfo.m_pChanged != VMA_NULL)

-                {

-                    *allocInfo.m_pChanged = VK_TRUE;

-                }

-

-                ++m_AllocationsMoved;

-                m_BytesMoved += size;

-

-                VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);

-

-                break;

-            }

-        }

-

-        // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.

-

-        if(srcAllocIndex > 0)

-        {

-            --srcAllocIndex;

-        }

-        else

-        {

-            if(srcBlockIndex > 0)

-            {

-                --srcBlockIndex;

-                srcAllocIndex = SIZE_MAX;

-            }

-            else

-            {

-                return VK_SUCCESS;

-            }

-        }

-    }

-}

-

-size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const

-{

-    size_t result = 0;

-    for(size_t i = 0; i < m_Blocks.size(); ++i)

-    {

-        if(m_Blocks[i]->m_HasNonMovableAllocations)

-        {

-            ++result;

-        }

-    }

-    return result;

-}

-

-VkResult VmaDefragmentationAlgorithm_Generic::Defragment(

-    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-    VkDeviceSize maxBytesToMove,

-    uint32_t maxAllocationsToMove,

-    VmaDefragmentationFlags flags)

-{

-    if(!m_AllAllocations && m_AllocationCount == 0)

-    {

-        return VK_SUCCESS;

-    }

-

-    const size_t blockCount = m_Blocks.size();

-    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

-    {

-        BlockInfo* pBlockInfo = m_Blocks[blockIndex];

-

-        if(m_AllAllocations)

-        {

-            VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata;

-            for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();

-                it != pMetadata->m_Suballocations.end();

-                ++it)

-            {

-                if(it->type != VMA_SUBALLOCATION_TYPE_FREE)

-                {

-                    AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL);

-                    pBlockInfo->m_Allocations.push_back(allocInfo);

-                }

-            }

-        }

-

-        pBlockInfo->CalcHasNonMovableAllocations();

-        

-        // This is a choice based on research.

-        // Option 1:

-        pBlockInfo->SortAllocationsByOffsetDescending();

-        // Option 2:

-        //pBlockInfo->SortAllocationsBySizeDescending();

-    }

-

-    // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.

-    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());

-

-    // This is a choice based on research.

-    const uint32_t roundCount = 2;

-

-    // Execute defragmentation rounds (the main part).

-    VkResult result = VK_SUCCESS;

-    for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round)

-    {

-        result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL));

-    }

-

-    return result;

-}

-

-bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(

-        size_t dstBlockIndex, VkDeviceSize dstOffset,

-        size_t srcBlockIndex, VkDeviceSize srcOffset)

-{

-    if(dstBlockIndex < srcBlockIndex)

-    {

-        return true;

-    }

-    if(dstBlockIndex > srcBlockIndex)

-    {

-        return false;

-    }

-    if(dstOffset < srcOffset)

-    {

-        return true;

-    }

-    return false;

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaDefragmentationAlgorithm_Fast

-

-VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(

-    VmaAllocator hAllocator,

-    VmaBlockVector* pBlockVector,

-    uint32_t currentFrameIndex,

-    bool overlappingMoveSupported) :

-    VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),

-    m_OverlappingMoveSupported(overlappingMoveSupported),

-    m_AllocationCount(0),

-    m_AllAllocations(false),

-    m_BytesMoved(0),

-    m_AllocationsMoved(0),

-    m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks()))

-{

-    VMA_ASSERT(VMA_DEBUG_MARGIN == 0);

-

-}

-

-VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast()

-{

-}

-

-VkResult VmaDefragmentationAlgorithm_Fast::Defragment(

-    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,

-    VkDeviceSize maxBytesToMove,

-    uint32_t maxAllocationsToMove,

-    VmaDefragmentationFlags flags)

-{

-    VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);

-

-    const size_t blockCount = m_pBlockVector->GetBlockCount();

-    if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0)

-    {

-        return VK_SUCCESS;

-    }

-

-    PreprocessMetadata();

-

-    // Sort blocks in order from most destination.

-

-    m_BlockInfos.resize(blockCount);

-    for(size_t i = 0; i < blockCount; ++i)

-    {

-        m_BlockInfos[i].origBlockIndex = i;

-    }

-

-    VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool {

-        return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <

-            m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();

-    });

-

-    // THE MAIN ALGORITHM

-

-    FreeSpaceDatabase freeSpaceDb;

-

-    size_t dstBlockInfoIndex = 0;

-    size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;

-    VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);

-    VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;

-    VkDeviceSize dstBlockSize = pDstMetadata->GetSize();

-    VkDeviceSize dstOffset = 0;

-

-    bool end = false;

-    for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex)

-    {

-        const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;

-        VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);

-        VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata;

-        for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();

-            !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); )

-        {

-            VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation;

-            const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();

-            const VkDeviceSize srcAllocSize = srcSuballocIt->size;

-            if(m_AllocationsMoved == maxAllocationsToMove ||

-                m_BytesMoved + srcAllocSize > maxBytesToMove)

-            {

-                end = true;

-                break;

-            }

-            const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;

-

-            VmaDefragmentationMove move = {};

-            // Try to place it in one of free spaces from the database.

-            size_t freeSpaceInfoIndex;

-            VkDeviceSize dstAllocOffset;

-            if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,

-                freeSpaceInfoIndex, dstAllocOffset))

-            {

-                size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;

-                VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);

-                VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata;

-

-                // Same block

-                if(freeSpaceInfoIndex == srcBlockInfoIndex)

-                {

-                    VMA_ASSERT(dstAllocOffset <= srcAllocOffset);

-

-                    // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.

-

-                    VmaSuballocation suballoc = *srcSuballocIt;

-                    suballoc.offset = dstAllocOffset;

-                    suballoc.hAllocation->ChangeOffset(dstAllocOffset);

-                    m_BytesMoved += srcAllocSize;

-                    ++m_AllocationsMoved;

-                    

-                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;

-                    ++nextSuballocIt;

-                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);

-                    srcSuballocIt = nextSuballocIt;

-

-                    InsertSuballoc(pFreeSpaceMetadata, suballoc);

-

-                    move.srcBlockIndex = srcOrigBlockIndex;

-                    move.dstBlockIndex = freeSpaceOrigBlockIndex;

-                    move.srcOffset = srcAllocOffset;

-                    move.dstOffset = dstAllocOffset;

-                    move.size = srcAllocSize;

-                    

-                    moves.push_back(move);

-                }

-                // Different block

-                else

-                {

-                    // MOVE OPTION 2: Move the allocation to a different block.

-

-                    VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);

-

-                    VmaSuballocation suballoc = *srcSuballocIt;

-                    suballoc.offset = dstAllocOffset;

-                    suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);

-                    m_BytesMoved += srcAllocSize;

-                    ++m_AllocationsMoved;

-

-                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;

-                    ++nextSuballocIt;

-                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);

-                    srcSuballocIt = nextSuballocIt;

-

-                    InsertSuballoc(pFreeSpaceMetadata, suballoc);

-

-                    move.srcBlockIndex = srcOrigBlockIndex;

-                    move.dstBlockIndex = freeSpaceOrigBlockIndex;

-                    move.srcOffset = srcAllocOffset;

-                    move.dstOffset = dstAllocOffset;

-                    move.size = srcAllocSize;

-                    

-                    moves.push_back(move);

-                }

-            }

-            else

-            {

-                dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);

-

-                // If the allocation doesn't fit before the end of dstBlock, forward to next block.

-                while(dstBlockInfoIndex < srcBlockInfoIndex &&

-                    dstAllocOffset + srcAllocSize > dstBlockSize)

-                {

-                    // But before that, register remaining free space at the end of dst block.

-                    freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);

-

-                    ++dstBlockInfoIndex;

-                    dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;

-                    pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);

-                    pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;

-                    dstBlockSize = pDstMetadata->GetSize();

-                    dstOffset = 0;

-                    dstAllocOffset = 0;

-                }

-

-                // Same block

-                if(dstBlockInfoIndex == srcBlockInfoIndex)

-                {

-                    VMA_ASSERT(dstAllocOffset <= srcAllocOffset);

-

-                    const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;

-

-                    bool skipOver = overlap;

-                    if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset)

-                    {

-                        // If destination and source place overlap, skip if it would move it

-                        // by only < 1/64 of its size.

-                        skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;

-                    }

-

-                    if(skipOver)

-                    {

-                        freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);

-

-                        dstOffset = srcAllocOffset + srcAllocSize;

-                        ++srcSuballocIt;

-                    }

-                    // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.

-                    else

-                    {

-                        srcSuballocIt->offset = dstAllocOffset;

-                        srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset);

-                        dstOffset = dstAllocOffset + srcAllocSize;

-                        m_BytesMoved += srcAllocSize;

-                        ++m_AllocationsMoved;

-                        ++srcSuballocIt;

-                        

-                        move.srcBlockIndex = srcOrigBlockIndex;

-                        move.dstBlockIndex = dstOrigBlockIndex;

-                        move.srcOffset = srcAllocOffset;

-                        move.dstOffset = dstAllocOffset;

-                        move.size = srcAllocSize;

-                        

-                        moves.push_back(move);

-                    }

-                }

-                // Different block

-                else

-                {

-                    // MOVE OPTION 2: Move the allocation to a different block.

-

-                    VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);

-                    VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);

-

-                    VmaSuballocation suballoc = *srcSuballocIt;

-                    suballoc.offset = dstAllocOffset;

-                    suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);

-                    dstOffset = dstAllocOffset + srcAllocSize;

-                    m_BytesMoved += srcAllocSize;

-                    ++m_AllocationsMoved;

-

-                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;

-                    ++nextSuballocIt;

-                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);

-                    srcSuballocIt = nextSuballocIt;

-

-                    pDstMetadata->m_Suballocations.push_back(suballoc);

-

-                    move.srcBlockIndex = srcOrigBlockIndex;

-                    move.dstBlockIndex = dstOrigBlockIndex;

-                    move.srcOffset = srcAllocOffset;

-                    move.dstOffset = dstAllocOffset;

-                    move.size = srcAllocSize;

-                    

-                    moves.push_back(move);

-                }

-            }

-        }

-    }

-

-    m_BlockInfos.clear();

-    

-    PostprocessMetadata();

-

-    return VK_SUCCESS;

-}

-

-void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata()

-{

-    const size_t blockCount = m_pBlockVector->GetBlockCount();

-    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

-    {

-        VmaBlockMetadata_Generic* const pMetadata =

-            (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;

-        pMetadata->m_FreeCount = 0;

-        pMetadata->m_SumFreeSize = pMetadata->GetSize();

-        pMetadata->m_FreeSuballocationsBySize.clear();

-        for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();

-            it != pMetadata->m_Suballocations.end(); )

-        {

-            if(it->type == VMA_SUBALLOCATION_TYPE_FREE)

-            {

-                VmaSuballocationList::iterator nextIt = it;

-                ++nextIt;

-                pMetadata->m_Suballocations.erase(it);

-                it = nextIt;

-            }

-            else

-            {

-                ++it;

-            }

-        }

-    }

-}

-

-void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata()

-{

-    const size_t blockCount = m_pBlockVector->GetBlockCount();

-    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)

-    {

-        VmaBlockMetadata_Generic* const pMetadata =

-            (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;

-        const VkDeviceSize blockSize = pMetadata->GetSize();

-        

-        // No allocations in this block - entire area is free.

-        if(pMetadata->m_Suballocations.empty())

-        {

-            pMetadata->m_FreeCount = 1;

-            //pMetadata->m_SumFreeSize is already set to blockSize.

-            VmaSuballocation suballoc = {

-                0, // offset

-                blockSize, // size

-                VMA_NULL, // hAllocation

-                VMA_SUBALLOCATION_TYPE_FREE };

-            pMetadata->m_Suballocations.push_back(suballoc);

-            pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());

-        }

-        // There are some allocations in this block.

-        else

-        {

-            VkDeviceSize offset = 0;

-            VmaSuballocationList::iterator it;

-            for(it = pMetadata->m_Suballocations.begin();

-                it != pMetadata->m_Suballocations.end();

-                ++it)

-            {

-                VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);

-                VMA_ASSERT(it->offset >= offset);

-

-                // Need to insert preceding free space.

-                if(it->offset > offset)

-                {

-                    ++pMetadata->m_FreeCount;

-                    const VkDeviceSize freeSize = it->offset - offset;

-                    VmaSuballocation suballoc = {

-                        offset, // offset

-                        freeSize, // size

-                        VMA_NULL, // hAllocation

-                        VMA_SUBALLOCATION_TYPE_FREE };

-                    VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);

-                    if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-                    {

-                        pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);

-                    }

-                }

-

-                pMetadata->m_SumFreeSize -= it->size;

-                offset = it->offset + it->size;

-            }

-

-            // Need to insert trailing free space.

-            if(offset < blockSize)

-            {

-                ++pMetadata->m_FreeCount;

-                const VkDeviceSize freeSize = blockSize - offset;

-                VmaSuballocation suballoc = {

-                    offset, // offset

-                    freeSize, // size

-                    VMA_NULL, // hAllocation

-                    VMA_SUBALLOCATION_TYPE_FREE };

-                VMA_ASSERT(it == pMetadata->m_Suballocations.end());

-                VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);

-                if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)

-                {

-                    pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);

-                }

-            }

-

-            VMA_SORT(

-                pMetadata->m_FreeSuballocationsBySize.begin(),

-                pMetadata->m_FreeSuballocationsBySize.end(),

-                VmaSuballocationItemSizeLess());

-        }

-

-        VMA_HEAVY_ASSERT(pMetadata->Validate());

-    }

-}

-

-void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc)

-{

-    // TODO: Optimize somehow. Remember iterator instead of searching for it linearly.

-    VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();

-    while(it != pMetadata->m_Suballocations.end())

-    {

-        if(it->offset < suballoc.offset)

-        {

-            ++it;

-        }

-    }

-    pMetadata->m_Suballocations.insert(it, suballoc);

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaBlockVectorDefragmentationContext

-

-VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(

-    VmaAllocator hAllocator,

-    VmaPool hCustomPool,

-    VmaBlockVector* pBlockVector,

-    uint32_t currFrameIndex) :

-    res(VK_SUCCESS),

-    mutexLocked(false),

-    blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),

-    defragmentationMoves(VmaStlAllocator<VmaDefragmentationMove>(hAllocator->GetAllocationCallbacks())),

-    defragmentationMovesProcessed(0),

-    defragmentationMovesCommitted(0),

-    hasDefragmentationPlan(0),

-    m_hAllocator(hAllocator),

-    m_hCustomPool(hCustomPool),

-    m_pBlockVector(pBlockVector),

-    m_CurrFrameIndex(currFrameIndex),

-    m_pAlgorithm(VMA_NULL),

-    m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),

-    m_AllAllocations(false)

-{

-}

-

-VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext()

-{

-    vma_delete(m_hAllocator, m_pAlgorithm);

-}

-

-void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)

-{

-    AllocInfo info = { hAlloc, pChanged };

-    m_Allocations.push_back(info);

-}

-

-void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags)

-{

-    const bool allAllocations = m_AllAllocations ||

-        m_Allocations.size() == m_pBlockVector->CalcAllocationCount();

-

-    /********************************

-    HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.

-    ********************************/

-

-    /*

-    Fast algorithm is supported only when certain criteria are met:

-    - VMA_DEBUG_MARGIN is 0.

-    - All allocations in this block vector are moveable.

-    - There is no possibility of image/buffer granularity conflict.

-    - The defragmentation is not incremental

-    */

-    if(VMA_DEBUG_MARGIN == 0 &&

-        allAllocations &&

-        !m_pBlockVector->IsBufferImageGranularityConflictPossible() &&

-        !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL))

-    {

-        m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(

-            m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);

-    }

-    else

-    {

-        m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(

-            m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);

-    }

-

-    if(allAllocations)

-    {

-        m_pAlgorithm->AddAll();

-    }

-    else

-    {

-        for(size_t i = 0, count = m_Allocations.size(); i < count; ++i)

-        {

-            m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);

-        }

-    }

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaDefragmentationContext

-

-VmaDefragmentationContext_T::VmaDefragmentationContext_T(

-    VmaAllocator hAllocator,

-    uint32_t currFrameIndex,

-    uint32_t flags,

-    VmaDefragmentationStats* pStats) :

-    m_hAllocator(hAllocator),

-    m_CurrFrameIndex(currFrameIndex),

-    m_Flags(flags),

-    m_pStats(pStats),

-    m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks()))

-{

-    memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));

-}

-

-VmaDefragmentationContext_T::~VmaDefragmentationContext_T()

-{

-    for(size_t i = m_CustomPoolContexts.size(); i--; )

-    {

-        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i];

-        pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);

-        vma_delete(m_hAllocator, pBlockVectorCtx);

-    }

-    for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; )

-    {

-        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i];

-        if(pBlockVectorCtx)

-        {

-            pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);

-            vma_delete(m_hAllocator, pBlockVectorCtx);

-        }

-    }

-}

-

-void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools)

-{

-    for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)

-    {

-        VmaPool pool = pPools[poolIndex];

-        VMA_ASSERT(pool);

-        // Pools with algorithm other than default are not defragmented.

-        if(pool->m_BlockVector.GetAlgorithm() == 0)

-        {

-            VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;

-            

-            for(size_t i = m_CustomPoolContexts.size(); i--; )

-            {

-                if(m_CustomPoolContexts[i]->GetCustomPool() == pool)

-                {

-                    pBlockVectorDefragCtx = m_CustomPoolContexts[i];

-                    break;

-                }

-            }

-            

-            if(!pBlockVectorDefragCtx)

-            {

-                pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(

-                    m_hAllocator,

-                    pool,

-                    &pool->m_BlockVector,

-                    m_CurrFrameIndex);

-                m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);

-            }

-

-            pBlockVectorDefragCtx->AddAll();

-        }

-    }

-}

-

-void VmaDefragmentationContext_T::AddAllocations(

-    uint32_t allocationCount,

-    const VmaAllocation* pAllocations,

-    VkBool32* pAllocationsChanged)

-{

-    // Dispatch pAllocations among defragmentators. Create them when necessary.

-    for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)

-    {

-        const VmaAllocation hAlloc = pAllocations[allocIndex];

-        VMA_ASSERT(hAlloc);

-        // DedicatedAlloc cannot be defragmented.

-        if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&

-            // Lost allocation cannot be defragmented.

-            (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))

-        {

-            VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;

-

-            const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();

-            // This allocation belongs to custom pool.

-            if(hAllocPool != VK_NULL_HANDLE)

-            {

-                // Pools with algorithm other than default are not defragmented.

-                if(hAllocPool->m_BlockVector.GetAlgorithm() == 0)

-                {

-                    for(size_t i = m_CustomPoolContexts.size(); i--; )

-                    {

-                        if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool)

-                        {

-                            pBlockVectorDefragCtx = m_CustomPoolContexts[i];

-                            break;

-                        }

-                    }

-                    if(!pBlockVectorDefragCtx)

-                    {

-                        pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(

-                            m_hAllocator,

-                            hAllocPool,

-                            &hAllocPool->m_BlockVector,

-                            m_CurrFrameIndex);

-                        m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);

-                    }

-                }

-            }

-            // This allocation belongs to default pool.

-            else

-            {

-                const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();

-                pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];

-                if(!pBlockVectorDefragCtx)

-                {

-                    pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(

-                        m_hAllocator,

-                        VMA_NULL, // hCustomPool

-                        m_hAllocator->m_pBlockVectors[memTypeIndex],

-                        m_CurrFrameIndex);

-                    m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;

-                }

-            }

-

-            if(pBlockVectorDefragCtx)

-            {

-                VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?

-                    &pAllocationsChanged[allocIndex] : VMA_NULL;

-                pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);

-            }

-        }

-    }

-}

-

-VkResult VmaDefragmentationContext_T::Defragment(

-    VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,

-    VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,

-    VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags)

-{

-    if(pStats)

-    {

-        memset(pStats, 0, sizeof(VmaDefragmentationStats));

-    }

-

-    if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)

-    {

-        // For incremental defragmetnations, we just earmark how much we can move

-        // The real meat is in the defragmentation steps

-        m_MaxCpuBytesToMove = maxCpuBytesToMove;

-        m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove;

-

-        m_MaxGpuBytesToMove = maxGpuBytesToMove;

-        m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove;

-

-        if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 &&

-            m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0)

-            return VK_SUCCESS;

-

-        return VK_NOT_READY;

-    }

-

-    if(commandBuffer == VK_NULL_HANDLE)

-    {

-        maxGpuBytesToMove = 0;

-        maxGpuAllocationsToMove = 0;

-    }

-

-    VkResult res = VK_SUCCESS;

-

-    // Process default pools.

-    for(uint32_t memTypeIndex = 0;

-        memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;

-        ++memTypeIndex)

-    {

-        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];

-        if(pBlockVectorCtx)

-        {

-            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());

-            pBlockVectorCtx->GetBlockVector()->Defragment(

-                pBlockVectorCtx,

-                pStats, flags,

-                maxCpuBytesToMove, maxCpuAllocationsToMove,

-                maxGpuBytesToMove, maxGpuAllocationsToMove,

-                commandBuffer);

-            if(pBlockVectorCtx->res != VK_SUCCESS)

-            {

-                res = pBlockVectorCtx->res;

-            }

-        }

-    }

-

-    // Process custom pools.

-    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();

-        customCtxIndex < customCtxCount && res >= VK_SUCCESS;

-        ++customCtxIndex)

-    {

-        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];

-        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());

-        pBlockVectorCtx->GetBlockVector()->Defragment(

-            pBlockVectorCtx,

-            pStats, flags,

-            maxCpuBytesToMove, maxCpuAllocationsToMove,

-            maxGpuBytesToMove, maxGpuAllocationsToMove,

-            commandBuffer);

-        if(pBlockVectorCtx->res != VK_SUCCESS)

-        {

-            res = pBlockVectorCtx->res;

-        }

-    }

-

-    return res;

-}

-

-VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo)

-{

-    VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves;

-    uint32_t movesLeft = pInfo->moveCount;

-

-    // Process default pools.

-    for(uint32_t memTypeIndex = 0;

-        memTypeIndex < m_hAllocator->GetMemoryTypeCount();

-        ++memTypeIndex)

-    {

-        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];

-        if(pBlockVectorCtx)

-        {

-            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());

-

-            if(!pBlockVectorCtx->hasDefragmentationPlan)

-            {

-                pBlockVectorCtx->GetBlockVector()->Defragment(

-                    pBlockVectorCtx,

-                    m_pStats, m_Flags,

-                    m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,

-                    m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,

-                    VK_NULL_HANDLE);

-

-                if(pBlockVectorCtx->res < VK_SUCCESS)

-                    continue;

-

-                pBlockVectorCtx->hasDefragmentationPlan = true;

-            }

-

-            const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(

-                pBlockVectorCtx,

-                pCurrentMove, movesLeft);

-

-            movesLeft -= processed;

-            pCurrentMove += processed;

-        }

-    }

-

-    // Process custom pools.

-    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();

-        customCtxIndex < customCtxCount;

-        ++customCtxIndex)

-    {

-        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];

-        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());

-

-        if(!pBlockVectorCtx->hasDefragmentationPlan)

-        {

-            pBlockVectorCtx->GetBlockVector()->Defragment(

-                pBlockVectorCtx,

-                m_pStats, m_Flags,

-                m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,

-                m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,

-                VK_NULL_HANDLE);

-

-            if(pBlockVectorCtx->res < VK_SUCCESS)

-                continue;

-

-            pBlockVectorCtx->hasDefragmentationPlan = true;

-        }

-

-        const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(

-            pBlockVectorCtx,

-            pCurrentMove, movesLeft);

-

-        movesLeft -= processed;

-        pCurrentMove += processed;

-    }

-

-    pInfo->moveCount = pInfo->moveCount - movesLeft;

-

-    return VK_SUCCESS;

-}

-VkResult VmaDefragmentationContext_T::DefragmentPassEnd()

-{

-    VkResult res = VK_SUCCESS;

-

-    // Process default pools.

-    for(uint32_t memTypeIndex = 0;

-        memTypeIndex < m_hAllocator->GetMemoryTypeCount();

-        ++memTypeIndex)

-    {

-        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];

-        if(pBlockVectorCtx)

-        {

-            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());

-

-            if(!pBlockVectorCtx->hasDefragmentationPlan)

-            {

-                res = VK_NOT_READY;

-                continue;

-            }

-

-            pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(

-                pBlockVectorCtx, m_pStats);

-

-            if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)

-                res = VK_NOT_READY;

-        }

-    }

-

-    // Process custom pools.

-    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();

-        customCtxIndex < customCtxCount;

-        ++customCtxIndex)

-    {

-        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];

-        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());

-

-        if(!pBlockVectorCtx->hasDefragmentationPlan)

-        {

-            res = VK_NOT_READY;

-            continue;

-        }

-

-        pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(

-            pBlockVectorCtx, m_pStats);

-

-        if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)

-            res = VK_NOT_READY;

-    }

-

-    return res;

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaRecorder

-

-#if VMA_RECORDING_ENABLED

-

-VmaRecorder::VmaRecorder() :

-    m_UseMutex(true),

-    m_Flags(0),

-    m_File(VMA_NULL),

-    m_Freq(INT64_MAX),

-    m_StartCounter(INT64_MAX)

-{

-}

-

-VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex)

-{

-    m_UseMutex = useMutex;

-    m_Flags = settings.flags;

-

-    QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq);

-    QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter);

-

-    // Open file for writing.

-    errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");

-    if(err != 0)

-    {

-        return VK_ERROR_INITIALIZATION_FAILED;

-    }

-

-    // Write header.

-    fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");

-    fprintf(m_File, "%s\n", "1,8");

-

-    return VK_SUCCESS;

-}

-

-VmaRecorder::~VmaRecorder()

-{

-    if(m_File != VMA_NULL)

-    {

-        fclose(m_File);

-    }

-}

-

-void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);

-    Flush();

-}

-

-void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);

-    Flush();

-}

-

-void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,

-        createInfo.memoryTypeIndex,

-        createInfo.flags,

-        createInfo.blockSize,

-        (uint64_t)createInfo.minBlockCount,

-        (uint64_t)createInfo.maxBlockCount,

-        createInfo.frameInUseCount,

-        pool);

-    Flush();

-}

-

-void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,

-        pool);

-    Flush();

-}

-

-void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,

-        const VkMemoryRequirements& vkMemReq,

-        const VmaAllocationCreateInfo& createInfo,

-        VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        vkMemReq.size,

-        vkMemReq.alignment,

-        vkMemReq.memoryTypeBits,

-        createInfo.flags,

-        createInfo.usage,

-        createInfo.requiredFlags,

-        createInfo.preferredFlags,

-        createInfo.memoryTypeBits,

-        createInfo.pool,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,

-    const VkMemoryRequirements& vkMemReq,

-    const VmaAllocationCreateInfo& createInfo,

-    uint64_t allocationCount,

-    const VmaAllocation* pAllocations)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,

-        vkMemReq.size,

-        vkMemReq.alignment,

-        vkMemReq.memoryTypeBits,

-        createInfo.flags,

-        createInfo.usage,

-        createInfo.requiredFlags,

-        createInfo.preferredFlags,

-        createInfo.memoryTypeBits,

-        createInfo.pool);

-    PrintPointerList(allocationCount, pAllocations);

-    fprintf(m_File, ",%s\n", userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,

-    const VkMemoryRequirements& vkMemReq,

-    bool requiresDedicatedAllocation,

-    bool prefersDedicatedAllocation,

-    const VmaAllocationCreateInfo& createInfo,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        vkMemReq.size,

-        vkMemReq.alignment,

-        vkMemReq.memoryTypeBits,

-        requiresDedicatedAllocation ? 1 : 0,

-        prefersDedicatedAllocation ? 1 : 0,

-        createInfo.flags,

-        createInfo.usage,

-        createInfo.requiredFlags,

-        createInfo.preferredFlags,

-        createInfo.memoryTypeBits,

-        createInfo.pool,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,

-    const VkMemoryRequirements& vkMemReq,

-    bool requiresDedicatedAllocation,

-    bool prefersDedicatedAllocation,

-    const VmaAllocationCreateInfo& createInfo,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        vkMemReq.size,

-        vkMemReq.alignment,

-        vkMemReq.memoryTypeBits,

-        requiresDedicatedAllocation ? 1 : 0,

-        prefersDedicatedAllocation ? 1 : 0,

-        createInfo.flags,

-        createInfo.usage,

-        createInfo.requiredFlags,

-        createInfo.preferredFlags,

-        createInfo.memoryTypeBits,

-        createInfo.pool,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,

-    uint64_t allocationCount,

-    const VmaAllocation* pAllocations)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);

-    PrintPointerList(allocationCount, pAllocations);

-    fprintf(m_File, "\n");

-    Flush();

-}

-

-void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,

-    VmaAllocation allocation,

-    const void* pUserData)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(

-        allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,

-        pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordMapMemory(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,

-    VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,

-        allocation,

-        offset,

-        size);

-    Flush();

-}

-

-void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,

-    VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,

-        allocation,

-        offset,

-        size);

-    Flush();

-}

-

-void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,

-    const VkBufferCreateInfo& bufCreateInfo,

-    const VmaAllocationCreateInfo& allocCreateInfo,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        bufCreateInfo.flags,

-        bufCreateInfo.size,

-        bufCreateInfo.usage,

-        bufCreateInfo.sharingMode,

-        allocCreateInfo.flags,

-        allocCreateInfo.usage,

-        allocCreateInfo.requiredFlags,

-        allocCreateInfo.preferredFlags,

-        allocCreateInfo.memoryTypeBits,

-        allocCreateInfo.pool,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordCreateImage(uint32_t frameIndex,

-    const VkImageCreateInfo& imageCreateInfo,

-    const VmaAllocationCreateInfo& allocCreateInfo,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);

-    fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        imageCreateInfo.flags,

-        imageCreateInfo.imageType,

-        imageCreateInfo.format,

-        imageCreateInfo.extent.width,

-        imageCreateInfo.extent.height,

-        imageCreateInfo.extent.depth,

-        imageCreateInfo.mipLevels,

-        imageCreateInfo.arrayLayers,

-        imageCreateInfo.samples,

-        imageCreateInfo.tiling,

-        imageCreateInfo.usage,

-        imageCreateInfo.sharingMode,

-        imageCreateInfo.initialLayout,

-        allocCreateInfo.flags,

-        allocCreateInfo.usage,

-        allocCreateInfo.requiredFlags,

-        allocCreateInfo.preferredFlags,

-        allocCreateInfo.memoryTypeBits,

-        allocCreateInfo.pool,

-        allocation,

-        userDataStr.GetString());

-    Flush();

-}

-

-void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,

-    VmaAllocation allocation)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,

-        allocation);

-    Flush();

-}

-

-void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,

-    VmaPool pool)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,

-        pool);

-    Flush();

-}

-

-void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,

-    const VmaDefragmentationInfo2& info,

-    VmaDefragmentationContext ctx)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,

-        info.flags);

-    PrintPointerList(info.allocationCount, info.pAllocations);

-    fprintf(m_File, ",");

-    PrintPointerList(info.poolCount, info.pPools);

-    fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",

-        info.maxCpuBytesToMove,

-        info.maxCpuAllocationsToMove,

-        info.maxGpuBytesToMove,

-        info.maxGpuAllocationsToMove,

-        info.commandBuffer,

-        ctx);

-    Flush();

-}

-

-void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,

-    VmaDefragmentationContext ctx)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,

-        ctx);

-    Flush();

-}

-

-void VmaRecorder::RecordSetPoolName(uint32_t frameIndex,

-    VmaPool pool,

-    const char* name)

-{

-    CallParams callParams;

-    GetBasicParams(callParams);

-

-    VmaMutexLock lock(m_FileMutex, m_UseMutex);

-    fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex,

-        pool, name != VMA_NULL ? name : "");

-    Flush();

-}

-

-VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData)

-{

-    if(pUserData != VMA_NULL)

-    {

-        if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0)

-        {

-            m_Str = (const char*)pUserData;

-        }

-        else

-        {

-            sprintf_s(m_PtrStr, "%p", pUserData);

-            m_Str = m_PtrStr;

-        }

-    }

-    else

-    {

-        m_Str = "";

-    }

-}

-

-void VmaRecorder::WriteConfiguration(

-    const VkPhysicalDeviceProperties& devProps,

-    const VkPhysicalDeviceMemoryProperties& memProps,

-    uint32_t vulkanApiVersion,

-    bool dedicatedAllocationExtensionEnabled,

-    bool bindMemory2ExtensionEnabled,

-    bool memoryBudgetExtensionEnabled,

-    bool deviceCoherentMemoryExtensionEnabled)

-{

-    fprintf(m_File, "Config,Begin\n");

-

-    fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion));

-

-    fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);

-    fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);

-    fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);

-    fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);

-    fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);

-    fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);

-

-    fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);

-    fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);

-    fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);

-

-    fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);

-    for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i)

-    {

-        fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);

-        fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);

-    }

-    fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);

-    for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i)

-    {

-        fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);

-        fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);

-    }

-

-    fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);

-    fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0);

-    fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0);

-    fprintf(m_File, "Extension,VK_AMD_device_coherent_memory,%u\n", deviceCoherentMemoryExtensionEnabled ? 1 : 0);

-

-    fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);

-    fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT);

-    fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);

-    fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);

-    fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);

-    fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);

-    fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);

-    fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);

-    fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);

-

-    fprintf(m_File, "Config,End\n");

-}

-

-void VmaRecorder::GetBasicParams(CallParams& outParams)

-{

-    outParams.threadId = GetCurrentThreadId();

-

-    LARGE_INTEGER counter;

-    QueryPerformanceCounter(&counter);

-    outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq;

-}

-

-void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems)

-{

-    if(count)

-    {

-        fprintf(m_File, "%p", pItems[0]);

-        for(uint64_t i = 1; i < count; ++i)

-        {

-            fprintf(m_File, " %p", pItems[i]);

-        }

-    }

-}

-

-void VmaRecorder::Flush()

-{

-    if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0)

-    {

-        fflush(m_File);

-    }

-}

-

-#endif // #if VMA_RECORDING_ENABLED

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaAllocationObjectAllocator

-

-VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) :

-    m_Allocator(pAllocationCallbacks, 1024)

-{

-}

-

-template<typename... Types> VmaAllocation VmaAllocationObjectAllocator::Allocate(Types... args)

-{

-    VmaMutexLock mutexLock(m_Mutex);

-    return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);

-}

-

-void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)

-{

-    VmaMutexLock mutexLock(m_Mutex);

-    m_Allocator.Free(hAlloc);

-}

-

-////////////////////////////////////////////////////////////////////////////////

-// VmaAllocator_T

-

-VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :

-    m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),

-    m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),

-    m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),

-    m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),

-    m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),

-    m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),

-    m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),

-    m_hDevice(pCreateInfo->device),

-    m_hInstance(pCreateInfo->instance),

-    m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),

-    m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?

-        *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),

-    m_AllocationObjectAllocator(&m_AllocationCallbacks),

-    m_HeapSizeLimitMask(0),

-    m_PreferredLargeHeapBlockSize(0),

-    m_PhysicalDevice(pCreateInfo->physicalDevice),

-    m_CurrentFrameIndex(0),

-    m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),

-    m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())),

-    m_NextPoolId(0),

-    m_GlobalMemoryTypeBits(UINT32_MAX)

-#if VMA_RECORDING_ENABLED

-    ,m_pRecorder(VMA_NULL)

-#endif

-{

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        m_UseKhrDedicatedAllocation = false;

-        m_UseKhrBindMemory2 = false;

-    }

-

-    if(VMA_DEBUG_DETECT_CORRUPTION)

-    {

-        // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.

-        VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);

-    }

-

-    VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);

-

-    if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))

-    {

-#if !(VMA_DEDICATED_ALLOCATION)

-        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)

-        {

-            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");

-        }

-#endif

-#if !(VMA_BIND_MEMORY2)

-        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)

-        {

-            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");

-        }

-#endif

-    }

-#if !(VMA_MEMORY_BUDGET)

-    if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)

-    {

-        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");

-    }

-#endif

-#if !(VMA_BUFFER_DEVICE_ADDRESS)

-    if(m_UseKhrBufferDeviceAddress)

-    {

-        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");

-    }

-#endif

-#if VMA_VULKAN_VERSION < 1002000

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))

-    {

-        VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");

-    }

-#endif

-#if VMA_VULKAN_VERSION < 1001000

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");

-    }

-#endif

-

-    memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));

-    memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));

-    memset(&m_MemProps, 0, sizeof(m_MemProps));

-        

-    memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));

-    memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));

-    memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));

-

-    if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)

-    {

-        m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;

-        m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;

-        m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;

-    }

-

-    ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);

-

-    (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);

-    (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);

-

-    VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT));

-    VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));

-    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));

-    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));

-

-    m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?

-        pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);

-

-    m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();

-

-    if(pCreateInfo->pHeapSizeLimit != VMA_NULL)

-    {

-        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)

-        {

-            const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];

-            if(limit != VK_WHOLE_SIZE)

-            {

-                m_HeapSizeLimitMask |= 1u << heapIndex;

-                if(limit < m_MemProps.memoryHeaps[heapIndex].size)

-                {

-                    m_MemProps.memoryHeaps[heapIndex].size = limit;

-                }

-            }

-        }

-    }

-

-    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-    {

-        const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);

-

-        m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(

-            this,

-            VK_NULL_HANDLE, // hParentPool

-            memTypeIndex,

-            preferredBlockSize,

-            0,

-            SIZE_MAX,

-            GetBufferImageGranularity(),

-            pCreateInfo->frameInUseCount,

-            false, // explicitBlockSize

-            false); // linearAlgorithm

-        // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,

-        // becase minBlockCount is 0.

-        m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));

-

-    }

-}

-

-VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)

-{

-    VkResult res = VK_SUCCESS;

-

-    if(pCreateInfo->pRecordSettings != VMA_NULL &&

-        !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath))

-    {

-#if VMA_RECORDING_ENABLED

-        m_pRecorder = vma_new(this, VmaRecorder)();

-        res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);

-        if(res != VK_SUCCESS)

-        {

-            return res;

-        }

-        m_pRecorder->WriteConfiguration(

-            m_PhysicalDeviceProperties,

-            m_MemProps,

-            m_VulkanApiVersion,

-            m_UseKhrDedicatedAllocation,

-            m_UseKhrBindMemory2,

-            m_UseExtMemoryBudget,

-            m_UseAmdDeviceCoherentMemory);

-        m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());

-#else

-        VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");

-        return VK_ERROR_FEATURE_NOT_PRESENT;

-#endif

-    }

-

-#if VMA_MEMORY_BUDGET

-    if(m_UseExtMemoryBudget)

-    {

-        UpdateVulkanBudget();

-    }

-#endif // #if VMA_MEMORY_BUDGET

-

-    return res;

-}

-

-VmaAllocator_T::~VmaAllocator_T()

-{

-#if VMA_RECORDING_ENABLED

-    if(m_pRecorder != VMA_NULL)

-    {

-        m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());

-        vma_delete(this, m_pRecorder);

-    }

-#endif

-    

-    VMA_ASSERT(m_Pools.empty());

-

-    for(size_t i = GetMemoryTypeCount(); i--; )

-    {

-        if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty())

-        {

-            VMA_ASSERT(0 && "Unfreed dedicated allocations found.");

-        }

-

-        vma_delete(this, m_pDedicatedAllocations[i]);

-        vma_delete(this, m_pBlockVectors[i]);

-    }

-}

-

-void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)

-{

-#if VMA_STATIC_VULKAN_FUNCTIONS == 1

-    ImportVulkanFunctions_Static();

-#endif

-

-    if(pVulkanFunctions != VMA_NULL)

-    {

-        ImportVulkanFunctions_Custom(pVulkanFunctions);

-    }

-

-#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1

-    ImportVulkanFunctions_Dynamic();

-#endif

-

-    ValidateVulkanFunctions();

-}

-

-#if VMA_STATIC_VULKAN_FUNCTIONS == 1

-

-void VmaAllocator_T::ImportVulkanFunctions_Static()

-{

-    // Vulkan 1.0

-    m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;

-    m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;

-    m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;

-    m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;

-    m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;

-    m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;

-    m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;

-    m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;

-    m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;

-    m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;

-    m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;

-    m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;

-    m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;

-    m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;

-    m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;

-    m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;

-    m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;

-

-    // Vulkan 1.1

-#if VMA_VULKAN_VERSION >= 1001000

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;

-        m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;

-        m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;

-        m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;

-        m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;

-    }

-#endif

-}

-

-#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1

-

-void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)

-{

-    VMA_ASSERT(pVulkanFunctions != VMA_NULL);

-

-#define VMA_COPY_IF_NOT_NULL(funcName) \

-    if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;

-

-    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);

-    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);

-    VMA_COPY_IF_NOT_NULL(vkAllocateMemory);

-    VMA_COPY_IF_NOT_NULL(vkFreeMemory);

-    VMA_COPY_IF_NOT_NULL(vkMapMemory);

-    VMA_COPY_IF_NOT_NULL(vkUnmapMemory);

-    VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);

-    VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);

-    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);

-    VMA_COPY_IF_NOT_NULL(vkBindImageMemory);

-    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);

-    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);

-    VMA_COPY_IF_NOT_NULL(vkCreateBuffer);

-    VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);

-    VMA_COPY_IF_NOT_NULL(vkCreateImage);

-    VMA_COPY_IF_NOT_NULL(vkDestroyImage);

-    VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);

-

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);

-    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);

-#endif

-

-#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000

-    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);

-    VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);

-#endif

-

-#if VMA_MEMORY_BUDGET

-    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);

-#endif

-

-#undef VMA_COPY_IF_NOT_NULL

-}

-

-#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1

-

-void VmaAllocator_T::ImportVulkanFunctions_Dynamic()

-{

-#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \

-    if(m_VulkanFunctions.memberName == VMA_NULL) \

-        m_VulkanFunctions.memberName = \

-            (functionPointerType)vkGetInstanceProcAddr(m_hInstance, functionNameString);

-#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \

-    if(m_VulkanFunctions.memberName == VMA_NULL) \

-        m_VulkanFunctions.memberName = \

-            (functionPointerType)vkGetDeviceProcAddr(m_hDevice, functionNameString);

-

-    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");

-    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");

-    VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");

-    VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");

-    VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");

-    VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");

-    VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");

-    VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");

-    VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");

-    VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");

-    VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");

-    VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");

-    VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");

-    VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");

-    VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");

-    VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");

-    VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");

-

-#if VMA_DEDICATED_ALLOCATION

-    if(m_UseKhrDedicatedAllocation)

-    {

-        VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");

-        VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");

-    }

-#endif

-

-#if VMA_BIND_MEMORY2

-    if(m_UseKhrBindMemory2)

-    {

-        VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");

-        VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");

-    }

-#endif // #if VMA_BIND_MEMORY2

-

-#if VMA_MEMORY_BUDGET

-    if(m_UseExtMemoryBudget && m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))

-    {

-        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");

-    }

-#endif // #if VMA_MEMORY_BUDGET

-

-#undef VMA_FETCH_DEVICE_FUNC

-#undef VMA_FETCH_INSTANCE_FUNC

-}

-

-#endif // #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1

-

-void VmaAllocator_T::ValidateVulkanFunctions()

-{

-    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);

-    VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);

-

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)

-    {

-        VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);

-        VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);

-    }

-#endif

-

-#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000

-    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)

-    {

-        VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);

-        VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);

-    }

-#endif

-

-#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000

-    if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);

-    }

-#endif

-}

-

-VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)

-{

-    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);

-    const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;

-    const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;

-    return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);

-}

-

-VkResult VmaAllocator_T::AllocateMemoryOfType(

-    VkDeviceSize size,

-    VkDeviceSize alignment,

-    bool dedicatedAllocation,

-    VkBuffer dedicatedBuffer,

-    VkBufferUsageFlags dedicatedBufferUsage,

-    VkImage dedicatedImage,

-    const VmaAllocationCreateInfo& createInfo,

-    uint32_t memTypeIndex,

-    VmaSuballocationType suballocType,

-    size_t allocationCount,

-    VmaAllocation* pAllocations)

-{

-    VMA_ASSERT(pAllocations != VMA_NULL);

-    VMA_DEBUG_LOG("  AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);

-

-    VmaAllocationCreateInfo finalCreateInfo = createInfo;

-

-    // If memory type is not HOST_VISIBLE, disable MAPPED.

-    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&

-        (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

-    {

-        finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;

-    }

-    // If memory is lazily allocated, it should be always dedicated.

-    if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)

-    {

-        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;

-    }

-

-    VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];

-    VMA_ASSERT(blockVector);

-

-    const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();

-    bool preferDedicatedMemory =

-        VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||

-        dedicatedAllocation ||

-        // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.

-        size > preferredBlockSize / 2;

-

-    if(preferDedicatedMemory &&

-        (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&

-        finalCreateInfo.pool == VK_NULL_HANDLE)

-    {

-        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;

-    }

-

-    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)

-    {

-        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

-        {

-            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-        }

-        else

-        {

-            return AllocateDedicatedMemory(

-                size,

-                suballocType,

-                memTypeIndex,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,

-                finalCreateInfo.pUserData,

-                dedicatedBuffer,

-                dedicatedBufferUsage,

-                dedicatedImage,

-                allocationCount,

-                pAllocations);

-        }

-    }

-    else

-    {

-        VkResult res = blockVector->Allocate(

-            m_CurrentFrameIndex.load(),

-            size,

-            alignment,

-            finalCreateInfo,

-            suballocType,

-            allocationCount,

-            pAllocations);

-        if(res == VK_SUCCESS)

-        {

-            return res;

-        }

-

-        // 5. Try dedicated memory.

-        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

-        {

-            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-        }

-        else

-        {

-            res = AllocateDedicatedMemory(

-                size,

-                suballocType,

-                memTypeIndex,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,

-                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,

-                finalCreateInfo.pUserData,

-                dedicatedBuffer,

-                dedicatedBufferUsage,

-                dedicatedImage,

-                allocationCount,

-                pAllocations);

-            if(res == VK_SUCCESS)

-            {

-                // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.

-                VMA_DEBUG_LOG("    Allocated as DedicatedMemory");

-                return VK_SUCCESS;

-            }

-            else

-            {

-                // Everything failed: Return error code.

-                VMA_DEBUG_LOG("    vkAllocateMemory FAILED");

-                return res;

-            }

-        }

-    }

-}

-

-VkResult VmaAllocator_T::AllocateDedicatedMemory(

-    VkDeviceSize size,

-    VmaSuballocationType suballocType,

-    uint32_t memTypeIndex,

-    bool withinBudget,

-    bool map,

-    bool isUserDataString,

-    void* pUserData,

-    VkBuffer dedicatedBuffer,

-    VkBufferUsageFlags dedicatedBufferUsage,

-    VkImage dedicatedImage,

-    size_t allocationCount,

-    VmaAllocation* pAllocations)

-{

-    VMA_ASSERT(allocationCount > 0 && pAllocations);

-

-    if(withinBudget)

-    {

-        const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);

-        VmaBudget heapBudget = {};

-        GetBudget(&heapBudget, heapIndex, 1);

-        if(heapBudget.usage + size * allocationCount > heapBudget.budget)

-        {

-            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-        }

-    }

-

-    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };

-    allocInfo.memoryTypeIndex = memTypeIndex;

-    allocInfo.allocationSize = size;

-

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };

-    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        if(dedicatedBuffer != VK_NULL_HANDLE)

-        {

-            VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);

-            dedicatedAllocInfo.buffer = dedicatedBuffer;

-            VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);

-        }

-        else if(dedicatedImage != VK_NULL_HANDLE)

-        {

-            dedicatedAllocInfo.image = dedicatedImage;

-            VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);

-        }

-    }

-#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-

-#if VMA_BUFFER_DEVICE_ADDRESS

-    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };

-    if(m_UseKhrBufferDeviceAddress)

-    {

-        bool canContainBufferWithDeviceAddress = true;

-        if(dedicatedBuffer != VK_NULL_HANDLE)

-        {

-            canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown

-                (dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;

-        }

-        else if(dedicatedImage != VK_NULL_HANDLE)

-        {

-            canContainBufferWithDeviceAddress = false;

-        }

-        if(canContainBufferWithDeviceAddress)

-        {

-            allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;

-            VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);

-        }

-    }

-#endif // #if VMA_BUFFER_DEVICE_ADDRESS

-

-    size_t allocIndex;

-    VkResult res = VK_SUCCESS;

-    for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)

-    {

-        res = AllocateDedicatedMemoryPage(

-            size,

-            suballocType,

-            memTypeIndex,

-            allocInfo,

-            map,

-            isUserDataString,

-            pUserData,

-            pAllocations + allocIndex);

-        if(res != VK_SUCCESS)

-        {

-            break;

-        }

-    }

-

-    if(res == VK_SUCCESS)

-    {

-        // Register them in m_pDedicatedAllocations.

-        {

-            VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

-            AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];

-            VMA_ASSERT(pDedicatedAllocations);

-            for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)

-            {

-                VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]);

-            }

-        }

-

-        VMA_DEBUG_LOG("    Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);

-    }

-    else

-    {

-        // Free all already created allocations.

-        while(allocIndex--)

-        {

-            VmaAllocation currAlloc = pAllocations[allocIndex];

-            VkDeviceMemory hMemory = currAlloc->GetMemory();

-    

-            /*

-            There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory

-            before vkFreeMemory.

-

-            if(currAlloc->GetMappedData() != VMA_NULL)

-            {

-                (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);

-            }

-            */

-    

-            FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);

-            m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());

-            currAlloc->SetUserData(this, VMA_NULL);

-            m_AllocationObjectAllocator.Free(currAlloc);

-        }

-

-        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);

-    }

-

-    return res;

-}

-

-VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(

-    VkDeviceSize size,

-    VmaSuballocationType suballocType,

-    uint32_t memTypeIndex,

-    const VkMemoryAllocateInfo& allocInfo,

-    bool map,

-    bool isUserDataString,

-    void* pUserData,

-    VmaAllocation* pAllocation)

-{

-    VkDeviceMemory hMemory = VK_NULL_HANDLE;

-    VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);

-    if(res < 0)

-    {

-        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");

-        return res;

-    }

-

-    void* pMappedData = VMA_NULL;

-    if(map)

-    {

-        res = (*m_VulkanFunctions.vkMapMemory)(

-            m_hDevice,

-            hMemory,

-            0,

-            VK_WHOLE_SIZE,

-            0,

-            &pMappedData);

-        if(res < 0)

-        {

-            VMA_DEBUG_LOG("    vkMapMemory FAILED");

-            FreeVulkanMemory(memTypeIndex, size, hMemory);

-            return res;

-        }

-    }

-

-    *pAllocation = m_AllocationObjectAllocator.Allocate(m_CurrentFrameIndex.load(), isUserDataString);

-    (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);

-    (*pAllocation)->SetUserData(this, pUserData);

-    m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);

-    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)

-    {

-        FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);

-    }

-

-    return VK_SUCCESS;

-}

-

-void VmaAllocator_T::GetBufferMemoryRequirements(

-    VkBuffer hBuffer,

-    VkMemoryRequirements& memReq,

-    bool& requiresDedicatedAllocation,

-    bool& prefersDedicatedAllocation) const

-{

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };

-        memReqInfo.buffer = hBuffer;

-

-        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };

-

-        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };

-        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);

-

-        (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);

-

-        memReq = memReq2.memoryRequirements;

-        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);

-        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);

-    }

-    else

-#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    {

-        (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);

-        requiresDedicatedAllocation = false;

-        prefersDedicatedAllocation  = false;

-    }

-}

-

-void VmaAllocator_T::GetImageMemoryRequirements(

-    VkImage hImage,

-    VkMemoryRequirements& memReq,

-    bool& requiresDedicatedAllocation,

-    bool& prefersDedicatedAllocation) const

-{

-#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))

-    {

-        VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };

-        memReqInfo.image = hImage;

-

-        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };

-

-        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };

-        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);

-

-        (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);

-

-        memReq = memReq2.memoryRequirements;

-        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);

-        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);

-    }

-    else

-#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000

-    {

-        (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);

-        requiresDedicatedAllocation = false;

-        prefersDedicatedAllocation  = false;

-    }

-}

-

-VkResult VmaAllocator_T::AllocateMemory(

-    const VkMemoryRequirements& vkMemReq,

-    bool requiresDedicatedAllocation,

-    bool prefersDedicatedAllocation,

-    VkBuffer dedicatedBuffer,

-    VkBufferUsageFlags dedicatedBufferUsage,

-    VkImage dedicatedImage,

-    const VmaAllocationCreateInfo& createInfo,

-    VmaSuballocationType suballocType,

-    size_t allocationCount,

-    VmaAllocation* pAllocations)

-{

-    memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);

-

-    VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));

-

-    if(vkMemReq.size == 0)

-    {

-        return VK_ERROR_VALIDATION_FAILED_EXT;

-    }

-    if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&

-        (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

-    {

-        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");

-        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-    }

-    if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&

-        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)

-    {

-        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");

-        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-    }

-    if(requiresDedicatedAllocation)

-    {

-        if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)

-        {

-            VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");

-            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-        }

-        if(createInfo.pool != VK_NULL_HANDLE)

-        {

-            VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");

-            return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-        }

-    }

-    if((createInfo.pool != VK_NULL_HANDLE) &&

-        ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))

-    {

-        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");

-        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-    }

-

-    if(createInfo.pool != VK_NULL_HANDLE)

-    {

-        const VkDeviceSize alignmentForPool = VMA_MAX(

-            vkMemReq.alignment,

-            GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex()));

-

-        VmaAllocationCreateInfo createInfoForPool = createInfo;

-        // If memory type is not HOST_VISIBLE, disable MAPPED.

-        if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&

-            (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

-        {

-            createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;

-        }

-

-        return createInfo.pool->m_BlockVector.Allocate(

-            m_CurrentFrameIndex.load(),

-            vkMemReq.size,

-            alignmentForPool,

-            createInfoForPool,

-            suballocType,

-            allocationCount,

-            pAllocations);

-    }

-    else

-    {

-        // Bit mask of memory Vulkan types acceptable for this allocation.

-        uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;

-        uint32_t memTypeIndex = UINT32_MAX;

-        VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);

-        if(res == VK_SUCCESS)

-        {

-            VkDeviceSize alignmentForMemType = VMA_MAX(

-                vkMemReq.alignment,

-                GetMemoryTypeMinAlignment(memTypeIndex));

-

-            res = AllocateMemoryOfType(

-                vkMemReq.size,

-                alignmentForMemType,

-                requiresDedicatedAllocation || prefersDedicatedAllocation,

-                dedicatedBuffer,

-                dedicatedBufferUsage,

-                dedicatedImage,

-                createInfo,

-                memTypeIndex,

-                suballocType,

-                allocationCount,

-                pAllocations);

-            // Succeeded on first try.

-            if(res == VK_SUCCESS)

-            {

-                return res;

-            }

-            // Allocation from this memory type failed. Try other compatible memory types.

-            else

-            {

-                for(;;)

-                {

-                    // Remove old memTypeIndex from list of possibilities.

-                    memoryTypeBits &= ~(1u << memTypeIndex);

-                    // Find alternative memTypeIndex.

-                    res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);

-                    if(res == VK_SUCCESS)

-                    {

-                        alignmentForMemType = VMA_MAX(

-                            vkMemReq.alignment,

-                            GetMemoryTypeMinAlignment(memTypeIndex));

-                        

-                        res = AllocateMemoryOfType(

-                            vkMemReq.size,

-                            alignmentForMemType,

-                            requiresDedicatedAllocation || prefersDedicatedAllocation,

-                            dedicatedBuffer,

-                            dedicatedBufferUsage,

-                            dedicatedImage,

-                            createInfo,

-                            memTypeIndex,

-                            suballocType,

-                            allocationCount,

-                            pAllocations);

-                        // Allocation from this alternative memory type succeeded.

-                        if(res == VK_SUCCESS)

-                        {

-                            return res;

-                        }

-                        // else: Allocation from this memory type failed. Try next one - next loop iteration.

-                    }

-                    // No other matching memory type index could be found.

-                    else

-                    {

-                        // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.

-                        return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-                    }

-                }

-            }

-        }

-        // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.

-        else

-            return res;

-    }

-}

-

-void VmaAllocator_T::FreeMemory(

-    size_t allocationCount,

-    const VmaAllocation* pAllocations)

-{

-    VMA_ASSERT(pAllocations);

-

-    for(size_t allocIndex = allocationCount; allocIndex--; )

-    {

-        VmaAllocation allocation = pAllocations[allocIndex];

-

-        if(allocation != VK_NULL_HANDLE)

-        {

-            if(TouchAllocation(allocation))

-            {

-                if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)

-                {

-                    FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);

-                }

-

-                switch(allocation->GetType())

-                {

-                case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-                    {

-                        VmaBlockVector* pBlockVector = VMA_NULL;

-                        VmaPool hPool = allocation->GetBlock()->GetParentPool();

-                        if(hPool != VK_NULL_HANDLE)

-                        {

-                            pBlockVector = &hPool->m_BlockVector;

-                        }

-                        else

-                        {

-                            const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();

-                            pBlockVector = m_pBlockVectors[memTypeIndex];

-                        }

-                        pBlockVector->Free(allocation);

-                    }

-                    break;

-                case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-                    FreeDedicatedMemory(allocation);

-                    break;

-                default:

-                    VMA_ASSERT(0);

-                }

-            }

-

-            // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes.

-            m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());

-            allocation->SetUserData(this, VMA_NULL);

-            m_AllocationObjectAllocator.Free(allocation);

-        }

-    }

-}

-

-VkResult VmaAllocator_T::ResizeAllocation(

-    const VmaAllocation alloc,

-    VkDeviceSize newSize)

-{

-    // This function is deprecated and so it does nothing. It's left for backward compatibility.

-    if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST)

-    {

-        return VK_ERROR_VALIDATION_FAILED_EXT;

-    }

-    if(newSize == alloc->GetSize())

-    {

-        return VK_SUCCESS;

-    }

-    return VK_ERROR_OUT_OF_POOL_MEMORY;

-}

-

-void VmaAllocator_T::CalculateStats(VmaStats* pStats)

-{

-    // Initialize.

-    InitStatInfo(pStats->total);

-    for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)

-        InitStatInfo(pStats->memoryType[i]);

-    for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)

-        InitStatInfo(pStats->memoryHeap[i]);

-    

-    // Process default pools.

-    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-    {

-        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];

-        VMA_ASSERT(pBlockVector);

-        pBlockVector->AddStats(pStats);

-    }

-

-    // Process custom pools.

-    {

-        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);

-        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)

-        {

-            m_Pools[poolIndex]->m_BlockVector.AddStats(pStats);

-        }

-    }

-

-    // Process dedicated allocations.

-    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-    {

-        const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);

-        VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

-        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];

-        VMA_ASSERT(pDedicatedAllocVector);

-        for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)

-        {

-            VmaStatInfo allocationStatInfo;

-            (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);

-            VmaAddStatInfo(pStats->total, allocationStatInfo);

-            VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);

-            VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);

-        }

-    }

-

-    // Postprocess.

-    VmaPostprocessCalcStatInfo(pStats->total);

-    for(size_t i = 0; i < GetMemoryTypeCount(); ++i)

-        VmaPostprocessCalcStatInfo(pStats->memoryType[i]);

-    for(size_t i = 0; i < GetMemoryHeapCount(); ++i)

-        VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);

-}

-

-void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount)

-{

-#if VMA_MEMORY_BUDGET

-    if(m_UseExtMemoryBudget)

-    {

-        if(m_Budget.m_OperationsSinceBudgetFetch < 30)

-        {

-            VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);

-            for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)

-            {

-                const uint32_t heapIndex = firstHeap + i;

-

-                outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];

-                outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];

-

-                if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])

-                {

-                    outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] +

-                        outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];

-                }

-                else

-                {

-                    outBudget->usage = 0;

-                }

-

-                // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.

-                outBudget->budget = VMA_MIN(

-                    m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);

-            }

-        }

-        else

-        {

-            UpdateVulkanBudget(); // Outside of mutex lock

-            GetBudget(outBudget, firstHeap, heapCount); // Recursion

-        }

-    }

-    else

-#endif

-    {

-        for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)

-        {

-            const uint32_t heapIndex = firstHeap + i;

-

-            outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];

-            outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];

-

-            outBudget->usage = outBudget->blockBytes;

-            outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.

-        }

-    }

-}

-

-static const uint32_t VMA_VENDOR_ID_AMD = 4098;

-

-VkResult VmaAllocator_T::DefragmentationBegin(

-    const VmaDefragmentationInfo2& info,

-    VmaDefragmentationStats* pStats,

-    VmaDefragmentationContext* pContext)

-{

-    if(info.pAllocationsChanged != VMA_NULL)

-    {

-        memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));

-    }

-

-    *pContext = vma_new(this, VmaDefragmentationContext_T)(

-        this, m_CurrentFrameIndex.load(), info.flags, pStats);

-

-    (*pContext)->AddPools(info.poolCount, info.pPools);

-    (*pContext)->AddAllocations(

-        info.allocationCount, info.pAllocations, info.pAllocationsChanged);

-

-    VkResult res = (*pContext)->Defragment(

-        info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,

-        info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,

-        info.commandBuffer, pStats, info.flags);

-

-    if(res != VK_NOT_READY)

-    {

-        vma_delete(this, *pContext);

-        *pContext = VMA_NULL;

-    }

-

-    return res;

-}

-

-VkResult VmaAllocator_T::DefragmentationEnd(

-    VmaDefragmentationContext context)

-{

-    vma_delete(this, context);

-    return VK_SUCCESS;

-}

-

-VkResult VmaAllocator_T::DefragmentationPassBegin(

-    VmaDefragmentationPassInfo* pInfo,

-    VmaDefragmentationContext context)

-{

-    return context->DefragmentPassBegin(pInfo);

-}

-VkResult VmaAllocator_T::DefragmentationPassEnd(

-    VmaDefragmentationContext context)

-{

-    return context->DefragmentPassEnd();

-    

-}

-

-void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)

-{

-    if(hAllocation->CanBecomeLost())

-    {

-        /*

-        Warning: This is a carefully designed algorithm.

-        Do not modify unless you really know what you're doing :)

-        */

-        const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

-        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

-        for(;;)

-        {

-            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

-            {

-                pAllocationInfo->memoryType = UINT32_MAX;

-                pAllocationInfo->deviceMemory = VK_NULL_HANDLE;

-                pAllocationInfo->offset = 0;

-                pAllocationInfo->size = hAllocation->GetSize();

-                pAllocationInfo->pMappedData = VMA_NULL;

-                pAllocationInfo->pUserData = hAllocation->GetUserData();

-                return;

-            }

-            else if(localLastUseFrameIndex == localCurrFrameIndex)

-            {

-                pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();

-                pAllocationInfo->deviceMemory = hAllocation->GetMemory();

-                pAllocationInfo->offset = hAllocation->GetOffset();

-                pAllocationInfo->size = hAllocation->GetSize();

-                pAllocationInfo->pMappedData = VMA_NULL;

-                pAllocationInfo->pUserData = hAllocation->GetUserData();

-                return;

-            }

-            else // Last use time earlier than current time.

-            {

-                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

-                {

-                    localLastUseFrameIndex = localCurrFrameIndex;

-                }

-            }

-        }

-    }

-    else

-    {

-#if VMA_STATS_STRING_ENABLED

-        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

-        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

-        for(;;)

-        {

-            VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);

-            if(localLastUseFrameIndex == localCurrFrameIndex)

-            {

-                break;

-            }

-            else // Last use time earlier than current time.

-            {

-                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

-                {

-                    localLastUseFrameIndex = localCurrFrameIndex;

-                }

-            }

-        }

-#endif

-

-        pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();

-        pAllocationInfo->deviceMemory = hAllocation->GetMemory();

-        pAllocationInfo->offset = hAllocation->GetOffset();

-        pAllocationInfo->size = hAllocation->GetSize();

-        pAllocationInfo->pMappedData = hAllocation->GetMappedData();

-        pAllocationInfo->pUserData = hAllocation->GetUserData();

-    }

-}

-

-bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)

-{

-    // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.

-    if(hAllocation->CanBecomeLost())

-    {

-        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

-        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

-        for(;;)

-        {

-            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)

-            {

-                return false;

-            }

-            else if(localLastUseFrameIndex == localCurrFrameIndex)

-            {

-                return true;

-            }

-            else // Last use time earlier than current time.

-            {

-                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

-                {

-                    localLastUseFrameIndex = localCurrFrameIndex;

-                }

-            }

-        }

-    }

-    else

-    {

-#if VMA_STATS_STRING_ENABLED

-        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();

-        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();

-        for(;;)

-        {

-            VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);

-            if(localLastUseFrameIndex == localCurrFrameIndex)

-            {

-                break;

-            }

-            else // Last use time earlier than current time.

-            {

-                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))

-                {

-                    localLastUseFrameIndex = localCurrFrameIndex;

-                }

-            }

-        }

-#endif

-

-        return true;

-    }

-}

-

-VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)

-{

-    VMA_DEBUG_LOG("  CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);

-

-    VmaPoolCreateInfo newCreateInfo = *pCreateInfo;

-

-    if(newCreateInfo.maxBlockCount == 0)

-    {

-        newCreateInfo.maxBlockCount = SIZE_MAX;

-    }

-    if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)

-    {

-        return VK_ERROR_INITIALIZATION_FAILED;

-    }

-    // Memory type index out of range or forbidden.

-    if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||

-        ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)

-    {

-        return VK_ERROR_FEATURE_NOT_PRESENT;

-    }

-

-    const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);

-

-    *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);

-

-    VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();

-    if(res != VK_SUCCESS)

-    {

-        vma_delete(this, *pPool);

-        *pPool = VMA_NULL;

-        return res;

-    }

-

-    // Add to m_Pools.

-    {

-        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);

-        (*pPool)->SetId(m_NextPoolId++);

-        VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);

-    }

-

-    return VK_SUCCESS;

-}

-

-void VmaAllocator_T::DestroyPool(VmaPool pool)

-{

-    // Remove from m_Pools.

-    {

-        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);

-        bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);

-        VMA_ASSERT(success && "Pool not found in Allocator.");

-    }

-

-    vma_delete(this, pool);

-}

-

-void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)

-{

-    pool->m_BlockVector.GetPoolStats(pPoolStats);

-}

-

-void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)

-{

-    m_CurrentFrameIndex.store(frameIndex);

-

-#if VMA_MEMORY_BUDGET

-    if(m_UseExtMemoryBudget)

-    {

-        UpdateVulkanBudget();

-    }

-#endif // #if VMA_MEMORY_BUDGET

-}

-

-void VmaAllocator_T::MakePoolAllocationsLost(

-    VmaPool hPool,

-    size_t* pLostAllocationCount)

-{

-    hPool->m_BlockVector.MakePoolAllocationsLost(

-        m_CurrentFrameIndex.load(),

-        pLostAllocationCount);

-}

-

-VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)

-{

-    return hPool->m_BlockVector.CheckCorruption();

-}

-

-VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)

-{

-    VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;

-

-    // Process default pools.

-    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-    {

-        if(((1u << memTypeIndex) & memoryTypeBits) != 0)

-        {

-            VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];

-            VMA_ASSERT(pBlockVector);

-            VkResult localRes = pBlockVector->CheckCorruption();

-            switch(localRes)

-            {

-            case VK_ERROR_FEATURE_NOT_PRESENT:

-                break;

-            case VK_SUCCESS:

-                finalRes = VK_SUCCESS;

-                break;

-            default:

-                return localRes;

-            }

-        }

-    }

-

-    // Process custom pools.

-    {

-        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);

-        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)

-        {

-            if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)

-            {

-                VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption();

-                switch(localRes)

-                {

-                case VK_ERROR_FEATURE_NOT_PRESENT:

-                    break;

-                case VK_SUCCESS:

-                    finalRes = VK_SUCCESS;

-                    break;

-                default:

-                    return localRes;

-                }

-            }

-        }

-    }

-

-    return finalRes;

-}

-

-void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)

-{

-    *pAllocation = m_AllocationObjectAllocator.Allocate(VMA_FRAME_INDEX_LOST, false);

-    (*pAllocation)->InitLost();

-}

-

-VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)

-{

-    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);

-

-    // HeapSizeLimit is in effect for this heap.

-    if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)

-    {

-        const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;

-        VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];

-        for(;;)

-        {

-            const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;

-            if(blockBytesAfterAllocation > heapSize)

-            {

-                return VK_ERROR_OUT_OF_DEVICE_MEMORY;

-            }

-            if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))

-            {

-                break;

-            }

-        }

-    }

-    else

-    {

-        m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;

-    }

-

-    // VULKAN CALL vkAllocateMemory.

-    VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);

-

-    if(res == VK_SUCCESS)

-    {

-#if VMA_MEMORY_BUDGET

-        ++m_Budget.m_OperationsSinceBudgetFetch;

-#endif

-

-        // Informative callback.

-        if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)

-        {

-            (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);

-        }

-    }

-    else

-    {

-        m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;

-    }

-

-    return res;

-}

-

-void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)

-{

-    // Informative callback.

-    if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)

-    {

-        (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);

-    }

-

-    // VULKAN CALL vkFreeMemory.

-    (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());

-

-    m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size;

-}

-

-VkResult VmaAllocator_T::BindVulkanBuffer(

-    VkDeviceMemory memory,

-    VkDeviceSize memoryOffset,

-    VkBuffer buffer,

-    const void* pNext)

-{

-    if(pNext != VMA_NULL)

-    {

-#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2

-        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&

-            m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)

-        {

-            VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };

-            bindBufferMemoryInfo.pNext = pNext;

-            bindBufferMemoryInfo.buffer = buffer;

-            bindBufferMemoryInfo.memory = memory;

-            bindBufferMemoryInfo.memoryOffset = memoryOffset;

-            return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);

-        }

-        else

-#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2

-        {

-            return VK_ERROR_EXTENSION_NOT_PRESENT;

-        }

-    }

-    else

-    {

-        return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);

-    }

-}

-

-VkResult VmaAllocator_T::BindVulkanImage(

-    VkDeviceMemory memory,

-    VkDeviceSize memoryOffset,

-    VkImage image,

-    const void* pNext)

-{

-    if(pNext != VMA_NULL)

-    {

-#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2

-        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&

-            m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)

-        {

-            VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };

-            bindBufferMemoryInfo.pNext = pNext;

-            bindBufferMemoryInfo.image = image;

-            bindBufferMemoryInfo.memory = memory;

-            bindBufferMemoryInfo.memoryOffset = memoryOffset;

-            return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);

-        }

-        else

-#endif // #if VMA_BIND_MEMORY2

-        {

-            return VK_ERROR_EXTENSION_NOT_PRESENT;

-        }

-    }

-    else

-    {

-        return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);

-    }

-}

-

-VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)

-{

-    if(hAllocation->CanBecomeLost())

-    {

-        return VK_ERROR_MEMORY_MAP_FAILED;

-    }

-

-    switch(hAllocation->GetType())

-    {

-    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-        {

-            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();

-            char *pBytes = VMA_NULL;

-            VkResult res = pBlock->Map(this, 1, (void**)&pBytes);

-            if(res == VK_SUCCESS)

-            {

-                *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();

-                hAllocation->BlockAllocMap();

-            }

-            return res;

-        }

-    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-        return hAllocation->DedicatedAllocMap(this, ppData);

-    default:

-        VMA_ASSERT(0);

-        return VK_ERROR_MEMORY_MAP_FAILED;

-    }

-}

-

-void VmaAllocator_T::Unmap(VmaAllocation hAllocation)

-{

-    switch(hAllocation->GetType())

-    {

-    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-        {

-            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();

-            hAllocation->BlockAllocUnmap();

-            pBlock->Unmap(this, 1);

-        }

-        break;

-    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-        hAllocation->DedicatedAllocUnmap(this);

-        break;

-    default:

-        VMA_ASSERT(0);

-    }

-}

-

-VkResult VmaAllocator_T::BindBufferMemory(

-    VmaAllocation hAllocation,

-    VkDeviceSize allocationLocalOffset,

-    VkBuffer hBuffer,

-    const void* pNext)

-{

-    VkResult res = VK_SUCCESS;

-    switch(hAllocation->GetType())

-    {

-    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-        res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);

-        break;

-    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-    {

-        VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();

-        VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");

-        res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);

-        break;

-    }

-    default:

-        VMA_ASSERT(0);

-    }

-    return res;

-}

-

-VkResult VmaAllocator_T::BindImageMemory(

-    VmaAllocation hAllocation,

-    VkDeviceSize allocationLocalOffset,

-    VkImage hImage,

-    const void* pNext)

-{

-    VkResult res = VK_SUCCESS;

-    switch(hAllocation->GetType())

-    {

-    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-        res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);

-        break;

-    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-    {

-        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();

-        VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");

-        res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);

-        break;

-    }

-    default:

-        VMA_ASSERT(0);

-    }

-    return res;

-}

-

-void VmaAllocator_T::FlushOrInvalidateAllocation(

-    VmaAllocation hAllocation,

-    VkDeviceSize offset, VkDeviceSize size,

-    VMA_CACHE_OPERATION op)

-{

-    const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex();

-    if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))

-    {

-        const VkDeviceSize allocationSize = hAllocation->GetSize();

-        VMA_ASSERT(offset <= allocationSize);

-

-        const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;

-

-        VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };

-        memRange.memory = hAllocation->GetMemory();

-        

-        switch(hAllocation->GetType())

-        {

-        case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:

-            memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);

-            if(size == VK_WHOLE_SIZE)

-            {

-                memRange.size = allocationSize - memRange.offset;

-            }

-            else

-            {

-                VMA_ASSERT(offset + size <= allocationSize);

-                memRange.size = VMA_MIN(

-                    VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize),

-                    allocationSize - memRange.offset);

-            }

-            break;

-

-        case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:

-        {

-            // 1. Still within this allocation.

-            memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);

-            if(size == VK_WHOLE_SIZE)

-            {

-                size = allocationSize - offset;

-            }

-            else

-            {

-                VMA_ASSERT(offset + size <= allocationSize);

-            }

-            memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize);

-

-            // 2. Adjust to whole block.

-            const VkDeviceSize allocationOffset = hAllocation->GetOffset();

-            VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);

-            const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();

-            memRange.offset += allocationOffset;

-            memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset);

-            

-            break;

-        }

-        

-        default:

-            VMA_ASSERT(0);

-        }

-

-        switch(op)

-        {

-        case VMA_CACHE_FLUSH:

-            (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);

-            break;

-        case VMA_CACHE_INVALIDATE:

-            (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);

-            break;

-        default:

-            VMA_ASSERT(0);

-        }

-    }

-    // else: Just ignore this call.

-}

-

-void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)

-{

-    VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);

-

-    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();

-    {

-        VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

-        AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];

-        VMA_ASSERT(pDedicatedAllocations);

-        bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);

-        VMA_ASSERT(success);

-    }

-

-    VkDeviceMemory hMemory = allocation->GetMemory();

-    

-    /*

-    There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory

-    before vkFreeMemory.

-

-    if(allocation->GetMappedData() != VMA_NULL)

-    {

-        (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);

-    }

-    */

-    

-    FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);

-

-    VMA_DEBUG_LOG("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);

-}

-

-uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const

-{

-    VkBufferCreateInfo dummyBufCreateInfo;

-    VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);

-

-    uint32_t memoryTypeBits = 0;

-

-    // Create buffer.

-    VkBuffer buf = VK_NULL_HANDLE;

-    VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(

-        m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);

-    if(res == VK_SUCCESS)

-    {

-        // Query for supported memory types.

-        VkMemoryRequirements memReq;

-        (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);

-        memoryTypeBits = memReq.memoryTypeBits;

-

-        // Destroy buffer.

-        (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());

-    }

-

-    return memoryTypeBits;

-}

-

-uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const

-{

-    // Make sure memory information is already fetched.

-    VMA_ASSERT(GetMemoryTypeCount() > 0);

-

-    uint32_t memoryTypeBits = UINT32_MAX;

-

-    if(!m_UseAmdDeviceCoherentMemory)

-    {

-        // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.

-        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-        {

-            if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)

-            {

-                memoryTypeBits &= ~(1u << memTypeIndex);

-            }

-        }

-    }

-

-    return memoryTypeBits;

-}

-

-#if VMA_MEMORY_BUDGET

-

-void VmaAllocator_T::UpdateVulkanBudget()

-{

-    VMA_ASSERT(m_UseExtMemoryBudget);

-

-    VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };

-

-    VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };

-    VmaPnextChainPushFront(&memProps, &budgetProps);

-

-    GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);

-

-    {

-        VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);

-

-        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)

-        {

-            m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];

-            m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];

-            m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();

-

-            // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.

-            if(m_Budget.m_VulkanBudget[heapIndex] == 0)

-            {

-                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.

-            }

-            else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)

-            {

-                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;

-            }

-            if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)

-            {

-                m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];

-            }

-        }

-        m_Budget.m_OperationsSinceBudgetFetch = 0;

-    }

-}

-

-#endif // #if VMA_MEMORY_BUDGET

-

-void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)

-{

-    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&

-        !hAllocation->CanBecomeLost() &&

-        (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)

-    {

-        void* pData = VMA_NULL;

-        VkResult res = Map(hAllocation, &pData);

-        if(res == VK_SUCCESS)

-        {

-            memset(pData, (int)pattern, (size_t)hAllocation->GetSize());

-            FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);

-            Unmap(hAllocation);

-        }

-        else

-        {

-            VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");

-        }

-    }

-}

-

-uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()

-{

-    uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();

-    if(memoryTypeBits == UINT32_MAX)

-    {

-        memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();

-        m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);

-    }

-    return memoryTypeBits;

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)

-{

-    bool dedicatedAllocationsStarted = false;

-    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-    {

-        VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);

-        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];

-        VMA_ASSERT(pDedicatedAllocVector);

-        if(pDedicatedAllocVector->empty() == false)

-        {

-            if(dedicatedAllocationsStarted == false)

-            {

-                dedicatedAllocationsStarted = true;

-                json.WriteString("DedicatedAllocations");

-                json.BeginObject();

-            }

-

-            json.BeginString("Type ");

-            json.ContinueString(memTypeIndex);

-            json.EndString();

-                

-            json.BeginArray();

-

-            for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)

-            {

-                json.BeginObject(true);

-                const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];

-                hAlloc->PrintParameters(json);

-                json.EndObject();

-            }

-

-            json.EndArray();

-        }

-    }

-    if(dedicatedAllocationsStarted)

-    {

-        json.EndObject();

-    }

-

-    {

-        bool allocationsStarted = false;

-        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)

-        {

-            if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)

-            {

-                if(allocationsStarted == false)

-                {

-                    allocationsStarted = true;

-                    json.WriteString("DefaultPools");

-                    json.BeginObject();

-                }

-

-                json.BeginString("Type ");

-                json.ContinueString(memTypeIndex);

-                json.EndString();

-

-                m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);

-            }

-        }

-        if(allocationsStarted)

-        {

-            json.EndObject();

-        }

-    }

-

-    // Custom pools

-    {

-        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);

-        const size_t poolCount = m_Pools.size();

-        if(poolCount > 0)

-        {

-            json.WriteString("Pools");

-            json.BeginObject();

-            for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)

-            {

-                json.BeginString();

-                json.ContinueString(m_Pools[poolIndex]->GetId());

-                json.EndString();

-

-                m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);

-            }

-            json.EndObject();

-        }

-    }

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-////////////////////////////////////////////////////////////////////////////////

-// Public interface

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(

-    const VmaAllocatorCreateInfo* pCreateInfo,

-    VmaAllocator* pAllocator)

-{

-    VMA_ASSERT(pCreateInfo && pAllocator);

-    VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||

-        (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 2));

-    VMA_DEBUG_LOG("vmaCreateAllocator");

-    *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);

-    return (*pAllocator)->Init(pCreateInfo);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(

-    VmaAllocator allocator)

-{

-    if(allocator != VK_NULL_HANDLE)

-    {

-        VMA_DEBUG_LOG("vmaDestroyAllocator");

-        VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;

-        vma_delete(&allocationCallbacks, allocator);

-    }

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)

-{

-    VMA_ASSERT(allocator && pAllocatorInfo);

-    pAllocatorInfo->instance = allocator->m_hInstance;

-    pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();

-    pAllocatorInfo->device = allocator->m_hDevice;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(

-    VmaAllocator allocator,

-    const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)

-{

-    VMA_ASSERT(allocator && ppPhysicalDeviceProperties);

-    *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(

-    VmaAllocator allocator,

-    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)

-{

-    VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);

-    *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(

-    VmaAllocator allocator,

-    uint32_t memoryTypeIndex,

-    VkMemoryPropertyFlags* pFlags)

-{

-    VMA_ASSERT(allocator && pFlags);

-    VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());

-    *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(

-    VmaAllocator allocator,

-    uint32_t frameIndex)

-{

-    VMA_ASSERT(allocator);

-    VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    allocator->SetCurrentFrameIndex(frameIndex);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(

-    VmaAllocator allocator,

-    VmaStats* pStats)

-{

-    VMA_ASSERT(allocator && pStats);

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-    allocator->CalculateStats(pStats);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(

-    VmaAllocator allocator,

-    VmaBudget* pBudget)

-{

-    VMA_ASSERT(allocator && pBudget);

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-    allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount());

-}

-

-#if VMA_STATS_STRING_ENABLED

-

-VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(

-    VmaAllocator allocator,

-    char** ppStatsString,

-    VkBool32 detailedMap)

-{

-    VMA_ASSERT(allocator && ppStatsString);

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VmaStringBuilder sb(allocator);

-    {

-        VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);

-        json.BeginObject();

-

-        VmaBudget budget[VK_MAX_MEMORY_HEAPS];

-        allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount());

-

-        VmaStats stats;

-        allocator->CalculateStats(&stats);

-

-        json.WriteString("Total");

-        VmaPrintStatInfo(json, stats.total);

-    

-        for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)

-        {

-            json.BeginString("Heap ");

-            json.ContinueString(heapIndex);

-            json.EndString();

-            json.BeginObject();

-

-            json.WriteString("Size");

-            json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);

-

-            json.WriteString("Flags");

-            json.BeginArray(true);

-            if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)

-            {

-                json.WriteString("DEVICE_LOCAL");

-            }

-            json.EndArray();

-

-            json.WriteString("Budget");

-            json.BeginObject();

-            {

-                json.WriteString("BlockBytes");

-                json.WriteNumber(budget[heapIndex].blockBytes);

-                json.WriteString("AllocationBytes");

-                json.WriteNumber(budget[heapIndex].allocationBytes);

-                json.WriteString("Usage");

-                json.WriteNumber(budget[heapIndex].usage);

-                json.WriteString("Budget");

-                json.WriteNumber(budget[heapIndex].budget);

-            }

-            json.EndObject();

-

-            if(stats.memoryHeap[heapIndex].blockCount > 0)

-            {

-                json.WriteString("Stats");

-                VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);

-            }

-

-            for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)

-            {

-                if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)

-                {

-                    json.BeginString("Type ");

-                    json.ContinueString(typeIndex);

-                    json.EndString();

-

-                    json.BeginObject();

-

-                    json.WriteString("Flags");

-                    json.BeginArray(true);

-                    VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;

-                    if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)

-                    {

-                        json.WriteString("DEVICE_LOCAL");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)

-                    {

-                        json.WriteString("HOST_VISIBLE");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)

-                    {

-                        json.WriteString("HOST_COHERENT");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)

-                    {

-                        json.WriteString("HOST_CACHED");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)

-                    {

-                        json.WriteString("LAZILY_ALLOCATED");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0)

-                    {

-                        json.WriteString(" PROTECTED");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)

-                    {

-                        json.WriteString(" DEVICE_COHERENT");

-                    }

-                    if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0)

-                    {

-                        json.WriteString(" DEVICE_UNCACHED");

-                    }

-                    json.EndArray();

-

-                    if(stats.memoryType[typeIndex].blockCount > 0)

-                    {

-                        json.WriteString("Stats");

-                        VmaPrintStatInfo(json, stats.memoryType[typeIndex]);

-                    }

-

-                    json.EndObject();

-                }

-            }

-

-            json.EndObject();

-        }

-        if(detailedMap == VK_TRUE)

-        {

-            allocator->PrintDetailedMap(json);

-        }

-

-        json.EndObject();

-    }

-

-    const size_t len = sb.GetLength();

-    char* const pChars = vma_new_array(allocator, char, len + 1);

-    if(len > 0)

-    {

-        memcpy(pChars, sb.GetData(), len);

-    }

-    pChars[len] = '\0';

-    *ppStatsString = pChars;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(

-    VmaAllocator allocator,

-    char* pStatsString)

-{

-    if(pStatsString != VMA_NULL)

-    {

-        VMA_ASSERT(allocator);

-        size_t len = strlen(pStatsString);

-        vma_delete_array(allocator, pStatsString, len + 1);

-    }

-}

-

-#endif // #if VMA_STATS_STRING_ENABLED

-

-/*

-This function is not protected by any mutex because it just reads immutable data.

-*/

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(

-    VmaAllocator allocator,

-    uint32_t memoryTypeBits,

-    const VmaAllocationCreateInfo* pAllocationCreateInfo,

-    uint32_t* pMemoryTypeIndex)

-{

-    VMA_ASSERT(allocator != VK_NULL_HANDLE);

-    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

-    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

-

-    memoryTypeBits &= allocator->GetGlobalMemoryTypeBits();

-

-    if(pAllocationCreateInfo->memoryTypeBits != 0)

-    {

-        memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;

-    }

-    

-    uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;

-    uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;

-    uint32_t notPreferredFlags = 0;

-

-    // Convert usage to requiredFlags and preferredFlags.

-    switch(pAllocationCreateInfo->usage)

-    {

-    case VMA_MEMORY_USAGE_UNKNOWN:

-        break;

-    case VMA_MEMORY_USAGE_GPU_ONLY:

-        if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

-        {

-            preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

-        }

-        break;

-    case VMA_MEMORY_USAGE_CPU_ONLY:

-        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;

-        break;

-    case VMA_MEMORY_USAGE_CPU_TO_GPU:

-        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

-        if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)

-        {

-            preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

-        }

-        break;

-    case VMA_MEMORY_USAGE_GPU_TO_CPU:

-        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

-        preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;

-        break;

-    case VMA_MEMORY_USAGE_CPU_COPY:

-        notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

-        break;

-    case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:

-        requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;

-        break;

-    default:

-        VMA_ASSERT(0);

-        break;

-    }

-

-    // Avoid DEVICE_COHERENT unless explicitly requested.

-    if(((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) &

-        (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)

-    {

-        notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY;

-    }

-

-    *pMemoryTypeIndex = UINT32_MAX;

-    uint32_t minCost = UINT32_MAX;

-    for(uint32_t memTypeIndex = 0, memTypeBit = 1;

-        memTypeIndex < allocator->GetMemoryTypeCount();

-        ++memTypeIndex, memTypeBit <<= 1)

-    {

-        // This memory type is acceptable according to memoryTypeBits bitmask.

-        if((memTypeBit & memoryTypeBits) != 0)

-        {

-            const VkMemoryPropertyFlags currFlags =

-                allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;

-            // This memory type contains requiredFlags.

-            if((requiredFlags & ~currFlags) == 0)

-            {

-                // Calculate cost as number of bits from preferredFlags not present in this memory type.

-                uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) +

-                    VmaCountBitsSet(currFlags & notPreferredFlags);

-                // Remember memory type with lowest cost.

-                if(currCost < minCost)

-                {

-                    *pMemoryTypeIndex = memTypeIndex;

-                    if(currCost == 0)

-                    {

-                        return VK_SUCCESS;

-                    }

-                    minCost = currCost;

-                }

-            }

-        }

-    }

-    return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(

-    VmaAllocator allocator,

-    const VkBufferCreateInfo* pBufferCreateInfo,

-    const VmaAllocationCreateInfo* pAllocationCreateInfo,

-    uint32_t* pMemoryTypeIndex)

-{

-    VMA_ASSERT(allocator != VK_NULL_HANDLE);

-    VMA_ASSERT(pBufferCreateInfo != VMA_NULL);

-    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

-    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

-

-    const VkDevice hDev = allocator->m_hDevice;

-    VkBuffer hBuffer = VK_NULL_HANDLE;

-    VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(

-        hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);

-    if(res == VK_SUCCESS)

-    {

-        VkMemoryRequirements memReq = {};

-        allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(

-            hDev, hBuffer, &memReq);

-

-        res = vmaFindMemoryTypeIndex(

-            allocator,

-            memReq.memoryTypeBits,

-            pAllocationCreateInfo,

-            pMemoryTypeIndex);

-

-        allocator->GetVulkanFunctions().vkDestroyBuffer(

-            hDev, hBuffer, allocator->GetAllocationCallbacks());

-    }

-    return res;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(

-    VmaAllocator allocator,

-    const VkImageCreateInfo* pImageCreateInfo,

-    const VmaAllocationCreateInfo* pAllocationCreateInfo,

-    uint32_t* pMemoryTypeIndex)

-{

-    VMA_ASSERT(allocator != VK_NULL_HANDLE);

-    VMA_ASSERT(pImageCreateInfo != VMA_NULL);

-    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);

-    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);

-

-    const VkDevice hDev = allocator->m_hDevice;

-    VkImage hImage = VK_NULL_HANDLE;

-    VkResult res = allocator->GetVulkanFunctions().vkCreateImage(

-        hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);

-    if(res == VK_SUCCESS)

-    {

-        VkMemoryRequirements memReq = {};

-        allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(

-            hDev, hImage, &memReq);

-

-        res = vmaFindMemoryTypeIndex(

-            allocator,

-            memReq.memoryTypeBits,

-            pAllocationCreateInfo,

-            pMemoryTypeIndex);

-

-        allocator->GetVulkanFunctions().vkDestroyImage(

-            hDev, hImage, allocator->GetAllocationCallbacks());

-    }

-    return res;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(

-	VmaAllocator allocator,

-	const VmaPoolCreateInfo* pCreateInfo,

-	VmaPool* pPool)

-{

-    VMA_ASSERT(allocator && pCreateInfo && pPool);

-    

-    VMA_DEBUG_LOG("vmaCreatePool");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-    

-    VkResult res = allocator->CreatePool(pCreateInfo, pPool);

-    

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);

-    }

-#endif

-    

-    return res;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(

-    VmaAllocator allocator,

-    VmaPool pool)

-{

-    VMA_ASSERT(allocator);

-    

-    if(pool == VK_NULL_HANDLE)

-    {

-        return;

-    }

-    

-    VMA_DEBUG_LOG("vmaDestroyPool");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-    

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);

-    }

-#endif

-

-    allocator->DestroyPool(pool);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(

-    VmaAllocator allocator,

-    VmaPool pool,

-    VmaPoolStats* pPoolStats)

-{

-    VMA_ASSERT(allocator && pool && pPoolStats);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    allocator->GetPoolStats(pool, pPoolStats);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(

-    VmaAllocator allocator,

-    VmaPool pool,

-    size_t* pLostAllocationCount)

-{

-    VMA_ASSERT(allocator && pool);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);

-    }

-#endif

-

-    allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)

-{

-    VMA_ASSERT(allocator && pool);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VMA_DEBUG_LOG("vmaCheckPoolCorruption");

-

-    return allocator->CheckPoolCorruption(pool);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(

-    VmaAllocator allocator,

-    VmaPool pool,

-    const char** ppName)

-{

-    VMA_ASSERT(allocator && pool && ppName);

-    

-    VMA_DEBUG_LOG("vmaGetPoolName");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    *ppName = pool->GetName();

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(

-    VmaAllocator allocator,

-    VmaPool pool,

-    const char* pName)

-{

-    VMA_ASSERT(allocator && pool);

-

-    VMA_DEBUG_LOG("vmaSetPoolName");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    pool->SetName(pName);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName);

-    }

-#endif

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(

-    VmaAllocator allocator,

-    const VkMemoryRequirements* pVkMemoryRequirements,

-    const VmaAllocationCreateInfo* pCreateInfo,

-    VmaAllocation* pAllocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);

-

-    VMA_DEBUG_LOG("vmaAllocateMemory");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-	VkResult result = allocator->AllocateMemory(

-        *pVkMemoryRequirements,

-        false, // requiresDedicatedAllocation

-        false, // prefersDedicatedAllocation

-        VK_NULL_HANDLE, // dedicatedBuffer

-        UINT32_MAX, // dedicatedBufferUsage

-        VK_NULL_HANDLE, // dedicatedImage

-        *pCreateInfo,

-        VMA_SUBALLOCATION_TYPE_UNKNOWN,

-        1, // allocationCount

-        pAllocation);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordAllocateMemory(

-            allocator->GetCurrentFrameIndex(),

-            *pVkMemoryRequirements,

-            *pCreateInfo,

-            *pAllocation);

-    }

-#endif

-        

-    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)

-    {

-        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

-    }

-

-	return result;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(

-    VmaAllocator allocator,

-    const VkMemoryRequirements* pVkMemoryRequirements,

-    const VmaAllocationCreateInfo* pCreateInfo,

-    size_t allocationCount,

-    VmaAllocation* pAllocations,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    if(allocationCount == 0)

-    {

-        return VK_SUCCESS;

-    }

-

-    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);

-

-    VMA_DEBUG_LOG("vmaAllocateMemoryPages");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-	VkResult result = allocator->AllocateMemory(

-        *pVkMemoryRequirements,

-        false, // requiresDedicatedAllocation

-        false, // prefersDedicatedAllocation

-        VK_NULL_HANDLE, // dedicatedBuffer

-        UINT32_MAX, // dedicatedBufferUsage

-        VK_NULL_HANDLE, // dedicatedImage

-        *pCreateInfo,

-        VMA_SUBALLOCATION_TYPE_UNKNOWN,

-        allocationCount,

-        pAllocations);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordAllocateMemoryPages(

-            allocator->GetCurrentFrameIndex(),

-            *pVkMemoryRequirements,

-            *pCreateInfo,

-            (uint64_t)allocationCount,

-            pAllocations);

-    }

-#endif

-        

-    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)

-    {

-        for(size_t i = 0; i < allocationCount; ++i)

-        {

-            allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);

-        }

-    }

-

-	return result;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(

-    VmaAllocator allocator,

-    VkBuffer buffer,

-    const VmaAllocationCreateInfo* pCreateInfo,

-    VmaAllocation* pAllocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);

-

-    VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VkMemoryRequirements vkMemReq = {};

-    bool requiresDedicatedAllocation = false;

-    bool prefersDedicatedAllocation = false;

-    allocator->GetBufferMemoryRequirements(buffer, vkMemReq,

-        requiresDedicatedAllocation,

-        prefersDedicatedAllocation);

-

-    VkResult result = allocator->AllocateMemory(

-        vkMemReq,

-        requiresDedicatedAllocation,

-        prefersDedicatedAllocation,

-        buffer, // dedicatedBuffer

-        UINT32_MAX, // dedicatedBufferUsage

-        VK_NULL_HANDLE, // dedicatedImage

-        *pCreateInfo,

-        VMA_SUBALLOCATION_TYPE_BUFFER,

-        1, // allocationCount

-        pAllocation);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordAllocateMemoryForBuffer(

-            allocator->GetCurrentFrameIndex(),

-            vkMemReq,

-            requiresDedicatedAllocation,

-            prefersDedicatedAllocation,

-            *pCreateInfo,

-            *pAllocation);

-    }

-#endif

-

-    if(pAllocationInfo && result == VK_SUCCESS)

-    {

-        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

-    }

-

-	return result;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(

-    VmaAllocator allocator,

-    VkImage image,

-    const VmaAllocationCreateInfo* pCreateInfo,

-    VmaAllocation* pAllocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);

-

-    VMA_DEBUG_LOG("vmaAllocateMemoryForImage");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VkMemoryRequirements vkMemReq = {};

-    bool requiresDedicatedAllocation = false;

-    bool prefersDedicatedAllocation  = false;

-    allocator->GetImageMemoryRequirements(image, vkMemReq,

-        requiresDedicatedAllocation, prefersDedicatedAllocation);

-

-    VkResult result = allocator->AllocateMemory(

-        vkMemReq,

-        requiresDedicatedAllocation,

-        prefersDedicatedAllocation,

-        VK_NULL_HANDLE, // dedicatedBuffer

-        UINT32_MAX, // dedicatedBufferUsage

-        image, // dedicatedImage

-        *pCreateInfo,

-        VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,

-        1, // allocationCount

-        pAllocation);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordAllocateMemoryForImage(

-            allocator->GetCurrentFrameIndex(),

-            vkMemReq,

-            requiresDedicatedAllocation,

-            prefersDedicatedAllocation,

-            *pCreateInfo,

-            *pAllocation);

-    }

-#endif

-

-    if(pAllocationInfo && result == VK_SUCCESS)

-    {

-        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

-    }

-

-	return result;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(

-    VmaAllocator allocator,

-    VmaAllocation allocation)

-{

-    VMA_ASSERT(allocator);

-    

-    if(allocation == VK_NULL_HANDLE)

-    {

-        return;

-    }

-    

-    VMA_DEBUG_LOG("vmaFreeMemory");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordFreeMemory(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-    

-    allocator->FreeMemory(

-        1, // allocationCount

-        &allocation);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(

-    VmaAllocator allocator,

-    size_t allocationCount,

-    const VmaAllocation* pAllocations)

-{

-    if(allocationCount == 0)

-    {

-        return;

-    }

-

-    VMA_ASSERT(allocator);

-    

-    VMA_DEBUG_LOG("vmaFreeMemoryPages");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordFreeMemoryPages(

-            allocator->GetCurrentFrameIndex(),

-            (uint64_t)allocationCount,

-            pAllocations);

-    }

-#endif

-    

-    allocator->FreeMemory(allocationCount, pAllocations);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VkDeviceSize newSize)

-{

-    VMA_ASSERT(allocator && allocation);

-    

-    VMA_DEBUG_LOG("vmaResizeAllocation");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    return allocator->ResizeAllocation(allocation, newSize);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && allocation && pAllocationInfo);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordGetAllocationInfo(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    allocator->GetAllocationInfo(allocation, pAllocationInfo);

-}

-

-VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(

-    VmaAllocator allocator,

-    VmaAllocation allocation)

-{

-    VMA_ASSERT(allocator && allocation);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordTouchAllocation(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    return allocator->TouchAllocation(allocation);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    void* pUserData)

-{

-    VMA_ASSERT(allocator && allocation);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    allocation->SetUserData(allocator, pUserData);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordSetAllocationUserData(

-            allocator->GetCurrentFrameIndex(),

-            allocation,

-            pUserData);

-    }

-#endif

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(

-    VmaAllocator allocator,

-    VmaAllocation* pAllocation)

-{

-    VMA_ASSERT(allocator && pAllocation);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK;

-

-    allocator->CreateLostAllocation(pAllocation);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordCreateLostAllocation(

-            allocator->GetCurrentFrameIndex(),

-            *pAllocation);

-    }

-#endif

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    void** ppData)

-{

-    VMA_ASSERT(allocator && allocation && ppData);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VkResult res = allocator->Map(allocation, ppData);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordMapMemory(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    return res;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(

-    VmaAllocator allocator,

-    VmaAllocation allocation)

-{

-    VMA_ASSERT(allocator && allocation);

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordUnmapMemory(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    allocator->Unmap(allocation);

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)

-{

-    VMA_ASSERT(allocator && allocation);

-

-    VMA_DEBUG_LOG("vmaFlushAllocation");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordFlushAllocation(

-            allocator->GetCurrentFrameIndex(),

-            allocation, offset, size);

-    }

-#endif

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)

-{

-    VMA_ASSERT(allocator && allocation);

-

-    VMA_DEBUG_LOG("vmaInvalidateAllocation");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordInvalidateAllocation(

-            allocator->GetCurrentFrameIndex(),

-            allocation, offset, size);

-    }

-#endif

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits)

-{

-    VMA_ASSERT(allocator);

-

-    VMA_DEBUG_LOG("vmaCheckCorruption");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    return allocator->CheckCorruption(memoryTypeBits);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(

-    VmaAllocator allocator,

-    const VmaAllocation* pAllocations,

-    size_t allocationCount,

-    VkBool32* pAllocationsChanged,

-    const VmaDefragmentationInfo *pDefragmentationInfo,

-    VmaDefragmentationStats* pDefragmentationStats)

-{

-    // Deprecated interface, reimplemented using new one.

-

-    VmaDefragmentationInfo2 info2 = {};

-    info2.allocationCount = (uint32_t)allocationCount;

-    info2.pAllocations = pAllocations;

-    info2.pAllocationsChanged = pAllocationsChanged;

-    if(pDefragmentationInfo != VMA_NULL)

-    {

-        info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;

-        info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;

-    }

-    else

-    {

-        info2.maxCpuAllocationsToMove = UINT32_MAX;

-        info2.maxCpuBytesToMove = VK_WHOLE_SIZE;

-    }

-    // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.

-

-    VmaDefragmentationContext ctx;

-    VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);

-    if(res == VK_NOT_READY)

-    {

-        res = vmaDefragmentationEnd( allocator, ctx);

-    }

-    return res;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(

-    VmaAllocator allocator,

-    const VmaDefragmentationInfo2* pInfo,

-    VmaDefragmentationStats* pStats,

-    VmaDefragmentationContext *pContext)

-{

-    VMA_ASSERT(allocator && pInfo && pContext);

-

-    // Degenerate case: Nothing to defragment.

-    if(pInfo->allocationCount == 0 && pInfo->poolCount == 0)

-    {

-        return VK_SUCCESS;

-    }

-

-    VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);

-    VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);

-    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));

-    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));

-

-    VMA_DEBUG_LOG("vmaDefragmentationBegin");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordDefragmentationBegin(

-            allocator->GetCurrentFrameIndex(), *pInfo, *pContext);

-    }

-#endif

-

-    return res;

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(

-    VmaAllocator allocator,

-    VmaDefragmentationContext context)

-{

-    VMA_ASSERT(allocator);

-

-    VMA_DEBUG_LOG("vmaDefragmentationEnd");

-

-    if(context != VK_NULL_HANDLE)

-    {

-        VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-        if(allocator->GetRecorder() != VMA_NULL)

-        {

-            allocator->GetRecorder()->RecordDefragmentationEnd(

-                allocator->GetCurrentFrameIndex(), context);

-        }

-#endif

-

-        return allocator->DefragmentationEnd(context);

-    }

-    else

-    {

-        return VK_SUCCESS;

-    }

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(

-    VmaAllocator allocator,

-    VmaDefragmentationContext context,

-    VmaDefragmentationPassInfo* pInfo

-    )

-{

-    VMA_ASSERT(allocator);

-    VMA_ASSERT(pInfo);

-    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->moveCount, pInfo->pMoves));

-

-    VMA_DEBUG_LOG("vmaBeginDefragmentationPass");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    if(context == VK_NULL_HANDLE)

-    {

-        pInfo->moveCount = 0;

-        return VK_SUCCESS;

-    }

-

-    return allocator->DefragmentationPassBegin(pInfo, context);

-}

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(

-    VmaAllocator allocator,

-    VmaDefragmentationContext context)

-{

-    VMA_ASSERT(allocator);

-

-    VMA_DEBUG_LOG("vmaEndDefragmentationPass");

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    if(context == VK_NULL_HANDLE)

-        return VK_SUCCESS;

-

-    return allocator->DefragmentationPassEnd(context);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VkBuffer buffer)

-{

-    VMA_ASSERT(allocator && allocation && buffer);

-

-    VMA_DEBUG_LOG("vmaBindBufferMemory");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VkDeviceSize allocationLocalOffset,

-    VkBuffer buffer,

-    const void* pNext)

-{

-    VMA_ASSERT(allocator && allocation && buffer);

-

-    VMA_DEBUG_LOG("vmaBindBufferMemory2");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VkImage image)

-{

-    VMA_ASSERT(allocator && allocation && image);

-

-    VMA_DEBUG_LOG("vmaBindImageMemory");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(

-    VmaAllocator allocator,

-    VmaAllocation allocation,

-    VkDeviceSize allocationLocalOffset,

-    VkImage image,

-    const void* pNext)

-{

-    VMA_ASSERT(allocator && allocation && image);

-

-    VMA_DEBUG_LOG("vmaBindImageMemory2");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-        return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(

-    VmaAllocator allocator,

-    const VkBufferCreateInfo* pBufferCreateInfo,

-    const VmaAllocationCreateInfo* pAllocationCreateInfo,

-    VkBuffer* pBuffer,

-    VmaAllocation* pAllocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);

-

-    if(pBufferCreateInfo->size == 0)

-    {

-        return VK_ERROR_VALIDATION_FAILED_EXT;

-    }

-    if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&

-        !allocator->m_UseKhrBufferDeviceAddress)

-    {

-        VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");

-        return VK_ERROR_VALIDATION_FAILED_EXT;

-    }

-    

-    VMA_DEBUG_LOG("vmaCreateBuffer");

-    

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    *pBuffer = VK_NULL_HANDLE;

-    *pAllocation = VK_NULL_HANDLE;

-

-    // 1. Create VkBuffer.

-    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(

-        allocator->m_hDevice,

-        pBufferCreateInfo,

-        allocator->GetAllocationCallbacks(),

-        pBuffer);

-    if(res >= 0)

-    {

-        // 2. vkGetBufferMemoryRequirements.

-        VkMemoryRequirements vkMemReq = {};

-        bool requiresDedicatedAllocation = false;

-        bool prefersDedicatedAllocation  = false;

-        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,

-            requiresDedicatedAllocation, prefersDedicatedAllocation);

-

-        // 3. Allocate memory using allocator.

-        res = allocator->AllocateMemory(

-            vkMemReq,

-            requiresDedicatedAllocation,

-            prefersDedicatedAllocation,

-            *pBuffer, // dedicatedBuffer

-            pBufferCreateInfo->usage, // dedicatedBufferUsage

-            VK_NULL_HANDLE, // dedicatedImage

-            *pAllocationCreateInfo,

-            VMA_SUBALLOCATION_TYPE_BUFFER,

-            1, // allocationCount

-            pAllocation);

-

-#if VMA_RECORDING_ENABLED

-        if(allocator->GetRecorder() != VMA_NULL)

-        {

-            allocator->GetRecorder()->RecordCreateBuffer(

-                allocator->GetCurrentFrameIndex(),

-                *pBufferCreateInfo,

-                *pAllocationCreateInfo,

-                *pAllocation);

-        }

-#endif

-

-        if(res >= 0)

-        {

-            // 3. Bind buffer with memory.

-            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)

-            {

-                res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);

-            }

-            if(res >= 0)

-            {

-                // All steps succeeded.

-                #if VMA_STATS_STRING_ENABLED

-                    (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);

-                #endif

-                if(pAllocationInfo != VMA_NULL)

-                {

-                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

-                }

-

-                return VK_SUCCESS;

-            }

-            allocator->FreeMemory(

-                1, // allocationCount

-                pAllocation);

-            *pAllocation = VK_NULL_HANDLE;

-            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());

-            *pBuffer = VK_NULL_HANDLE;

-            return res;

-        }

-        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());

-        *pBuffer = VK_NULL_HANDLE;

-        return res;

-    }

-    return res;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(

-    VmaAllocator allocator,

-    VkBuffer buffer,

-    VmaAllocation allocation)

-{

-    VMA_ASSERT(allocator);

-

-    if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)

-    {

-        return;

-    }

-

-    VMA_DEBUG_LOG("vmaDestroyBuffer");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordDestroyBuffer(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    if(buffer != VK_NULL_HANDLE)

-    {

-        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());

-    }

-

-    if(allocation != VK_NULL_HANDLE)

-    {

-        allocator->FreeMemory(

-            1, // allocationCount

-            &allocation);

-    }

-}

-

-VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(

-    VmaAllocator allocator,

-    const VkImageCreateInfo* pImageCreateInfo,

-    const VmaAllocationCreateInfo* pAllocationCreateInfo,

-    VkImage* pImage,

-    VmaAllocation* pAllocation,

-    VmaAllocationInfo* pAllocationInfo)

-{

-    VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);

-

-    if(pImageCreateInfo->extent.width == 0 ||

-        pImageCreateInfo->extent.height == 0 ||

-        pImageCreateInfo->extent.depth == 0 ||

-        pImageCreateInfo->mipLevels == 0 ||

-        pImageCreateInfo->arrayLayers == 0)

-    {

-        return VK_ERROR_VALIDATION_FAILED_EXT;

-    }

-

-    VMA_DEBUG_LOG("vmaCreateImage");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-    *pImage = VK_NULL_HANDLE;

-    *pAllocation = VK_NULL_HANDLE;

-

-    // 1. Create VkImage.

-    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(

-        allocator->m_hDevice,

-        pImageCreateInfo,

-        allocator->GetAllocationCallbacks(),

-        pImage);

-    if(res >= 0)

-    {

-        VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?

-            VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :

-            VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;

-        

-        // 2. Allocate memory using allocator.

-        VkMemoryRequirements vkMemReq = {};

-        bool requiresDedicatedAllocation = false;

-        bool prefersDedicatedAllocation  = false;

-        allocator->GetImageMemoryRequirements(*pImage, vkMemReq,

-            requiresDedicatedAllocation, prefersDedicatedAllocation);

-

-        res = allocator->AllocateMemory(

-            vkMemReq,

-            requiresDedicatedAllocation,

-            prefersDedicatedAllocation,

-            VK_NULL_HANDLE, // dedicatedBuffer

-            UINT32_MAX, // dedicatedBufferUsage

-            *pImage, // dedicatedImage

-            *pAllocationCreateInfo,

-            suballocType,

-            1, // allocationCount

-            pAllocation);

-

-#if VMA_RECORDING_ENABLED

-        if(allocator->GetRecorder() != VMA_NULL)

-        {

-            allocator->GetRecorder()->RecordCreateImage(

-                allocator->GetCurrentFrameIndex(),

-                *pImageCreateInfo,

-                *pAllocationCreateInfo,

-                *pAllocation);

-        }

-#endif

-

-        if(res >= 0)

-        {

-            // 3. Bind image with memory.

-            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)

-            {

-                res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);

-            }

-            if(res >= 0)

-            {

-                // All steps succeeded.

-                #if VMA_STATS_STRING_ENABLED

-                    (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);

-                #endif

-                if(pAllocationInfo != VMA_NULL)

-                {

-                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);

-                }

-

-                return VK_SUCCESS;

-            }

-            allocator->FreeMemory(

-                1, // allocationCount

-                pAllocation);

-            *pAllocation = VK_NULL_HANDLE;

-            (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());

-            *pImage = VK_NULL_HANDLE;

-            return res;

-        }

-        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());

-        *pImage = VK_NULL_HANDLE;

-        return res;

-    }

-    return res;

-}

-

-VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(

-    VmaAllocator allocator,

-    VkImage image,

-    VmaAllocation allocation)

-{

-    VMA_ASSERT(allocator);

-

-    if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)

-    {

-        return;

-    }

-

-    VMA_DEBUG_LOG("vmaDestroyImage");

-

-    VMA_DEBUG_GLOBAL_MUTEX_LOCK

-

-#if VMA_RECORDING_ENABLED

-    if(allocator->GetRecorder() != VMA_NULL)

-    {

-        allocator->GetRecorder()->RecordDestroyImage(

-            allocator->GetCurrentFrameIndex(),

-            allocation);

-    }

-#endif

-

-    if(image != VK_NULL_HANDLE)

-    {

-        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());

-    }

-    if(allocation != VK_NULL_HANDLE)

-    {

-        allocator->FreeMemory(

-            1, // allocationCount

-            &allocation);

-    }

-}

-

-#endif // #ifdef VMA_IMPLEMENTATION

+//
+// Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+//
+
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \mainpage Vulkan Memory Allocator
+
+<b>Version 3.0.0-development</b> (2020-03-23)
+
+Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved. \n
+License: MIT
+
+Documentation of all members: vk_mem_alloc.h
+
+\section main_table_of_contents Table of contents
+
+- <b>User guide</b>
+  - \subpage quick_start
+    - [Project setup](@ref quick_start_project_setup)
+    - [Initialization](@ref quick_start_initialization)
+    - [Resource allocation](@ref quick_start_resource_allocation)
+  - \subpage choosing_memory_type
+    - [Usage](@ref choosing_memory_type_usage)
+    - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
+    - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
+    - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
+    - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
+  - \subpage memory_mapping
+    - [Mapping functions](@ref memory_mapping_mapping_functions)
+    - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
+    - [Cache flush and invalidate](@ref memory_mapping_cache_control)
+    - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
+  - \subpage staying_within_budget
+    - [Querying for budget](@ref staying_within_budget_querying_for_budget)
+    - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
+  - \subpage custom_memory_pools
+    - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
+    - [Linear allocation algorithm](@ref linear_algorithm)
+      - [Free-at-once](@ref linear_algorithm_free_at_once)
+      - [Stack](@ref linear_algorithm_stack)
+      - [Double stack](@ref linear_algorithm_double_stack)
+      - [Ring buffer](@ref linear_algorithm_ring_buffer)
+    - [Buddy allocation algorithm](@ref buddy_algorithm)
+  - \subpage defragmentation
+  	- [Defragmenting CPU memory](@ref defragmentation_cpu)
+  	- [Defragmenting GPU memory](@ref defragmentation_gpu)
+  	- [Additional notes](@ref defragmentation_additional_notes)
+  	- [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)
+  - \subpage lost_allocations
+  - \subpage statistics
+    - [Numeric statistics](@ref statistics_numeric_statistics)
+    - [JSON dump](@ref statistics_json_dump)
+  - \subpage allocation_annotation
+    - [Allocation user data](@ref allocation_user_data)
+    - [Allocation names](@ref allocation_names)
+  - \subpage debugging_memory_usage
+    - [Memory initialization](@ref debugging_memory_usage_initialization)
+    - [Margins](@ref debugging_memory_usage_margins)
+    - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
+  - \subpage record_and_replay
+- \subpage usage_patterns
+  - [Common mistakes](@ref usage_patterns_common_mistakes)
+  - [Simple patterns](@ref usage_patterns_simple)
+  - [Advanced patterns](@ref usage_patterns_advanced)
+- \subpage configuration
+  - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
+  - [Custom host memory allocator](@ref custom_memory_allocator)
+  - [Device memory allocation callbacks](@ref allocation_callbacks)
+  - [Device heap memory limit](@ref heap_memory_limit)
+  - \subpage vk_khr_dedicated_allocation
+  - \subpage enabling_buffer_device_address
+  - \subpage vk_amd_device_coherent_memory
+- \subpage general_considerations
+  - [Thread safety](@ref general_considerations_thread_safety)
+  - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
+  - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
+  - [Features not supported](@ref general_considerations_features_not_supported)
+
+\section main_see_also See also
+
+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
+
+
+
+
+\page quick_start Quick start
+
+\section quick_start_project_setup Project setup
+
+Vulkan Memory Allocator comes in form of a "stb-style" single header file.
+You don't need to build it as a separate library project.
+You can add this file directly to your project and submit it to code repository next to your other source files.
+
+"Single header" doesn't mean that everything is contained in C/C++ declarations,
+like it tends to be in case of inline functions or C++ templates.
+It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
+If you don't do it properly, you will get linker errors.
+
+To do it properly:
+
+-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
+   This includes declarations of all members of the library.
+-# In exacly one CPP file define following macro before this include.
+   It enables also internal definitions.
+
+\code
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
+\endcode
+
+It may be a good idea to create dedicated CPP file just for this purpose.
+
+Note on language: This library is written in C++, but has C-compatible interface.
+Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
+implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
+
+Please note that this library includes header `<vulkan/vulkan.h>`, which in turn
+includes `<windows.h>` on Windows. If you need some specific macros defined
+before including these headers (like `WIN32_LEAN_AND_MEAN` or
+`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
+them before every `#include` of this library.
+
+
+\section quick_start_initialization Initialization
+
+At program startup:
+
+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
+-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
+   calling vmaCreateAllocator().
+
+\code
+VmaAllocatorCreateInfo allocatorInfo = {};
+allocatorInfo.physicalDevice = physicalDevice;
+allocatorInfo.device = device;
+
+VmaAllocator allocator;
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+\section quick_start_resource_allocation Resource allocation
+
+When you want to create a buffer or image:
+
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
+-# Fill VmaAllocationCreateInfo structure.
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
+   already allocated and bound to it.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+Don't forget to destroy your objects when no longer needed:
+
+\code
+vmaDestroyBuffer(allocator, buffer, allocation);
+vmaDestroyAllocator(allocator);
+\endcode
+
+
+\page choosing_memory_type Choosing memory type
+
+Physical devices in Vulkan support various combinations of memory heaps and
+types. Help with choosing correct and optimal memory type for your specific
+resource is one of the key features of this library. You can use it by filling
+appropriate members of VmaAllocationCreateInfo structure, as described below.
+You can also combine multiple methods.
+
+-# If you just want to find memory type index that meets your requirements, you
+   can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),
+   vmaFindMemoryTypeIndexForImageInfo().
+-# If you want to allocate a region of device memory without association with any
+   specific image or buffer, you can use function vmaAllocateMemory(). Usage of
+   this function is not recommended and usually not needed.
+   vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
+   which may be useful for sparse binding.
+-# If you already have a buffer or an image created, you want to allocate memory
+   for it and then you will bind it yourself, you can use function
+   vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
+   For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
+   or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
+-# If you want to create a buffer or an image, allocate memory for it and bind
+   them together, all in one call, you can use function vmaCreateBuffer(),
+   vmaCreateImage(). This is the easiest and recommended way to use this library.
+
+When using 3. or 4., the library internally queries Vulkan for memory types
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
+and uses only one of these types.
+
+If no memory type can be found that meets all the requirements, these functions
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
+
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
+It means no requirements are specified for memory type.
+It is valid, although not very useful.
+
+\section choosing_memory_type_usage Usage
+
+The easiest way to specify memory requirements is to fill member
+VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
+It defines high level, common usage types.
+For more details, see description of this enum.
+
+For example, if you want to create a uniform buffer that will be filled using
+transfer only once or infrequently and used for rendering every frame, you can
+do it using following code:
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
+
+You can specify more detailed requirements by filling members
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
+if you want to create a buffer that will be persistently mapped on host (so it
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
+use following code:
+
+\code
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+A memory type is chosen that has all the required flags and as many preferred
+flags set as possible.
+
+If you use VmaAllocationCreateInfo::usage, it is just internally converted to
+a set of required and preferred flags.
+
+\section choosing_memory_type_explicit_memory_types Explicit memory types
+
+If you inspected memory types available on the physical device and you have
+a preference for memory types that you want to use, you can fill member
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
+means that a memory type with that index is allowed to be used for the
+allocation. Special value 0, just like `UINT32_MAX`, means there are no
+restrictions to memory type index.
+
+Please note that this member is NOT just a memory type index.
+Still you can use it to choose just one, specific memory type.
+For example, if you already determined that your buffer should be created in
+memory type 2, use following code:
+
+\code
+uint32_t memoryTypeIndex = 2;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_custom_memory_pools Custom memory pools
+
+If you allocate from custom memory pool, all the ways of specifying memory
+requirements described above are not applicable and the aforementioned members
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
+explicitly when creating the pool and then used to make all the allocations from
+that pool. For further details, see \ref custom_memory_pools.
+
+\section choosing_memory_type_dedicated_allocations Dedicated allocations
+
+Memory for allocations is reserved out of larger block of `VkDeviceMemory`
+allocated from Vulkan internally. That's the main feature of this whole library.
+You can still request a separate memory block to be created for an allocation,
+just like you would do in a trivial solution without using any allocator.
+In that case, a buffer or image is always bound to that memory at offset 0.
+This is called a "dedicated allocation".
+You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+The library can also internally decide to use dedicated allocation in some cases, e.g.:
+
+- When the size of the allocation is large.
+- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
+  and it reports that dedicated allocation is required or recommended for the resource.
+- When allocation of next big memory block fails due to not enough device memory,
+  but allocation with the exact requested size succeeds.
+
+
+\page memory_mapping Memory mapping
+
+To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
+to be able to read from it or write to it in CPU code.
+Mapping is possible only of memory allocated from a memory type that has
+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
+Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
+You can use them directly with memory allocated by this library,
+but it is not recommended because of following issue:
+Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
+This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
+Because of this, Vulkan Memory Allocator provides following facilities:
+
+\section memory_mapping_mapping_functions Mapping functions
+
+The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
+They are safer and more convenient to use than standard Vulkan functions.
+You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
+You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
+The way it's implemented is that the library always maps entire memory block, not just region of the allocation.
+For further details, see description of vmaMapMemory() function.
+Example:
+
+\code
+// Having these objects initialized:
+
+struct ConstantBuffer
+{
+    ...
+};
+ConstantBuffer constantBufferData;
+
+VmaAllocator allocator;
+VkBuffer constantBuffer;
+VmaAllocation constantBufferAllocation;
+
+// You can map and fill your buffer using following code:
+
+void* mappedData;
+vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
+memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+vmaUnmapMemory(allocator, constantBufferAllocation);
+\endcode
+
+When mapping, you may see a warning from Vulkan validation layer similar to this one:
+
+<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
+
+It happens because the library maps entire `VkDeviceMemory` block, where different
+types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
+You can safely ignore it if you are sure you access only memory of the intended
+object that you wanted to map.
+
+
+\section memory_mapping_persistently_mapped_memory Persistently mapped memory
+
+Kepping your memory persistently mapped is generally OK in Vulkan.
+You don't need to unmap it before using its data on the GPU.
+The library provides a special feature designed for that:
+Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
+VmaAllocationCreateInfo::flags stay mapped all the time,
+so you can just access CPU pointer to it any time
+without a need to call any "map" or "unmap" function.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+// Buffer is already mapped. You can access its memory.
+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+\endcode
+
+There are some exceptions though, when you should consider mapping memory only for a short period of time:
+
+- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
+  device is discrete AMD GPU,
+  and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
+  (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
+  then whenever a memory block allocated from this memory type stays mapped
+  for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
+  block is migrated by WDDM to system RAM, which degrades performance. It doesn't
+  matter if that particular memory block is actually used by the command buffer
+  being submitted.
+- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175)
+  which requires unmapping before GPU can see updated texture.
+- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
+
+\section memory_mapping_cache_control Cache flush and invalidate
+  
+Memory in Vulkan doesn't need to be unmapped before using it on GPU,
+but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
+you need to manually **invalidate** cache before reading of mapped pointer
+and **flush** cache after writing to mapped pointer.
+Map/unmap operations don't do that automatically.
+Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
+`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
+functions that refer to given allocation object: vmaFlushAllocation(),
+vmaInvalidateAllocation().
+
+Regions of memory specified for flush/invalidate must be aligned to
+`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
+In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
+within blocks are aligned to this value, so their offsets are always multiply of
+`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
+
+Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.
+
+Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA)
+currently provide `HOST_COHERENT` flag on all memory types that are
+`HOST_VISIBLE`, so on this platform you may not need to bother.
+
+\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
+
+It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
+despite it wasn't explicitly requested.
+For example, application may work on integrated graphics with unified memory (like Intel) or
+allocation from video memory might have failed, so the library chose system memory as fallback.
+
+You can detect this case and map such allocation to access its memory on CPU directly,
+instead of launching a transfer operation.
+In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),
+and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+VkMemoryPropertyFlags memFlags;
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
+if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+{
+    // Allocation ended up in mappable memory. You can map it and access it directly.
+    void* mappedData;
+    vmaMapMemory(allocator, alloc, &mappedData);
+    memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+    vmaUnmapMemory(allocator, alloc);
+}
+else
+{
+    // Allocation ended up in non-mappable memory.
+    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
+that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
+If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
+If not, the flag is just ignored.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+if(allocInfo.pUserData != nullptr)
+{
+    // Allocation ended up in mappable memory.
+    // It's persistently mapped. You can access it directly.
+    memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+}
+else
+{
+    // Allocation ended up in non-mappable memory.
+    // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+
+\page staying_within_budget Staying within budget
+
+When developing a graphics-intensive game or program, it is important to avoid allocating
+more GPU memory than it's physically available. When the memory is over-committed,
+various bad things can happen, depending on the specific GPU, graphics driver, and
+operating system:
+
+- It may just work without any problems.
+- The application may slow down because some memory blocks are moved to system RAM
+  and the GPU has to access them through PCI Express bus.
+- A new allocation may take very long time to complete, even few seconds, and possibly
+  freeze entire system.
+- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
+  returned somewhere later.
+
+\section staying_within_budget_querying_for_budget Querying for budget
+
+To query for current memory usage and available budget, use function vmaGetBudget().
+Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
+
+Please note that this function returns different information and works faster than
+vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every
+allocation, while vmaCalculateStats() is intended to be used rarely,
+only to obtain statistical information, e.g. for debugging purposes.
+
+It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
+about the budget from Vulkan device. VMA is able to use this extension automatically.
+When not enabled, the allocator behaves same way, but then it estimates current usage
+and available budget based on its internal information and Vulkan memory heap sizes,
+which may be less precise. In order to use this extension:
+
+1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
+   required by it are available and enable them. Please note that the first is a device
+   extension and the second is instance extension!
+2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
+3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
+   Vulkan inside of it to avoid overhead of querying it with every allocation.
+
+\section staying_within_budget_controlling_memory_usage Controlling memory usage
+
+There are many ways in which you can try to stay within the budget.
+
+First, when making new allocation requires allocating a new memory block, the library
+tries not to exceed the budget automatically. If a block with default recommended size
+(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
+dedicated memory for just this resource.
+
+If the size of the requested resource plus current memory usage is more than the
+budget, by default the library still tries to create it, leaving it to the Vulkan
+implementation whether the allocation succeeds or fails. You can change this behavior
+by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
+not made if it would exceed the budget or if the budget is already exceeded.
+Some other allocations become lost instead to make room for it, if the mechanism of
+[lost allocations](@ref lost_allocations) is used.
+If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
+when creating resources that are not essential for the application (e.g. the texture
+of a specific object) and not to pass it when creating critically important resources
+(e.g. render targets).
+
+Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
+a new allocation is created only when it fits inside one of the existing memory blocks.
+If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+This also ensures that the function call is very fast because it never goes to Vulkan
+to obtain a new block.
+
+Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
+set to more than 0 will try to allocate memory blocks without checking whether they
+fit within budget.
+
+
+\page custom_memory_pools Custom memory pools
+
+A memory pool contains a number of `VkDeviceMemory` blocks.
+The library automatically creates and manages default pool for each memory type available on the device.
+Default memory pool automatically grows in size.
+Size of allocated blocks is also variable and managed automatically.
+
+You can create custom pool and allocate memory out of it.
+It can be useful if you want to:
+
+- Keep certain kind of allocations separate from others.
+- Enforce particular, fixed size of Vulkan memory blocks.
+- Limit maximum amount of Vulkan memory allocated for that pool.
+- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
+
+To use custom memory pools:
+
+-# Fill VmaPoolCreateInfo structure.
+-# Call vmaCreatePool() to obtain #VmaPool handle.
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
+   You don't need to specify any other parameters of this structure, like `usage`.
+
+Example:
+
+\code
+// Create a pool that can have at most 2 blocks, 128 MiB each.
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = ...
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
+poolCreateInfo.maxBlockCount = 2;
+
+VmaPool pool;
+vmaCreatePool(allocator, &poolCreateInfo, &pool);
+
+// Allocate a buffer out of it.
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.pool = pool;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+\endcode
+
+You have to free all allocations made from this pool before destroying it.
+
+\code
+vmaDestroyBuffer(allocator, buf, alloc);
+vmaDestroyPool(allocator, pool);
+\endcode
+
+\section custom_memory_pools_MemTypeIndex Choosing memory type index
+
+When creating a pool, you must explicitly specify memory type index.
+To find the one suitable for your buffers or images, you can use helper functions
+vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
+You need to provide structures with example parameters of buffers or images
+that you are going to create in that pool.
+
+\code
+VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+exampleBufCreateInfo.size = 1024; // Whatever.
+exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
+
+uint32_t memTypeIndex;
+vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
+
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = memTypeIndex;
+// ...
+\endcode
+
+When creating buffers/images allocated in that pool, provide following parameters:
+
+- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
+  Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
+  Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
+  or the other way around.
+- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
+  Other members are ignored anyway.
+
+\section linear_algorithm Linear allocation algorithm
+
+Each Vulkan memory block managed by this library has accompanying metadata that
+keeps track of used and unused regions. By default, the metadata structure and
+algorithm tries to find best place for new allocations among free regions to
+optimize memory usage. This way you can allocate and free objects in any order.
+
+![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
+
+Sometimes there is a need to use simpler, linear allocation algorithm. You can
+create custom pool that uses such algorithm by adding flag
+#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
+#VmaPool object. Then an alternative metadata management is used. It always
+creates new allocations after last one and doesn't reuse free regions after
+allocations freed in the middle. It results in better allocation performance and
+less memory consumed by metadata.
+
+![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
+
+With this one flag, you can create a custom pool that can be used in many ways:
+free-at-once, stack, double stack, and ring buffer. See below for details.
+
+\subsection linear_algorithm_free_at_once Free-at-once
+
+In a pool that uses linear algorithm, you still need to free all the allocations
+individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
+them in any order. New allocations are always made after last one - free space
+in the middle is not reused. However, when you release all the allocation and
+the pool becomes empty, allocation starts from the beginning again. This way you
+can use linear algorithm to speed up creation of allocations that you are going
+to release all at once.
+
+![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_stack Stack
+
+When you free an allocation that was created last, its space can be reused.
+Thanks to this, if you always release allocations in the order opposite to their
+creation (LIFO - Last In First Out), you can achieve behavior of a stack.
+
+![Stack](../gfx/Linear_allocator_4_stack.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_double_stack Double stack
+
+The space reserved by a custom pool with linear algorithm may be used by two
+stacks:
+
+- First, default one, growing up from offset 0.
+- Second, "upper" one, growing down from the end towards lower offsets.
+
+To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
+to VmaAllocationCreateInfo::flags.
+
+![Double stack](../gfx/Linear_allocator_7_double_stack.png)
+
+Double stack is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+When the two stacks' ends meet so there is not enough space between them for a
+new allocation, such allocation fails with usual
+`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+\subsection linear_algorithm_ring_buffer Ring buffer
+
+When you free some allocations from the beginning and there is not enough free space
+for a new one at the end of a pool, allocator's "cursor" wraps around to the
+beginning and starts allocation there. Thanks to this, if you always release
+allocations in the same order as you created them (FIFO - First In First Out),
+you can achieve behavior of a ring buffer / queue.
+
+![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
+
+Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.
+If there is not enough free space for a new allocation, but existing allocations
+from the front of the queue can become lost, they become lost and the allocation
+succeeds.
+
+![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)
+
+Ring buffer is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+\section buddy_algorithm Buddy allocation algorithm
+
+There is another allocation algorithm that can be used with custom pools, called
+"buddy". Its internal data structure is based on a tree of blocks, each having
+size that is a power of two and a half of its parent's size. When you want to
+allocate memory of certain size, a free node in the tree is located. If it's too
+large, it is recursively split into two halves (called "buddies"). However, if
+requested allocation size is not a power of two, the size of a tree node is
+aligned up to the nearest power of two and the remaining space is wasted. When
+two buddy nodes become free, they are merged back into one larger node.
+
+![Buddy allocator](../gfx/Buddy_allocator.png)
+
+The advantage of buddy allocation algorithm over default algorithm is faster
+allocation and deallocation, as well as smaller external fragmentation. The
+disadvantage is more wasted space (internal fragmentation).
+
+For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation)
+or other sources that describe this concept in general.
+
+To use buddy allocation algorithm with a custom pool, add flag
+#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
+#VmaPool object.
+
+Several limitations apply to pools that use buddy algorithm:
+
+- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.
+  Otherwise, only largest power of two smaller than the size is used for
+  allocations. The remaining space always stays unused.
+- [Margins](@ref debugging_memory_usage_margins) and
+  [corruption detection](@ref debugging_memory_usage_corruption_detection)
+  don't work in such pools.
+- [Lost allocations](@ref lost_allocations) don't work in such pools. You can
+  use them, but they never become lost. Support may be added in the future.
+- [Defragmentation](@ref defragmentation) doesn't work with allocations made from
+  such pool.
+
+\page defragmentation Defragmentation
+
+Interleaved allocations and deallocations of many objects of varying size can
+cause fragmentation over time, which can lead to a situation where the library is unable
+to find a continuous range of free memory for a new allocation despite there is
+enough free space, just scattered across many small free ranges between existing
+allocations.
+
+To mitigate this problem, you can use defragmentation feature:
+structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().
+Given set of allocations, 
+this function can move them to compact used memory, ensure more continuous free
+space and possibly also free some `VkDeviceMemory` blocks.
+
+What the defragmentation does is:
+
+- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.
+  After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
+  VmaAllocationInfo::offset changes. You must query them again using
+  vmaGetAllocationInfo() if you need them.
+- Moves actual data in memory.
+
+What it doesn't do, so you need to do it yourself:
+
+- Recreate buffers and images that were bound to allocations that were defragmented and
+  bind them with their new places in memory.
+  You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
+  `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory()
+  for that purpose and NOT vmaDestroyBuffer(),
+  vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to
+  destroy or create allocation objects!
+- Recreate views and update descriptors that point to these buffers and images.
+
+\section defragmentation_cpu Defragmenting CPU memory
+
+Following example demonstrates how you can run defragmentation on CPU.
+Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.
+Others are ignored.
+
+The way it works is:
+
+- It temporarily maps entire memory blocks when necessary.
+- It moves data using `memmove()` function.
+
+\code
+// Given following variables already initialized:
+VkDevice device;
+VmaAllocator allocator;
+std::vector<VkBuffer> buffers;
+std::vector<VmaAllocation> allocations;
+
+
+const uint32_t allocCount = (uint32_t)allocations.size();
+std::vector<VkBool32> allocationsChanged(allocCount);
+
+VmaDefragmentationInfo2 defragInfo = {};
+defragInfo.allocationCount = allocCount;
+defragInfo.pAllocations = allocations.data();
+defragInfo.pAllocationsChanged = allocationsChanged.data();
+defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.
+defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.
+
+VmaDefragmentationContext defragCtx;
+vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
+vmaDefragmentationEnd(allocator, defragCtx);
+
+for(uint32_t i = 0; i < allocCount; ++i)
+{
+    if(allocationsChanged[i])
+    {
+        // Destroy buffer that is immutably bound to memory region which is no longer valid.
+        vkDestroyBuffer(device, buffers[i], nullptr);
+
+        // Create new buffer with same parameters.
+        VkBufferCreateInfo bufferInfo = ...;
+        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+            
+        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+            
+        // Bind new buffer to new memory region. Data contained in it is already moved.
+        VmaAllocationInfo allocInfo;
+        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+        vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
+    }
+}
+\endcode
+
+Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.
+This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index
+has been modified during defragmentation.
+You can pass null, but you then need to query every allocation passed to defragmentation
+for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.
+
+If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),
+you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools
+instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations
+to defragment all allocations in given pools.
+You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.
+You can also combine both methods.
+
+\section defragmentation_gpu Defragmenting GPU memory
+
+It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.
+To do that, you need to pass a command buffer that meets requirements as described in
+VmaDefragmentationInfo2::commandBuffer. The way it works is:
+
+- It creates temporary buffers and binds them to entire memory blocks when necessary.
+- It issues `vkCmdCopyBuffer()` to passed command buffer.
+
+Example:
+
+\code
+// Given following variables already initialized:
+VkDevice device;
+VmaAllocator allocator;
+VkCommandBuffer commandBuffer;
+std::vector<VkBuffer> buffers;
+std::vector<VmaAllocation> allocations;
+
+
+const uint32_t allocCount = (uint32_t)allocations.size();
+std::vector<VkBool32> allocationsChanged(allocCount);
+
+VkCommandBufferBeginInfo cmdBufBeginInfo = ...;
+vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);
+
+VmaDefragmentationInfo2 defragInfo = {};
+defragInfo.allocationCount = allocCount;
+defragInfo.pAllocations = allocations.data();
+defragInfo.pAllocationsChanged = allocationsChanged.data();
+defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time.
+defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time.
+defragInfo.commandBuffer = commandBuffer;
+
+VmaDefragmentationContext defragCtx;
+vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
+
+vkEndCommandBuffer(commandBuffer);
+
+// Submit commandBuffer.
+// Wait for a fence that ensures commandBuffer execution finished.
+
+vmaDefragmentationEnd(allocator, defragCtx);
+
+for(uint32_t i = 0; i < allocCount; ++i)
+{
+    if(allocationsChanged[i])
+    {
+        // Destroy buffer that is immutably bound to memory region which is no longer valid.
+        vkDestroyBuffer(device, buffers[i], nullptr);
+
+        // Create new buffer with same parameters.
+        VkBufferCreateInfo bufferInfo = ...;
+        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+            
+        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+            
+        // Bind new buffer to new memory region. Data contained in it is already moved.
+        VmaAllocationInfo allocInfo;
+        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+        vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
+    }
+}
+\endcode
+
+You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.
+The library automatically chooses best method to defragment each memory pool.
+
+You may try not to block your entire program to wait until defragmentation finishes,
+but do it in the background, as long as you carefully fullfill requirements described
+in function vmaDefragmentationBegin().
+
+\section defragmentation_additional_notes Additional notes
+
+It is only legal to defragment allocations bound to:
+
+- buffers
+- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and
+  being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.
+
+Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other
+layout may give undefined results.
+
+If you defragment allocations bound to images, new images to be bound to new
+memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`
+and then transitioned to their original layout from before defragmentation if
+needed using an image memory barrier.
+
+While using defragmentation, you may experience validation layer warnings, which you just need to ignore.
+See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).
+
+Please don't expect memory to be fully compacted after defragmentation.
+Algorithms inside are based on some heuristics that try to maximize number of Vulkan
+memory blocks to make totally empty to release them, as well as to maximimze continuous
+empty space inside remaining blocks, while minimizing the number and size of allocations that
+need to be moved. Some fragmentation may still remain - this is normal.
+
+\section defragmentation_custom_algorithm Writing custom defragmentation algorithm
+
+If you want to implement your own, custom defragmentation algorithm,
+there is infrastructure prepared for that,
+but it is not exposed through the library API - you need to hack its source code.
+Here are steps needed to do this:
+
+-# Main thing you need to do is to define your own class derived from base abstract
+   class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.
+   See definition and comments of this class for details.
+-# Your code needs to interact with device memory block metadata.
+   If you need more access to its data than it's provided by its public interface,
+   declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.
+-# If you want to create a flag that would enable your algorithm or pass some additional
+   flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in
+   VmaDefragmentationInfo2::flags.
+-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object
+   of your new class whenever needed.
+
+
+\page lost_allocations Lost allocations
+
+If your game oversubscribes video memory, if may work OK in previous-generation
+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
+paged to system RAM. In Vulkan you can't do it because when you run out of
+memory, an allocation just fails. If you have more data (e.g. textures) that can
+fit into VRAM and you don't need it all at once, you may want to upload them to
+GPU on demand and "push out" ones that are not used for a long time to make room
+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
+cache. Vulkan Memory Allocator can help you with that by supporting a concept of
+"lost allocations".
+
+To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
+such allocation in every new frame, you need to query it if it's not lost.
+To check it, call vmaTouchAllocation().
+If the allocation is lost, you should not use it or buffer/image bound to it.
+You mustn't forget to destroy this allocation and this buffer/image.
+vmaGetAllocationInfo() can also be used for checking status of the allocation.
+Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
+
+To create an allocation that can make some other allocations lost to make room
+for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
+usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
+
+Warning! Current implementation uses quite naive, brute force algorithm,
+which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
+flag quite slow. A new, more optimal algorithm and data structure to speed this
+up is planned for the future.
+
+<b>Q: When interleaving creation of new allocations with usage of existing ones,
+how do you make sure that an allocation won't become lost while it's used in the
+current frame?</b>
+
+It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
+status/parameters and checks whether it's not lost, but when it's not, it also
+atomically marks it as used in the current frame, which makes it impossible to
+become lost in that frame. It uses lockless algorithm, so it works fast and
+doesn't involve locking any internal mutex.
+
+<b>Q: What if my allocation may still be in use by the GPU when it's rendering a
+previous frame while I already submit new frame on the CPU?</b>
+
+You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
+become lost for a number of additional frames back from the current one by
+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
+
+<b>Q: How do you inform the library when new frame starts?</b>
+
+You need to call function vmaSetCurrentFrameIndex().
+
+Example code:
+
+\code
+struct MyBuffer
+{
+    VkBuffer m_Buf = nullptr;
+    VmaAllocation m_Alloc = nullptr;
+
+    // Called when the buffer is really needed in the current frame.
+    void EnsureBuffer();
+};
+
+void MyBuffer::EnsureBuffer()
+{
+    // Buffer has been created.
+    if(m_Buf != VK_NULL_HANDLE)
+    {
+        // Check if its allocation is not lost + mark it as used in current frame.
+        if(vmaTouchAllocation(allocator, m_Alloc))
+        {
+            // It's all OK - safe to use m_Buf.
+            return;
+        }
+    }
+
+    // Buffer not yet exists or lost - destroy and recreate it.
+
+    vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
+
+    VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+    bufCreateInfo.size = 1024;
+    bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+    VmaAllocationCreateInfo allocCreateInfo = {};
+    allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+    allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
+        VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+    vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
+}
+\endcode
+
+When using lost allocations, you may see some Vulkan validation layer warnings
+about overlapping regions of memory bound to different kinds of buffers and
+images. This is still valid as long as you implement proper handling of lost
+allocations (like in the example above) and don't use them.
+
+You can create an allocation that is already in lost state from the beginning using function
+vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
+
+You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
+in a specified custom pool to lost state.
+Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
+cannot become lost.
+
+<b>Q: Can I touch allocation that cannot become lost?</b>
+
+Yes, although it has no visible effect.
+Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index
+also for allocations that cannot become lost, but the only way to observe it is to dump
+internal allocator state using vmaBuildStatsString().
+You can use this feature for debugging purposes to explicitly mark allocations that you use
+in current frame and then analyze JSON dump to see for how long each allocation stays unused.
+
+
+\page statistics Statistics
+
+This library contains functions that return information about its internal state,
+especially the amount of memory allocated from Vulkan.
+Please keep in mind that these functions need to traverse all internal data structures
+to gather these information, so they may be quite time-consuming.
+Don't call them too often.
+
+\section statistics_numeric_statistics Numeric statistics
+
+You can query for overall statistics of the allocator using function vmaCalculateStats().
+Information are returned using structure #VmaStats.
+It contains #VmaStatInfo - number of allocated blocks, number of allocations
+(occupied ranges in these blocks), number of unused (free) ranges in these blocks,
+number of bytes used and unused (but still allocated from Vulkan) and other information.
+They are summed across memory heaps, memory types and total for whole allocator.
+
+You can query for statistics of a custom pool using function vmaGetPoolStats().
+Information are returned using structure #VmaPoolStats.
+
+You can query for information about specific allocation using function vmaGetAllocationInfo().
+It fill structure #VmaAllocationInfo.
+
+\section statistics_json_dump JSON dump
+
+You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
+The result is guaranteed to be correct JSON.
+It uses ANSI encoding.
+Any strings provided by user (see [Allocation names](@ref allocation_names))
+are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
+this JSON string can be treated as using this encoding.
+It must be freed using function vmaFreeStatsString().
+
+The format of this JSON string is not part of official documentation of the library,
+but it will not change in backward-incompatible way without increasing library major version number
+and appropriate mention in changelog.
+
+The JSON string contains all the data that can be obtained using vmaCalculateStats().
+It can also contain detailed map of allocated memory blocks and their regions -
+free and occupied by allocations.
+This allows e.g. to visualize the memory or assess fragmentation.
+
+
+\page allocation_annotation Allocation names and user data
+
+\section allocation_user_data Allocation user data
+
+You can annotate allocations with your own information, e.g. for debugging purposes.
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
+some handle, index, key, ordinal number or any other value that would associate
+the allocation with your custom metadata.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+// Fill bufferInfo...
+
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.pUserData = pMetadata;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
+\endcode
+
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
+\endcode
+
+It can also be changed using function vmaSetAllocationUserData().
+
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
+vmaBuildStatsString(), in hexadecimal form.
+
+\section allocation_names Allocation names
+
+There is alternative mode available where `pUserData` pointer is used to point to
+a null-terminated string, giving a name to the allocation. To use this mode,
+set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
+The library creates internal copy of the string, so the pointer you pass doesn't need
+to be valid for whole lifetime of the allocation. You can free it after the call.
+
+\code
+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+// Fill imageInfo...
+
+std::string imageName = "Texture: ";
+imageName += fileName;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
+allocCreateInfo.pUserData = imageName.c_str();
+
+VkImage image;
+VmaAllocation allocation;
+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
+\endcode
+
+The value of `pUserData` pointer of the allocation will be different than the one
+you passed when setting allocation's name - pointing to a buffer managed
+internally that holds copy of the string.
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+const char* imageName = (const char*)allocInfo.pUserData;
+printf("Image name: %s\n", imageName);
+\endcode
+
+That string is also printed in JSON report created by vmaBuildStatsString().
+
+\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
+You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
+
+
+\page debugging_memory_usage Debugging incorrect memory usage
+
+If you suspect a bug with memory usage, like usage of uninitialized memory or
+memory being overwritten out of bounds of an allocation,
+you can use debug features of this library to verify this.
+
+\section debugging_memory_usage_initialization Memory initialization
+
+If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
+you can enable automatic memory initialization to verify this.
+To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
+
+\code
+#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
+#include "vk_mem_alloc.h"
+\endcode
+
+It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
+Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
+Memory is automatically mapped and unmapped if necessary.
+
+If you find these values while debugging your program, good chances are that you incorrectly
+read Vulkan memory that is allocated but not initialized, or already freed, respectively.
+
+Memory initialization works only with memory types that are `HOST_VISIBLE`.
+It works also with dedicated allocations.
+It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+as they cannot be mapped.
+
+\section debugging_memory_usage_margins Margins
+
+By default, allocations are laid out in memory blocks next to each other if possible
+(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
+
+![Allocations without margin](../gfx/Margins_1.png)
+
+Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
+number of bytes as a margin before and after every allocation.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#include "vk_mem_alloc.h"
+\endcode
+
+![Allocations with margin](../gfx/Margins_2.png)
+
+If your bug goes away after enabling margins, it means it may be caused by memory
+being overwritten outside of allocation boundaries. It is not 100% certain though.
+Change in application behavior may also be caused by different order and distribution
+of allocations across memory blocks after margins are applied.
+
+The margin is applied also before first and after last allocation in a block.
+It may occur only once between two adjacent allocations.
+
+Margins work with all types of memory.
+
+Margin is applied only to allocations made out of memory blocks and not to dedicated
+allocations, which have their own memory block of specific size.
+It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
+or those automatically decided to put into dedicated allocations, e.g. due to its
+large size or recommended by VK_KHR_dedicated_allocation extension.
+Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.
+
+Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
+
+Note that enabling margins increases memory usage and fragmentation.
+
+\section debugging_memory_usage_corruption_detection Corruption detection
+
+You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
+of contents of the margins.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#define VMA_DEBUG_DETECT_CORRUPTION 1
+#include "vk_mem_alloc.h"
+\endcode
+
+When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
+(it must be multiply of 4) before and after every allocation is filled with a magic number.
+This idea is also know as "canary".
+Memory is automatically mapped and unmapped if necessary.
+
+This number is validated automatically when the allocation is destroyed.
+If it's not equal to the expected value, `VMA_ASSERT()` is executed.
+It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
+which indicates a serious bug.
+
+You can also explicitly request checking margins of all allocations in all memory blocks
+that belong to specified memory types by using function vmaCheckCorruption(),
+or in memory blocks that belong to specified custom pool, by using function 
+vmaCheckPoolCorruption().
+
+Margin validation (corruption detection) works only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`.
+
+
+\page record_and_replay Record and replay
+
+\section record_and_replay_introduction Introduction
+
+While using the library, sequence of calls to its functions together with their
+parameters can be recorded to a file and later replayed using standalone player
+application. It can be useful to:
+
+- Test correctness - check if same sequence of calls will not cause crash or
+  failures on a target platform.
+- Gather statistics - see number of allocations, peak memory usage, number of
+  calls etc.
+- Benchmark performance - see how much time it takes to replay the whole
+  sequence.
+
+\section record_and_replay_usage Usage
+
+Recording functionality is disabled by default.
+To enable it, define following macro before every include of this library:
+
+\code
+#define VMA_RECORDING_ENABLED 1
+\endcode
+
+<b>To record sequence of calls to a file:</b> Fill in
+VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator
+object. File is opened and written during whole lifetime of the allocator.
+
+<b>To replay file:</b> Use VmaReplay - standalone command-line program.
+Precompiled binary can be found in "bin" directory.
+Its source can be found in "src/VmaReplay" directory.
+Its project is generated by Premake.
+Command line syntax is printed when the program is launched without parameters.
+Basic usage:
+
+    VmaReplay.exe MyRecording.csv
+
+<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".
+It's a human-readable, text file in CSV format (Comma Separated Values).
+
+\section record_and_replay_additional_considerations Additional considerations
+
+- Replaying file that was recorded on a different GPU (with different parameters
+  like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different
+  set of memory heaps and types) may give different performance and memory usage
+  results, as well as issue some warnings and errors.
+- Current implementation of recording in VMA, as well as VmaReplay application, is
+  coded and tested only on Windows. Inclusion of recording code is driven by
+  `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to
+  add. Contributions are welcomed.
+
+
+\page usage_patterns Recommended usage patterns
+
+See also slides from talk:
+[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
+
+
+\section usage_patterns_common_mistakes Common mistakes
+
+<b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b>
+
+#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be
+mapped and written by the CPU, as well as read directly by the GPU - like some
+buffers or textures updated every frame (dynamic). If you create a staging copy
+of a resource to be written by CPU and then used as a source of transfer to
+another resource placed in the GPU memory, that staging resource should be
+created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these
+enums carefully for details.
+
+<b>Unnecessary use of custom pools</b>
+
+\ref custom_memory_pools may be useful for special purposes - when you want to
+keep certain type of resources separate e.g. to reserve minimum amount of memory
+for them, limit maximum amount of memory they can occupy, or make some of them
+push out the other through the mechanism of \ref lost_allocations. For most
+resources this is not needed and so it is not recommended to create #VmaPool
+objects and allocations out of them. Allocating from the default pool is sufficient.
+
+\section usage_patterns_simple Simple patterns
+
+\subsection usage_patterns_simple_render_targets Render targets
+
+<b>When:</b>
+Any resources that you frequently write and read on GPU,
+e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
+images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
+and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
+especially if they are large or if you plan to destroy and recreate them e.g. when
+display resolution changes.
+Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
+
+\subsection usage_patterns_simple_immutable_resources Immutable resources
+
+<b>When:</b>
+Any resources that you fill on CPU only once (aka "immutable") or infrequently
+and then read frequently on GPU,
+e.g. textures, vertex and index buffers, constant buffers that don't change often.
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+To initialize content of such resource, create a CPU-side (aka "staging") copy of it
+in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
+and submit a transfer from it to the GPU resource.
+You can keep the staging copy if you need it for another upload transfer in the future.
+If you don't, you can destroy it or reuse this buffer for uploading different resource
+after the transfer finishes.
+
+Prefer to create just buffers in system memory rather than images, even for uploading textures.
+Use `vkCmdCopyBufferToImage()`.
+Dont use images with `VK_IMAGE_TILING_LINEAR`.
+
+\subsection usage_patterns_dynamic_resources Dynamic resources
+
+<b>When:</b>
+Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
+written on CPU, read on GPU.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
+You can map it and write to it directly on CPU, as well as read from it on GPU.
+
+This is a more complex situation. Different solutions are possible,
+and the best one depends on specific GPU type, but you can use this simple approach for the start.
+Prefer to write to such resource sequentially (e.g. using `memcpy`).
+Don't perform random access or any reads from it on CPU, as it may be very slow.
+
+\subsection usage_patterns_readback Readback
+
+<b>When:</b>
+Resources that contain data written by GPU that you want to read back on CPU,
+e.g. results of some computations.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
+You can write to them directly on GPU, as well as map and read them on CPU.
+
+\section usage_patterns_advanced Advanced patterns
+
+\subsection usage_patterns_integrated_graphics Detecting integrated graphics
+
+You can support integrated graphics (like Intel HD Graphics, AMD APU) better
+by detecting it in Vulkan.
+To do it, call `vkGetPhysicalDeviceProperties()`, inspect
+`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
+When you find it, you can assume that memory is unified and all memory types are comparably fast
+to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+
+You can then sum up sizes of all available memory heaps and treat them as useful for
+your GPU resources, instead of only `DEVICE_LOCAL` ones.
+You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
+directly instead of submitting explicit transfer (see below).
+
+\subsection usage_patterns_direct_vs_transfer Direct access versus transfer
+
+For resources that you frequently write on CPU and read on GPU, many solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+   second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
+   read it directly on GPU.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
+   read it directly on GPU.
+
+Which solution is the most efficient depends on your resource and especially on the GPU.
+It is best to measure it and then make the decision.
+Some general recommendations:
+
+- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead
+  related to using a second copy and making transfer.
+- For small resources (e.g. constant buffers) use (2).
+  Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
+  Even if the resource ends up in system memory, its data may be cached on GPU after first
+  fetch over PCIe bus.
+- For larger resources (e.g. textures), decide between (1) and (2).
+  You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
+  both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
+
+Similarly, for resources that you frequently write on GPU and read on CPU, multiple
+solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+   second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
+   map it and read it on CPU.
+
+You should take some measurements to decide which option is faster in case of your specific
+resource.
+
+If you don't want to specialize your code for specific types of GPUs, you can still make
+an simple optimization for cases when your resource ends up in mappable memory to use it
+directly in this case instead of creating CPU-side staging copy.
+For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
+
+
+\page configuration Configuration
+
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
+before each include of this file or change directly in this file to provide
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
+mutex, atomic etc.
+The library uses its own implementation of containers by default, but you can switch to using
+STL containers instead.
+
+For example, define `VMA_ASSERT(expr)` before including the library to provide
+custom implementation of the assertion, compatible with your project.
+By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
+and empty otherwise.
+
+\section config_Vulkan_functions Pointers to Vulkan functions
+
+There are multiple ways to import pointers to Vulkan functions in the library.
+In the simplest case you don't need to do anything.
+If the compilation or linking of your program or the initialization of the #VmaAllocator
+doesn't work for you, you can try to reconfigure it.
+
+First, the allocator tries to fetch pointers to Vulkan functions linked statically,
+like this:
+
+\code
+m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
+\endcode
+
+If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
+
+Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
+You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
+by using a helper library like [volk](https://github.com/zeux/volk).
+
+Third, VMA tries to fetch remaining pointers that are still null by calling
+`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
+If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
+
+Finally, all the function pointers required by the library (considering selected
+Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
+
+
+\section custom_memory_allocator Custom host memory allocator
+
+If you use custom allocator for CPU memory rather than default operator `new`
+and `delete` from C++, you can make this library using your allocator as well
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
+functions will be passed to Vulkan, as well as used by the library itself to
+make any CPU-side allocations.
+
+\section allocation_callbacks Device memory allocation callbacks
+
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
+You can setup callbacks to be informed about these calls, e.g. for the purpose
+of gathering some statistics. To do it, fill optional member
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+
+\section heap_memory_limit Device heap memory limit
+
+When device memory of certain heap runs out of free space, new allocations may
+fail (returning error code) or they may succeed, silently pushing some existing
+memory blocks from GPU VRAM to system RAM (which degrades performance). This
+behavior is implementation-dependant - it depends on GPU vendor and graphics
+driver.
+
+On AMD cards it can be controlled while creating Vulkan device object by using
+VK_AMD_memory_overallocation_behavior extension, if available.
+
+Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
+memory available without switching your graphics card to one that really has
+smaller VRAM, you can use a feature of this library intended for this purpose.
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
+
+
+
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
+
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
+performance on some GPUs. It augments Vulkan API with possibility to query
+driver whether it prefers particular buffer or image to have its own, dedicated
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
+to do some internal optimizations.
+
+The extension is supported by this library. It will be used automatically when
+enabled. To enable it:
+
+1 . When creating Vulkan device, check if following 2 device extensions are
+supported (call `vkEnumerateDeviceExtensionProperties()`).
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
+
+- VK_KHR_get_memory_requirements2
+- VK_KHR_dedicated_allocation
+
+If you enabled these extensions:
+
+2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
+your #VmaAllocator`to inform the library that you enabled required extensions
+and you want the library to use them.
+
+\code
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+That's all. The extension will be automatically used whenever you create a
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
+
+When using the extension together with Vulkan Validation Layer, you will receive
+warnings like this:
+
+    vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
+
+It is OK, you should just ignore it. It happens because you use function
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
+unaware of it.
+
+To learn more about this extension, see:
+
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_KHR_dedicated_allocation)
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
+
+
+
+\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
+
+VK_AMD_device_coherent_memory is a device extension that enables access to
+additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
+`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
+allocation of buffers intended for writing "breadcrumb markers" in between passes
+or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
+
+When the extension is available but has not been enabled, Vulkan physical device
+still exposes those memory types, but their usage is forbidden. VMA automatically
+takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
+to allocate memory of such type is made.
+
+If you want to use this extension in connection with VMA, follow these steps:
+
+\section vk_amd_device_coherent_memory_initialization Initialization
+
+1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
+Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
+
+2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
+Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
+Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
+
+3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
+to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
+
+4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
+Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
+Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
+`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
+
+5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
+have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
+to VmaAllocatorCreateInfo::flags.
+
+\section vk_amd_device_coherent_memory_usage Usage
+
+After following steps described above, you can create VMA allocations and custom pools
+out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
+devices. There are multiple ways to do it, for example:
+
+- You can request or prefer to allocate out of such memory types by adding
+  `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
+  or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
+  other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
+- If you manually found memory type index to use for this purpose, force allocation
+  from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
+
+\section vk_amd_device_coherent_memory_more_information More information
+
+To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap44.html#VK_AMD_device_coherent_memory)
+
+Example use of this extension can be found in the code of the sample and test suite
+accompanying this library.
+
+
+\page enabling_buffer_device_address Enabling buffer device address
+
+Device extension VK_KHR_buffer_device_address
+allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
+It is promoted to core Vulkan 1.2.
+
+If you want to use this feature in connection with VMA, follow these steps:
+
+\section enabling_buffer_device_address_initialization Initialization
+
+1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
+Check if the extension is supported - if returned array of `VkExtensionProperties` contains
+"VK_KHR_buffer_device_address".
+
+2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
+Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
+Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress` is true.
+
+3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
+"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
+
+4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
+Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
+Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
+`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
+
+5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
+have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
+to VmaAllocatorCreateInfo::flags.
+
+\section enabling_buffer_device_address_usage Usage
+
+After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
+The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
+allocated memory blocks wherever it might be needed.
+
+Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
+The second part of this functionality related to "capture and replay" is not supported,
+as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
+
+\section enabling_buffer_device_address_more_information More information
+
+To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
+
+Example use of this extension can be found in the code of the sample and test suite
+accompanying this library.
+
+\page general_considerations General considerations
+
+\section general_considerations_thread_safety Thread safety
+
+- The library has no global state, so separate #VmaAllocator objects can be used
+  independently.
+  There should be no need to create multiple such objects though - one per `VkDevice` is enough.
+- By default, all calls to functions that take #VmaAllocator as first parameter
+  are safe to call from multiple threads simultaneously because they are
+  synchronized internally when needed.
+- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
+  flag, calls to functions that take such #VmaAllocator object must be
+  synchronized externally.
+- Access to a #VmaAllocation object must be externally synchronized. For example,
+  you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
+  threads at the same time if you pass the same #VmaAllocation object to these
+  functions.
+
+\section general_considerations_validation_layer_warnings Validation layer warnings
+
+When using this library, you can meet following types of warnings issued by
+Vulkan validation layer. They don't necessarily indicate a bug, so you may need
+to just ignore them.
+
+- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
+  - It happens when VK_KHR_dedicated_allocation extension is enabled.
+    `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
+- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
+  - It happens when you map a buffer or image, because the library maps entire
+    `VkDeviceMemory` block, where different types of images and buffers may end
+    up together, especially on GPUs with unified memory like Intel.
+- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
+  - It happens when you use lost allocations, and a new image or buffer is
+    created in place of an existing object that bacame lost.
+  - It may happen also when you use [defragmentation](@ref defragmentation).
+
+\section general_considerations_allocation_algorithm Allocation algorithm
+
+The library uses following algorithm for allocation, in order:
+
+-# Try to find free range of memory in existing blocks.
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
+-# If failed, try to create such block with size/2, size/4, size/8.
+-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
+   specified, try to find space in existing blocks, possilby making some other
+   allocations lost.
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
+   just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+-# If failed, choose other memory type that meets the requirements specified in
+   VmaAllocationCreateInfo and go to point 1.
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+
+\section general_considerations_features_not_supported Features not supported
+
+Features deliberately excluded from the scope of this library:
+
+- Data transfer. Uploading (straming) and downloading data of buffers and images
+  between CPU and GPU memory and related synchronization is responsibility of the user.
+  Defining some "texture" object that would automatically stream its data from a
+  staging copy in CPU memory to GPU memory would rather be a feature of another,
+  higher-level library implemented on top of VMA.
+- Allocations for imported/exported external memory. They tend to require
+  explicit memory type index and dedicated allocation anyway, so they don't
+  interact with main features of this library. Such special purpose allocations
+  should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`.
+- Recreation of buffers and images. Although the library has functions for
+  buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to
+  recreate these objects yourself after defragmentation. That's because the big
+  structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
+  #VmaAllocation object.
+- Handling CPU memory allocation failures. When dynamically creating small C++
+  objects in CPU memory (not Vulkan memory), allocation failures are not checked
+  and handled gracefully, because that would complicate code significantly and
+  is usually not needed in desktop PC applications anyway.
+- Code free of any compiler warnings. Maintaining the library to compile and
+  work correctly on so many different platforms is hard enough. Being free of 
+  any warnings, on any version of any compiler, is simply not feasible.
+- This is a C++ library with C interface.
+  Bindings or ports to any other programming languages are welcomed as external projects and
+  are not going to be included into this repository.
+
+*/
+
+/*
+Define this macro to 0/1 to disable/enable support for recording functionality,
+available through VmaAllocatorCreateInfo::pRecordSettings.
+*/
+#ifndef VMA_RECORDING_ENABLED
+    #define VMA_RECORDING_ENABLED 0
+#endif
+
+#ifndef NOMINMAX
+    #define NOMINMAX // For windows.h
+#endif
+
+#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
+    extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
+    extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
+    extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
+    extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
+    extern PFN_vkAllocateMemory vkAllocateMemory;
+    extern PFN_vkFreeMemory vkFreeMemory;
+    extern PFN_vkMapMemory vkMapMemory;
+    extern PFN_vkUnmapMemory vkUnmapMemory;
+    extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
+    extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
+    extern PFN_vkBindBufferMemory vkBindBufferMemory;
+    extern PFN_vkBindImageMemory vkBindImageMemory;
+    extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
+    extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
+    extern PFN_vkCreateBuffer vkCreateBuffer;
+    extern PFN_vkDestroyBuffer vkDestroyBuffer;
+    extern PFN_vkCreateImage vkCreateImage;
+    extern PFN_vkDestroyImage vkDestroyImage;
+    extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
+    #if VMA_VULKAN_VERSION >= 1001000
+        extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
+        extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
+        extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
+        extern PFN_vkBindImageMemory2 vkBindImageMemory2;
+        extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
+    #endif // #if VMA_VULKAN_VERSION >= 1001000
+#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
+
+#ifndef VULKAN_H_
+    #include <vulkan/vulkan.h>
+#endif
+
+#if VMA_RECORDING_ENABLED
+    #if defined(_WIN32)
+        #include <windows.h>
+    #else
+        #error VMA Recording functionality is not yet available for non-Windows platforms
+    #endif
+#endif
+
+// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,
+// where AAA = major, BBB = minor, CCC = patch.
+// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.
+#if !defined(VMA_VULKAN_VERSION)
+    #if defined(VK_VERSION_1_2)
+        #define VMA_VULKAN_VERSION 1002000
+    #elif defined(VK_VERSION_1_1)
+        #define VMA_VULKAN_VERSION 1001000
+    #else
+        #define VMA_VULKAN_VERSION 1000000
+    #endif
+#endif
+
+#if !defined(VMA_DEDICATED_ALLOCATION)
+    #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
+        #define VMA_DEDICATED_ALLOCATION 1
+    #else
+        #define VMA_DEDICATED_ALLOCATION 0
+    #endif
+#endif
+
+#if !defined(VMA_BIND_MEMORY2)
+    #if VK_KHR_bind_memory2
+        #define VMA_BIND_MEMORY2 1
+    #else
+        #define VMA_BIND_MEMORY2 0
+    #endif
+#endif
+
+#if !defined(VMA_MEMORY_BUDGET)
+    #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
+        #define VMA_MEMORY_BUDGET 1
+    #else
+        #define VMA_MEMORY_BUDGET 0
+    #endif
+#endif
+
+// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
+#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
+    #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
+        #define VMA_BUFFER_DEVICE_ADDRESS 1
+    #else
+        #define VMA_BUFFER_DEVICE_ADDRESS 0
+    #endif
+#endif
+
+// Define these macros to decorate all public functions with additional code,
+// before and after returned type, appropriately. This may be useful for
+// exporing the functions when compiling VMA as a separate library. Example:
+// #define VMA_CALL_PRE  __declspec(dllexport)
+// #define VMA_CALL_POST __cdecl
+#ifndef VMA_CALL_PRE
+    #define VMA_CALL_PRE
+#endif
+#ifndef VMA_CALL_POST
+    #define VMA_CALL_POST
+#endif
+
+// Define this macro to decorate pointers with an attribute specifying the
+// length of the array they point to if they are not null.
+//
+// The length may be one of
+// - The name of another parameter in the argument list where the pointer is declared
+// - The name of another member in the struct where the pointer is declared
+// - The name of a member of a struct type, meaning the value of that member in
+//   the context of the call. For example
+//   VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
+//   this means the number of memory heaps available in the device associated
+//   with the VmaAllocator being dealt with.
+#ifndef VMA_LEN_IF_NOT_NULL
+    #define VMA_LEN_IF_NOT_NULL(len)
+#endif
+
+// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
+// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
+#ifndef VMA_NULLABLE
+    #ifdef __clang__
+        #define VMA_NULLABLE _Nullable
+    #else
+        #define VMA_NULLABLE
+    #endif
+#endif
+
+// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
+// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
+#ifndef VMA_NOT_NULL
+    #ifdef __clang__
+        #define VMA_NOT_NULL _Nonnull
+    #else
+        #define VMA_NOT_NULL
+    #endif
+#endif
+
+// If non-dispatchable handles are represented as pointers then we can give
+// then nullability annotations
+#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
+    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+        #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
+    #else
+        #define VMA_NOT_NULL_NON_DISPATCHABLE
+    #endif
+#endif
+
+#ifndef VMA_NULLABLE_NON_DISPATCHABLE
+    #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+        #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
+    #else
+        #define VMA_NULLABLE_NON_DISPATCHABLE
+    #endif
+#endif
+
+/** \struct VmaAllocator
+\brief Represents main object of this library initialized.
+
+Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
+Call function vmaDestroyAllocator() to destroy it.
+
+It is recommended to create just one object of this type per `VkDevice` object,
+right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
+*/
+VK_DEFINE_HANDLE(VmaAllocator)
+
+/// Callback function called after successful vkAllocateMemory.
+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
+    VmaAllocator VMA_NOT_NULL                    allocator,
+    uint32_t                                     memoryType,
+    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
+    VkDeviceSize                                 size,
+    void* VMA_NULLABLE                           pUserData);
+/// Callback function called before vkFreeMemory.
+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
+    VmaAllocator VMA_NOT_NULL                    allocator,
+    uint32_t                                     memoryType,
+    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
+    VkDeviceSize                                 size,
+    void* VMA_NULLABLE                           pUserData);
+
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
+
+Provided for informative purpose, e.g. to gather statistics about number of
+allocations or total amount of memory allocated in Vulkan.
+
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+*/
+typedef struct VmaDeviceMemoryCallbacks {
+    /// Optional, can be null.
+    PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
+    /// Optional, can be null.
+    PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
+    /// Optional, can be null.
+    void* VMA_NULLABLE pUserData;
+} VmaDeviceMemoryCallbacks;
+
+/// Flags for created #VmaAllocator.
+typedef enum VmaAllocatorCreateFlagBits {
+    /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
+
+    Using this flag may increase performance because internal mutexes are not used.
+    */
+    VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
+    /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
+
+    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
+    When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
+
+    Using this extenion will automatically allocate dedicated blocks of memory for
+    some buffers and images instead of suballocating place for them out of bigger
+    memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
+    flag) when it is recommended by the driver. It may improve performance on some
+    GPUs.
+
+    You may set this flag only if you found out that following device extensions are
+    supported, you enabled them while creating Vulkan device passed as
+    VmaAllocatorCreateInfo::device, and you want them to be used internally by this
+    library:
+
+    - VK_KHR_get_memory_requirements2 (device extension)
+    - VK_KHR_dedicated_allocation (device extension)
+
+    When this flag is set, you can experience following warnings reported by Vulkan
+    validation layer. You can ignore them.
+
+    > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
+    */
+    VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
+    /**
+    Enables usage of VK_KHR_bind_memory2 extension.
+
+    The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
+    When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
+
+    You may set this flag only if you found out that this device extension is supported,
+    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+    and you want it to be used internally by this library.
+
+    The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
+    which allow to pass a chain of `pNext` structures while binding.
+    This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
+    */
+    VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
+    /**
+    Enables usage of VK_EXT_memory_budget extension.
+
+    You may set this flag only if you found out that this device extension is supported,
+    you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+    and you want it to be used internally by this library, along with another instance extension
+    VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
+
+    The extension provides query for current memory usage and budget, which will probably
+    be more accurate than an estimation used by the library otherwise.
+    */
+    VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
+    /**
+    Enables usage of VK_AMD_device_coherent_memory extension.
+    
+    You may set this flag only if you:
+
+    - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+    - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
+    - want it to be used internally by this library.
+
+    The extension and accompanying device feature provide access to memory types with
+    `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
+    They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
+    
+    When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
+    To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
+    returning `VK_ERROR_FEATURE_NOT_PRESENT`.
+    */
+    VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
+    /**
+    Enables usage of "buffer device address" feature, which allows you to use function
+    `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
+
+    You may set this flag only if you:
+
+    1. (For Vulkan version < 1.2) Found as available and enabled device extension
+    VK_KHR_buffer_device_address.
+    This extension is promoted to core Vulkan 1.2.
+    2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures*::bufferDeviceAddress`.
+
+    When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
+    The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
+    allocated memory blocks wherever it might be needed.
+
+    For more information, see documentation chapter \ref enabling_buffer_device_address.
+    */
+    VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
+
+    VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocatorCreateFlagBits;
+typedef VkFlags VmaAllocatorCreateFlags;
+
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
+
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+typedef struct VmaVulkanFunctions {
+    PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
+    PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
+    PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
+    PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
+    PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
+    PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
+    PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
+    PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
+    PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
+    PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
+    PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
+    PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
+    PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
+    PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
+    PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
+    PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
+    PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
+    PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
+#endif
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+    PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
+    PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
+#endif
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+    PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
+#endif
+} VmaVulkanFunctions;
+
+/// Flags to be used in VmaRecordSettings::flags.
+typedef enum VmaRecordFlagBits {
+    /** \brief Enables flush after recording every function call.
+
+    Enable it if you expect your application to crash, which may leave recording file truncated.
+    It may degrade performance though.
+    */
+    VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,
+    
+    VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaRecordFlagBits;
+typedef VkFlags VmaRecordFlags;
+
+/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.
+typedef struct VmaRecordSettings
+{
+    /// Flags for recording. Use #VmaRecordFlagBits enum.
+    VmaRecordFlags flags;
+    /** \brief Path to the file that should be written by the recording.
+
+    Suggested extension: "csv".
+    If the file already exists, it will be overwritten.
+    It will be opened for the whole time #VmaAllocator object is alive.
+    If opening this file fails, creation of the whole allocator object fails.
+    */
+    const char* VMA_NOT_NULL pFilePath;
+} VmaRecordSettings;
+
+/// Description of a Allocator to be created.
+typedef struct VmaAllocatorCreateInfo
+{
+    /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
+    VmaAllocatorCreateFlags flags;
+    /// Vulkan physical device.
+    /** It must be valid throughout whole lifetime of created allocator. */
+    VkPhysicalDevice VMA_NOT_NULL physicalDevice;
+    /// Vulkan device.
+    /** It must be valid throughout whole lifetime of created allocator. */
+    VkDevice VMA_NOT_NULL device;
+    /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
+    /** Set to 0 to use default, which is currently 256 MiB. */
+    VkDeviceSize preferredLargeHeapBlockSize;
+    /// Custom CPU memory allocation callbacks. Optional.
+    /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
+    const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
+    /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
+    /** Optional, can be null. */
+    const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+    This value is used only when you make allocations with
+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+    For example, if you double-buffer your command buffers, so resources used for
+    rendering in previous frame may still be in use by the GPU at the moment you
+    allocate resources needed for the current frame, set this value to 1.
+
+    If you want to allow any allocations other than used in the current frame to
+    become lost, set this value to 0.
+    */
+    uint32_t frameInUseCount;
+    /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
+
+    If not NULL, it must be a pointer to an array of
+    `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
+    maximum number of bytes that can be allocated out of particular Vulkan memory
+    heap.
+
+    Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
+    heap. This is also the default in case of `pHeapSizeLimit` = NULL.
+
+    If there is a limit defined for a heap:
+
+    - If user tries to allocate more memory from that heap using this allocator,
+      the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+    - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
+      value of this limit will be reported instead when using vmaGetMemoryProperties().
+
+    Warning! Using this feature may not be equivalent to installing a GPU with
+    smaller amount of memory, because graphics driver doesn't necessary fail new
+    allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
+    exceeded. It may return success and just silently migrate some device memory
+    blocks to system RAM. This driver behavior can also be controlled using
+    VK_AMD_memory_overallocation_behavior extension.
+    */
+    const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
+
+    /** \brief Pointers to Vulkan functions. Can be null.
+
+    For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
+    */
+    const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
+    /** \brief Parameters for recording of VMA calls. Can be null.
+
+    If not null, it enables recording of calls to VMA functions to a file.
+    If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,
+    creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.
+    */
+    const VmaRecordSettings* VMA_NULLABLE pRecordSettings;
+    /** \brief Handle to Vulkan instance object.
+
+    Starting from version 3.0.0 this member is no longer optional, it must be set!
+    */
+    VkInstance VMA_NOT_NULL_NON_DISPATCHABLE instance;
+    /** \brief Optional. The highest version of Vulkan that the application is designed to use.
+    
+    It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
+    The patch version number specified is ignored. Only the major and minor versions are considered.
+    It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
+    Only versions 1.0 and 1.1 are supported by the current implementation.
+    Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
+    */
+    uint32_t vulkanApiVersion;
+} VmaAllocatorCreateInfo;
+
+/// Creates Allocator object.
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
+    const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
+    VmaAllocator VMA_NULLABLE * VMA_NOT_NULL pAllocator);
+
+/// Destroys allocator object.
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
+    VmaAllocator VMA_NULLABLE allocator);
+
+/** \brief Information about existing #VmaAllocator object.
+*/
+typedef struct VmaAllocatorInfo
+{
+    /** \brief Handle to Vulkan instance object.
+
+    This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
+    */
+    VkInstance VMA_NOT_NULL instance;
+    /** \brief Handle to Vulkan physical device object.
+
+    This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
+    */
+    VkPhysicalDevice VMA_NOT_NULL physicalDevice;
+    /** \brief Handle to Vulkan device object.
+
+    This is the same value as has been passed through VmaAllocatorCreateInfo::device.
+    */
+    VkDevice VMA_NOT_NULL device;
+} VmaAllocatorInfo;
+
+/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
+
+It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
+`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
+
+/**
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkPhysicalDeviceProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceProperties);
+
+/**
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
+
+/**
+\brief Given Memory Type Index, returns Property Flags of this memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetMemoryProperties().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
+    VmaAllocator VMA_NOT_NULL allocator,
+    uint32_t memoryTypeIndex,
+    VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
+
+/** \brief Sets index of the current frame.
+
+This function must be used if you make allocations with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
+become lost in the current frame.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
+    VmaAllocator VMA_NOT_NULL allocator,
+    uint32_t frameIndex);
+
+/** \brief Calculated statistics of memory usage in entire allocator.
+*/
+typedef struct VmaStatInfo
+{
+    /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
+    uint32_t blockCount;
+    /// Number of #VmaAllocation allocation objects allocated.
+    uint32_t allocationCount;
+    /// Number of free ranges of memory between allocations.
+    uint32_t unusedRangeCount;
+    /// Total number of bytes occupied by all allocations.
+    VkDeviceSize usedBytes;
+    /// Total number of bytes occupied by unused ranges.
+    VkDeviceSize unusedBytes;
+    VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
+    VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
+} VmaStatInfo;
+
+/// General statistics from current state of Allocator.
+typedef struct VmaStats
+{
+    VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
+    VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
+    VmaStatInfo total;
+} VmaStats;
+
+/** \brief Retrieves statistics from current state of the Allocator.
+
+This function is called "calculate" not "get" because it has to traverse all
+internal data structures, so it may be quite slow. For faster but more brief statistics
+suitable to be called every frame or every allocation, use vmaGetBudget().
+
+Note that when using allocator from multiple threads, returned information may immediately
+become outdated.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaStats* VMA_NOT_NULL pStats);
+
+/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap.
+*/
+typedef struct VmaBudget
+{
+    /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes.
+    */
+    VkDeviceSize blockBytes;
+    
+    /** \brief Sum size of all allocations created in particular heap, in bytes.
+    
+    Usually less or equal than `blockBytes`.
+    Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused -
+    available for new allocations or wasted due to fragmentation.
+    
+    It might be greater than `blockBytes` if there are some allocations in lost state, as they account
+    to this value as well.
+    */
+    VkDeviceSize allocationBytes;
+    
+    /** \brief Estimated current memory usage of the program, in bytes.
+    
+    Fetched from system using `VK_EXT_memory_budget` extension if enabled.
+    
+    It might be different than `blockBytes` (usually higher) due to additional implicit objects
+    also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
+    `VkDeviceMemory` blocks allocated outside of this library, if any.
+    */
+    VkDeviceSize usage;
+    
+    /** \brief Estimated amount of memory available to the program, in bytes.
+    
+    Fetched from system using `VK_EXT_memory_budget` extension if enabled.
+    
+    It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
+    external to the program, like other programs also consuming system resources.
+    Difference `budget - usage` is the amount of additional memory that can probably
+    be allocated without problems. Exceeding the budget may result in various problems.
+    */
+    VkDeviceSize budget;
+} VmaBudget;
+
+/** \brief Retrieves information about current memory budget for all memory heaps.
+
+\param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used.
+
+This function is called "get" not "calculate" because it is very fast, suitable to be called
+every frame or every allocation. For more detailed statistics use vmaCalculateStats().
+
+Note that when using allocator from multiple threads, returned information may immediately
+become outdated.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaBudget* VMA_NOT_NULL pBudget);
+
+#ifndef VMA_STATS_STRING_ENABLED
+#define VMA_STATS_STRING_ENABLED 1
+#endif
+
+#if VMA_STATS_STRING_ENABLED
+
+/// Builds and returns statistics as string in JSON format.
+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
+    VmaAllocator VMA_NOT_NULL allocator,
+    char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString,
+    VkBool32 detailedMap);
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
+    VmaAllocator VMA_NOT_NULL allocator,
+    char* VMA_NULLABLE pStatsString);
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/** \struct VmaPool
+\brief Represents custom memory pool
+
+Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
+Call function vmaDestroyPool() to destroy it.
+
+For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
+*/
+VK_DEFINE_HANDLE(VmaPool)
+
+typedef enum VmaMemoryUsage
+{
+    /** No intended memory usage specified.
+    Use other members of VmaAllocationCreateInfo to specify your requirements.
+    */
+    VMA_MEMORY_USAGE_UNKNOWN = 0,
+    /** Memory will be used on device only, so fast access from the device is preferred.
+    It usually means device-local GPU (video) memory.
+    No need to be mappable on host.
+    It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
+
+    Usage:
+    
+    - Resources written and read by device, e.g. images used as attachments.
+    - Resources transferred from host once (immutable) or infrequently and read by
+      device multiple times, e.g. textures to be sampled, vertex buffers, uniform
+      (constant) buffers, and majority of other types of resources used on GPU.
+
+    Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
+    In such case, you are free to map it.
+    You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
+    */
+    VMA_MEMORY_USAGE_GPU_ONLY = 1,
+    /** Memory will be mappable on host.
+    It usually means CPU (system) memory.
+    Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
+    CPU access is typically uncached. Writes may be write-combined.
+    Resources created in this pool may still be accessible to the device, but access to them can be slow.
+    It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
+
+    Usage: Staging copy of resources used as transfer source.
+    */
+    VMA_MEMORY_USAGE_CPU_ONLY = 2,
+    /**
+    Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
+    CPU access is typically uncached. Writes may be write-combined.
+
+    Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.
+    */
+    VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
+    /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
+    It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
+
+    Usage:
+
+    - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
+    - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
+    */
+    VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
+    /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`.
+
+    Usage: Staging copy of resources moved from GPU memory to CPU memory as part
+    of custom paging/residency mechanism, to be moved back to GPU memory when needed.
+    */
+    VMA_MEMORY_USAGE_CPU_COPY = 5,
+    /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
+    Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
+    
+    Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
+
+    Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+    */
+    VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
+
+    VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
+} VmaMemoryUsage;
+
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
+typedef enum VmaAllocationCreateFlagBits {
+    /** \brief Set this flag if the allocation should have its own memory block.
+    
+    Use it for special, big resources, like fullscreen images used as attachments.
+   
+    You should not use this flag if VmaAllocationCreateInfo::pool is not null.
+    */
+    VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
+
+    /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
+    
+    If new allocation cannot be placed in any of the existing blocks, allocation
+    fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+    
+    You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
+    #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
+    
+    If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
+    VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
+    /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
+    
+    Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
+
+    Is it valid to use this flag for allocation made from memory type that is not
+    `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
+    useful if you need an allocation that is efficient to use on GPU
+    (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
+    support it (e.g. Intel GPU).
+
+    You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
+    */
+    VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
+    /** Allocation created with this flag can become lost as a result of another
+    allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
+    must check it before use.
+
+    To check if allocation is not lost, call vmaGetAllocationInfo() and check if
+    VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
+
+    For details about supporting lost allocations, see Lost Allocations
+    chapter of User Guide on Main Page.
+
+    You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
+    */
+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
+    /** While creating allocation using this flag, other allocations that were
+    created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
+
+    For details about supporting lost allocations, see Lost Allocations
+    chapter of User Guide on Main Page.
+    */
+    VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
+    /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
+    null-terminated string. Instead of copying pointer value, a local copy of the
+    string is made and stored in allocation's `pUserData`. The string is automatically
+    freed together with the allocation. It is also used in vmaBuildStatsString().
+    */
+    VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
+    /** Allocation will be created from upper stack in a double stack pool.
+
+    This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
+    */
+    VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
+    /** Create both buffer/image and allocation, but don't bind them together.
+    It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
+    The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
+    Otherwise it is ignored.
+    */
+    VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
+    /** Create allocation only if additional device memory required for it, if any, won't exceed
+    memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+    */
+    VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
+
+    /** Allocation strategy that chooses smallest possible free range for the
+    allocation.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT  = 0x00010000,
+    /** Allocation strategy that chooses biggest possible free range for the
+    allocation.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,
+    /** Allocation strategy that chooses first suitable free range for the
+    allocation.
+
+    "First" doesn't necessarily means the one with smallest offset in memory,
+    but rather the one that is easiest and fastest to find.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,
+
+    /** Allocation strategy that tries to minimize memory usage.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,
+    /** Allocation strategy that tries to minimize allocation time.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
+    /** Allocation strategy that tries to minimize memory fragmentation.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,
+
+    /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
+    */
+    VMA_ALLOCATION_CREATE_STRATEGY_MASK =
+        VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |
+        VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |
+        VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
+
+    VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocationCreateFlagBits;
+typedef VkFlags VmaAllocationCreateFlags;
+
+typedef struct VmaAllocationCreateInfo
+{
+    /// Use #VmaAllocationCreateFlagBits enum.
+    VmaAllocationCreateFlags flags;
+    /** \brief Intended usage of memory.
+    
+    You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
+    If `pool` is not null, this member is ignored.
+    */
+    VmaMemoryUsage usage;
+    /** \brief Flags that must be set in a Memory Type chosen for an allocation.
+    
+    Leave 0 if you specify memory requirements in other way. \n
+    If `pool` is not null, this member is ignored.*/
+    VkMemoryPropertyFlags requiredFlags;
+    /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
+    
+    Set to 0 if no additional flags are prefered. \n
+    If `pool` is not null, this member is ignored. */
+    VkMemoryPropertyFlags preferredFlags;
+    /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
+
+    Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
+    it meets other requirements specified by this structure, with no further
+    restrictions on memory type index. \n
+    If `pool` is not null, this member is ignored.
+    */
+    uint32_t memoryTypeBits;
+    /** \brief Pool that this allocation should be created in.
+
+    Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
+    `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+    */
+    VmaPool VMA_NULLABLE pool;
+    /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
+    
+    If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
+    null or pointer to a null-terminated string. The string will be then copied to
+    internal buffer, so it doesn't need to be valid after allocation call.
+    */
+    void* VMA_NULLABLE pUserData;
+} VmaAllocationCreateInfo;
+
+/**
+\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
+
+This algorithm tries to find a memory type that:
+
+- Is allowed by memoryTypeBits.
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
+- Matches intended usage.
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
+
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
+from this function or any other allocating function probably means that your
+device doesn't support any memory type with requested features for the specific
+type of resource you want to use it for. Please check parameters of your
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
+    VmaAllocator VMA_NOT_NULL allocator,
+    uint32_t memoryTypeBits,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy buffer that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateBuffer`
+- `vkGetBufferMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyBuffer`
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy image that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateImage`
+- `vkGetImageMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyImage`
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+    uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/// Flags to be passed as VmaPoolCreateInfo::flags.
+typedef enum VmaPoolCreateFlagBits {
+    /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
+
+    This is an optional optimization flag.
+
+    If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
+    vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
+    knows exact type of your allocations so it can handle Buffer-Image Granularity
+    in the optimal way.
+
+    If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
+    exact type of such allocations is not known, so allocator must be conservative
+    in handling Buffer-Image Granularity, which can lead to suboptimal allocation
+    (wasted memory). In that case, if you can make sure you always allocate only
+    buffers and linear images or only optimal images out of this pool, use this flag
+    to make allocator disregard Buffer-Image Granularity and so make allocations
+    faster and more optimal.
+    */
+    VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
+
+    /** \brief Enables alternative, linear allocation algorithm in this pool.
+
+    Specify this flag to enable linear allocation algorithm, which always creates
+    new allocations after last one and doesn't reuse space from allocations freed in
+    between. It trades memory consumption for simplified algorithm and data
+    structure, which has better performance and uses less memory for metadata.
+
+    By using this flag, you can achieve behavior of free-at-once, stack,
+    ring buffer, and double stack. For details, see documentation chapter
+    \ref linear_algorithm.
+
+    When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).
+
+    For more details, see [Linear allocation algorithm](@ref linear_algorithm).
+    */
+    VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
+
+    /** \brief Enables alternative, buddy allocation algorithm in this pool.
+
+    It operates on a tree of blocks, each having size that is a power of two and
+    a half of its parent's size. Comparing to default algorithm, this one provides
+    faster allocation and deallocation and decreased external fragmentation,
+    at the expense of more memory wasted (internal fragmentation).
+
+    For more details, see [Buddy allocation algorithm](@ref buddy_algorithm).
+    */
+    VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,
+
+    /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
+    */
+    VMA_POOL_CREATE_ALGORITHM_MASK =
+        VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |
+        VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,
+
+    VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaPoolCreateFlagBits;
+typedef VkFlags VmaPoolCreateFlags;
+
+/** \brief Describes parameter of created #VmaPool.
+*/
+typedef struct VmaPoolCreateInfo {
+    /** \brief Vulkan memory type index to allocate this pool from.
+    */
+    uint32_t memoryTypeIndex;
+    /** \brief Use combination of #VmaPoolCreateFlagBits.
+    */
+    VmaPoolCreateFlags flags;
+    /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
+
+    Specify nonzero to set explicit, constant size of memory blocks used by this
+    pool.
+
+    Leave 0 to use default and let the library manage block sizes automatically.
+    Sizes of particular blocks may vary.
+    */
+    VkDeviceSize blockSize;
+    /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
+
+    Set to 0 to have no preallocated blocks and allow the pool be completely empty.
+    */
+    size_t minBlockCount;
+    /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
+
+    Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
+    
+    Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
+    throughout whole lifetime of this pool.
+    */
+    size_t maxBlockCount;
+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+    This value is used only when you make allocations with
+    #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+    For example, if you double-buffer your command buffers, so resources used for
+    rendering in previous frame may still be in use by the GPU at the moment you
+    allocate resources needed for the current frame, set this value to 1.
+
+    If you want to allow any allocations other than used in the current frame to
+    become lost, set this value to 0.
+    */
+    uint32_t frameInUseCount;
+} VmaPoolCreateInfo;
+
+/** \brief Describes parameter of existing #VmaPool.
+*/
+typedef struct VmaPoolStats {
+    /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
+    */
+    VkDeviceSize size;
+    /** \brief Total number of bytes in the pool not used by any #VmaAllocation.
+    */
+    VkDeviceSize unusedSize;
+    /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
+    */
+    size_t allocationCount;
+    /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
+    */
+    size_t unusedRangeCount;
+    /** \brief Size of the largest continuous free memory region available for new allocation.
+
+    Making a new allocation of that size is not guaranteed to succeed because of
+    possible additional margin required to respect alignment and buffer/image
+    granularity.
+    */
+    VkDeviceSize unusedRangeSizeMax;
+    /** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
+    */
+    size_t blockCount;
+} VmaPoolStats;
+
+/** \brief Allocates Vulkan device memory and creates #VmaPool object.
+
+@param allocator Allocator object.
+@param pCreateInfo Parameters of pool to create.
+@param[out] pPool Handle to created pool.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
+	VmaAllocator VMA_NOT_NULL allocator,
+	const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
+	VmaPool VMA_NULLABLE * VMA_NOT_NULL pPool);
+
+/** \brief Destroys #VmaPool object and frees Vulkan device memory.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaPool VMA_NULLABLE pool);
+
+/** \brief Retrieves statistics of existing #VmaPool object.
+
+@param allocator Allocator object.
+@param pool Pool object.
+@param[out] pPoolStats Statistics of specified pool.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaPool VMA_NOT_NULL pool,
+    VmaPoolStats* VMA_NOT_NULL pPoolStats);
+
+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
+
+@param allocator Allocator object.
+@param pool Pool.
+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaPool VMA_NOT_NULL pool,
+    size_t* VMA_NULLABLE pLostAllocationCount);
+
+/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
+  `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool);
+
+/** \brief Retrieves name of a custom pool.
+
+After the call `ppName` is either null or points to an internally-owned null-terminated string
+containing name of the pool that was previously set. The pointer becomes invalid when the pool is
+destroyed or its name is changed using vmaSetPoolName().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaPool VMA_NOT_NULL pool,
+    const char* VMA_NULLABLE * VMA_NOT_NULL ppName);
+
+/** \brief Sets name of a custom pool.
+
+`pName` can be either null or pointer to a null-terminated string with new name for the pool.
+Function makes internal copy of the string, so it can be changed or freed immediately after this call.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaPool VMA_NOT_NULL pool,
+    const char* VMA_NULLABLE pName);
+
+/** \struct VmaAllocation
+\brief Represents single memory allocation.
+
+It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
+plus unique offset.
+
+There are multiple ways to create such object.
+You need to fill structure VmaAllocationCreateInfo.
+For more information see [Choosing memory type](@ref choosing_memory_type).
+
+Although the library provides convenience functions that create Vulkan buffer or image,
+allocate memory for it and bind them together,
+binding of the allocation to a buffer or an image is out of scope of the allocation itself.
+Allocation object can exist without buffer/image bound,
+binding can be done manually by the user, and destruction of it can be done
+independently of destruction of the allocation.
+
+The object also remembers its size and some other information.
+To retrieve this information, use function vmaGetAllocationInfo() and inspect
+returned structure VmaAllocationInfo.
+
+Some kinds allocations can be in lost state.
+For more information, see [Lost allocations](@ref lost_allocations).
+*/
+VK_DEFINE_HANDLE(VmaAllocation)
+
+/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
+*/
+typedef struct VmaAllocationInfo {
+    /** \brief Memory type index that this allocation was allocated from.
+    
+    It never changes.
+    */
+    uint32_t memoryType;
+    /** \brief Handle to Vulkan memory object.
+
+    Same memory object can be shared by multiple allocations.
+    
+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+
+    If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
+    */
+    VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
+    /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
+
+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+    */
+    VkDeviceSize offset;
+    /** \brief Size of this allocation, in bytes.
+
+    It never changes, unless allocation is lost.
+    */
+    VkDeviceSize size;
+    /** \brief Pointer to the beginning of this allocation as mapped data.
+
+    If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
+    created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
+
+    It can change after call to vmaMapMemory(), vmaUnmapMemory().
+    It can also change after call to vmaDefragment() if this allocation is passed to the function.
+    */
+    void* VMA_NULLABLE pMappedData;
+    /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
+
+    It can change after call to vmaSetAllocationUserData() for this allocation.
+    */
+    void* VMA_NULLABLE pUserData;
+} VmaAllocationInfo;
+
+/** \brief General purpose memory allocation.
+
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
+    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief General purpose memory allocation for multiple allocation objects at once.
+
+@param allocator Allocator object.
+@param pVkMemoryRequirements Memory requirements for each allocation.
+@param pCreateInfo Creation parameters for each alloction.
+@param allocationCount Number of allocations to make.
+@param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
+@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
+It is just a general purpose allocation function able to make multiple allocations at once.
+It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
+
+All allocations are made using same parameters. All of them are created out of the same memory pool and type.
+If any allocation fails, all allocations already made within this function call are also freed, so that when
+returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+    size_t allocationCount,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
+    VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
+
+/**
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
+    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/// Function similar to vmaAllocateMemoryForBuffer().
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
+    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
+
+Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VmaAllocation VMA_NULLABLE allocation);
+
+/** \brief Frees memory and destroys multiple allocations.
+
+Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
+It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
+vmaAllocateMemoryPages() and other functions.
+It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
+
+Allocations in `pAllocations` array can come from any memory pools and types.
+Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
+    VmaAllocator VMA_NOT_NULL allocator,
+    size_t allocationCount,
+    const VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
+
+/** \brief Deprecated.
+
+\deprecated
+In version 2.2.0 it used to try to change allocation's size without moving or reallocating it.
+In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size.
+Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkDeviceSize newSize);
+
+/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
+
+Current paramters of given allocation are returned in `pAllocationInfo`.
+
+This function also atomically "touches" allocation - marks it as used in current frame,
+just like vmaTouchAllocation().
+If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
+
+Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
+you can avoid calling it too often.
+
+- You can retrieve same VmaAllocationInfo structure while creating your resource, from function
+  vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
+  (e.g. due to defragmentation or allocation becoming lost).
+- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
+
+/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
+
+If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function returns `VK_TRUE` if it's not in lost state, so it can still be used.
+It then also atomically "touches" the allocation - marks it as used in current frame,
+so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
+
+If the allocation is in lost state, the function returns `VK_FALSE`.
+Memory of such allocation, as well as buffer or image bound to it, should not be used.
+Lost allocation and the buffer/image still need to be destroyed.
+
+If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function always returns `VK_TRUE`.
+*/
+VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation);
+
+/** \brief Sets pUserData in given allocation to new value.
+
+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
+pUserData must be either null, or pointer to a null-terminated string. The function
+makes local copy of the string and sets it as allocation's `pUserData`. String
+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
+you can free it after this call. String previously pointed by allocation's
+pUserData is freed from memory.
+
+If the flag was not used, the value of pointer `pUserData` is just copied to
+allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
+as a pointer, ordinal number or some handle to you own data.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    void* VMA_NULLABLE pUserData);
+
+/** \brief Creates new allocation that is in lost state from the beginning.
+
+It can be useful if you need a dummy, non-null allocation.
+
+You still need to destroy created object using vmaFreeMemory().
+
+Returned allocation is not tied to any specific memory pool or memory type and
+not bound to any image or buffer. It has size = 0. It cannot be turned into
+a real, non-empty allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation);
+
+/** \brief Maps memory represented by given allocation and returns pointer to it.
+
+Maps memory represented by given allocation to make it accessible to CPU code.
+When succeeded, `*ppData` contains pointer to first byte of this memory.
+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
+correctly offseted to the beginning of region assigned to this particular
+allocation.
+
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
+multiple times simultaneously, it is safe to call this function on allocations
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
+mapping and unmapped on last unmapping.
+
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
+allocation when mapping is no longer needed or before freeing the allocation, at
+the latest.
+
+It also safe to call this function multiple times on the same allocation. You
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
+
+It is also safe to call this function on allocation created with
+#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
+You must still call vmaUnmapMemory() same number of times as you called
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
+"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
+
+This function fails when used on allocation made in memory type that is not
+`HOST_VISIBLE`.
+
+This function always fails when called for allocation that was created with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
+mapped.
+
+This function doesn't automatically flush or invalidate caches.
+If the allocation is made from a memory types that is not `HOST_COHERENT`,
+you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    void* VMA_NULLABLE * VMA_NOT_NULL ppData);
+
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
+
+For details, see description of vmaMapMemory().
+
+This function doesn't automatically flush or invalidate caches.
+If the allocation is made from a memory types that is not `HOST_COHERENT`,
+you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation);
+
+/** \brief Flushes memory of given allocation.
+
+Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
+It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
+Unmap operation doesn't do that automatically.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+  this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkDeviceSize offset,
+    VkDeviceSize size);
+
+/** \brief Invalidates memory of given allocation.
+
+Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
+It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
+Map operation doesn't do that automatically.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+  They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+  this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkDeviceSize offset,
+    VkDeviceSize size);
+
+/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
+
+@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
+  `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits);
+
+/** \struct VmaDefragmentationContext
+\brief Represents Opaque object that represents started defragmentation process.
+
+Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.
+Call function vmaDefragmentationEnd() to destroy it.
+*/
+VK_DEFINE_HANDLE(VmaDefragmentationContext)
+
+/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.
+typedef enum VmaDefragmentationFlagBits {
+    VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1,
+    VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaDefragmentationFlagBits;
+typedef VkFlags VmaDefragmentationFlags;
+
+/** \brief Parameters for defragmentation.
+
+To be used with function vmaDefragmentationBegin().
+*/
+typedef struct VmaDefragmentationInfo2 {
+    /** \brief Reserved for future use. Should be 0.
+    */
+    VmaDefragmentationFlags flags;
+    /** \brief Number of allocations in `pAllocations` array.
+    */
+    uint32_t allocationCount;
+    /** \brief Pointer to array of allocations that can be defragmented.
+
+    The array should have `allocationCount` elements.
+    The array should not contain nulls.
+    Elements in the array should be unique - same allocation cannot occur twice.
+    It is safe to pass allocations that are in the lost state - they are ignored.
+    All allocations not present in this array are considered non-moveable during this defragmentation.
+    */
+    const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations;
+    /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.
+
+    The array should have `allocationCount` elements.
+    You can pass null if you are not interested in this information.
+    */
+    VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged;
+    /** \brief Numer of pools in `pPools` array.
+    */
+    uint32_t poolCount;
+    /** \brief Either null or pointer to array of pools to be defragmented.
+
+    All the allocations in the specified pools can be moved during defragmentation
+    and there is no way to check if they were really moved as in `pAllocationsChanged`,
+    so you must query all the allocations in all these pools for new `VkDeviceMemory`
+    and offset using vmaGetAllocationInfo() if you might need to recreate buffers
+    and images bound to them.
+
+    The array should have `poolCount` elements.
+    The array should not contain nulls.
+    Elements in the array should be unique - same pool cannot occur twice.
+
+    Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.
+    It might be more efficient.
+    */
+    const VmaPool VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools;
+    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.
+    
+    `VK_WHOLE_SIZE` means no limit.
+    */
+    VkDeviceSize maxCpuBytesToMove;
+    /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.
+
+    `UINT32_MAX` means no limit.
+    */
+    uint32_t maxCpuAllocationsToMove;
+    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.
+    
+    `VK_WHOLE_SIZE` means no limit.
+    */
+    VkDeviceSize maxGpuBytesToMove;
+    /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.
+
+    `UINT32_MAX` means no limit.
+    */
+    uint32_t maxGpuAllocationsToMove;
+    /** \brief Optional. Command buffer where GPU copy commands will be posted.
+
+    If not null, it must be a valid command buffer handle that supports Transfer queue type.
+    It must be in the recording state and outside of a render pass instance.
+    You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().
+
+    Passing null means that only CPU defragmentation will be performed.
+    */
+    VkCommandBuffer VMA_NULLABLE_NON_DISPATCHABLE commandBuffer;
+} VmaDefragmentationInfo2;
+
+typedef struct VmaDefragmentationPassMoveInfo {
+    VmaAllocation VMA_NOT_NULL allocation;
+    VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory;
+    VkDeviceSize offset;
+} VmaDefragmentationPassMoveInfo;
+
+/** \brief Parameters for incremental defragmentation steps.
+
+To be used with function vmaBeginDefragmentationPass().
+*/
+typedef struct VmaDefragmentationPassInfo {
+    uint32_t moveCount;
+    VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
+} VmaDefragmentationPassInfo;
+
+/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().
+
+\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
+*/
+typedef struct VmaDefragmentationInfo {
+    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
+    
+    Default is `VK_WHOLE_SIZE`, which means no limit.
+    */
+    VkDeviceSize maxBytesToMove;
+    /** \brief Maximum number of allocations that can be moved to different place.
+
+    Default is `UINT32_MAX`, which means no limit.
+    */
+    uint32_t maxAllocationsToMove;
+} VmaDefragmentationInfo;
+
+/** \brief Statistics returned by function vmaDefragment(). */
+typedef struct VmaDefragmentationStats {
+    /// Total number of bytes that have been copied while moving allocations to different places.
+    VkDeviceSize bytesMoved;
+    /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
+    VkDeviceSize bytesFreed;
+    /// Number of allocations that have been moved to different places.
+    uint32_t allocationsMoved;
+    /// Number of empty `VkDeviceMemory` objects that have been released to the system.
+    uint32_t deviceMemoryBlocksFreed;
+} VmaDefragmentationStats;
+
+/** \brief Begins defragmentation process.
+
+@param allocator Allocator object.
+@param pInfo Structure filled with parameters of defragmentation.
+@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.
+@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.
+@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.
+
+Use this function instead of old, deprecated vmaDefragment().
+
+Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():
+
+- You should not use any of allocations passed as `pInfo->pAllocations` or
+  any allocations that belong to pools passed as `pInfo->pPools`,
+  including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access
+  their data.
+- Some mutexes protecting internal data structures may be locked, so trying to
+  make or free any allocations, bind buffers or images, map memory, or launch
+  another simultaneous defragmentation in between may cause stall (when done on
+  another thread) or deadlock (when done on the same thread), unless you are
+  100% sure that defragmented allocations are in different pools.
+- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.
+  They become valid after call to vmaDefragmentationEnd().
+- If `pInfo->commandBuffer` is not null, you must submit that command buffer
+  and make sure it finished execution before calling vmaDefragmentationEnd().
+
+For more information and important limitations regarding defragmentation, see documentation chapter:
+[Defragmentation](@ref defragmentation).
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo,
+    VmaDefragmentationStats* VMA_NULLABLE pStats,
+    VmaDefragmentationContext VMA_NULLABLE * VMA_NOT_NULL pContext);
+
+/** \brief Ends defragmentation process.
+
+Use this function to finish defragmentation started by vmaDefragmentationBegin().
+It is safe to pass `context == null`. The function then does nothing.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaDefragmentationContext VMA_NULLABLE context);
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaDefragmentationContext VMA_NULLABLE context,
+    VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo
+);
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaDefragmentationContext VMA_NULLABLE context
+);
+
+/** \brief Deprecated. Compacts memory by moving allocations.
+
+@param pAllocations Array of allocations that can be moved during this compation.
+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
+@return `VK_SUCCESS` if completed, negative error code in case of error.
+
+\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
+
+This function works by moving allocations to different places (different
+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
+usage. Only allocations that are in `pAllocations` array can be moved. All other
+allocations are considered nonmovable in this call. Basic rules:
+
+- Only allocations made in memory types that have
+  `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`
+  flags can be compacted. You may pass other allocations but it makes no sense -
+  these will never be moved.
+- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or
+  #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations
+  passed to this function that come from such pools are ignored.
+- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or
+  created as dedicated allocations for any other reason are also ignored.
+- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
+  flag can be compacted. If not persistently mapped, memory will be mapped
+  temporarily inside this function if needed.
+- You must not pass same #VmaAllocation object multiple times in `pAllocations` array.
+
+The function also frees empty `VkDeviceMemory` blocks.
+
+Warning: This function may be time-consuming, so you shouldn't call it too often
+(like after every resource creation/destruction).
+You can call it on special occasions (like when reloading a game level or
+when you just destroyed a lot of objects). Calling it every frame may be OK, but
+you should measure that on your platform.
+
+For more information, see [Defragmentation](@ref defragmentation) chapter.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VmaAllocation VMA_NOT_NULL * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
+    size_t allocationCount,
+    VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged,
+    const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo,
+    VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats);
+
+/** \brief Binds buffer to allocation.
+
+Binds specified buffer to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create a buffer, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindBufferMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateBuffer() instead of this one.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
+
+/** \brief Binds buffer to allocation with additional parameters.
+
+@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
+@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
+or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkDeviceSize allocationLocalOffset,
+    VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
+    const void* VMA_NULLABLE pNext);
+
+/** \brief Binds image to allocation.
+
+Binds specified image to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create an image, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindImageMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateImage() instead of this one.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
+
+/** \brief Binds image to allocation with additional parameters.
+
+@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
+@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindImageMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
+or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VmaAllocation VMA_NOT_NULL allocation,
+    VkDeviceSize allocationLocalOffset,
+    VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
+    const void* VMA_NULLABLE pNext);
+
+/**
+@param[out] pBuffer Buffer that was created.
+@param[out] pAllocation Allocation that was created.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+This function automatically:
+
+-# Creates buffer.
+-# Allocates appropriate memory for it.
+-# Binds the buffer with the memory.
+
+If any of these operations fail, buffer and allocation are not created,
+returned value is negative error code, *pBuffer and *pAllocation are null.
+
+If the function succeeded, you must destroy both buffer and allocation when you
+no longer need them using either convenience function vmaDestroyBuffer() or
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
+
+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
+it requires or prefers the new buffer to have dedicated allocation. If yes,
+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
+allocation for this buffer, just like when using
+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pBuffer,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
+    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Destroys Vulkan buffer and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyBuffer(device, buffer, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as buffer and/or allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
+    VmaAllocation VMA_NULLABLE allocation);
+
+/// Function similar to vmaCreateBuffer().
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
+    VmaAllocator VMA_NOT_NULL allocator,
+    const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+    const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+    VkImage VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pImage,
+    VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
+    VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Destroys Vulkan image and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyImage(device, image, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as image and/or allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
+    VmaAllocator VMA_NOT_NULL allocator,
+    VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
+    VmaAllocation VMA_NULLABLE allocation);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+// For Visual Studio IntelliSense.
+#if defined(__cplusplus) && defined(__INTELLISENSE__)
+#define VMA_IMPLEMENTATION
+#endif
+
+#ifdef VMA_IMPLEMENTATION
+#undef VMA_IMPLEMENTATION
+
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <utility>
+
+/*******************************************************************************
+CONFIGURATION SECTION
+
+Define some of these macros before each #include of this header or change them
+here if you need other then default behavior depending on your environment.
+*/
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+    vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+*/
+#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
+    #define VMA_STATIC_VULKAN_FUNCTIONS 1
+#endif
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+    vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(m_hDevice, vkAllocateMemory);
+*/
+#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
+    #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
+#endif
+
+// Define this macro to 1 to make the library use STL containers instead of its own implementation.
+//#define VMA_USE_STL_CONTAINERS 1
+
+/* Set this macro to 1 to make the library including and using STL containers:
+std::pair, std::vector, std::list, std::unordered_map.
+
+Set it to 0 or undefined to make the library using its own implementation of
+the containers.
+*/
+#if VMA_USE_STL_CONTAINERS
+   #define VMA_USE_STL_VECTOR 1
+   #define VMA_USE_STL_UNORDERED_MAP 1
+   #define VMA_USE_STL_LIST 1
+#endif
+
+#ifndef VMA_USE_STL_SHARED_MUTEX
+    // Compiler conforms to C++17.
+    #if __cplusplus >= 201703L
+        #define VMA_USE_STL_SHARED_MUTEX 1
+    // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
+    // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
+    // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/
+    #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
+        #define VMA_USE_STL_SHARED_MUTEX 1
+    #else
+        #define VMA_USE_STL_SHARED_MUTEX 0
+    #endif
+#endif
+
+/*
+THESE INCLUDES ARE NOT ENABLED BY DEFAULT.
+Library has its own container implementation.
+*/
+#if VMA_USE_STL_VECTOR
+   #include <vector>
+#endif
+
+#if VMA_USE_STL_UNORDERED_MAP
+   #include <unordered_map>
+#endif
+
+#if VMA_USE_STL_LIST
+   #include <list>
+#endif
+
+/*
+Following headers are used in this CONFIGURATION section only, so feel free to
+remove them if not needed.
+*/
+#include <cassert> // for assert
+#include <algorithm> // for min, max
+#include <mutex>
+
+#ifndef VMA_NULL
+   // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
+   #define VMA_NULL   nullptr
+#endif
+
+#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
+#include <cstdlib>
+void *aligned_alloc(size_t alignment, size_t size)
+{
+    // alignment must be >= sizeof(void*)
+    if(alignment < sizeof(void*))
+    {
+        alignment = sizeof(void*);
+    }
+
+    return memalign(alignment, size);
+}
+#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
+#include <cstdlib>
+void *aligned_alloc(size_t alignment, size_t size)
+{
+    // alignment must be >= sizeof(void*)
+    if(alignment < sizeof(void*))
+    {
+        alignment = sizeof(void*);
+    }
+
+    void *pointer;
+    if(posix_memalign(&pointer, alignment, size) == 0)
+        return pointer;
+    return VMA_NULL;
+}
+#endif
+
+// If your compiler is not compatible with C++11 and definition of
+// aligned_alloc() function is missing, uncommeting following line may help:
+
+//#include <malloc.h>
+
+// Normal assert to check for programmer's errors, especially in Debug configuration.
+#ifndef VMA_ASSERT
+   #ifdef NDEBUG
+       #define VMA_ASSERT(expr)
+   #else
+       #define VMA_ASSERT(expr)         assert(expr)
+   #endif
+#endif
+
+// Assert that will be called very often, like inside data structures e.g. operator[].
+// Making it non-empty can make program slow.
+#ifndef VMA_HEAVY_ASSERT
+   #ifdef NDEBUG
+       #define VMA_HEAVY_ASSERT(expr)
+   #else
+       #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)
+   #endif
+#endif
+
+#ifndef VMA_ALIGN_OF
+   #define VMA_ALIGN_OF(type)       (__alignof(type))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
+   #if defined(_WIN32)
+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (_aligned_malloc((size), (alignment)))
+   #else
+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (aligned_alloc((alignment), (size) ))
+   #endif
+#endif
+
+#ifndef VMA_SYSTEM_FREE
+   #if defined(_WIN32)
+       #define VMA_SYSTEM_FREE(ptr)   _aligned_free(ptr)
+   #else
+       #define VMA_SYSTEM_FREE(ptr)   free(ptr)
+   #endif
+#endif
+
+#ifndef VMA_MIN
+   #define VMA_MIN(v1, v2)    (std::min((v1), (v2)))
+#endif
+
+#ifndef VMA_MAX
+   #define VMA_MAX(v1, v2)    (std::max((v1), (v2)))
+#endif
+
+#ifndef VMA_SWAP
+   #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))
+#endif
+
+#ifndef VMA_SORT
+   #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)
+#endif
+
+#ifndef VMA_DEBUG_LOG
+   #define VMA_DEBUG_LOG(format, ...)
+   /*
+   #define VMA_DEBUG_LOG(format, ...) do { \
+       printf(format, __VA_ARGS__); \
+       printf("\n"); \
+   } while(false)
+   */
+#endif
+
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
+#if VMA_STATS_STRING_ENABLED
+    static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
+    {
+        snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
+    }
+    static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
+    {
+        snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
+    }
+    static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
+    {
+        snprintf(outStr, strLen, "%p", ptr);
+    }
+#endif
+
+#ifndef VMA_MUTEX
+    class VmaMutex
+    {
+    public:
+        void Lock() { m_Mutex.lock(); }
+        void Unlock() { m_Mutex.unlock(); }
+        bool TryLock() { return m_Mutex.try_lock(); }
+    private:
+        std::mutex m_Mutex;
+    };
+    #define VMA_MUTEX VmaMutex
+#endif
+
+// Read-write mutex, where "read" is shared access, "write" is exclusive access.
+#ifndef VMA_RW_MUTEX
+    #if VMA_USE_STL_SHARED_MUTEX
+        // Use std::shared_mutex from C++17.
+        #include <shared_mutex>
+        class VmaRWMutex
+        {
+        public:
+            void LockRead() { m_Mutex.lock_shared(); }
+            void UnlockRead() { m_Mutex.unlock_shared(); }
+            bool TryLockRead() { return m_Mutex.try_lock_shared(); }
+            void LockWrite() { m_Mutex.lock(); }
+            void UnlockWrite() { m_Mutex.unlock(); }
+            bool TryLockWrite() { return m_Mutex.try_lock(); }
+        private:
+            std::shared_mutex m_Mutex;
+        };
+        #define VMA_RW_MUTEX VmaRWMutex
+    #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
+        // Use SRWLOCK from WinAPI.
+        // Minimum supported client = Windows Vista, server = Windows Server 2008.
+        class VmaRWMutex
+        {
+        public:
+            VmaRWMutex() { InitializeSRWLock(&m_Lock); }
+            void LockRead() { AcquireSRWLockShared(&m_Lock); }
+            void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
+            bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
+            void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
+            void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
+            bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
+        private:
+            SRWLOCK m_Lock;
+        };
+        #define VMA_RW_MUTEX VmaRWMutex
+    #else
+        // Less efficient fallback: Use normal mutex.
+        class VmaRWMutex
+        {
+        public:
+            void LockRead() { m_Mutex.Lock(); }
+            void UnlockRead() { m_Mutex.Unlock(); }
+            bool TryLockRead() { return m_Mutex.TryLock(); }
+            void LockWrite() { m_Mutex.Lock(); }
+            void UnlockWrite() { m_Mutex.Unlock(); }
+            bool TryLockWrite() { return m_Mutex.TryLock(); }
+        private:
+            VMA_MUTEX m_Mutex;
+        };
+        #define VMA_RW_MUTEX VmaRWMutex
+    #endif // #if VMA_USE_STL_SHARED_MUTEX
+#endif // #ifndef VMA_RW_MUTEX
+
+/*
+If providing your own implementation, you need to implement a subset of std::atomic.
+*/
+#ifndef VMA_ATOMIC_UINT32
+    #include <atomic>
+    #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
+#endif
+
+#ifndef VMA_ATOMIC_UINT64
+    #include <atomic>
+    #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
+#endif
+
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
+    /**
+    Every allocation will have its own memory block.
+    Define to 1 for debugging purposes only.
+    */
+    #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
+#endif
+
+#ifndef VMA_DEBUG_ALIGNMENT
+    /**
+    Minimum alignment of all allocations, in bytes.
+    Set to more than 1 for debugging purposes only. Must be power of two.
+    */
+    #define VMA_DEBUG_ALIGNMENT (1)
+#endif
+
+#ifndef VMA_DEBUG_MARGIN
+    /**
+    Minimum margin before and after every allocation, in bytes.
+    Set nonzero for debugging purposes only.
+    */
+    #define VMA_DEBUG_MARGIN (0)
+#endif
+
+#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
+    /**
+    Define this macro to 1 to automatically fill new allocations and destroyed
+    allocations with some bit pattern.
+    */
+    #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
+#endif
+
+#ifndef VMA_DEBUG_DETECT_CORRUPTION
+    /**
+    Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
+    enable writing magic value to the margin before and after every allocation and
+    validating it, so that memory corruptions (out-of-bounds writes) are detected.
+    */
+    #define VMA_DEBUG_DETECT_CORRUPTION (0)
+#endif
+
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
+    /**
+    Set this to 1 for debugging purposes only, to enable single mutex protecting all
+    entry calls to the library. Can be useful for debugging multithreading issues.
+    */
+    #define VMA_DEBUG_GLOBAL_MUTEX (0)
+#endif
+
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
+    /**
+    Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
+    Set to more than 1 for debugging purposes only. Must be power of two.
+    */
+    #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
+#endif
+
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
+   /// Maximum size of a memory heap in Vulkan to consider it "small".
+   #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
+   /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
+   #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_CLASS_NO_COPY
+    #define VMA_CLASS_NO_COPY(className) \
+        private: \
+            className(const className&) = delete; \
+            className& operator=(const className&) = delete;
+#endif
+
+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
+
+// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
+static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
+
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED   = 0xDC;
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
+
+/*******************************************************************************
+END OF CONFIGURATION
+*/
+
+// # Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
+
+static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
+static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
+static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
+
+static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
+
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
+    VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
+
+// Returns number of bits set to 1 in (v).
+static inline uint32_t VmaCountBitsSet(uint32_t v)
+{
+	uint32_t c = v - ((v >> 1) & 0x55555555);
+	c = ((c >>  2) & 0x33333333) + (c & 0x33333333);
+	c = ((c >>  4) + c) & 0x0F0F0F0F;
+	c = ((c >>  8) + c) & 0x00FF00FF;
+	c = ((c >> 16) + c) & 0x0000FFFF;
+	return c;
+}
+
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignUp(T val, T align)
+{
+	return (val + align - 1) / align * align;
+}
+// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignDown(T val, T align)
+{
+    return val / align * align;
+}
+
+// Division with mathematical rounding to nearest number.
+template <typename T>
+static inline T VmaRoundDiv(T x, T y)
+{
+	return (x + (y / (T)2)) / y;
+}
+
+/*
+Returns true if given number is a power of two.
+T must be unsigned integer number or signed integer but always nonnegative.
+For 0 returns true.
+*/
+template <typename T>
+inline bool VmaIsPow2(T x)
+{
+    return (x & (x-1)) == 0;
+}
+
+// Returns smallest power of 2 greater or equal to v.
+static inline uint32_t VmaNextPow2(uint32_t v)
+{
+	v--;
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    v++;
+    return v;
+}
+static inline uint64_t VmaNextPow2(uint64_t v)
+{
+	v--;
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    v |= v >> 32;
+    v++;
+    return v;
+}
+
+// Returns largest power of 2 less or equal to v.
+static inline uint32_t VmaPrevPow2(uint32_t v)
+{
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    v = v ^ (v >> 1);
+    return v;
+}
+static inline uint64_t VmaPrevPow2(uint64_t v)
+{
+    v |= v >> 1;
+    v |= v >> 2;
+    v |= v >> 4;
+    v |= v >> 8;
+    v |= v >> 16;
+    v |= v >> 32;
+    v = v ^ (v >> 1);
+    return v;
+}
+
+static inline bool VmaStrIsEmpty(const char* pStr)
+{
+    return pStr == VMA_NULL || *pStr == '\0';
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+static const char* VmaAlgorithmToStr(uint32_t algorithm)
+{
+    switch(algorithm)
+    {
+    case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
+        return "Linear";
+    case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
+        return "Buddy";
+    case 0:
+        return "Default";
+    default:
+        VMA_ASSERT(0);
+        return "";
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+#ifndef VMA_SORT
+
+template<typename Iterator, typename Compare>
+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
+{
+    Iterator centerValue = end; --centerValue;
+    Iterator insertIndex = beg;
+    for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
+    {
+        if(cmp(*memTypeIndex, *centerValue))
+        {
+            if(insertIndex != memTypeIndex)
+            {
+                VMA_SWAP(*memTypeIndex, *insertIndex);
+            }
+            ++insertIndex;
+        }
+    }
+    if(insertIndex != centerValue)
+    {
+        VMA_SWAP(*insertIndex, *centerValue);
+    }
+    return insertIndex;
+}
+
+template<typename Iterator, typename Compare>
+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
+{
+    if(beg < end)
+    {
+        Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
+        VmaQuickSort<Iterator, Compare>(beg, it, cmp);
+        VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
+    }
+}
+
+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
+
+#endif // #ifndef VMA_SORT
+
+/*
+Returns true if two memory blocks occupy overlapping pages.
+ResourceA must be in less memory offset than ResourceB.
+
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
+*/
+static inline bool VmaBlocksOnSamePage(
+    VkDeviceSize resourceAOffset,
+    VkDeviceSize resourceASize,
+    VkDeviceSize resourceBOffset,
+    VkDeviceSize pageSize)
+{
+    VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
+    VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
+    VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
+    VkDeviceSize resourceBStart = resourceBOffset;
+    VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
+    return resourceAEndPage == resourceBStartPage;
+}
+
+enum VmaSuballocationType
+{
+    VMA_SUBALLOCATION_TYPE_FREE = 0,
+    VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
+    VMA_SUBALLOCATION_TYPE_BUFFER = 2,
+    VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
+    VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
+    VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
+    VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
+};
+
+/*
+Returns true if given suballocation types could conflict and must respect
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
+or linear image and another one is optimal image. If type is unknown, behave
+conservatively.
+*/
+static inline bool VmaIsBufferImageGranularityConflict(
+    VmaSuballocationType suballocType1,
+    VmaSuballocationType suballocType2)
+{
+    if(suballocType1 > suballocType2)
+    {
+        VMA_SWAP(suballocType1, suballocType2);
+    }
+    
+    switch(suballocType1)
+    {
+    case VMA_SUBALLOCATION_TYPE_FREE:
+        return false;
+    case VMA_SUBALLOCATION_TYPE_UNKNOWN:
+        return true;
+    case VMA_SUBALLOCATION_TYPE_BUFFER:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
+        return false;
+    default:
+        VMA_ASSERT(0);
+        return true;
+    }
+}
+
+static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+    uint32_t* pDst = (uint32_t*)((char*)pData + offset);
+    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+    for(size_t i = 0; i < numberCount; ++i, ++pDst)
+    {
+        *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
+    }
+#else
+    // no-op
+#endif
+}
+
+static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+    const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
+    const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+    for(size_t i = 0; i < numberCount; ++i, ++pSrc)
+    {
+        if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
+        {
+            return false;
+        }
+    }
+#endif
+    return true;
+}
+
+/*
+Fills structure with parameters of an example buffer to be used for transfers
+during GPU memory defragmentation.
+*/
+static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
+{
+    memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
+    outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
+    outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+    outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
+}
+
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
+struct VmaMutexLock
+{
+    VMA_CLASS_NO_COPY(VmaMutexLock)
+public:
+    VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
+        m_pMutex(useMutex ? &mutex : VMA_NULL)
+    { if(m_pMutex) { m_pMutex->Lock(); } }
+    ~VmaMutexLock()
+    { if(m_pMutex) { m_pMutex->Unlock(); } }
+private:
+    VMA_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
+struct VmaMutexLockRead
+{
+    VMA_CLASS_NO_COPY(VmaMutexLockRead)
+public:
+    VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
+        m_pMutex(useMutex ? &mutex : VMA_NULL)
+    { if(m_pMutex) { m_pMutex->LockRead(); } }
+    ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } }
+private:
+    VMA_RW_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
+struct VmaMutexLockWrite
+{
+    VMA_CLASS_NO_COPY(VmaMutexLockWrite)
+public:
+    VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) :
+        m_pMutex(useMutex ? &mutex : VMA_NULL)
+    { if(m_pMutex) { m_pMutex->LockWrite(); } }
+    ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } }
+private:
+    VMA_RW_MUTEX* m_pMutex;
+};
+
+#if VMA_DEBUG_GLOBAL_MUTEX
+    static VMA_MUTEX gDebugGlobalMutex;
+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
+#else
+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
+#endif
+
+// Minimum size of a free suballocation to register it in the free suballocation collection.
+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
+
+/*
+Performs binary search and returns iterator to first element that is greater or
+equal to (key), according to comparison (cmp).
+
+Cmp should return true if first argument is less than second argument.
+
+Returned value is the found element, if present in the collection or place where
+new element with value (key) should be inserted.
+*/
+template <typename CmpLess, typename IterT, typename KeyT>
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp)
+{
+    size_t down = 0, up = (end - beg);
+    while(down < up)
+    {
+        const size_t mid = (down + up) / 2;
+        if(cmp(*(beg+mid), key))
+        {
+            down = mid + 1;
+        }
+        else
+        {
+            up = mid;
+        }
+    }
+    return beg + down;
+}
+
+template<typename CmpLess, typename IterT, typename KeyT>
+IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
+{
+    IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
+        beg, end, value, cmp);
+    if(it == end ||
+        (!cmp(*it, value) && !cmp(value, *it)))
+    {
+        return it;
+    }
+    return end;
+}
+
+/*
+Returns true if all pointers in the array are not-null and unique.
+Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
+T must be pointer type, e.g. VmaAllocation, VmaPool.
+*/
+template<typename T>
+static bool VmaValidatePointerArray(uint32_t count, const T* arr)
+{
+    for(uint32_t i = 0; i < count; ++i)
+    {
+        const T iPtr = arr[i];
+        if(iPtr == VMA_NULL)
+        {
+            return false;
+        }
+        for(uint32_t j = i + 1; j < count; ++j)
+        {
+            if(iPtr == arr[j])
+            {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+template<typename MainT, typename NewT>
+static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
+{
+    newStruct->pNext = mainStruct->pNext;
+    mainStruct->pNext = newStruct;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation
+
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
+{
+    if((pAllocationCallbacks != VMA_NULL) &&
+        (pAllocationCallbacks->pfnAllocation != VMA_NULL))
+    {
+        return (*pAllocationCallbacks->pfnAllocation)(
+            pAllocationCallbacks->pUserData,
+            size,
+            alignment,
+            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+    }
+    else
+    {
+        return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
+    }
+}
+
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
+{
+    if((pAllocationCallbacks != VMA_NULL) &&
+        (pAllocationCallbacks->pfnFree != VMA_NULL))
+    {
+        (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
+    }
+    else
+    {
+        VMA_SYSTEM_FREE(ptr);
+    }
+}
+
+template<typename T>
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
+{
+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+#define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)
+
+#define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)
+
+template<typename T>
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
+{
+    ptr->~T();
+    VmaFree(pAllocationCallbacks, ptr);
+}
+
+template<typename T>
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
+{
+    if(ptr != VMA_NULL)
+    {
+        for(size_t i = count; i--; )
+        {
+            ptr[i].~T();
+        }
+        VmaFree(pAllocationCallbacks, ptr);
+    }
+}
+
+static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
+{
+    if(srcStr != VMA_NULL)
+    {
+        const size_t len = strlen(srcStr);
+        char* const result = vma_new_array(allocs, char, len + 1);
+        memcpy(result, srcStr, len + 1);
+        return result;
+    }
+    else
+    {
+        return VMA_NULL;
+    }
+}
+
+static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
+{
+    if(str != VMA_NULL)
+    {
+        const size_t len = strlen(str);
+        vma_delete_array(allocs, str, len + 1);
+    }
+}
+
+// STL-compatible allocator.
+template<typename T>
+class VmaStlAllocator
+{
+public:
+    const VkAllocationCallbacks* const m_pCallbacks;
+    typedef T value_type;
+    
+    VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
+    template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
+
+    T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
+    void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
+
+    template<typename U>
+    bool operator==(const VmaStlAllocator<U>& rhs) const
+    {
+        return m_pCallbacks == rhs.m_pCallbacks;
+    }
+    template<typename U>
+    bool operator!=(const VmaStlAllocator<U>& rhs) const
+    {
+        return m_pCallbacks != rhs.m_pCallbacks;
+    }
+
+    VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
+};
+
+#if VMA_USE_STL_VECTOR
+
+#define VmaVector std::vector
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
+{
+    vec.insert(vec.begin() + index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
+{
+    vec.erase(vec.begin() + index);
+}
+
+#else // #if VMA_USE_STL_VECTOR
+
+/* Class with interface compatible with subset of std::vector.
+T must be POD because constructors and destructors are not called and memcpy is
+used for these objects. */
+template<typename T, typename AllocatorT>
+class VmaVector
+{
+public:
+    typedef T value_type;
+
+    VmaVector(const AllocatorT& allocator) :
+        m_Allocator(allocator),
+        m_pArray(VMA_NULL),
+        m_Count(0),
+        m_Capacity(0)
+    {
+    }
+
+    VmaVector(size_t count, const AllocatorT& allocator) :
+        m_Allocator(allocator),
+        m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
+        m_Count(count),
+        m_Capacity(count)
+    {
+    }
+    
+    // This version of the constructor is here for compatibility with pre-C++14 std::vector.
+    // value is unused.
+    VmaVector(size_t count, const T& value, const AllocatorT& allocator)
+        : VmaVector(count, allocator) {}
+    
+    VmaVector(const VmaVector<T, AllocatorT>& src) :
+        m_Allocator(src.m_Allocator),
+        m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
+        m_Count(src.m_Count),
+        m_Capacity(src.m_Count)
+    {
+        if(m_Count != 0)
+        {
+            memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
+        }
+    }
+    
+    ~VmaVector()
+    {
+        VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+    }
+
+    VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
+    {
+        if(&rhs != this)
+        {
+            resize(rhs.m_Count);
+            if(m_Count != 0)
+            {
+                memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
+            }
+        }
+        return *this;
+    }
+    
+    bool empty() const { return m_Count == 0; }
+    size_t size() const { return m_Count; }
+    T* data() { return m_pArray; }
+    const T* data() const { return m_pArray; }
+    
+    T& operator[](size_t index)
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        return m_pArray[index];
+    }
+    const T& operator[](size_t index) const
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        return m_pArray[index];
+    }
+
+    T& front()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[0];
+    }
+    const T& front() const
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[0];
+    }
+    T& back()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[m_Count - 1];
+    }
+    const T& back() const
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[m_Count - 1];
+    }
+
+    void reserve(size_t newCapacity, bool freeMemory = false)
+    {
+        newCapacity = VMA_MAX(newCapacity, m_Count);
+        
+        if((newCapacity < m_Capacity) && !freeMemory)
+        {
+            newCapacity = m_Capacity;
+        }
+        
+        if(newCapacity != m_Capacity)
+        {
+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
+            if(m_Count != 0)
+            {
+                memcpy(newArray, m_pArray, m_Count * sizeof(T));
+            }
+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+            m_Capacity = newCapacity;
+            m_pArray = newArray;
+        }
+    }
+
+    void resize(size_t newCount, bool freeMemory = false)
+    {
+        size_t newCapacity = m_Capacity;
+        if(newCount > m_Capacity)
+        {
+            newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
+        }
+        else if(freeMemory)
+        {
+            newCapacity = newCount;
+        }
+
+        if(newCapacity != m_Capacity)
+        {
+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
+            const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
+            if(elementsToCopy != 0)
+            {
+                memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
+            }
+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+            m_Capacity = newCapacity;
+            m_pArray = newArray;
+        }
+
+        m_Count = newCount;
+    }
+
+    void clear(bool freeMemory = false)
+    {
+        resize(0, freeMemory);
+    }
+
+    void insert(size_t index, const T& src)
+    {
+        VMA_HEAVY_ASSERT(index <= m_Count);
+        const size_t oldCount = size();
+        resize(oldCount + 1);
+        if(index < oldCount)
+        {
+            memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
+        }
+        m_pArray[index] = src;
+    }
+
+    void remove(size_t index)
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        const size_t oldCount = size();
+        if(index < oldCount - 1)
+        {
+            memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
+        }
+        resize(oldCount - 1);
+    }
+
+    void push_back(const T& src)
+    {
+        const size_t newIndex = size();
+        resize(newIndex + 1);
+        m_pArray[newIndex] = src;
+    }
+
+    void pop_back()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        resize(size() - 1);
+    }
+
+    void push_front(const T& src)
+    {
+        insert(0, src);
+    }
+
+    void pop_front()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        remove(0);
+    }
+
+    typedef T* iterator;
+
+    iterator begin() { return m_pArray; }
+    iterator end() { return m_pArray + m_Count; }
+
+private:
+    AllocatorT m_Allocator;
+    T* m_pArray;
+    size_t m_Count;
+    size_t m_Capacity;
+};
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
+{
+    vec.insert(index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
+{
+    vec.remove(index);
+}
+
+#endif // #if VMA_USE_STL_VECTOR
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+        vector.data(),
+        vector.data() + vector.size(),
+        value,
+        CmpLess()) - vector.data();
+    VmaVectorInsert(vector, indexToInsert, value);
+    return indexToInsert;
+}
+
+template<typename CmpLess, typename VectorT>
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+    CmpLess comparator;
+    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+        vector.begin(),
+        vector.end(),
+        value,
+        comparator);
+    if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
+    {
+        size_t indexToRemove = it - vector.begin();
+        VmaVectorRemove(vector, indexToRemove);
+        return true;
+    }
+    return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaPoolAllocator
+
+/*
+Allocator for objects of type T using a list of arrays (pools) to speed up
+allocation. Number of elements that can be allocated is not bounded because
+allocator can create multiple blocks.
+*/
+template<typename T>
+class VmaPoolAllocator
+{
+    VMA_CLASS_NO_COPY(VmaPoolAllocator)
+public:
+    VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
+    ~VmaPoolAllocator();
+    template<typename... Types> T* Alloc(Types... args);
+    void Free(T* ptr);
+
+private:
+    union Item
+    {
+        uint32_t NextFreeIndex;
+        alignas(T) char Value[sizeof(T)];
+    };
+
+    struct ItemBlock
+    {
+        Item* pItems;
+        uint32_t Capacity;
+        uint32_t FirstFreeIndex;
+    };
+    
+    const VkAllocationCallbacks* m_pAllocationCallbacks;
+    const uint32_t m_FirstBlockCapacity;
+    VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
+
+    ItemBlock& CreateNewBlock();
+};
+
+template<typename T>
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) :
+    m_pAllocationCallbacks(pAllocationCallbacks),
+    m_FirstBlockCapacity(firstBlockCapacity),
+    m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
+{
+    VMA_ASSERT(m_FirstBlockCapacity > 1);
+}
+
+template<typename T>
+VmaPoolAllocator<T>::~VmaPoolAllocator()
+{
+    for(size_t i = m_ItemBlocks.size(); i--; )
+        vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
+    m_ItemBlocks.clear();
+}
+
+template<typename T>
+template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types... args)
+{
+    for(size_t i = m_ItemBlocks.size(); i--; )
+    {
+        ItemBlock& block = m_ItemBlocks[i];
+        // This block has some free items: Use first one.
+        if(block.FirstFreeIndex != UINT32_MAX)
+        {
+            Item* const pItem = &block.pItems[block.FirstFreeIndex];
+            block.FirstFreeIndex = pItem->NextFreeIndex;
+            T* result = (T*)&pItem->Value;
+            new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
+            return result;
+        }
+    }
+
+    // No block has free item: Create new one and use it.
+    ItemBlock& newBlock = CreateNewBlock();
+    Item* const pItem = &newBlock.pItems[0];
+    newBlock.FirstFreeIndex = pItem->NextFreeIndex;
+    T* result = (T*)&pItem->Value;
+    new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
+    return result;
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Free(T* ptr)
+{
+    // Search all memory blocks to find ptr.
+    for(size_t i = m_ItemBlocks.size(); i--; )
+    {
+        ItemBlock& block = m_ItemBlocks[i];
+        
+        // Casting to union.
+        Item* pItemPtr;
+        memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
+        
+        // Check if pItemPtr is in address range of this block.
+        if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
+        {
+            ptr->~T(); // Explicit destructor call.
+            const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
+            pItemPtr->NextFreeIndex = block.FirstFreeIndex;
+            block.FirstFreeIndex = index;
+            return;
+        }
+    }
+    VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
+}
+
+template<typename T>
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
+{
+    const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
+        m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
+
+    const ItemBlock newBlock = {
+        vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
+        newBlockCapacity,
+        0 };
+
+    m_ItemBlocks.push_back(newBlock);
+
+    // Setup singly-linked list of all free items in this block.
+    for(uint32_t i = 0; i < newBlockCapacity - 1; ++i)
+        newBlock.pItems[i].NextFreeIndex = i + 1;
+    newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
+    return m_ItemBlocks.back();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaRawList, VmaList
+
+#if VMA_USE_STL_LIST
+
+#define VmaList std::list
+
+#else // #if VMA_USE_STL_LIST
+
+template<typename T>
+struct VmaListItem
+{
+    VmaListItem* pPrev;
+    VmaListItem* pNext;
+    T Value;
+};
+
+// Doubly linked list.
+template<typename T>
+class VmaRawList
+{
+    VMA_CLASS_NO_COPY(VmaRawList)
+public:
+    typedef VmaListItem<T> ItemType;
+
+    VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
+    ~VmaRawList();
+    void Clear();
+
+    size_t GetCount() const { return m_Count; }
+    bool IsEmpty() const { return m_Count == 0; }
+
+    ItemType* Front() { return m_pFront; }
+    const ItemType* Front() const { return m_pFront; }
+    ItemType* Back() { return m_pBack; }
+    const ItemType* Back() const { return m_pBack; }
+
+    ItemType* PushBack();
+    ItemType* PushFront();
+    ItemType* PushBack(const T& value);
+    ItemType* PushFront(const T& value);
+    void PopBack();
+    void PopFront();
+    
+    // Item can be null - it means PushBack.
+    ItemType* InsertBefore(ItemType* pItem);
+    // Item can be null - it means PushFront.
+    ItemType* InsertAfter(ItemType* pItem);
+
+    ItemType* InsertBefore(ItemType* pItem, const T& value);
+    ItemType* InsertAfter(ItemType* pItem, const T& value);
+
+    void Remove(ItemType* pItem);
+
+private:
+    const VkAllocationCallbacks* const m_pAllocationCallbacks;
+    VmaPoolAllocator<ItemType> m_ItemAllocator;
+    ItemType* m_pFront;
+    ItemType* m_pBack;
+    size_t m_Count;
+};
+
+template<typename T>
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
+    m_pAllocationCallbacks(pAllocationCallbacks),
+    m_ItemAllocator(pAllocationCallbacks, 128),
+    m_pFront(VMA_NULL),
+    m_pBack(VMA_NULL),
+    m_Count(0)
+{
+}
+
+template<typename T>
+VmaRawList<T>::~VmaRawList()
+{
+    // Intentionally not calling Clear, because that would be unnecessary
+    // computations to return all items to m_ItemAllocator as free.
+}
+
+template<typename T>
+void VmaRawList<T>::Clear()
+{
+    if(IsEmpty() == false)
+    {
+        ItemType* pItem = m_pBack;
+        while(pItem != VMA_NULL)
+        {
+            ItemType* const pPrevItem = pItem->pPrev;
+            m_ItemAllocator.Free(pItem);
+            pItem = pPrevItem;
+        }
+        m_pFront = VMA_NULL;
+        m_pBack = VMA_NULL;
+        m_Count = 0;
+    }
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack()
+{
+    ItemType* const pNewItem = m_ItemAllocator.Alloc();
+    pNewItem->pNext = VMA_NULL;
+    if(IsEmpty())
+    {
+        pNewItem->pPrev = VMA_NULL;
+        m_pFront = pNewItem;
+        m_pBack = pNewItem;
+        m_Count = 1;
+    }
+    else
+    {
+        pNewItem->pPrev = m_pBack;
+        m_pBack->pNext = pNewItem;
+        m_pBack = pNewItem;
+        ++m_Count;
+    }
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront()
+{
+    ItemType* const pNewItem = m_ItemAllocator.Alloc();
+    pNewItem->pPrev = VMA_NULL;
+    if(IsEmpty())
+    {
+        pNewItem->pNext = VMA_NULL;
+        m_pFront = pNewItem;
+        m_pBack = pNewItem;
+        m_Count = 1;
+    }
+    else
+    {
+        pNewItem->pNext = m_pFront;
+        m_pFront->pPrev = pNewItem;
+        m_pFront = pNewItem;
+        ++m_Count;
+    }
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
+{
+    ItemType* const pNewItem = PushBack();
+    pNewItem->Value = value;
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
+{
+    ItemType* const pNewItem = PushFront();
+    pNewItem->Value = value;
+    return pNewItem;
+}
+
+template<typename T>
+void VmaRawList<T>::PopBack()
+{
+    VMA_HEAVY_ASSERT(m_Count > 0);
+    ItemType* const pBackItem = m_pBack;
+    ItemType* const pPrevItem = pBackItem->pPrev;
+    if(pPrevItem != VMA_NULL)
+    {
+        pPrevItem->pNext = VMA_NULL;
+    }
+    m_pBack = pPrevItem;
+    m_ItemAllocator.Free(pBackItem);
+    --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::PopFront()
+{
+    VMA_HEAVY_ASSERT(m_Count > 0);
+    ItemType* const pFrontItem = m_pFront;
+    ItemType* const pNextItem = pFrontItem->pNext;
+    if(pNextItem != VMA_NULL)
+    {
+        pNextItem->pPrev = VMA_NULL;
+    }
+    m_pFront = pNextItem;
+    m_ItemAllocator.Free(pFrontItem);
+    --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::Remove(ItemType* pItem)
+{
+    VMA_HEAVY_ASSERT(pItem != VMA_NULL);
+    VMA_HEAVY_ASSERT(m_Count > 0);
+
+    if(pItem->pPrev != VMA_NULL)
+    {
+        pItem->pPrev->pNext = pItem->pNext;
+    }
+    else
+    {
+        VMA_HEAVY_ASSERT(m_pFront == pItem);
+        m_pFront = pItem->pNext;
+    }
+
+    if(pItem->pNext != VMA_NULL)
+    {
+        pItem->pNext->pPrev = pItem->pPrev;
+    }
+    else
+    {
+        VMA_HEAVY_ASSERT(m_pBack == pItem);
+        m_pBack = pItem->pPrev;
+    }
+
+    m_ItemAllocator.Free(pItem);
+    --m_Count;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
+{
+    if(pItem != VMA_NULL)
+    {
+        ItemType* const prevItem = pItem->pPrev;
+        ItemType* const newItem = m_ItemAllocator.Alloc();
+        newItem->pPrev = prevItem;
+        newItem->pNext = pItem;
+        pItem->pPrev = newItem;
+        if(prevItem != VMA_NULL)
+        {
+            prevItem->pNext = newItem;
+        }
+        else
+        {
+            VMA_HEAVY_ASSERT(m_pFront == pItem);
+            m_pFront = newItem;
+        }
+        ++m_Count;
+        return newItem;
+    }
+    else
+        return PushBack();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
+{
+    if(pItem != VMA_NULL)
+    {
+        ItemType* const nextItem = pItem->pNext;
+        ItemType* const newItem = m_ItemAllocator.Alloc();
+        newItem->pNext = nextItem;
+        newItem->pPrev = pItem;
+        pItem->pNext = newItem;
+        if(nextItem != VMA_NULL)
+        {
+            nextItem->pPrev = newItem;
+        }
+        else
+        {
+            VMA_HEAVY_ASSERT(m_pBack == pItem);
+            m_pBack = newItem;
+        }
+        ++m_Count;
+        return newItem;
+    }
+    else
+        return PushFront();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
+{
+    ItemType* const newItem = InsertBefore(pItem);
+    newItem->Value = value;
+    return newItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
+{
+    ItemType* const newItem = InsertAfter(pItem);
+    newItem->Value = value;
+    return newItem;
+}
+
+template<typename T, typename AllocatorT>
+class VmaList
+{
+    VMA_CLASS_NO_COPY(VmaList)
+public:
+    class iterator
+    {
+    public:
+        iterator() :
+            m_pList(VMA_NULL),
+            m_pItem(VMA_NULL)
+        {
+        }
+
+        T& operator*() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return m_pItem->Value;
+        }
+        T* operator->() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return &m_pItem->Value;
+        }
+
+        iterator& operator++()
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            m_pItem = m_pItem->pNext;
+            return *this;
+        }
+        iterator& operator--()
+        {
+            if(m_pItem != VMA_NULL)
+            {
+                m_pItem = m_pItem->pPrev;
+            }
+            else
+            {
+                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+                m_pItem = m_pList->Back();
+            }
+            return *this;
+        }
+
+        iterator operator++(int)
+        {
+            iterator result = *this;
+            ++*this;
+            return result;
+        }
+        iterator operator--(int)
+        {
+            iterator result = *this;
+            --*this;
+            return result;
+        }
+
+        bool operator==(const iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem == rhs.m_pItem;
+        }
+        bool operator!=(const iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem != rhs.m_pItem;
+        }
+        
+    private:
+        VmaRawList<T>* m_pList;
+        VmaListItem<T>* m_pItem;
+
+        iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
+            m_pList(pList),
+            m_pItem(pItem)
+        {
+        }
+
+        friend class VmaList<T, AllocatorT>;
+    };
+
+    class const_iterator
+    {
+    public:
+        const_iterator() :
+            m_pList(VMA_NULL),
+            m_pItem(VMA_NULL)
+        {
+        }
+
+        const_iterator(const iterator& src) :
+            m_pList(src.m_pList),
+            m_pItem(src.m_pItem)
+        {
+        }
+        
+        const T& operator*() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return m_pItem->Value;
+        }
+        const T* operator->() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return &m_pItem->Value;
+        }
+
+        const_iterator& operator++()
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            m_pItem = m_pItem->pNext;
+            return *this;
+        }
+        const_iterator& operator--()
+        {
+            if(m_pItem != VMA_NULL)
+            {
+                m_pItem = m_pItem->pPrev;
+            }
+            else
+            {
+                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+                m_pItem = m_pList->Back();
+            }
+            return *this;
+        }
+
+        const_iterator operator++(int)
+        {
+            const_iterator result = *this;
+            ++*this;
+            return result;
+        }
+        const_iterator operator--(int)
+        {
+            const_iterator result = *this;
+            --*this;
+            return result;
+        }
+
+        bool operator==(const const_iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem == rhs.m_pItem;
+        }
+        bool operator!=(const const_iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem != rhs.m_pItem;
+        }
+        
+    private:
+        const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
+            m_pList(pList),
+            m_pItem(pItem)
+        {
+        }
+
+        const VmaRawList<T>* m_pList;
+        const VmaListItem<T>* m_pItem;
+
+        friend class VmaList<T, AllocatorT>;
+    };
+
+    VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
+
+    bool empty() const { return m_RawList.IsEmpty(); }
+    size_t size() const { return m_RawList.GetCount(); }
+
+    iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
+    iterator end() { return iterator(&m_RawList, VMA_NULL); }
+
+    const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
+    const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
+
+    void clear() { m_RawList.Clear(); }
+    void push_back(const T& value) { m_RawList.PushBack(value); }
+    void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
+    iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
+
+private:
+    VmaRawList<T> m_RawList;
+};
+
+#endif // #if VMA_USE_STL_LIST
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaMap
+
+// Unused in this version.
+#if 0
+
+#if VMA_USE_STL_UNORDERED_MAP
+
+#define VmaPair std::pair
+
+#define VMA_MAP_TYPE(KeyT, ValueT) \
+    std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
+
+#else // #if VMA_USE_STL_UNORDERED_MAP
+
+template<typename T1, typename T2>
+struct VmaPair
+{
+    T1 first;
+    T2 second;
+
+    VmaPair() : first(), second() { }
+    VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
+};
+
+/* Class compatible with subset of interface of std::unordered_map.
+KeyT, ValueT must be POD because they will be stored in VmaVector.
+*/
+template<typename KeyT, typename ValueT>
+class VmaMap
+{
+public:
+    typedef VmaPair<KeyT, ValueT> PairType;
+    typedef PairType* iterator;
+
+    VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
+
+    iterator begin() { return m_Vector.begin(); }
+    iterator end() { return m_Vector.end(); }
+
+    void insert(const PairType& pair);
+    iterator find(const KeyT& key);
+    void erase(iterator it);
+    
+private:
+    VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
+};
+
+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
+
+template<typename FirstT, typename SecondT>
+struct VmaPairFirstLess
+{
+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
+    {
+        return lhs.first < rhs.first;
+    }
+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
+    {
+        return lhs.first < rhsFirst;
+    }
+};
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
+{
+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+        m_Vector.data(),
+        m_Vector.data() + m_Vector.size(),
+        pair,
+        VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
+    VmaVectorInsert(m_Vector, indexToInsert, pair);
+}
+
+template<typename KeyT, typename ValueT>
+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
+{
+    PairType* it = VmaBinaryFindFirstNotLess(
+        m_Vector.data(),
+        m_Vector.data() + m_Vector.size(),
+        key,
+        VmaPairFirstLess<KeyT, ValueT>());
+    if((it != m_Vector.end()) && (it->first == key))
+    {
+        return it;
+    }
+    else
+    {
+        return m_Vector.end();
+    }
+}
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::erase(iterator it)
+{
+    VmaVectorRemove(m_Vector, it - m_Vector.begin());
+}
+
+#endif // #if VMA_USE_STL_UNORDERED_MAP
+
+#endif // #if 0
+
+////////////////////////////////////////////////////////////////////////////////
+
+class VmaDeviceMemoryBlock;
+
+enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE };
+
+struct VmaAllocation_T
+{
+private:
+    static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
+
+    enum FLAGS
+    {
+        FLAG_USER_DATA_STRING = 0x01,
+    };
+
+public:
+    enum ALLOCATION_TYPE
+    {
+        ALLOCATION_TYPE_NONE,
+        ALLOCATION_TYPE_BLOCK,
+        ALLOCATION_TYPE_DEDICATED,
+    };
+
+    /*
+    This struct is allocated using VmaPoolAllocator.
+    */
+
+    VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :
+        m_Alignment{1},
+        m_Size{0},
+        m_pUserData{VMA_NULL},
+        m_LastUseFrameIndex{currentFrameIndex},
+        m_MemoryTypeIndex{0},
+        m_Type{(uint8_t)ALLOCATION_TYPE_NONE},
+        m_SuballocationType{(uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN},
+        m_MapCount{0},
+        m_Flags{userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0}
+    {
+#if VMA_STATS_STRING_ENABLED
+        m_CreationFrameIndex = currentFrameIndex;
+        m_BufferImageUsage = 0;
+#endif
+    }
+
+    ~VmaAllocation_T()
+    {
+        VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
+
+        // Check if owned string was freed.
+        VMA_ASSERT(m_pUserData == VMA_NULL);
+    }
+
+    void InitBlockAllocation(
+        VmaDeviceMemoryBlock* block,
+        VkDeviceSize offset,
+        VkDeviceSize alignment,
+        VkDeviceSize size,
+        uint32_t memoryTypeIndex,
+        VmaSuballocationType suballocationType,
+        bool mapped,
+        bool canBecomeLost)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(block != VMA_NULL);
+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+        m_Alignment = alignment;
+        m_Size = size;
+        m_MemoryTypeIndex = memoryTypeIndex;
+        m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+        m_SuballocationType = (uint8_t)suballocationType;
+        m_BlockAllocation.m_Block = block;
+        m_BlockAllocation.m_Offset = offset;
+        m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
+    }
+
+    void InitLost()
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+        m_MemoryTypeIndex = 0;
+        m_BlockAllocation.m_Block = VMA_NULL;
+        m_BlockAllocation.m_Offset = 0;
+        m_BlockAllocation.m_CanBecomeLost = true;
+    }
+
+    void ChangeBlockAllocation(
+        VmaAllocator hAllocator,
+        VmaDeviceMemoryBlock* block,
+        VkDeviceSize offset); 
+
+    void ChangeOffset(VkDeviceSize newOffset);
+
+    // pMappedData not null means allocation is created with MAPPED flag.
+    void InitDedicatedAllocation(
+        uint32_t memoryTypeIndex,
+        VkDeviceMemory hMemory,
+        VmaSuballocationType suballocationType,
+        void* pMappedData,
+        VkDeviceSize size)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(hMemory != VK_NULL_HANDLE);
+        m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
+        m_Alignment = 0;
+        m_Size = size;
+        m_MemoryTypeIndex = memoryTypeIndex;
+        m_SuballocationType = (uint8_t)suballocationType;
+        m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+        m_DedicatedAllocation.m_hMemory = hMemory;
+        m_DedicatedAllocation.m_pMappedData = pMappedData;
+    }
+
+    ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
+    VkDeviceSize GetAlignment() const { return m_Alignment; }
+    VkDeviceSize GetSize() const { return m_Size; }
+    bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
+    void* GetUserData() const { return m_pUserData; }
+    void SetUserData(VmaAllocator hAllocator, void* pUserData);
+    VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
+
+    VmaDeviceMemoryBlock* GetBlock() const
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+        return m_BlockAllocation.m_Block;
+    }
+    VkDeviceSize GetOffset() const;
+    VkDeviceMemory GetMemory() const;
+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+    bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
+    void* GetMappedData() const;
+    bool CanBecomeLost() const;
+    
+    uint32_t GetLastUseFrameIndex() const
+    {
+        return m_LastUseFrameIndex.load();
+    }
+    bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
+    {
+        return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
+    }
+    /*
+    - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
+      makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
+    - Else, returns false.
+    
+    If hAllocation is already lost, assert - you should not call it then.
+    If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
+    */
+    bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
+        outInfo.blockCount = 1;
+        outInfo.allocationCount = 1;
+        outInfo.unusedRangeCount = 0;
+        outInfo.usedBytes = m_Size;
+        outInfo.unusedBytes = 0;
+        outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
+        outInfo.unusedRangeSizeMin = UINT64_MAX;
+        outInfo.unusedRangeSizeMax = 0;
+    }
+
+    void BlockAllocMap();
+    void BlockAllocUnmap();
+    VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
+    void DedicatedAllocUnmap(VmaAllocator hAllocator);
+
+#if VMA_STATS_STRING_ENABLED
+    uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }
+    uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
+
+    void InitBufferImageUsage(uint32_t bufferImageUsage)
+    {
+        VMA_ASSERT(m_BufferImageUsage == 0);
+        m_BufferImageUsage = bufferImageUsage;
+    }
+
+    void PrintParameters(class VmaJsonWriter& json) const;
+#endif
+
+private:
+    VkDeviceSize m_Alignment;
+    VkDeviceSize m_Size;
+    void* m_pUserData;
+    VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
+    uint32_t m_MemoryTypeIndex;
+    uint8_t m_Type; // ALLOCATION_TYPE
+    uint8_t m_SuballocationType; // VmaSuballocationType
+    // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
+    // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
+    uint8_t m_MapCount;
+    uint8_t m_Flags; // enum FLAGS
+
+    // Allocation out of VmaDeviceMemoryBlock.
+    struct BlockAllocation
+    {
+        VmaDeviceMemoryBlock* m_Block;
+        VkDeviceSize m_Offset;
+        bool m_CanBecomeLost;
+    };
+
+    // Allocation for an object that has its own private VkDeviceMemory.
+    struct DedicatedAllocation
+    {
+        VkDeviceMemory m_hMemory;
+        void* m_pMappedData; // Not null means memory is mapped.
+    };
+
+    union
+    {
+        // Allocation out of VmaDeviceMemoryBlock.
+        BlockAllocation m_BlockAllocation;
+        // Allocation for an object that has its own private VkDeviceMemory.
+        DedicatedAllocation m_DedicatedAllocation;
+    };
+
+#if VMA_STATS_STRING_ENABLED
+    uint32_t m_CreationFrameIndex;
+    uint32_t m_BufferImageUsage; // 0 if unknown.
+#endif
+
+    void FreeUserDataString(VmaAllocator hAllocator);
+};
+
+/*
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
+allocated memory block or free.
+*/
+struct VmaSuballocation
+{
+    VkDeviceSize offset;
+    VkDeviceSize size;
+    VmaAllocation hAllocation;
+    VmaSuballocationType type;
+};
+
+// Comparator for offsets.
+struct VmaSuballocationOffsetLess
+{
+    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+    {
+        return lhs.offset < rhs.offset;
+    }
+};
+struct VmaSuballocationOffsetGreater
+{
+    bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+    {
+        return lhs.offset > rhs.offset;
+    }
+};
+
+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
+
+// Cost of one additional allocation lost, as equivalent in bytes.
+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
+
+enum class VmaAllocationRequestType
+{
+    Normal,
+    // Used by "Linear" algorithm.
+    UpperAddress,
+    EndOf1st,
+    EndOf2nd,
+};
+
+/*
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
+
+If canMakeOtherLost was false:
+- item points to a FREE suballocation.
+- itemsToMakeLostCount is 0.
+
+If canMakeOtherLost was true:
+- item points to first of sequence of suballocations, which are either FREE,
+  or point to VmaAllocations that can become lost.
+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
+  the requested allocation to succeed.
+*/
+struct VmaAllocationRequest
+{
+    VkDeviceSize offset;
+    VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
+    VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
+    VmaSuballocationList::iterator item;
+    size_t itemsToMakeLostCount;
+    void* customData;
+    VmaAllocationRequestType type;
+
+    VkDeviceSize CalcCost() const
+    {
+        return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
+    }
+};
+
+/*
+Data structure used for bookkeeping of allocations and unused ranges of memory
+in a single VkDeviceMemory block.
+*/
+class VmaBlockMetadata
+{
+public:
+    VmaBlockMetadata(VmaAllocator hAllocator);
+    virtual ~VmaBlockMetadata() { }
+    virtual void Init(VkDeviceSize size) { m_Size = size; }
+
+    // Validates all data structures inside this object. If not valid, returns false.
+    virtual bool Validate() const = 0;
+    VkDeviceSize GetSize() const { return m_Size; }
+    virtual size_t GetAllocationCount() const = 0;
+    virtual VkDeviceSize GetSumFreeSize() const = 0;
+    virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;
+    // Returns true if this block is empty - contains only single free suballocation.
+    virtual bool IsEmpty() const = 0;
+
+    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;
+    // Shouldn't modify blockCount.
+    virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;
+
+#if VMA_STATS_STRING_ENABLED
+    virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
+#endif
+
+    // Tries to find a place for suballocation with given parameters inside this block.
+    // If succeeded, fills pAllocationRequest and returns true.
+    // If failed, returns false.
+    virtual bool CreateAllocationRequest(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        bool upperAddress,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest) = 0;
+
+    virtual bool MakeRequestedAllocationsLost(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VmaAllocationRequest* pAllocationRequest) = 0;
+
+    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;
+
+    virtual VkResult CheckCorruption(const void* pBlockData) = 0;
+
+    // Makes actual allocation based on request. Request must already be checked and valid.
+    virtual void Alloc(
+        const VmaAllocationRequest& request,
+        VmaSuballocationType type,
+        VkDeviceSize allocSize,
+        VmaAllocation hAllocation) = 0;
+
+    // Frees suballocation assigned to given memory region.
+    virtual void Free(const VmaAllocation allocation) = 0;
+    virtual void FreeAtOffset(VkDeviceSize offset) = 0;
+
+protected:
+    const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap_Begin(class VmaJsonWriter& json,
+        VkDeviceSize unusedBytes,
+        size_t allocationCount,
+        size_t unusedRangeCount) const;
+    void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+        VkDeviceSize offset,
+        VmaAllocation hAllocation) const;
+    void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+        VkDeviceSize offset,
+        VkDeviceSize size) const;
+    void PrintDetailedMap_End(class VmaJsonWriter& json) const;
+#endif
+
+private:
+    VkDeviceSize m_Size;
+    const VkAllocationCallbacks* m_pAllocationCallbacks;
+};
+
+#define VMA_VALIDATE(cond) do { if(!(cond)) { \
+        VMA_ASSERT(0 && "Validation failed: " #cond); \
+        return false; \
+    } } while(false)
+
+class VmaBlockMetadata_Generic : public VmaBlockMetadata
+{
+    VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
+public:
+    VmaBlockMetadata_Generic(VmaAllocator hAllocator);
+    virtual ~VmaBlockMetadata_Generic();
+    virtual void Init(VkDeviceSize size);
+
+    virtual bool Validate() const;
+    virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
+    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+    virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+    virtual bool IsEmpty() const;
+
+    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+    virtual bool CreateAllocationRequest(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        bool upperAddress,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual bool MakeRequestedAllocationsLost(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    virtual VkResult CheckCorruption(const void* pBlockData);
+
+    virtual void Alloc(
+        const VmaAllocationRequest& request,
+        VmaSuballocationType type,
+        VkDeviceSize allocSize,
+        VmaAllocation hAllocation);
+
+    virtual void Free(const VmaAllocation allocation);
+    virtual void FreeAtOffset(VkDeviceSize offset);
+
+    ////////////////////////////////////////////////////////////////////////////////
+    // For defragmentation
+    
+    bool IsBufferImageGranularityConflictPossible(
+        VkDeviceSize bufferImageGranularity,
+        VmaSuballocationType& inOutPrevSuballocType) const;
+
+private:
+    friend class VmaDefragmentationAlgorithm_Generic;
+    friend class VmaDefragmentationAlgorithm_Fast;
+
+    uint32_t m_FreeCount;
+    VkDeviceSize m_SumFreeSize;
+    VmaSuballocationList m_Suballocations;
+    // Suballocations that are free and have size greater than certain threshold.
+    // Sorted by size, ascending.
+    VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
+
+    bool ValidateFreeSuballocationList() const;
+
+    // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
+    // If yes, fills pOffset and returns true. If no, returns false.
+    bool CheckAllocation(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        VmaSuballocationType allocType,
+        VmaSuballocationList::const_iterator suballocItem,
+        bool canMakeOtherLost,
+        VkDeviceSize* pOffset,
+        size_t* itemsToMakeLostCount,
+        VkDeviceSize* pSumFreeSize,
+        VkDeviceSize* pSumItemSize) const;
+    // Given free suballocation, it merges it with following one, which must also be free.
+    void MergeFreeWithNext(VmaSuballocationList::iterator item);
+    // Releases given suballocation, making it free.
+    // Merges it with adjacent free suballocations if applicable.
+    // Returns iterator to new free suballocation at this place.
+    VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
+    // Given free suballocation, it inserts it into sorted list of
+    // m_FreeSuballocationsBySize if it's suitable.
+    void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
+    // Given free suballocation, it removes it from sorted list of
+    // m_FreeSuballocationsBySize if it's suitable.
+    void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
+};
+
+/*
+Allocations and their references in internal data structure look like this:
+
+if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
+
+        0 +-------+
+          |       |
+          |       |
+          |       |
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount]
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
+          +-------+
+          |  ...  |
+          +-------+
+          | Alloc |  1st[1st.size() - 1]
+          +-------+
+          |       |
+          |       |
+          |       |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
+
+        0 +-------+
+          | Alloc |  2nd[0]
+          +-------+
+          | Alloc |  2nd[1]
+          +-------+
+          |  ...  |
+          +-------+
+          | Alloc |  2nd[2nd.size() - 1]
+          +-------+
+          |       |
+          |       |
+          |       |
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount]
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
+          +-------+
+          |  ...  |
+          +-------+
+          | Alloc |  1st[1st.size() - 1]
+          +-------+
+          |       |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
+
+        0 +-------+
+          |       |
+          |       |
+          |       |
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount]
+          +-------+
+          | Alloc |  1st[m_1stNullItemsBeginCount + 1]
+          +-------+
+          |  ...  |
+          +-------+
+          | Alloc |  1st[1st.size() - 1]
+          +-------+
+          |       |
+          |       |
+          |       |
+          +-------+
+          | Alloc |  2nd[2nd.size() - 1]
+          +-------+
+          |  ...  |
+          +-------+
+          | Alloc |  2nd[1]
+          +-------+
+          | Alloc |  2nd[0]
+GetSize() +-------+
+
+*/
+class VmaBlockMetadata_Linear : public VmaBlockMetadata
+{
+    VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
+public:
+    VmaBlockMetadata_Linear(VmaAllocator hAllocator);
+    virtual ~VmaBlockMetadata_Linear();
+    virtual void Init(VkDeviceSize size);
+
+    virtual bool Validate() const;
+    virtual size_t GetAllocationCount() const;
+    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+    virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+    virtual bool IsEmpty() const { return GetAllocationCount() == 0; }
+
+    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+    virtual bool CreateAllocationRequest(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        bool upperAddress,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual bool MakeRequestedAllocationsLost(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    virtual VkResult CheckCorruption(const void* pBlockData);
+
+    virtual void Alloc(
+        const VmaAllocationRequest& request,
+        VmaSuballocationType type,
+        VkDeviceSize allocSize,
+        VmaAllocation hAllocation);
+
+    virtual void Free(const VmaAllocation allocation);
+    virtual void FreeAtOffset(VkDeviceSize offset);
+
+private:
+    /*
+    There are two suballocation vectors, used in ping-pong way.
+    The one with index m_1stVectorIndex is called 1st.
+    The one with index (m_1stVectorIndex ^ 1) is called 2nd.
+    2nd can be non-empty only when 1st is not empty.
+    When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
+    */
+    typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;
+
+    enum SECOND_VECTOR_MODE
+    {
+        SECOND_VECTOR_EMPTY,
+        /*
+        Suballocations in 2nd vector are created later than the ones in 1st, but they
+        all have smaller offset.
+        */
+        SECOND_VECTOR_RING_BUFFER,
+        /*
+        Suballocations in 2nd vector are upper side of double stack.
+        They all have offsets higher than those in 1st vector.
+        Top of this stack means smaller offsets, but higher indices in this vector.
+        */
+        SECOND_VECTOR_DOUBLE_STACK,
+    };
+
+    VkDeviceSize m_SumFreeSize;
+    SuballocationVectorType m_Suballocations0, m_Suballocations1;
+    uint32_t m_1stVectorIndex;
+    SECOND_VECTOR_MODE m_2ndVectorMode;
+
+    SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+    SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+    const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+    const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+    
+    // Number of items in 1st vector with hAllocation = null at the beginning.
+    size_t m_1stNullItemsBeginCount;
+    // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
+    size_t m_1stNullItemsMiddleCount;
+    // Number of items in 2nd vector with hAllocation = null.
+    size_t m_2ndNullItemsCount;
+
+    bool ShouldCompact1st() const;
+    void CleanupAfterFree();
+
+    bool CreateAllocationRequest_LowerAddress(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest);
+    bool CreateAllocationRequest_UpperAddress(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest);
+};
+
+/*
+- GetSize() is the original size of allocated memory block.
+- m_UsableSize is this size aligned down to a power of two.
+  All allocations and calculations happen relative to m_UsableSize.
+- GetUnusableSize() is the difference between them.
+  It is repoted as separate, unused range, not available for allocations.
+
+Node at level 0 has size = m_UsableSize.
+Each next level contains nodes with size 2 times smaller than current level.
+m_LevelCount is the maximum number of levels to use in the current object.
+*/
+class VmaBlockMetadata_Buddy : public VmaBlockMetadata
+{
+    VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
+public:
+    VmaBlockMetadata_Buddy(VmaAllocator hAllocator);
+    virtual ~VmaBlockMetadata_Buddy();
+    virtual void Init(VkDeviceSize size);
+
+    virtual bool Validate() const;
+    virtual size_t GetAllocationCount() const { return m_AllocationCount; }
+    virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }
+    virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+    virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }
+
+    virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+    virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+    virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+    virtual bool CreateAllocationRequest(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        bool upperAddress,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        uint32_t strategy,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual bool MakeRequestedAllocationsLost(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VmaAllocationRequest* pAllocationRequest);
+
+    virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }
+
+    virtual void Alloc(
+        const VmaAllocationRequest& request,
+        VmaSuballocationType type,
+        VkDeviceSize allocSize,
+        VmaAllocation hAllocation);
+
+    virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); }
+    virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); }
+
+private:
+    static const VkDeviceSize MIN_NODE_SIZE = 32;
+    static const size_t MAX_LEVELS = 30;
+
+    struct ValidationContext
+    {
+        size_t calculatedAllocationCount;
+        size_t calculatedFreeCount;
+        VkDeviceSize calculatedSumFreeSize;
+
+        ValidationContext() :
+            calculatedAllocationCount(0),
+            calculatedFreeCount(0),
+            calculatedSumFreeSize(0) { }
+    };
+
+    struct Node
+    {
+        VkDeviceSize offset;
+        enum TYPE
+        {
+            TYPE_FREE,
+            TYPE_ALLOCATION,
+            TYPE_SPLIT,
+            TYPE_COUNT
+        } type;
+        Node* parent;
+        Node* buddy;
+
+        union
+        {
+            struct
+            {
+                Node* prev;
+                Node* next;
+            } free;
+            struct
+            {
+                VmaAllocation alloc;
+            } allocation;
+            struct
+            {
+                Node* leftChild;
+            } split;
+        };
+    };
+
+    // Size of the memory block aligned down to a power of two.
+    VkDeviceSize m_UsableSize;
+    uint32_t m_LevelCount;
+
+    Node* m_Root;
+    struct {
+        Node* front;
+        Node* back;
+    } m_FreeList[MAX_LEVELS];
+    // Number of nodes in the tree with type == TYPE_ALLOCATION.
+    size_t m_AllocationCount;
+    // Number of nodes in the tree with type == TYPE_FREE.
+    size_t m_FreeCount;
+    // This includes space wasted due to internal fragmentation. Doesn't include unusable size.
+    VkDeviceSize m_SumFreeSize;
+
+    VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
+    void DeleteNode(Node* node);
+    bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
+    uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
+    inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
+    // Alloc passed just for validation. Can be null.
+    void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset);
+    void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const;
+    // Adds node to the front of FreeList at given level.
+    // node->type must be FREE.
+    // node->free.prev, next can be undefined.
+    void AddToFreeListFront(uint32_t level, Node* node);
+    // Removes node from FreeList at given level.
+    // node->type must be FREE.
+    // node->free.prev, next stay untouched.
+    void RemoveFromFreeList(uint32_t level, Node* node);
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
+#endif
+};
+
+/*
+Represents a single block of device memory (`VkDeviceMemory`) with all the
+data about its regions (aka suballocations, #VmaAllocation), assigned and free.
+
+Thread-safety: This class must be externally synchronized.
+*/
+class VmaDeviceMemoryBlock
+{
+    VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
+public:
+    VmaBlockMetadata* m_pMetadata;
+
+    VmaDeviceMemoryBlock(VmaAllocator hAllocator);
+
+    ~VmaDeviceMemoryBlock()
+    {
+        VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
+        VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+    }
+
+    // Always call after construction.
+    void Init(
+        VmaAllocator hAllocator,
+        VmaPool hParentPool,
+        uint32_t newMemoryTypeIndex,
+        VkDeviceMemory newMemory,
+        VkDeviceSize newSize,
+        uint32_t id,
+        uint32_t algorithm);
+    // Always call before destruction.
+    void Destroy(VmaAllocator allocator);
+    
+    VmaPool GetParentPool() const { return m_hParentPool; }
+    VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+    uint32_t GetId() const { return m_Id; }
+    void* GetMappedData() const { return m_pMappedData; }
+
+    // Validates all data structures inside this object. If not valid, returns false.
+    bool Validate() const;
+
+    VkResult CheckCorruption(VmaAllocator hAllocator);
+
+    // ppData can be null.
+    VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
+    void Unmap(VmaAllocator hAllocator, uint32_t count);
+
+    VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+    VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+
+    VkResult BindBufferMemory(
+        const VmaAllocator hAllocator,
+        const VmaAllocation hAllocation,
+        VkDeviceSize allocationLocalOffset,
+        VkBuffer hBuffer,
+        const void* pNext);
+    VkResult BindImageMemory(
+        const VmaAllocator hAllocator,
+        const VmaAllocation hAllocation,
+        VkDeviceSize allocationLocalOffset,
+        VkImage hImage,
+        const void* pNext);
+
+private:
+    VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
+    uint32_t m_MemoryTypeIndex;
+    uint32_t m_Id;
+    VkDeviceMemory m_hMemory;
+
+    /*
+    Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
+    Also protects m_MapCount, m_pMappedData.
+    Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
+    */
+    VMA_MUTEX m_Mutex;
+    uint32_t m_MapCount;
+    void* m_pMappedData;
+};
+
+struct VmaPointerLess
+{
+    bool operator()(const void* lhs, const void* rhs) const
+    {
+        return lhs < rhs;
+    }
+};
+
+struct VmaDefragmentationMove
+{
+    size_t srcBlockIndex;
+    size_t dstBlockIndex;
+    VkDeviceSize srcOffset;
+    VkDeviceSize dstOffset;
+    VkDeviceSize size;
+    VmaAllocation hAllocation;
+    VmaDeviceMemoryBlock* pSrcBlock;
+    VmaDeviceMemoryBlock* pDstBlock;
+};
+
+class VmaDefragmentationAlgorithm;
+
+/*
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
+Vulkan memory type.
+
+Synchronized internally with a mutex.
+*/
+struct VmaBlockVector
+{
+    VMA_CLASS_NO_COPY(VmaBlockVector)
+public:
+    VmaBlockVector(
+        VmaAllocator hAllocator,
+        VmaPool hParentPool,
+        uint32_t memoryTypeIndex,
+        VkDeviceSize preferredBlockSize,
+        size_t minBlockCount,
+        size_t maxBlockCount,
+        VkDeviceSize bufferImageGranularity,
+        uint32_t frameInUseCount,
+        bool explicitBlockSize,
+        uint32_t algorithm);
+    ~VmaBlockVector();
+
+    VkResult CreateMinBlocks();
+
+    VmaAllocator GetAllocator() const { return m_hAllocator; }
+    VmaPool GetParentPool() const { return m_hParentPool; }
+    bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+    VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
+    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+    uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
+    uint32_t GetAlgorithm() const { return m_Algorithm; }
+
+    void GetPoolStats(VmaPoolStats* pStats);
+
+    bool IsEmpty();
+    bool IsCorruptionDetectionEnabled() const;
+
+    VkResult Allocate(
+        uint32_t currentFrameIndex,
+        VkDeviceSize size,
+        VkDeviceSize alignment,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaSuballocationType suballocType,
+        size_t allocationCount,
+        VmaAllocation* pAllocations);
+
+    void Free(const VmaAllocation hAllocation);
+
+    // Adds statistics of this BlockVector to pStats.
+    void AddStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+    void MakePoolAllocationsLost(
+        uint32_t currentFrameIndex,
+        size_t* pLostAllocationCount);
+    VkResult CheckCorruption();
+
+    // Saves results in pCtx->res.
+    void Defragment(
+        class VmaBlockVectorDefragmentationContext* pCtx,
+        VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,
+        VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
+        VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
+        VkCommandBuffer commandBuffer);
+    void DefragmentationEnd(
+        class VmaBlockVectorDefragmentationContext* pCtx,
+        uint32_t flags,
+        VmaDefragmentationStats* pStats);
+
+    uint32_t ProcessDefragmentations(
+        class VmaBlockVectorDefragmentationContext *pCtx,
+        VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves);
+
+    void CommitDefragmentations(
+        class VmaBlockVectorDefragmentationContext *pCtx,
+        VmaDefragmentationStats* pStats);
+
+    ////////////////////////////////////////////////////////////////////////////////
+    // To be used only while the m_Mutex is locked. Used during defragmentation.
+
+    size_t GetBlockCount() const { return m_Blocks.size(); }
+    VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
+    size_t CalcAllocationCount() const;
+    bool IsBufferImageGranularityConflictPossible() const;
+
+private:
+    friend class VmaDefragmentationAlgorithm_Generic;
+
+    const VmaAllocator m_hAllocator;
+    const VmaPool m_hParentPool;
+    const uint32_t m_MemoryTypeIndex;
+    const VkDeviceSize m_PreferredBlockSize;
+    const size_t m_MinBlockCount;
+    const size_t m_MaxBlockCount;
+    const VkDeviceSize m_BufferImageGranularity;
+    const uint32_t m_FrameInUseCount;
+    const bool m_ExplicitBlockSize;
+    const uint32_t m_Algorithm;
+    VMA_RW_MUTEX m_Mutex;
+
+    /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) -
+    a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */
+    bool m_HasEmptyBlock;
+    // Incrementally sorted by sumFreeSize, ascending.
+    VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
+    uint32_t m_NextBlockId;
+
+    VkDeviceSize CalcMaxBlockSize() const;
+
+    // Finds and removes given block from vector.
+    void Remove(VmaDeviceMemoryBlock* pBlock);
+
+    // Performs single step in sorting m_Blocks. They may not be fully sorted
+    // after this call.
+    void IncrementallySortBlocks();
+
+    VkResult AllocatePage(
+        uint32_t currentFrameIndex,
+        VkDeviceSize size,
+        VkDeviceSize alignment,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaSuballocationType suballocType,
+        VmaAllocation* pAllocation);
+
+    // To be used only without CAN_MAKE_OTHER_LOST flag.
+    VkResult AllocateFromBlock(
+        VmaDeviceMemoryBlock* pBlock,
+        uint32_t currentFrameIndex,
+        VkDeviceSize size,
+        VkDeviceSize alignment,
+        VmaAllocationCreateFlags allocFlags,
+        void* pUserData,
+        VmaSuballocationType suballocType,
+        uint32_t strategy,
+        VmaAllocation* pAllocation);
+
+    VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
+
+    // Saves result to pCtx->res.
+    void ApplyDefragmentationMovesCpu(
+        class VmaBlockVectorDefragmentationContext* pDefragCtx,
+        const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);
+    // Saves result to pCtx->res.
+    void ApplyDefragmentationMovesGpu(
+        class VmaBlockVectorDefragmentationContext* pDefragCtx,
+        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+        VkCommandBuffer commandBuffer);
+
+    /*
+    Used during defragmentation. pDefragmentationStats is optional. It's in/out
+    - updated with new data.
+    */
+    void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);
+
+    void UpdateHasEmptyBlock();
+};
+
+struct VmaPool_T
+{
+    VMA_CLASS_NO_COPY(VmaPool_T)
+public:
+    VmaBlockVector m_BlockVector;
+
+    VmaPool_T(
+        VmaAllocator hAllocator,
+        const VmaPoolCreateInfo& createInfo,
+        VkDeviceSize preferredBlockSize);
+    ~VmaPool_T();
+
+    uint32_t GetId() const { return m_Id; }
+    void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
+
+    const char* GetName() const { return m_Name; }
+    void SetName(const char* pName);
+
+#if VMA_STATS_STRING_ENABLED
+    //void PrintDetailedMap(class VmaStringBuilder& sb);
+#endif
+
+private:
+    uint32_t m_Id;
+    char* m_Name;
+};
+
+/*
+Performs defragmentation:
+
+- Updates `pBlockVector->m_pMetadata`.
+- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().
+- Does not move actual data, only returns requested moves as `moves`.
+*/
+class VmaDefragmentationAlgorithm
+{
+    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)
+public:
+    VmaDefragmentationAlgorithm(
+        VmaAllocator hAllocator,
+        VmaBlockVector* pBlockVector,
+        uint32_t currentFrameIndex) :
+        m_hAllocator(hAllocator),
+        m_pBlockVector(pBlockVector),
+        m_CurrentFrameIndex(currentFrameIndex)
+    {
+    }
+    virtual ~VmaDefragmentationAlgorithm()
+    {
+    }
+
+    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0;
+    virtual void AddAll() = 0;
+
+    virtual VkResult Defragment(
+        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove,
+        VmaDefragmentationFlags flags) = 0;
+
+    virtual VkDeviceSize GetBytesMoved() const = 0;
+    virtual uint32_t GetAllocationsMoved() const = 0;
+
+protected:
+    VmaAllocator const m_hAllocator;
+    VmaBlockVector* const m_pBlockVector;
+    const uint32_t m_CurrentFrameIndex;
+
+    struct AllocationInfo
+    {
+        VmaAllocation m_hAllocation;
+        VkBool32* m_pChanged;
+
+        AllocationInfo() :
+            m_hAllocation(VK_NULL_HANDLE),
+            m_pChanged(VMA_NULL)
+        {
+        }
+        AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) :
+            m_hAllocation(hAlloc),
+            m_pChanged(pChanged)
+        {
+        }
+    };
+};
+
+class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm
+{
+    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)
+public:
+    VmaDefragmentationAlgorithm_Generic(
+        VmaAllocator hAllocator,
+        VmaBlockVector* pBlockVector,
+        uint32_t currentFrameIndex,
+        bool overlappingMoveSupported);
+    virtual ~VmaDefragmentationAlgorithm_Generic();
+
+    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+    virtual void AddAll() { m_AllAllocations = true; }
+
+    virtual VkResult Defragment(
+        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove,
+        VmaDefragmentationFlags flags);
+
+    virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+    virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+private:
+    uint32_t m_AllocationCount;
+    bool m_AllAllocations;
+
+    VkDeviceSize m_BytesMoved;
+    uint32_t m_AllocationsMoved;
+
+    struct AllocationInfoSizeGreater
+    {
+        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+        {
+            return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
+        }
+    };
+
+    struct AllocationInfoOffsetGreater
+    {
+        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+        {
+            return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();
+        }
+    };
+
+    struct BlockInfo
+    {
+        size_t m_OriginalBlockIndex;
+        VmaDeviceMemoryBlock* m_pBlock;
+        bool m_HasNonMovableAllocations;
+        VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+        BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
+            m_OriginalBlockIndex(SIZE_MAX),
+            m_pBlock(VMA_NULL),
+            m_HasNonMovableAllocations(true),
+            m_Allocations(pAllocationCallbacks)
+        {
+        }
+
+        void CalcHasNonMovableAllocations()
+        {
+            const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();
+            const size_t defragmentAllocCount = m_Allocations.size();
+            m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
+        }
+
+        void SortAllocationsBySizeDescending()
+        {
+            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
+        }
+
+        void SortAllocationsByOffsetDescending()
+        {
+            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());
+        }
+    };
+
+    struct BlockPointerLess
+    {
+        bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
+        {
+            return pLhsBlockInfo->m_pBlock < pRhsBlock;
+        }
+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+        {
+            return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
+        }
+    };
+
+    // 1. Blocks with some non-movable allocations go first.
+    // 2. Blocks with smaller sumFreeSize go first.
+    struct BlockInfoCompareMoveDestination
+    {
+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+        {
+            if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
+            {
+                return true;
+            }
+            if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
+            {
+                return false;
+            }
+            if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize())
+            {
+                return true;
+            }
+            return false;
+        }
+    };
+
+    typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
+    BlockInfoVector m_Blocks;
+
+    VkResult DefragmentRound(
+        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove,
+        bool freeOldAllocations);
+
+    size_t CalcBlocksWithNonMovableCount() const;
+
+    static bool MoveMakesSense(
+        size_t dstBlockIndex, VkDeviceSize dstOffset,
+        size_t srcBlockIndex, VkDeviceSize srcOffset);
+};
+
+class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm
+{
+    VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)
+public:
+    VmaDefragmentationAlgorithm_Fast(
+        VmaAllocator hAllocator,
+        VmaBlockVector* pBlockVector,
+        uint32_t currentFrameIndex,
+        bool overlappingMoveSupported);
+    virtual ~VmaDefragmentationAlgorithm_Fast();
+
+    virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; }
+    virtual void AddAll() { m_AllAllocations = true; }
+
+    virtual VkResult Defragment(
+        VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove,
+        VmaDefragmentationFlags flags);
+
+    virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+    virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+private:
+    struct BlockInfo
+    {
+        size_t origBlockIndex;
+    };
+
+    class FreeSpaceDatabase
+    {
+    public:
+        FreeSpaceDatabase()
+        {
+            FreeSpace s = {};
+            s.blockInfoIndex = SIZE_MAX;
+            for(size_t i = 0; i < MAX_COUNT; ++i)
+            {
+                m_FreeSpaces[i] = s;
+            }
+        }
+
+        void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size)
+        {
+            if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+            {
+                return;
+            }
+
+            // Find first invalid or the smallest structure.
+            size_t bestIndex = SIZE_MAX;
+            for(size_t i = 0; i < MAX_COUNT; ++i)
+            {
+                // Empty structure.
+                if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX)
+                {
+                    bestIndex = i;
+                    break;
+                }
+                if(m_FreeSpaces[i].size < size &&
+                    (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size))
+                {
+                    bestIndex = i;
+                }
+            }
+
+            if(bestIndex != SIZE_MAX)
+            {
+                m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;
+                m_FreeSpaces[bestIndex].offset = offset;
+                m_FreeSpaces[bestIndex].size = size;
+            }
+        }
+
+        bool Fetch(VkDeviceSize alignment, VkDeviceSize size,
+            size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset)
+        {
+            size_t bestIndex = SIZE_MAX;
+            VkDeviceSize bestFreeSpaceAfter = 0;
+            for(size_t i = 0; i < MAX_COUNT; ++i)
+            {
+                // Structure is valid.
+                if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX)
+                {
+                    const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);
+                    // Allocation fits into this structure.
+                    if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size)
+                    {
+                        const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -
+                            (dstOffset + size);
+                        if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter)
+                        {
+                            bestIndex = i;
+                            bestFreeSpaceAfter = freeSpaceAfter;
+                        }
+                    }
+                }
+            }
+            
+            if(bestIndex != SIZE_MAX)
+            {
+                outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;
+                outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);
+
+                if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+                {
+                    // Leave this structure for remaining empty space.
+                    const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;
+                    m_FreeSpaces[bestIndex].offset += alignmentPlusSize;
+                    m_FreeSpaces[bestIndex].size -= alignmentPlusSize;
+                }
+                else
+                {
+                    // This structure becomes invalid.
+                    m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX;
+                }
+
+                return true;
+            }
+
+            return false;
+        }
+
+    private:
+        static const size_t MAX_COUNT = 4;
+
+        struct FreeSpace
+        {
+            size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.
+            VkDeviceSize offset;
+            VkDeviceSize size;
+        } m_FreeSpaces[MAX_COUNT];
+    };
+
+    const bool m_OverlappingMoveSupported;
+
+    uint32_t m_AllocationCount;
+    bool m_AllAllocations;
+
+    VkDeviceSize m_BytesMoved;
+    uint32_t m_AllocationsMoved;
+
+    VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;
+
+    void PreprocessMetadata();
+    void PostprocessMetadata();
+    void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc);
+};
+
+struct VmaBlockDefragmentationContext
+{
+    enum BLOCK_FLAG
+    {
+        BLOCK_FLAG_USED = 0x00000001,
+    };
+    uint32_t flags;
+    VkBuffer hBuffer;
+};
+
+class VmaBlockVectorDefragmentationContext
+{
+    VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)
+public:
+    VkResult res;
+    bool mutexLocked;
+    VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;
+    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > defragmentationMoves;
+    uint32_t defragmentationMovesProcessed;
+    uint32_t defragmentationMovesCommitted;
+    bool hasDefragmentationPlan;
+
+    VmaBlockVectorDefragmentationContext(
+        VmaAllocator hAllocator,
+        VmaPool hCustomPool, // Optional.
+        VmaBlockVector* pBlockVector,
+        uint32_t currFrameIndex);
+    ~VmaBlockVectorDefragmentationContext();
+
+    VmaPool GetCustomPool() const { return m_hCustomPool; }
+    VmaBlockVector* GetBlockVector() const { return m_pBlockVector; }
+    VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; }
+
+    void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+    void AddAll() { m_AllAllocations = true; }
+
+    void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags);
+
+private:
+    const VmaAllocator m_hAllocator;
+    // Null if not from custom pool.
+    const VmaPool m_hCustomPool;
+    // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.
+    VmaBlockVector* const m_pBlockVector;
+    const uint32_t m_CurrFrameIndex;
+    // Owner of this object.
+    VmaDefragmentationAlgorithm* m_pAlgorithm;
+
+    struct AllocInfo
+    {
+        VmaAllocation hAlloc;
+        VkBool32* pChanged;
+    };
+    // Used between constructor and Begin.
+    VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;
+    bool m_AllAllocations;
+};
+
+struct VmaDefragmentationContext_T
+{
+private:
+    VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
+public:
+    VmaDefragmentationContext_T(
+        VmaAllocator hAllocator,
+        uint32_t currFrameIndex,
+        uint32_t flags,
+        VmaDefragmentationStats* pStats);
+    ~VmaDefragmentationContext_T();
+
+    void AddPools(uint32_t poolCount, const VmaPool* pPools);
+    void AddAllocations(
+        uint32_t allocationCount,
+        const VmaAllocation* pAllocations,
+        VkBool32* pAllocationsChanged);
+
+    /*
+    Returns:
+    - `VK_SUCCESS` if succeeded and object can be destroyed immediately.
+    - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().
+    - Negative value if error occured and object can be destroyed immediately.
+    */
+    VkResult Defragment(
+        VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
+        VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
+        VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags);
+
+    VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo);
+    VkResult DefragmentPassEnd();
+
+private:
+    const VmaAllocator m_hAllocator;
+    const uint32_t m_CurrFrameIndex;
+    const uint32_t m_Flags;
+    VmaDefragmentationStats* const m_pStats;
+
+    VkDeviceSize m_MaxCpuBytesToMove;
+    uint32_t m_MaxCpuAllocationsToMove;
+    VkDeviceSize m_MaxGpuBytesToMove;
+    uint32_t m_MaxGpuAllocationsToMove;
+
+    // Owner of these objects.
+    VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];
+    // Owner of these objects.
+    VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts;
+};
+
+#if VMA_RECORDING_ENABLED
+
+class VmaRecorder
+{
+public:
+    VmaRecorder();
+    VkResult Init(const VmaRecordSettings& settings, bool useMutex);
+    void WriteConfiguration(
+        const VkPhysicalDeviceProperties& devProps,
+        const VkPhysicalDeviceMemoryProperties& memProps,
+        uint32_t vulkanApiVersion,
+        bool dedicatedAllocationExtensionEnabled,
+        bool bindMemory2ExtensionEnabled,
+        bool memoryBudgetExtensionEnabled,
+        bool deviceCoherentMemoryExtensionEnabled);
+    ~VmaRecorder();
+
+    void RecordCreateAllocator(uint32_t frameIndex);
+    void RecordDestroyAllocator(uint32_t frameIndex);
+    void RecordCreatePool(uint32_t frameIndex,
+        const VmaPoolCreateInfo& createInfo,
+        VmaPool pool);
+    void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);
+    void RecordAllocateMemory(uint32_t frameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaAllocation allocation);
+    void RecordAllocateMemoryPages(uint32_t frameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        const VmaAllocationCreateInfo& createInfo,
+        uint64_t allocationCount,
+        const VmaAllocation* pAllocations);
+    void RecordAllocateMemoryForBuffer(uint32_t frameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        bool requiresDedicatedAllocation,
+        bool prefersDedicatedAllocation,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaAllocation allocation);
+    void RecordAllocateMemoryForImage(uint32_t frameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        bool requiresDedicatedAllocation,
+        bool prefersDedicatedAllocation,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaAllocation allocation);
+    void RecordFreeMemory(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordFreeMemoryPages(uint32_t frameIndex,
+        uint64_t allocationCount,
+        const VmaAllocation* pAllocations);
+    void RecordSetAllocationUserData(uint32_t frameIndex,
+        VmaAllocation allocation,
+        const void* pUserData);
+    void RecordCreateLostAllocation(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordMapMemory(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordUnmapMemory(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordFlushAllocation(uint32_t frameIndex,
+        VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+    void RecordInvalidateAllocation(uint32_t frameIndex,
+        VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+    void RecordCreateBuffer(uint32_t frameIndex,
+        const VkBufferCreateInfo& bufCreateInfo,
+        const VmaAllocationCreateInfo& allocCreateInfo,
+        VmaAllocation allocation);
+    void RecordCreateImage(uint32_t frameIndex,
+        const VkImageCreateInfo& imageCreateInfo,
+        const VmaAllocationCreateInfo& allocCreateInfo,
+        VmaAllocation allocation);
+    void RecordDestroyBuffer(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordDestroyImage(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordTouchAllocation(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordGetAllocationInfo(uint32_t frameIndex,
+        VmaAllocation allocation);
+    void RecordMakePoolAllocationsLost(uint32_t frameIndex,
+        VmaPool pool);
+    void RecordDefragmentationBegin(uint32_t frameIndex,
+        const VmaDefragmentationInfo2& info,
+        VmaDefragmentationContext ctx);
+    void RecordDefragmentationEnd(uint32_t frameIndex,
+        VmaDefragmentationContext ctx);
+    void RecordSetPoolName(uint32_t frameIndex,
+        VmaPool pool,
+        const char* name);
+
+private:
+    struct CallParams
+    {
+        uint32_t threadId;
+        double time;
+    };
+
+    class UserDataString
+    {
+    public:
+        UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData);
+        const char* GetString() const { return m_Str; }
+
+    private:
+        char m_PtrStr[17];
+        const char* m_Str;
+    };
+
+    bool m_UseMutex;
+    VmaRecordFlags m_Flags;
+    FILE* m_File;
+    VMA_MUTEX m_FileMutex;
+    int64_t m_Freq;
+    int64_t m_StartCounter;
+
+    void GetBasicParams(CallParams& outParams);
+
+    // T must be a pointer type, e.g. VmaAllocation, VmaPool.
+    template<typename T>
+    void PrintPointerList(uint64_t count, const T* pItems)
+    {
+        if(count)
+        {
+            fprintf(m_File, "%p", pItems[0]);
+            for(uint64_t i = 1; i < count; ++i)
+            {
+                fprintf(m_File, " %p", pItems[i]);
+            }
+        }
+    }
+
+    void PrintPointerList(uint64_t count, const VmaAllocation* pItems);
+    void Flush();
+};
+
+#endif // #if VMA_RECORDING_ENABLED
+
+/*
+Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
+*/
+class VmaAllocationObjectAllocator
+{
+    VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
+public:
+    VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks);
+
+    template<typename... Types> VmaAllocation Allocate(Types... args);
+    void Free(VmaAllocation hAlloc);
+
+private:
+    VMA_MUTEX m_Mutex;
+    VmaPoolAllocator<VmaAllocation_T> m_Allocator;
+};
+
+struct VmaCurrentBudgetData
+{
+    VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
+    VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
+
+#if VMA_MEMORY_BUDGET
+    VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
+    VMA_RW_MUTEX m_BudgetMutex;
+    uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
+    uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
+    uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
+#endif // #if VMA_MEMORY_BUDGET
+
+    VmaCurrentBudgetData()
+    {
+        for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
+        {
+            m_BlockBytes[heapIndex] = 0;
+            m_AllocationBytes[heapIndex] = 0;
+#if VMA_MEMORY_BUDGET
+            m_VulkanUsage[heapIndex] = 0;
+            m_VulkanBudget[heapIndex] = 0;
+            m_BlockBytesAtBudgetFetch[heapIndex] = 0;
+#endif
+        }
+
+#if VMA_MEMORY_BUDGET
+        m_OperationsSinceBudgetFetch = 0;
+#endif
+    }
+
+    void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
+    {
+        m_AllocationBytes[heapIndex] += allocationSize;
+#if VMA_MEMORY_BUDGET
+        ++m_OperationsSinceBudgetFetch;
+#endif
+    }
+
+    void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
+    {
+        VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME
+        m_AllocationBytes[heapIndex] -= allocationSize;
+#if VMA_MEMORY_BUDGET
+        ++m_OperationsSinceBudgetFetch;
+#endif
+    }
+};
+
+// Main allocator object.
+struct VmaAllocator_T
+{
+    VMA_CLASS_NO_COPY(VmaAllocator_T)
+public:
+    bool m_UseMutex;
+    uint32_t m_VulkanApiVersion;
+    bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
+    bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
+    bool m_UseExtMemoryBudget;
+    bool m_UseAmdDeviceCoherentMemory;
+    bool m_UseKhrBufferDeviceAddress;
+    VkDevice m_hDevice;
+    VkInstance m_hInstance;
+    bool m_AllocationCallbacksSpecified;
+    VkAllocationCallbacks m_AllocationCallbacks;
+    VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
+    VmaAllocationObjectAllocator m_AllocationObjectAllocator;
+    
+    // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
+    uint32_t m_HeapSizeLimitMask;
+
+    VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
+    VkPhysicalDeviceMemoryProperties m_MemProps;
+
+    // Default pools.
+    VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+
+    // Each vector is sorted by memory (handle value).
+    typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
+    AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
+    VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
+
+    VmaCurrentBudgetData m_Budget;
+
+    VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
+    VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
+    ~VmaAllocator_T();
+
+    const VkAllocationCallbacks* GetAllocationCallbacks() const
+    {
+        return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
+    }
+    const VmaVulkanFunctions& GetVulkanFunctions() const
+    {
+        return m_VulkanFunctions;
+    }
+
+    VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
+
+    VkDeviceSize GetBufferImageGranularity() const
+    {
+        return VMA_MAX(
+            static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
+            m_PhysicalDeviceProperties.limits.bufferImageGranularity);
+    }
+
+    uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
+    uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
+
+    uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
+    {
+        VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
+        return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+    }
+    // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
+    bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
+    {
+        return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
+            VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+    }
+    // Minimum alignment for all allocations in specific memory type.
+    VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
+    {
+        return IsMemoryTypeNonCoherent(memTypeIndex) ?
+            VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
+            (VkDeviceSize)VMA_DEBUG_ALIGNMENT;
+    }
+
+    bool IsIntegratedGpu() const
+    {
+        return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
+    }
+
+    uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
+
+#if VMA_RECORDING_ENABLED
+    VmaRecorder* GetRecorder() const { return m_pRecorder; }
+#endif
+
+    void GetBufferMemoryRequirements(
+        VkBuffer hBuffer,
+        VkMemoryRequirements& memReq,
+        bool& requiresDedicatedAllocation,
+        bool& prefersDedicatedAllocation) const;
+    void GetImageMemoryRequirements(
+        VkImage hImage,
+        VkMemoryRequirements& memReq,
+        bool& requiresDedicatedAllocation,
+        bool& prefersDedicatedAllocation) const;
+
+    // Main allocation function.
+    VkResult AllocateMemory(
+        const VkMemoryRequirements& vkMemReq,
+        bool requiresDedicatedAllocation,
+        bool prefersDedicatedAllocation,
+        VkBuffer dedicatedBuffer,
+        VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown.
+        VkImage dedicatedImage,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaSuballocationType suballocType,
+        size_t allocationCount,
+        VmaAllocation* pAllocations);
+
+    // Main deallocation function.
+    void FreeMemory(
+        size_t allocationCount,
+        const VmaAllocation* pAllocations);
+
+    VkResult ResizeAllocation(
+        const VmaAllocation alloc,
+        VkDeviceSize newSize);
+
+    void CalculateStats(VmaStats* pStats);
+
+    void GetBudget(
+        VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount);
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+    VkResult DefragmentationBegin(
+        const VmaDefragmentationInfo2& info,
+        VmaDefragmentationStats* pStats,
+        VmaDefragmentationContext* pContext);
+    VkResult DefragmentationEnd(
+        VmaDefragmentationContext context);
+
+    VkResult DefragmentationPassBegin(
+        VmaDefragmentationPassInfo* pInfo,
+        VmaDefragmentationContext context);
+    VkResult DefragmentationPassEnd(
+        VmaDefragmentationContext context);
+
+    void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
+    bool TouchAllocation(VmaAllocation hAllocation);
+
+    VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
+    void DestroyPool(VmaPool pool);
+    void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
+
+    void SetCurrentFrameIndex(uint32_t frameIndex);
+    uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
+
+    void MakePoolAllocationsLost(
+        VmaPool hPool,
+        size_t* pLostAllocationCount);
+    VkResult CheckPoolCorruption(VmaPool hPool);
+    VkResult CheckCorruption(uint32_t memoryTypeBits);
+
+    void CreateLostAllocation(VmaAllocation* pAllocation);
+
+    // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
+    VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
+    // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
+    void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
+    // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
+    VkResult BindVulkanBuffer(
+        VkDeviceMemory memory,
+        VkDeviceSize memoryOffset,
+        VkBuffer buffer,
+        const void* pNext);
+    // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
+    VkResult BindVulkanImage(
+        VkDeviceMemory memory,
+        VkDeviceSize memoryOffset,
+        VkImage image,
+        const void* pNext);
+
+    VkResult Map(VmaAllocation hAllocation, void** ppData);
+    void Unmap(VmaAllocation hAllocation);
+
+    VkResult BindBufferMemory(
+        VmaAllocation hAllocation,
+        VkDeviceSize allocationLocalOffset,
+        VkBuffer hBuffer,
+        const void* pNext);
+    VkResult BindImageMemory(
+        VmaAllocation hAllocation,
+        VkDeviceSize allocationLocalOffset,
+        VkImage hImage,
+        const void* pNext);
+
+    void FlushOrInvalidateAllocation(
+        VmaAllocation hAllocation,
+        VkDeviceSize offset, VkDeviceSize size,
+        VMA_CACHE_OPERATION op);
+
+    void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
+
+    /*
+    Returns bit mask of memory types that can support defragmentation on GPU as
+    they support creation of required buffer for copy operations.
+    */
+    uint32_t GetGpuDefragmentationMemoryTypeBits();
+
+private:
+    VkDeviceSize m_PreferredLargeHeapBlockSize;
+
+    VkPhysicalDevice m_PhysicalDevice;
+    VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
+    VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
+    
+    VMA_RW_MUTEX m_PoolsMutex;
+    // Protected by m_PoolsMutex. Sorted by pointer value.
+    VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
+    uint32_t m_NextPoolId;
+
+    VmaVulkanFunctions m_VulkanFunctions;
+
+    // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
+    uint32_t m_GlobalMemoryTypeBits;
+
+#if VMA_RECORDING_ENABLED
+    VmaRecorder* m_pRecorder;
+#endif
+
+    void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
+
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+    void ImportVulkanFunctions_Static();
+#endif
+
+    void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+    void ImportVulkanFunctions_Dynamic();
+#endif
+
+    void ValidateVulkanFunctions();
+
+    VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+
+    VkResult AllocateMemoryOfType(
+        VkDeviceSize size,
+        VkDeviceSize alignment,
+        bool dedicatedAllocation,
+        VkBuffer dedicatedBuffer,
+        VkBufferUsageFlags dedicatedBufferUsage,
+        VkImage dedicatedImage,
+        const VmaAllocationCreateInfo& createInfo,
+        uint32_t memTypeIndex,
+        VmaSuballocationType suballocType,
+        size_t allocationCount,
+        VmaAllocation* pAllocations);
+
+    // Helper function only to be used inside AllocateDedicatedMemory.
+    VkResult AllocateDedicatedMemoryPage(
+        VkDeviceSize size,
+        VmaSuballocationType suballocType,
+        uint32_t memTypeIndex,
+        const VkMemoryAllocateInfo& allocInfo,
+        bool map,
+        bool isUserDataString,
+        void* pUserData,
+        VmaAllocation* pAllocation);
+
+    // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
+    VkResult AllocateDedicatedMemory(
+        VkDeviceSize size,
+        VmaSuballocationType suballocType,
+        uint32_t memTypeIndex,
+        bool withinBudget,
+        bool map,
+        bool isUserDataString,
+        void* pUserData,
+        VkBuffer dedicatedBuffer,
+        VkBufferUsageFlags dedicatedBufferUsage,
+        VkImage dedicatedImage,
+        size_t allocationCount,
+        VmaAllocation* pAllocations);
+
+    void FreeDedicatedMemory(const VmaAllocation allocation);
+
+    /*
+    Calculates and returns bit mask of memory types that can support defragmentation
+    on GPU as they support creation of required buffer for copy operations.
+    */
+    uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
+
+    uint32_t CalculateGlobalMemoryTypeBits() const;
+
+#if VMA_MEMORY_BUDGET
+    void UpdateVulkanBudget();
+#endif // #if VMA_MEMORY_BUDGET
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation #2 after VmaAllocator_T definition
+
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
+{
+    return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
+}
+
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
+{
+    VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
+}
+
+template<typename T>
+static T* VmaAllocate(VmaAllocator hAllocator)
+{
+    return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
+{
+    return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
+{
+    if(ptr != VMA_NULL)
+    {
+        ptr->~T();
+        VmaFree(hAllocator, ptr);
+    }
+}
+
+template<typename T>
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
+{
+    if(ptr != VMA_NULL)
+    {
+        for(size_t i = count; i--; )
+            ptr[i].~T();
+        VmaFree(hAllocator, ptr);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaStringBuilder
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaStringBuilder
+{
+public:
+    VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
+    size_t GetLength() const { return m_Data.size(); }
+    const char* GetData() const { return m_Data.data(); }
+
+    void Add(char ch) { m_Data.push_back(ch); }
+    void Add(const char* pStr);
+    void AddNewLine() { Add('\n'); }
+    void AddNumber(uint32_t num);
+    void AddNumber(uint64_t num);
+    void AddPointer(const void* ptr);
+
+private:
+    VmaVector< char, VmaStlAllocator<char> > m_Data;
+};
+
+void VmaStringBuilder::Add(const char* pStr)
+{
+    const size_t strLen = strlen(pStr);
+    if(strLen > 0)
+    {
+        const size_t oldCount = m_Data.size();
+        m_Data.resize(oldCount + strLen);
+        memcpy(m_Data.data() + oldCount, pStr, strLen);
+    }
+}
+
+void VmaStringBuilder::AddNumber(uint32_t num)
+{
+    char buf[11];
+    buf[10] = '\0';
+    char *p = &buf[10];
+    do
+    {
+        *--p = '0' + (num % 10);
+        num /= 10;
+    }
+    while(num);
+    Add(p);
+}
+
+void VmaStringBuilder::AddNumber(uint64_t num)
+{
+    char buf[21];
+    buf[20] = '\0';
+    char *p = &buf[20];
+    do
+    {
+        *--p = '0' + (num % 10);
+        num /= 10;
+    }
+    while(num);
+    Add(p);
+}
+
+void VmaStringBuilder::AddPointer(const void* ptr)
+{
+    char buf[21];
+    VmaPtrToStr(buf, sizeof(buf), ptr);
+    Add(buf);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaJsonWriter
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaJsonWriter
+{
+    VMA_CLASS_NO_COPY(VmaJsonWriter)
+public:
+    VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
+    ~VmaJsonWriter();
+
+    void BeginObject(bool singleLine = false);
+    void EndObject();
+    
+    void BeginArray(bool singleLine = false);
+    void EndArray();
+    
+    void WriteString(const char* pStr);
+    void BeginString(const char* pStr = VMA_NULL);
+    void ContinueString(const char* pStr);
+    void ContinueString(uint32_t n);
+    void ContinueString(uint64_t n);
+    void ContinueString_Pointer(const void* ptr);
+    void EndString(const char* pStr = VMA_NULL);
+    
+    void WriteNumber(uint32_t n);
+    void WriteNumber(uint64_t n);
+    void WriteBool(bool b);
+    void WriteNull();
+
+private:
+    static const char* const INDENT;
+
+    enum COLLECTION_TYPE
+    {
+        COLLECTION_TYPE_OBJECT,
+        COLLECTION_TYPE_ARRAY,
+    };
+    struct StackItem
+    {
+        COLLECTION_TYPE type;
+        uint32_t valueCount;
+        bool singleLineMode;
+    };
+
+    VmaStringBuilder& m_SB;
+    VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
+    bool m_InsideString;
+
+    void BeginValue(bool isString);
+    void WriteIndent(bool oneLess = false);
+};
+
+const char* const VmaJsonWriter::INDENT = "  ";
+
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
+    m_SB(sb),
+    m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
+    m_InsideString(false)
+{
+}
+
+VmaJsonWriter::~VmaJsonWriter()
+{
+    VMA_ASSERT(!m_InsideString);
+    VMA_ASSERT(m_Stack.empty());
+}
+
+void VmaJsonWriter::BeginObject(bool singleLine)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(false);
+    m_SB.Add('{');
+
+    StackItem item;
+    item.type = COLLECTION_TYPE_OBJECT;
+    item.valueCount = 0;
+    item.singleLineMode = singleLine;
+    m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndObject()
+{
+    VMA_ASSERT(!m_InsideString);
+
+    WriteIndent(true);
+    m_SB.Add('}');
+
+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
+    m_Stack.pop_back();
+}
+
+void VmaJsonWriter::BeginArray(bool singleLine)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(false);
+    m_SB.Add('[');
+
+    StackItem item;
+    item.type = COLLECTION_TYPE_ARRAY;
+    item.valueCount = 0;
+    item.singleLineMode = singleLine;
+    m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndArray()
+{
+    VMA_ASSERT(!m_InsideString);
+
+    WriteIndent(true);
+    m_SB.Add(']');
+
+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
+    m_Stack.pop_back();
+}
+
+void VmaJsonWriter::WriteString(const char* pStr)
+{
+    BeginString(pStr);
+    EndString();
+}
+
+void VmaJsonWriter::BeginString(const char* pStr)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(true);
+    m_SB.Add('"');
+    m_InsideString = true;
+    if(pStr != VMA_NULL && pStr[0] != '\0')
+    {
+        ContinueString(pStr);
+    }
+}
+
+void VmaJsonWriter::ContinueString(const char* pStr)
+{
+    VMA_ASSERT(m_InsideString);
+
+    const size_t strLen = strlen(pStr);
+    for(size_t i = 0; i < strLen; ++i)
+    {
+        char ch = pStr[i];
+        if(ch == '\\')
+        {
+            m_SB.Add("\\\\");
+        }
+        else if(ch == '"')
+        {
+            m_SB.Add("\\\"");
+        }
+        else if(ch >= 32)
+        {
+            m_SB.Add(ch);
+        }
+        else switch(ch)
+        {
+        case '\b':
+            m_SB.Add("\\b");
+            break;
+        case '\f':
+            m_SB.Add("\\f");
+            break;
+        case '\n':
+            m_SB.Add("\\n");
+            break;
+        case '\r':
+            m_SB.Add("\\r");
+            break;
+        case '\t':
+            m_SB.Add("\\t");
+            break;
+        default:
+            VMA_ASSERT(0 && "Character not currently supported.");
+            break;
+        }
+    }
+}
+
+void VmaJsonWriter::ContinueString(uint32_t n)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString(uint64_t n)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddPointer(ptr);
+}
+
+void VmaJsonWriter::EndString(const char* pStr)
+{
+    VMA_ASSERT(m_InsideString);
+    if(pStr != VMA_NULL && pStr[0] != '\0')
+    {
+        ContinueString(pStr);
+    }
+    m_SB.Add('"');
+    m_InsideString = false;
+}
+
+void VmaJsonWriter::WriteNumber(uint32_t n)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteNumber(uint64_t n)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteBool(bool b)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.Add(b ? "true" : "false");
+}
+
+void VmaJsonWriter::WriteNull()
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.Add("null");
+}
+
+void VmaJsonWriter::BeginValue(bool isString)
+{
+    if(!m_Stack.empty())
+    {
+        StackItem& currItem = m_Stack.back();
+        if(currItem.type == COLLECTION_TYPE_OBJECT &&
+            currItem.valueCount % 2 == 0)
+        {
+            VMA_ASSERT(isString);
+        }
+
+        if(currItem.type == COLLECTION_TYPE_OBJECT &&
+            currItem.valueCount % 2 != 0)
+        {
+            m_SB.Add(": ");
+        }
+        else if(currItem.valueCount > 0)
+        {
+            m_SB.Add(", ");
+            WriteIndent();
+        }
+        else
+        {
+            WriteIndent();
+        }
+        ++currItem.valueCount;
+    }
+}
+
+void VmaJsonWriter::WriteIndent(bool oneLess)
+{
+    if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
+    {
+        m_SB.AddNewLine();
+        
+        size_t count = m_Stack.size();
+        if(count > 0 && oneLess)
+        {
+            --count;
+        }
+        for(size_t i = 0; i < count; ++i)
+        {
+            m_SB.Add(INDENT);
+        }
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+
+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
+{
+    if(IsUserDataString())
+    {
+        VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
+
+        FreeUserDataString(hAllocator);
+
+        if(pUserData != VMA_NULL)
+        {
+            m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData);
+        }
+    }
+    else
+    {
+        m_pUserData = pUserData;
+    }
+}
+
+void VmaAllocation_T::ChangeBlockAllocation(
+    VmaAllocator hAllocator,
+    VmaDeviceMemoryBlock* block,
+    VkDeviceSize offset)
+{
+    VMA_ASSERT(block != VMA_NULL);
+    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+
+    // Move mapping reference counter from old block to new block.
+    if(block != m_BlockAllocation.m_Block)
+    {
+        uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
+        if(IsPersistentMap())
+            ++mapRefCount;
+        m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
+        block->Map(hAllocator, mapRefCount, VMA_NULL);
+    }
+
+    m_BlockAllocation.m_Block = block;
+    m_BlockAllocation.m_Offset = offset;
+}
+
+void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset)
+{
+    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+    m_BlockAllocation.m_Offset = newOffset;
+}
+
+VkDeviceSize VmaAllocation_T::GetOffset() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_Offset;
+    case ALLOCATION_TYPE_DEDICATED:
+        return 0;
+    default:
+        VMA_ASSERT(0);
+        return 0;
+    }
+}
+
+VkDeviceMemory VmaAllocation_T::GetMemory() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_Block->GetDeviceMemory();
+    case ALLOCATION_TYPE_DEDICATED:
+        return m_DedicatedAllocation.m_hMemory;
+    default:
+        VMA_ASSERT(0);
+        return VK_NULL_HANDLE;
+    }
+}
+
+void* VmaAllocation_T::GetMappedData() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        if(m_MapCount != 0)
+        {
+            void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
+            VMA_ASSERT(pBlockData != VMA_NULL);
+            return (char*)pBlockData + m_BlockAllocation.m_Offset;
+        }
+        else
+        {
+            return VMA_NULL;
+        }
+        break;
+    case ALLOCATION_TYPE_DEDICATED:
+        VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
+        return m_DedicatedAllocation.m_pMappedData;
+    default:
+        VMA_ASSERT(0);
+        return VMA_NULL;
+    }
+}
+
+bool VmaAllocation_T::CanBecomeLost() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_CanBecomeLost;
+    case ALLOCATION_TYPE_DEDICATED:
+        return false;
+    default:
+        VMA_ASSERT(0);
+        return false;
+    }
+}
+
+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    VMA_ASSERT(CanBecomeLost());
+
+    /*
+    Warning: This is a carefully designed algorithm.
+    Do not modify unless you really know what you're doing :)
+    */
+    uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
+    for(;;)
+    {
+        if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+        {
+            VMA_ASSERT(0);
+            return false;
+        }
+        else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
+        {
+            return false;
+        }
+        else // Last use time earlier than current time.
+        {
+            if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
+            {
+                // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
+                // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
+                return true;
+            }
+        }
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+// Correspond to values of enum VmaSuballocationType.
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
+    "FREE",
+    "UNKNOWN",
+    "BUFFER",
+    "IMAGE_UNKNOWN",
+    "IMAGE_LINEAR",
+    "IMAGE_OPTIMAL",
+};
+
+void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
+{
+    json.WriteString("Type");
+    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
+
+    json.WriteString("Size");
+    json.WriteNumber(m_Size);
+
+    if(m_pUserData != VMA_NULL)
+    {
+        json.WriteString("UserData");
+        if(IsUserDataString())
+        {
+            json.WriteString((const char*)m_pUserData);
+        }
+        else
+        {
+            json.BeginString();
+            json.ContinueString_Pointer(m_pUserData);
+            json.EndString();
+        }
+    }
+
+    json.WriteString("CreationFrameIndex");
+    json.WriteNumber(m_CreationFrameIndex);
+
+    json.WriteString("LastUseFrameIndex");
+    json.WriteNumber(GetLastUseFrameIndex());
+
+    if(m_BufferImageUsage != 0)
+    {
+        json.WriteString("Usage");
+        json.WriteNumber(m_BufferImageUsage);
+    }
+}
+
+#endif
+
+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
+{
+    VMA_ASSERT(IsUserDataString());
+    VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData);
+    m_pUserData = VMA_NULL;
+}
+
+void VmaAllocation_T::BlockAllocMap()
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+    {
+        ++m_MapCount;
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
+    }
+}
+
+void VmaAllocation_T::BlockAllocUnmap()
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+    {
+        --m_MapCount;
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
+    }
+}
+
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+    if(m_MapCount != 0)
+    {
+        if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+        {
+            VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
+            *ppData = m_DedicatedAllocation.m_pMappedData;
+            ++m_MapCount;
+            return VK_SUCCESS;
+        }
+        else
+        {
+            VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
+            return VK_ERROR_MEMORY_MAP_FAILED;
+        }
+    }
+    else
+    {
+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+            hAllocator->m_hDevice,
+            m_DedicatedAllocation.m_hMemory,
+            0, // offset
+            VK_WHOLE_SIZE,
+            0, // flags
+            ppData);
+        if(result == VK_SUCCESS)
+        {
+            m_DedicatedAllocation.m_pMappedData = *ppData;
+            m_MapCount = 1;
+        }
+        return result;
+    }
+}
+
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+    {
+        --m_MapCount;
+        if(m_MapCount == 0)
+        {
+            m_DedicatedAllocation.m_pMappedData = VMA_NULL;
+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
+                hAllocator->m_hDevice,
+                m_DedicatedAllocation.m_hMemory);
+        }
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
+{
+    json.BeginObject();
+
+    json.WriteString("Blocks");
+    json.WriteNumber(stat.blockCount);
+
+    json.WriteString("Allocations");
+    json.WriteNumber(stat.allocationCount);
+
+    json.WriteString("UnusedRanges");
+    json.WriteNumber(stat.unusedRangeCount);
+
+    json.WriteString("UsedBytes");
+    json.WriteNumber(stat.usedBytes);
+
+    json.WriteString("UnusedBytes");
+    json.WriteNumber(stat.unusedBytes);
+
+    if(stat.allocationCount > 1)
+    {
+        json.WriteString("AllocationSize");
+        json.BeginObject(true);
+        json.WriteString("Min");
+        json.WriteNumber(stat.allocationSizeMin);
+        json.WriteString("Avg");
+        json.WriteNumber(stat.allocationSizeAvg);
+        json.WriteString("Max");
+        json.WriteNumber(stat.allocationSizeMax);
+        json.EndObject();
+    }
+
+    if(stat.unusedRangeCount > 1)
+    {
+        json.WriteString("UnusedRangeSize");
+        json.BeginObject(true);
+        json.WriteString("Min");
+        json.WriteNumber(stat.unusedRangeSizeMin);
+        json.WriteString("Avg");
+        json.WriteNumber(stat.unusedRangeSizeAvg);
+        json.WriteString("Max");
+        json.WriteNumber(stat.unusedRangeSizeMax);
+        json.EndObject();
+    }
+
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+struct VmaSuballocationItemSizeLess
+{
+    bool operator()(
+        const VmaSuballocationList::iterator lhs,
+        const VmaSuballocationList::iterator rhs) const
+    {
+        return lhs->size < rhs->size;
+    }
+    bool operator()(
+        const VmaSuballocationList::iterator lhs,
+        VkDeviceSize rhsSize) const
+    {
+        return lhs->size < rhsSize;
+    }
+};
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata
+
+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
+    m_Size(0),
+    m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks())
+{
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
+    VkDeviceSize unusedBytes,
+    size_t allocationCount,
+    size_t unusedRangeCount) const
+{
+    json.BeginObject();
+
+    json.WriteString("TotalBytes");
+    json.WriteNumber(GetSize());
+
+    json.WriteString("UnusedBytes");
+    json.WriteNumber(unusedBytes);
+
+    json.WriteString("Allocations");
+    json.WriteNumber((uint64_t)allocationCount);
+
+    json.WriteString("UnusedRanges");
+    json.WriteNumber((uint64_t)unusedRangeCount);
+
+    json.WriteString("Suballocations");
+    json.BeginArray();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+    VkDeviceSize offset,
+    VmaAllocation hAllocation) const
+{
+    json.BeginObject(true);
+        
+    json.WriteString("Offset");
+    json.WriteNumber(offset);
+
+    hAllocation->PrintParameters(json);
+
+    json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+    VkDeviceSize offset,
+    VkDeviceSize size) const
+{
+    json.BeginObject(true);
+        
+    json.WriteString("Offset");
+    json.WriteNumber(offset);
+
+    json.WriteString("Type");
+    json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
+
+    json.WriteString("Size");
+    json.WriteNumber(size);
+
+    json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
+{
+    json.EndArray();
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Generic
+
+VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) :
+    VmaBlockMetadata(hAllocator),
+    m_FreeCount(0),
+    m_SumFreeSize(0),
+    m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+    m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic()
+{
+}
+
+void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
+{
+    VmaBlockMetadata::Init(size);
+
+    m_FreeCount = 1;
+    m_SumFreeSize = size;
+
+    VmaSuballocation suballoc = {};
+    suballoc.offset = 0;
+    suballoc.size = size;
+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+    suballoc.hAllocation = VK_NULL_HANDLE;
+
+    VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
+    m_Suballocations.push_back(suballoc);
+    VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
+    --suballocItem;
+    m_FreeSuballocationsBySize.push_back(suballocItem);
+}
+
+bool VmaBlockMetadata_Generic::Validate() const
+{
+    VMA_VALIDATE(!m_Suballocations.empty());
+    
+    // Expected offset of new suballocation as calculated from previous ones.
+    VkDeviceSize calculatedOffset = 0;
+    // Expected number of free suballocations as calculated from traversing their list.
+    uint32_t calculatedFreeCount = 0;
+    // Expected sum size of free suballocations as calculated from traversing their list.
+    VkDeviceSize calculatedSumFreeSize = 0;
+    // Expected number of free suballocations that should be registered in
+    // m_FreeSuballocationsBySize calculated from traversing their list.
+    size_t freeSuballocationsToRegister = 0;
+    // True if previous visited suballocation was free.
+    bool prevFree = false;
+
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem)
+    {
+        const VmaSuballocation& subAlloc = *suballocItem;
+        
+        // Actual offset of this suballocation doesn't match expected one.
+        VMA_VALIDATE(subAlloc.offset == calculatedOffset);
+
+        const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
+        // Two adjacent free suballocations are invalid. They should be merged.
+        VMA_VALIDATE(!prevFree || !currFree);
+
+        VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE));
+
+        if(currFree)
+        {
+            calculatedSumFreeSize += subAlloc.size;
+            ++calculatedFreeCount;
+            if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+            {
+                ++freeSuballocationsToRegister;
+            }
+
+            // Margin required between allocations - every free space must be at least that large.
+            VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN);
+        }
+        else
+        {
+            VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset);
+            VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size);
+
+            // Margin required between allocations - previous allocation must be free.
+            VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree);
+        }
+
+        calculatedOffset += subAlloc.size;
+        prevFree = currFree;
+    }
+
+    // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
+    // match expected one.
+    VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
+
+    VkDeviceSize lastSize = 0;
+    for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
+    {
+        VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
+        
+        // Only free suballocations can be registered in m_FreeSuballocationsBySize.
+        VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+        // They must be sorted by size ascending.
+        VMA_VALIDATE(suballocItem->size >= lastSize);
+
+        lastSize = suballocItem->size;
+    }
+
+    // Check if totals match calculacted values.
+    VMA_VALIDATE(ValidateFreeSuballocationList());
+    VMA_VALIDATE(calculatedOffset == GetSize());
+    VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
+    VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
+
+    return true;
+}
+
+VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const
+{
+    if(!m_FreeSuballocationsBySize.empty())
+    {
+        return m_FreeSuballocationsBySize.back()->size;
+    }
+    else
+    {
+        return 0;
+    }
+}
+
+bool VmaBlockMetadata_Generic::IsEmpty() const
+{
+    return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
+}
+
+void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+    outInfo.blockCount = 1;
+
+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+    outInfo.allocationCount = rangeCount - m_FreeCount;
+    outInfo.unusedRangeCount = m_FreeCount;
+    
+    outInfo.unusedBytes = m_SumFreeSize;
+    outInfo.usedBytes = GetSize() - outInfo.unusedBytes;
+
+    outInfo.allocationSizeMin = UINT64_MAX;
+    outInfo.allocationSizeMax = 0;
+    outInfo.unusedRangeSizeMin = UINT64_MAX;
+    outInfo.unusedRangeSizeMax = 0;
+
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem)
+    {
+        const VmaSuballocation& suballoc = *suballocItem;
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
+        }
+        else
+        {
+            outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
+            outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
+        }
+    }
+}
+
+void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+
+    inoutStats.size += GetSize();
+    inoutStats.unusedSize += m_SumFreeSize;
+    inoutStats.allocationCount += rangeCount - m_FreeCount;
+    inoutStats.unusedRangeCount += m_FreeCount;
+    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+    PrintDetailedMap_Begin(json,
+        m_SumFreeSize, // unusedBytes
+        m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
+        m_FreeCount); // unusedRangeCount
+
+    size_t i = 0;
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem, ++i)
+    {
+        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size);
+        }
+        else
+        {
+            PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation);
+        }
+    }
+
+    PrintDetailedMap_End(json);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Generic::CreateAllocationRequest(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    bool upperAddress,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    uint32_t strategy,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(allocSize > 0);
+    VMA_ASSERT(!upperAddress);
+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(pAllocationRequest != VMA_NULL);
+    VMA_HEAVY_ASSERT(Validate());
+
+    pAllocationRequest->type = VmaAllocationRequestType::Normal;
+
+    // There is not enough total free space in this block to fullfill the request: Early return.
+    if(canMakeOtherLost == false &&
+        m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN)
+    {
+        return false;
+    }
+
+    // New algorithm, efficiently searching freeSuballocationsBySize.
+    const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
+    if(freeSuballocCount > 0)
+    {
+        if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+        {
+            // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN.
+            VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+                m_FreeSuballocationsBySize.data(),
+                m_FreeSuballocationsBySize.data() + freeSuballocCount,
+                allocSize + 2 * VMA_DEBUG_MARGIN,
+                VmaSuballocationItemSizeLess());
+            size_t index = it - m_FreeSuballocationsBySize.data();
+            for(; index < freeSuballocCount; ++index)
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    m_FreeSuballocationsBySize[index],
+                    false, // canMakeOtherLost
+                    &pAllocationRequest->offset,
+                    &pAllocationRequest->itemsToMakeLostCount,
+                    &pAllocationRequest->sumFreeSize,
+                    &pAllocationRequest->sumItemSize))
+                {
+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+                    return true;
+                }
+            }
+        }
+        else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
+        {
+            for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+                it != m_Suballocations.end();
+                ++it)
+            {
+                if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    it,
+                    false, // canMakeOtherLost
+                    &pAllocationRequest->offset,
+                    &pAllocationRequest->itemsToMakeLostCount,
+                    &pAllocationRequest->sumFreeSize,
+                    &pAllocationRequest->sumItemSize))
+                {
+                    pAllocationRequest->item = it;
+                    return true;
+                }
+            }
+        }
+        else // WORST_FIT, FIRST_FIT
+        {
+            // Search staring from biggest suballocations.
+            for(size_t index = freeSuballocCount; index--; )
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    m_FreeSuballocationsBySize[index],
+                    false, // canMakeOtherLost
+                    &pAllocationRequest->offset,
+                    &pAllocationRequest->itemsToMakeLostCount,
+                    &pAllocationRequest->sumFreeSize,
+                    &pAllocationRequest->sumItemSize))
+                {
+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+                    return true;
+                }
+            }
+        }
+    }
+
+    if(canMakeOtherLost)
+    {
+        // Brute-force algorithm. TODO: Come up with something better.
+
+        bool found = false;
+        VmaAllocationRequest tmpAllocRequest = {};
+        tmpAllocRequest.type = VmaAllocationRequestType::Normal;
+        for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
+            suballocIt != m_Suballocations.end();
+            ++suballocIt)
+        {
+            if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
+                suballocIt->hAllocation->CanBecomeLost())
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    suballocIt,
+                    canMakeOtherLost,
+                    &tmpAllocRequest.offset,
+                    &tmpAllocRequest.itemsToMakeLostCount,
+                    &tmpAllocRequest.sumFreeSize,
+                    &tmpAllocRequest.sumItemSize))
+                {
+                    if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+                    {
+                        *pAllocationRequest = tmpAllocRequest;
+                        pAllocationRequest->item = suballocIt;
+                        break;
+                    }
+                    if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
+                    {
+                        *pAllocationRequest = tmpAllocRequest;
+                        pAllocationRequest->item = suballocIt;
+                        found = true;
+                    }
+                }
+            }
+        }
+
+        return found;
+    }
+
+    return false;
+}
+
+bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);
+
+    while(pAllocationRequest->itemsToMakeLostCount > 0)
+    {
+        if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            ++pAllocationRequest->item;
+        }
+        VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+        VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
+        VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
+        if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
+            --pAllocationRequest->itemsToMakeLostCount;
+        }
+        else
+        {
+            return false;
+        }
+    }
+
+    VMA_HEAVY_ASSERT(Validate());
+    VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+    VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    
+    return true;
+}
+
+uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    uint32_t lostAllocationCount = 0;
+    for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+        it != m_Suballocations.end();
+        ++it)
+    {
+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
+            it->hAllocation->CanBecomeLost() &&
+            it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            it = FreeSuballocation(it);
+            ++lostAllocationCount;
+        }
+    }
+    return lostAllocationCount;
+}
+
+VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
+{
+    for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+        it != m_Suballocations.end();
+        ++it)
+    {
+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+            if(!VmaValidateMagicValue(pBlockData, it->offset + it->size))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+        }
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_Generic::Alloc(
+    const VmaAllocationRequest& request,
+    VmaSuballocationType type,
+    VkDeviceSize allocSize,
+    VmaAllocation hAllocation)
+{
+    VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
+    VMA_ASSERT(request.item != m_Suballocations.end());
+    VmaSuballocation& suballoc = *request.item;
+    // Given suballocation is a free block.
+    VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+    // Given offset is inside this suballocation.
+    VMA_ASSERT(request.offset >= suballoc.offset);
+    const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
+    VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
+    const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
+
+    // Unregister this free suballocation from m_FreeSuballocationsBySize and update
+    // it to become used.
+    UnregisterFreeSuballocation(request.item);
+
+    suballoc.offset = request.offset;
+    suballoc.size = allocSize;
+    suballoc.type = type;
+    suballoc.hAllocation = hAllocation;
+
+    // If there are any free bytes remaining at the end, insert new free suballocation after current one.
+    if(paddingEnd)
+    {
+        VmaSuballocation paddingSuballoc = {};
+        paddingSuballoc.offset = request.offset + allocSize;
+        paddingSuballoc.size = paddingEnd;
+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+        VmaSuballocationList::iterator next = request.item;
+        ++next;
+        const VmaSuballocationList::iterator paddingEndItem =
+            m_Suballocations.insert(next, paddingSuballoc);
+        RegisterFreeSuballocation(paddingEndItem);
+    }
+
+    // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
+    if(paddingBegin)
+    {
+        VmaSuballocation paddingSuballoc = {};
+        paddingSuballoc.offset = request.offset - paddingBegin;
+        paddingSuballoc.size = paddingBegin;
+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+        const VmaSuballocationList::iterator paddingBeginItem =
+            m_Suballocations.insert(request.item, paddingSuballoc);
+        RegisterFreeSuballocation(paddingBeginItem);
+    }
+
+    // Update totals.
+    m_FreeCount = m_FreeCount - 1;
+    if(paddingBegin > 0)
+    {
+        ++m_FreeCount;
+    }
+    if(paddingEnd > 0)
+    {
+        ++m_FreeCount;
+    }
+    m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation)
+{
+    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+        suballocItem != m_Suballocations.end();
+        ++suballocItem)
+    {
+        VmaSuballocation& suballoc = *suballocItem;
+        if(suballoc.hAllocation == allocation)
+        {
+            FreeSuballocation(suballocItem);
+            VMA_HEAVY_ASSERT(Validate());
+            return;
+        }
+    }
+    VMA_ASSERT(0 && "Not found!");
+}
+
+void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset)
+{
+    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+        suballocItem != m_Suballocations.end();
+        ++suballocItem)
+    {
+        VmaSuballocation& suballoc = *suballocItem;
+        if(suballoc.offset == offset)
+        {
+            FreeSuballocation(suballocItem);
+            return;
+        }
+    }
+    VMA_ASSERT(0 && "Not found!");
+}
+
+bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
+{
+    VkDeviceSize lastSize = 0;
+    for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
+    {
+        const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
+
+        VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
+        VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
+        VMA_VALIDATE(it->size >= lastSize);
+        lastSize = it->size;
+    }
+    return true;
+}
+
+bool VmaBlockMetadata_Generic::CheckAllocation(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    VmaSuballocationType allocType,
+    VmaSuballocationList::const_iterator suballocItem,
+    bool canMakeOtherLost,
+    VkDeviceSize* pOffset,
+    size_t* itemsToMakeLostCount,
+    VkDeviceSize* pSumFreeSize,
+    VkDeviceSize* pSumItemSize) const
+{
+    VMA_ASSERT(allocSize > 0);
+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(suballocItem != m_Suballocations.cend());
+    VMA_ASSERT(pOffset != VMA_NULL);
+    
+    *itemsToMakeLostCount = 0;
+    *pSumFreeSize = 0;
+    *pSumItemSize = 0;
+
+    if(canMakeOtherLost)
+    {
+        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            *pSumFreeSize = suballocItem->size;
+        }
+        else
+        {
+            if(suballocItem->hAllocation->CanBecomeLost() &&
+                suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+            {
+                ++*itemsToMakeLostCount;
+                *pSumItemSize = suballocItem->size;
+            }
+            else
+            {
+                return false;
+            }
+        }
+
+        // Remaining size is too small for this request: Early return.
+        if(GetSize() - suballocItem->offset < allocSize)
+        {
+            return false;
+        }
+
+        // Start from offset equal to beginning of this suballocation.
+        *pOffset = suballocItem->offset;
+    
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if(VMA_DEBUG_MARGIN > 0)
+        {
+            *pOffset += VMA_DEBUG_MARGIN;
+        }
+    
+        // Apply alignment.
+        *pOffset = VmaAlignUp(*pOffset, allocAlignment);
+
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1)
+        {
+            bool bufferImageGranularityConflict = false;
+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+            while(prevSuballocItem != m_Suballocations.cbegin())
+            {
+                --prevSuballocItem;
+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+            }
+        }
+    
+        // Now that we have final *pOffset, check if we are past suballocItem.
+        // If yes, return false - this function should be called for another suballocItem as starting point.
+        if(*pOffset >= suballocItem->offset + suballocItem->size)
+        {
+            return false;
+        }
+    
+        // Calculate padding at the beginning based on current offset.
+        const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
+
+        // Calculate required margin at the end.
+        const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
+
+        const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
+        // Another early return check.
+        if(suballocItem->offset + totalSize > GetSize())
+        {
+            return false;
+        }
+
+        // Advance lastSuballocItem until desired size is reached.
+        // Update itemsToMakeLostCount.
+        VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
+        if(totalSize > suballocItem->size)
+        {
+            VkDeviceSize remainingSize = totalSize - suballocItem->size;
+            while(remainingSize > 0)
+            {
+                ++lastSuballocItem;
+                if(lastSuballocItem == m_Suballocations.cend())
+                {
+                    return false;
+                }
+                if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+                {
+                    *pSumFreeSize += lastSuballocItem->size;
+                }
+                else
+                {
+                    VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
+                    if(lastSuballocItem->hAllocation->CanBecomeLost() &&
+                        lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                    {
+                        ++*itemsToMakeLostCount;
+                        *pSumItemSize += lastSuballocItem->size;
+                    }
+                    else
+                    {
+                        return false;
+                    }
+                }
+                remainingSize = (lastSuballocItem->size < remainingSize) ?
+                    remainingSize - lastSuballocItem->size : 0;
+            }
+        }
+
+        // Check next suballocations for BufferImageGranularity conflicts.
+        // If conflict exists, we must mark more allocations lost or fail.
+        if(bufferImageGranularity > 1)
+        {
+            VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
+            ++nextSuballocItem;
+            while(nextSuballocItem != m_Suballocations.cend())
+            {
+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                    {
+                        VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
+                        if(nextSuballoc.hAllocation->CanBecomeLost() &&
+                            nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                        {
+                            ++*itemsToMakeLostCount;
+                        }
+                        else
+                        {
+                            return false;
+                        }
+                    }
+                }
+                else
+                {
+                    // Already on next page.
+                    break;
+                }
+                ++nextSuballocItem;
+            }
+        }
+    }
+    else
+    {
+        const VmaSuballocation& suballoc = *suballocItem;
+        VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+        *pSumFreeSize = suballoc.size;
+
+        // Size of this suballocation is too small for this request: Early return.
+        if(suballoc.size < allocSize)
+        {
+            return false;
+        }
+
+        // Start from offset equal to beginning of this suballocation.
+        *pOffset = suballoc.offset;
+    
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if(VMA_DEBUG_MARGIN > 0)
+        {
+            *pOffset += VMA_DEBUG_MARGIN;
+        }
+    
+        // Apply alignment.
+        *pOffset = VmaAlignUp(*pOffset, allocAlignment);
+    
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1)
+        {
+            bool bufferImageGranularityConflict = false;
+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+            while(prevSuballocItem != m_Suballocations.cbegin())
+            {
+                --prevSuballocItem;
+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+            }
+        }
+    
+        // Calculate padding at the beginning based on current offset.
+        const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
+
+        // Calculate required margin at the end.
+        const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
+
+        // Fail if requested size plus margin before and after is bigger than size of this suballocation.
+        if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
+        {
+            return false;
+        }
+
+        // Check next suballocations for BufferImageGranularity conflicts.
+        // If conflict exists, allocation cannot be made here.
+        if(bufferImageGranularity > 1)
+        {
+            VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
+            ++nextSuballocItem;
+            while(nextSuballocItem != m_Suballocations.cend())
+            {
+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                    {
+                        return false;
+                    }
+                }
+                else
+                {
+                    // Already on next page.
+                    break;
+                }
+                ++nextSuballocItem;
+            }
+        }
+    }
+
+    // All tests passed: Success. pOffset is already filled.
+    return true;
+}
+
+void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item != m_Suballocations.end());
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    
+    VmaSuballocationList::iterator nextItem = item;
+    ++nextItem;
+    VMA_ASSERT(nextItem != m_Suballocations.end());
+    VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+    item->size += nextItem->size;
+    --m_FreeCount;
+    m_Suballocations.erase(nextItem);
+}
+
+VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
+{
+    // Change this suballocation to be marked as free.
+    VmaSuballocation& suballoc = *suballocItem;
+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+    suballoc.hAllocation = VK_NULL_HANDLE;
+    
+    // Update totals.
+    ++m_FreeCount;
+    m_SumFreeSize += suballoc.size;
+
+    // Merge with previous and/or next suballocation if it's also free.
+    bool mergeWithNext = false;
+    bool mergeWithPrev = false;
+    
+    VmaSuballocationList::iterator nextItem = suballocItem;
+    ++nextItem;
+    if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
+    {
+        mergeWithNext = true;
+    }
+
+    VmaSuballocationList::iterator prevItem = suballocItem;
+    if(suballocItem != m_Suballocations.begin())
+    {
+        --prevItem;
+        if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            mergeWithPrev = true;
+        }
+    }
+
+    if(mergeWithNext)
+    {
+        UnregisterFreeSuballocation(nextItem);
+        MergeFreeWithNext(suballocItem);
+    }
+
+    if(mergeWithPrev)
+    {
+        UnregisterFreeSuballocation(prevItem);
+        MergeFreeWithNext(prevItem);
+        RegisterFreeSuballocation(prevItem);
+        return prevItem;
+    }
+    else
+    {
+        RegisterFreeSuballocation(suballocItem);
+        return suballocItem;
+    }
+}
+
+void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(item->size > 0);
+
+    // You may want to enable this validation at the beginning or at the end of
+    // this function, depending on what do you want to check.
+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+    {
+        if(m_FreeSuballocationsBySize.empty())
+        {
+            m_FreeSuballocationsBySize.push_back(item);
+        }
+        else
+        {
+            VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
+        }
+    }
+
+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+
+void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(item->size > 0);
+
+    // You may want to enable this validation at the beginning or at the end of
+    // this function, depending on what do you want to check.
+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+    {
+        VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+            m_FreeSuballocationsBySize.data(),
+            m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
+            item,
+            VmaSuballocationItemSizeLess());
+        for(size_t index = it - m_FreeSuballocationsBySize.data();
+            index < m_FreeSuballocationsBySize.size();
+            ++index)
+        {
+            if(m_FreeSuballocationsBySize[index] == item)
+            {
+                VmaVectorRemove(m_FreeSuballocationsBySize, index);
+                return;
+            }
+            VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
+        }
+        VMA_ASSERT(0 && "Not found.");
+    }
+
+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(
+    VkDeviceSize bufferImageGranularity,
+    VmaSuballocationType& inOutPrevSuballocType) const
+{
+    if(bufferImageGranularity == 1 || IsEmpty())
+    {
+        return false;
+    }
+
+    VkDeviceSize minAlignment = VK_WHOLE_SIZE;
+    bool typeConflictFound = false;
+    for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin();
+        it != m_Suballocations.cend();
+        ++it)
+    {
+        const VmaSuballocationType suballocType = it->type;
+        if(suballocType != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment());
+            if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType))
+            {
+                typeConflictFound = true;
+            }
+            inOutPrevSuballocType = suballocType;
+        }
+    }
+
+    return typeConflictFound || minAlignment >= bufferImageGranularity;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Linear
+
+VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) :
+    VmaBlockMetadata(hAllocator),
+    m_SumFreeSize(0),
+    m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+    m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+    m_1stVectorIndex(0),
+    m_2ndVectorMode(SECOND_VECTOR_EMPTY),
+    m_1stNullItemsBeginCount(0),
+    m_1stNullItemsMiddleCount(0),
+    m_2ndNullItemsCount(0)
+{
+}
+
+VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear()
+{
+}
+
+void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
+{
+    VmaBlockMetadata::Init(size);
+    m_SumFreeSize = size;
+}
+
+bool VmaBlockMetadata_Linear::Validate() const
+{
+    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+    VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
+    VMA_VALIDATE(!suballocations1st.empty() ||
+        suballocations2nd.empty() ||
+        m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
+
+    if(!suballocations1st.empty())
+    {
+        // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
+        VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE);
+        // Null item at the end should be just pop_back().
+        VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE);
+    }
+    if(!suballocations2nd.empty())
+    {
+        // Null item at the end should be just pop_back().
+        VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE);
+    }
+
+    VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
+    VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
+
+    VkDeviceSize sumUsedSize = 0;
+    const size_t suballoc1stCount = suballocations1st.size();
+    VkDeviceSize offset = VMA_DEBUG_MARGIN;
+
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        const size_t suballoc2ndCount = suballocations2nd.size();
+        size_t nullItem2ndCount = 0;
+        for(size_t i = 0; i < suballoc2ndCount; ++i)
+        {
+            const VmaSuballocation& suballoc = suballocations2nd[i];
+            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+            VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+            VMA_VALIDATE(suballoc.offset >= offset);
+
+            if(!currFree)
+            {
+                VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+                VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+                sumUsedSize += suballoc.size;
+            }
+            else
+            {
+                ++nullItem2ndCount;
+            }
+
+            offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+        }
+
+        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+    }
+
+    for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
+    {
+        const VmaSuballocation& suballoc = suballocations1st[i];
+        VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
+            suballoc.hAllocation == VK_NULL_HANDLE);
+    }
+
+    size_t nullItem1stCount = m_1stNullItemsBeginCount;
+
+    for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
+    {
+        const VmaSuballocation& suballoc = suballocations1st[i];
+        const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+        VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+        VMA_VALIDATE(suballoc.offset >= offset);
+        VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
+
+        if(!currFree)
+        {
+            VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+            VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+            sumUsedSize += suballoc.size;
+        }
+        else
+        {
+            ++nullItem1stCount;
+        }
+
+        offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+    }
+    VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
+
+    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        const size_t suballoc2ndCount = suballocations2nd.size();
+        size_t nullItem2ndCount = 0;
+        for(size_t i = suballoc2ndCount; i--; )
+        {
+            const VmaSuballocation& suballoc = suballocations2nd[i];
+            const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+            VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+            VMA_VALIDATE(suballoc.offset >= offset);
+
+            if(!currFree)
+            {
+                VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+                VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+                sumUsedSize += suballoc.size;
+            }
+            else
+            {
+                ++nullItem2ndCount;
+            }
+
+            offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+        }
+
+        VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+    }
+
+    VMA_VALIDATE(offset <= GetSize());
+    VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
+
+    return true;
+}
+
+size_t VmaBlockMetadata_Linear::GetAllocationCount() const
+{
+    return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) +
+        AccessSuballocations2nd().size() - m_2ndNullItemsCount;
+}
+
+VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const
+{
+    const VkDeviceSize size = GetSize();
+
+    /*
+    We don't consider gaps inside allocation vectors with freed allocations because
+    they are not suitable for reuse in linear allocator. We consider only space that
+    is available for new allocations.
+    */
+    if(IsEmpty())
+    {
+        return size;
+    }
+    
+    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+
+    switch(m_2ndVectorMode)
+    {
+    case SECOND_VECTOR_EMPTY:
+        /*
+        Available space is after end of 1st, as well as before beginning of 1st (which
+        whould make it a ring buffer).
+        */
+        {
+            const size_t suballocations1stCount = suballocations1st.size();
+            VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);
+            const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
+            const VmaSuballocation& lastSuballoc  = suballocations1st[suballocations1stCount - 1];
+            return VMA_MAX(
+                firstSuballoc.offset,
+                size - (lastSuballoc.offset + lastSuballoc.size));
+        }
+        break;
+
+    case SECOND_VECTOR_RING_BUFFER:
+        /*
+        Available space is only between end of 2nd and beginning of 1st.
+        */
+        {
+            const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+            const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back();
+            const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];
+            return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);
+        }
+        break;
+
+    case SECOND_VECTOR_DOUBLE_STACK:
+        /*
+        Available space is only between end of 1st and top of 2nd.
+        */
+        {
+            const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+            const VmaSuballocation& topSuballoc2nd = suballocations2nd.back();
+            const VmaSuballocation& lastSuballoc1st = suballocations1st.back();
+            return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);
+        }
+        break;
+
+    default:
+        VMA_ASSERT(0);
+        return 0;
+    }
+}
+
+void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+    const VkDeviceSize size = GetSize();
+    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+    const size_t suballoc1stCount = suballocations1st.size();
+    const size_t suballoc2ndCount = suballocations2nd.size();
+
+    outInfo.blockCount = 1;
+    outInfo.allocationCount = (uint32_t)GetAllocationCount();
+    outInfo.unusedRangeCount = 0;
+    outInfo.usedBytes = 0;
+    outInfo.allocationSizeMin = UINT64_MAX;
+    outInfo.allocationSizeMax = 0;
+    outInfo.unusedRangeSizeMin = UINT64_MAX;
+    outInfo.unusedRangeSizeMax = 0;
+
+    VkDeviceSize lastOffset = 0;
+
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+        size_t nextAlloc2ndIndex = 0;
+        while(lastOffset < freeSpace2ndTo1stEnd)
+        {
+            // Find next non-null allocation or move nextAllocIndex to the end.
+            while(nextAlloc2ndIndex < suballoc2ndCount &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                ++nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex < suballoc2ndCount)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    ++outInfo.unusedRangeCount;
+                    outInfo.unusedBytes += unusedRangeSize;
+                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                outInfo.usedBytes += suballoc.size;
+                outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+                outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                ++nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+                if(lastOffset < freeSpace2ndTo1stEnd)
+                {
+                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+                    ++outInfo.unusedRangeCount;
+                    outInfo.unusedBytes += unusedRangeSize;
+                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+               }
+
+                // End of loop.
+                lastOffset = freeSpace2ndTo1stEnd;
+            }
+        }
+    }
+
+    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+    const VkDeviceSize freeSpace1stTo2ndEnd =
+        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+    while(lastOffset < freeSpace1stTo2ndEnd)
+    {
+        // Find next non-null allocation or move nextAllocIndex to the end.
+        while(nextAlloc1stIndex < suballoc1stCount &&
+            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+        {
+            ++nextAlloc1stIndex;
+        }
+
+        // Found non-null allocation.
+        if(nextAlloc1stIndex < suballoc1stCount)
+        {
+            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+            
+            // 1. Process free space before this allocation.
+            if(lastOffset < suballoc.offset)
+            {
+                // There is free space from lastOffset to suballoc.offset.
+                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                ++outInfo.unusedRangeCount;
+                outInfo.unusedBytes += unusedRangeSize;
+                outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+            }
+            
+            // 2. Process this allocation.
+            // There is allocation with suballoc.offset, suballoc.size.
+            outInfo.usedBytes += suballoc.size;
+            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+            outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+            
+            // 3. Prepare for next iteration.
+            lastOffset = suballoc.offset + suballoc.size;
+            ++nextAlloc1stIndex;
+        }
+        // We are at the end.
+        else
+        {
+            // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+            if(lastOffset < freeSpace1stTo2ndEnd)
+            {
+                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+                ++outInfo.unusedRangeCount;
+                outInfo.unusedBytes += unusedRangeSize;
+                outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+           }
+
+            // End of loop.
+            lastOffset = freeSpace1stTo2ndEnd;
+        }
+    }
+
+    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+        while(lastOffset < size)
+        {
+            // Find next non-null allocation or move nextAllocIndex to the end.
+            while(nextAlloc2ndIndex != SIZE_MAX &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                --nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex != SIZE_MAX)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    ++outInfo.unusedRangeCount;
+                    outInfo.unusedBytes += unusedRangeSize;
+                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                outInfo.usedBytes += suballoc.size;
+                outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+                outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                --nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                // There is free space from lastOffset to size.
+                if(lastOffset < size)
+                {
+                    const VkDeviceSize unusedRangeSize = size - lastOffset;
+                    ++outInfo.unusedRangeCount;
+                    outInfo.unusedBytes += unusedRangeSize;
+                    outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+                    outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+               }
+
+                // End of loop.
+                lastOffset = size;
+            }
+        }
+    }
+
+    outInfo.unusedBytes = size - outInfo.usedBytes;
+}
+
+void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+    const VkDeviceSize size = GetSize();
+    const size_t suballoc1stCount = suballocations1st.size();
+    const size_t suballoc2ndCount = suballocations2nd.size();
+
+    inoutStats.size += size;
+
+    VkDeviceSize lastOffset = 0;
+
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+        size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
+        while(lastOffset < freeSpace2ndTo1stEnd)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex < suballoc2ndCount &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                ++nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex < suballoc2ndCount)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    inoutStats.unusedSize += unusedRangeSize;
+                    ++inoutStats.unusedRangeCount;
+                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                ++inoutStats.allocationCount;
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                ++nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < freeSpace2ndTo1stEnd)
+                {
+                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+                    inoutStats.unusedSize += unusedRangeSize;
+                    ++inoutStats.unusedRangeCount;
+                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+                }
+
+                // End of loop.
+                lastOffset = freeSpace2ndTo1stEnd;
+            }
+        }
+    }
+
+    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+    const VkDeviceSize freeSpace1stTo2ndEnd =
+        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+    while(lastOffset < freeSpace1stTo2ndEnd)
+    {
+        // Find next non-null allocation or move nextAllocIndex to the end.
+        while(nextAlloc1stIndex < suballoc1stCount &&
+            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+        {
+            ++nextAlloc1stIndex;
+        }
+
+        // Found non-null allocation.
+        if(nextAlloc1stIndex < suballoc1stCount)
+        {
+            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+            
+            // 1. Process free space before this allocation.
+            if(lastOffset < suballoc.offset)
+            {
+                // There is free space from lastOffset to suballoc.offset.
+                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                inoutStats.unusedSize += unusedRangeSize;
+                ++inoutStats.unusedRangeCount;
+                inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+            }
+            
+            // 2. Process this allocation.
+            // There is allocation with suballoc.offset, suballoc.size.
+            ++inoutStats.allocationCount;
+            
+            // 3. Prepare for next iteration.
+            lastOffset = suballoc.offset + suballoc.size;
+            ++nextAlloc1stIndex;
+        }
+        // We are at the end.
+        else
+        {
+            if(lastOffset < freeSpace1stTo2ndEnd)
+            {
+                // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+                inoutStats.unusedSize += unusedRangeSize;
+                ++inoutStats.unusedRangeCount;
+                inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+            }
+
+            // End of loop.
+            lastOffset = freeSpace1stTo2ndEnd;
+        }
+    }
+
+    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+        while(lastOffset < size)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex != SIZE_MAX &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                --nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex != SIZE_MAX)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    inoutStats.unusedSize += unusedRangeSize;
+                    ++inoutStats.unusedRangeCount;
+                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                ++inoutStats.allocationCount;
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                --nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < size)
+                {
+                    // There is free space from lastOffset to size.
+                    const VkDeviceSize unusedRangeSize = size - lastOffset;
+                    inoutStats.unusedSize += unusedRangeSize;
+                    ++inoutStats.unusedRangeCount;
+                    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+                }
+
+                // End of loop.
+                lastOffset = size;
+            }
+        }
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+    const VkDeviceSize size = GetSize();
+    const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+    const size_t suballoc1stCount = suballocations1st.size();
+    const size_t suballoc2ndCount = suballocations2nd.size();
+
+    // FIRST PASS
+
+    size_t unusedRangeCount = 0;
+    VkDeviceSize usedBytes = 0;
+
+    VkDeviceSize lastOffset = 0;
+
+    size_t alloc2ndCount = 0;
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+        size_t nextAlloc2ndIndex = 0;
+        while(lastOffset < freeSpace2ndTo1stEnd)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex < suballoc2ndCount &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                ++nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex < suballoc2ndCount)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    ++unusedRangeCount;
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                ++alloc2ndCount;
+                usedBytes += suballoc.size;
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                ++nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < freeSpace2ndTo1stEnd)
+                {
+                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+                    ++unusedRangeCount;
+                }
+
+                // End of loop.
+                lastOffset = freeSpace2ndTo1stEnd;
+            }
+        }
+    }
+
+    size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+    size_t alloc1stCount = 0;
+    const VkDeviceSize freeSpace1stTo2ndEnd =
+        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+    while(lastOffset < freeSpace1stTo2ndEnd)
+    {
+        // Find next non-null allocation or move nextAllocIndex to the end.
+        while(nextAlloc1stIndex < suballoc1stCount &&
+            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+        {
+            ++nextAlloc1stIndex;
+        }
+
+        // Found non-null allocation.
+        if(nextAlloc1stIndex < suballoc1stCount)
+        {
+            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+            
+            // 1. Process free space before this allocation.
+            if(lastOffset < suballoc.offset)
+            {
+                // There is free space from lastOffset to suballoc.offset.
+                ++unusedRangeCount;
+            }
+            
+            // 2. Process this allocation.
+            // There is allocation with suballoc.offset, suballoc.size.
+            ++alloc1stCount;
+            usedBytes += suballoc.size;
+            
+            // 3. Prepare for next iteration.
+            lastOffset = suballoc.offset + suballoc.size;
+            ++nextAlloc1stIndex;
+        }
+        // We are at the end.
+        else
+        {
+            if(lastOffset < size)
+            {
+                // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+                ++unusedRangeCount;
+            }
+
+            // End of loop.
+            lastOffset = freeSpace1stTo2ndEnd;
+        }
+    }
+
+    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+        while(lastOffset < size)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex != SIZE_MAX &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                --nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex != SIZE_MAX)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    ++unusedRangeCount;
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                ++alloc2ndCount;
+                usedBytes += suballoc.size;
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                --nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < size)
+                {
+                    // There is free space from lastOffset to size.
+                    ++unusedRangeCount;
+                }
+
+                // End of loop.
+                lastOffset = size;
+            }
+        }
+    }
+
+    const VkDeviceSize unusedBytes = size - usedBytes;
+    PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
+
+    // SECOND PASS
+    lastOffset = 0;
+
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+        size_t nextAlloc2ndIndex = 0;
+        while(lastOffset < freeSpace2ndTo1stEnd)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex < suballoc2ndCount &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                ++nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex < suballoc2ndCount)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                ++nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < freeSpace2ndTo1stEnd)
+                {
+                    // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+                    const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+                }
+
+                // End of loop.
+                lastOffset = freeSpace2ndTo1stEnd;
+            }
+        }
+    }
+
+    nextAlloc1stIndex = m_1stNullItemsBeginCount;
+    while(lastOffset < freeSpace1stTo2ndEnd)
+    {
+        // Find next non-null allocation or move nextAllocIndex to the end.
+        while(nextAlloc1stIndex < suballoc1stCount &&
+            suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+        {
+            ++nextAlloc1stIndex;
+        }
+
+        // Found non-null allocation.
+        if(nextAlloc1stIndex < suballoc1stCount)
+        {
+            const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+            
+            // 1. Process free space before this allocation.
+            if(lastOffset < suballoc.offset)
+            {
+                // There is free space from lastOffset to suballoc.offset.
+                const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+            }
+            
+            // 2. Process this allocation.
+            // There is allocation with suballoc.offset, suballoc.size.
+            PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+            
+            // 3. Prepare for next iteration.
+            lastOffset = suballoc.offset + suballoc.size;
+            ++nextAlloc1stIndex;
+        }
+        // We are at the end.
+        else
+        {
+            if(lastOffset < freeSpace1stTo2ndEnd)
+            {
+                // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+                const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+                PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+            }
+
+            // End of loop.
+            lastOffset = freeSpace1stTo2ndEnd;
+        }
+    }
+
+    if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+        while(lastOffset < size)
+        {
+            // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+            while(nextAlloc2ndIndex != SIZE_MAX &&
+                suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+            {
+                --nextAlloc2ndIndex;
+            }
+
+            // Found non-null allocation.
+            if(nextAlloc2ndIndex != SIZE_MAX)
+            {
+                const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+            
+                // 1. Process free space before this allocation.
+                if(lastOffset < suballoc.offset)
+                {
+                    // There is free space from lastOffset to suballoc.offset.
+                    const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+                }
+            
+                // 2. Process this allocation.
+                // There is allocation with suballoc.offset, suballoc.size.
+                PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+            
+                // 3. Prepare for next iteration.
+                lastOffset = suballoc.offset + suballoc.size;
+                --nextAlloc2ndIndex;
+            }
+            // We are at the end.
+            else
+            {
+                if(lastOffset < size)
+                {
+                    // There is free space from lastOffset to size.
+                    const VkDeviceSize unusedRangeSize = size - lastOffset;
+                    PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+                }
+
+                // End of loop.
+                lastOffset = size;
+            }
+        }
+    }
+
+    PrintDetailedMap_End(json);
+}
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    bool upperAddress,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    uint32_t strategy,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(allocSize > 0);
+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(pAllocationRequest != VMA_NULL);
+    VMA_HEAVY_ASSERT(Validate());
+    return upperAddress ?
+        CreateAllocationRequest_UpperAddress(
+            currentFrameIndex, frameInUseCount, bufferImageGranularity,
+            allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :
+        CreateAllocationRequest_LowerAddress(
+            currentFrameIndex, frameInUseCount, bufferImageGranularity,
+            allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    uint32_t strategy,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    const VkDeviceSize size = GetSize();
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
+        return false;
+    }
+
+    // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
+    if(allocSize > size)
+    {
+        return false;
+    }
+    VkDeviceSize resultBaseOffset = size - allocSize;
+    if(!suballocations2nd.empty())
+    {
+        const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+        resultBaseOffset = lastSuballoc.offset - allocSize;
+        if(allocSize > lastSuballoc.offset)
+        {
+            return false;
+        }
+    }
+
+    // Start from offset equal to end of free space.
+    VkDeviceSize resultOffset = resultBaseOffset;
+
+    // Apply VMA_DEBUG_MARGIN at the end.
+    if(VMA_DEBUG_MARGIN > 0)
+    {
+        if(resultOffset < VMA_DEBUG_MARGIN)
+        {
+            return false;
+        }
+        resultOffset -= VMA_DEBUG_MARGIN;
+    }
+
+    // Apply alignment.
+    resultOffset = VmaAlignDown(resultOffset, allocAlignment);
+
+    // Check next suballocations from 2nd for BufferImageGranularity conflicts.
+    // Make bigger alignment if necessary.
+    if(bufferImageGranularity > 1 && !suballocations2nd.empty())
+    {
+        bool bufferImageGranularityConflict = false;
+        for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+        {
+            const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+            if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+            {
+                if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
+                {
+                    bufferImageGranularityConflict = true;
+                    break;
+                }
+            }
+            else
+                // Already on previous page.
+                break;
+        }
+        if(bufferImageGranularityConflict)
+        {
+            resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
+        }
+    }
+
+    // There is enough free space.
+    const VkDeviceSize endOf1st = !suballocations1st.empty() ?
+        suballocations1st.back().offset + suballocations1st.back().size :
+        0;
+    if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset)
+    {
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // If conflict exists, allocation cannot be made here.
+        if(bufferImageGranularity > 1)
+        {
+            for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+            {
+                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
+                    {
+                        return false;
+                    }
+                }
+                else
+                {
+                    // Already on next page.
+                    break;
+                }
+            }
+        }
+
+        // All tests passed: Success.
+        pAllocationRequest->offset = resultOffset;
+        pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;
+        pAllocationRequest->sumItemSize = 0;
+        // pAllocationRequest->item unused.
+        pAllocationRequest->itemsToMakeLostCount = 0;
+        pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
+        return true;
+    }
+
+    return false;
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    uint32_t strategy,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    const VkDeviceSize size = GetSize();
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+    if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        // Try to allocate at the end of 1st vector.
+
+        VkDeviceSize resultBaseOffset = 0;
+        if(!suballocations1st.empty())
+        {
+            const VmaSuballocation& lastSuballoc = suballocations1st.back();
+            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
+        }
+
+        // Start from offset equal to beginning of free space.
+        VkDeviceSize resultOffset = resultBaseOffset;
+
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if(VMA_DEBUG_MARGIN > 0)
+        {
+            resultOffset += VMA_DEBUG_MARGIN;
+        }
+
+        // Apply alignment.
+        resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1 && !suballocations1st.empty())
+        {
+            bool bufferImageGranularityConflict = false;
+            for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+            {
+                const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+            }
+        }
+
+        const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
+            suballocations2nd.back().offset : size;
+
+        // There is enough free space at the end after alignment.
+        if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd)
+        {
+            // Check next suballocations for BufferImageGranularity conflicts.
+            // If conflict exists, allocation cannot be made here.
+            if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+            {
+                for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+                {
+                    const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+                    if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                    {
+                        if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                        {
+                            return false;
+                        }
+                    }
+                    else
+                    {
+                        // Already on previous page.
+                        break;
+                    }
+                }
+            }
+
+            // All tests passed: Success.
+            pAllocationRequest->offset = resultOffset;
+            pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;
+            pAllocationRequest->sumItemSize = 0;
+            // pAllocationRequest->item, customData unused.
+            pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
+            pAllocationRequest->itemsToMakeLostCount = 0;
+            return true;
+        }
+    }
+
+    // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
+    // beginning of 1st vector as the end of free space.
+    if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+    {
+        VMA_ASSERT(!suballocations1st.empty());
+
+        VkDeviceSize resultBaseOffset = 0;
+        if(!suballocations2nd.empty())
+        {
+            const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+            resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
+        }
+
+        // Start from offset equal to beginning of free space.
+        VkDeviceSize resultOffset = resultBaseOffset;
+
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if(VMA_DEBUG_MARGIN > 0)
+        {
+            resultOffset += VMA_DEBUG_MARGIN;
+        }
+
+        // Apply alignment.
+        resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1 && !suballocations2nd.empty())
+        {
+            bool bufferImageGranularityConflict = false;
+            for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
+            {
+                const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+            }
+        }
+
+        pAllocationRequest->itemsToMakeLostCount = 0;
+        pAllocationRequest->sumItemSize = 0;
+        size_t index1st = m_1stNullItemsBeginCount;
+
+        if(canMakeOtherLost)
+        {
+            while(index1st < suballocations1st.size() &&
+                resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset)
+            {
+                // Next colliding allocation at the beginning of 1st vector found. Try to make it lost.
+                const VmaSuballocation& suballoc = suballocations1st[index1st];
+                if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
+                {
+                    // No problem.
+                }
+                else
+                {
+                    VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
+                    if(suballoc.hAllocation->CanBecomeLost() &&
+                        suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                    {
+                        ++pAllocationRequest->itemsToMakeLostCount;
+                        pAllocationRequest->sumItemSize += suballoc.size;
+                    }
+                    else
+                    {
+                        return false;
+                    }
+                }
+                ++index1st;
+            }
+
+            // Check next suballocations for BufferImageGranularity conflicts.
+            // If conflict exists, we must mark more allocations lost or fail.
+            if(bufferImageGranularity > 1)
+            {
+                while(index1st < suballocations1st.size())
+                {
+                    const VmaSuballocation& suballoc = suballocations1st[index1st];
+                    if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity))
+                    {
+                        if(suballoc.hAllocation != VK_NULL_HANDLE)
+                        {
+                            // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).
+                            if(suballoc.hAllocation->CanBecomeLost() &&
+                                suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                            {
+                                ++pAllocationRequest->itemsToMakeLostCount;
+                                pAllocationRequest->sumItemSize += suballoc.size;
+                            }
+                            else
+                            {
+                                return false;
+                            }
+                        }
+                    }
+                    else
+                    {
+                        // Already on next page.
+                        break;
+                    }
+                    ++index1st;
+                }
+            }
+
+            // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.
+            if(index1st == suballocations1st.size() &&
+                resultOffset + allocSize + VMA_DEBUG_MARGIN > size)
+            {
+                // TODO: This is a known bug that it's not yet implemented and the allocation is failing.
+                VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");
+            }
+        }
+
+        // There is enough free space at the end after alignment.
+        if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) ||
+            (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset))
+        {
+            // Check next suballocations for BufferImageGranularity conflicts.
+            // If conflict exists, allocation cannot be made here.
+            if(bufferImageGranularity > 1)
+            {
+                for(size_t nextSuballocIndex = index1st;
+                    nextSuballocIndex < suballocations1st.size();
+                    nextSuballocIndex++)
+                {
+                    const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
+                    if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                    {
+                        if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                        {
+                            return false;
+                        }
+                    }
+                    else
+                    {
+                        // Already on next page.
+                        break;
+                    }
+                }
+            }
+
+            // All tests passed: Success.
+            pAllocationRequest->offset = resultOffset;
+            pAllocationRequest->sumFreeSize =
+                (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size)
+                - resultBaseOffset
+                - pAllocationRequest->sumItemSize;
+            pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
+            // pAllocationRequest->item, customData unused.
+            return true;
+        }
+    }
+
+    return false;
+}
+
+bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    if(pAllocationRequest->itemsToMakeLostCount == 0)
+    {
+        return true;
+    }
+
+    VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);
+    
+    // We always start from 1st.
+    SuballocationVectorType* suballocations = &AccessSuballocations1st();
+    size_t index = m_1stNullItemsBeginCount;
+    size_t madeLostCount = 0;
+    while(madeLostCount < pAllocationRequest->itemsToMakeLostCount)
+    {
+        if(index == suballocations->size())
+        {
+            index = 0;
+            // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.
+            if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+            {
+                suballocations = &AccessSuballocations2nd();
+            }
+            // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:
+            // suballocations continues pointing at AccessSuballocations1st().
+            VMA_ASSERT(!suballocations->empty());
+        }
+        VmaSuballocation& suballoc = (*suballocations)[index];
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
+            VMA_ASSERT(suballoc.hAllocation->CanBecomeLost());
+            if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+            {
+                suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+                suballoc.hAllocation = VK_NULL_HANDLE;
+                m_SumFreeSize += suballoc.size;
+                if(suballocations == &AccessSuballocations1st())
+                {
+                    ++m_1stNullItemsMiddleCount;
+                }
+                else
+                {
+                    ++m_2ndNullItemsCount;
+                }
+                ++madeLostCount;
+            }
+            else
+            {
+                return false;
+            }
+        }
+        ++index;
+    }
+
+    CleanupAfterFree();
+    //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree().
+    
+    return true;
+}
+
+uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    uint32_t lostAllocationCount = 0;
+    
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
+    {
+        VmaSuballocation& suballoc = suballocations1st[i];
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
+            suballoc.hAllocation->CanBecomeLost() &&
+            suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+            suballoc.hAllocation = VK_NULL_HANDLE;
+            ++m_1stNullItemsMiddleCount;
+            m_SumFreeSize += suballoc.size;
+            ++lostAllocationCount;
+        }
+    }
+
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+    for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
+    {
+        VmaSuballocation& suballoc = suballocations2nd[i];
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
+            suballoc.hAllocation->CanBecomeLost() &&
+            suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+            suballoc.hAllocation = VK_NULL_HANDLE;
+            ++m_2ndNullItemsCount;
+            m_SumFreeSize += suballoc.size;
+            ++lostAllocationCount;
+        }
+    }
+
+    if(lostAllocationCount)
+    {
+        CleanupAfterFree();
+    }
+
+    return lostAllocationCount;
+}
+
+VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
+{
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
+    {
+        const VmaSuballocation& suballoc = suballocations1st[i];
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+            if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+        }
+    }
+
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+    for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
+    {
+        const VmaSuballocation& suballoc = suballocations2nd[i];
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+            if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+            {
+                VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+                return VK_ERROR_VALIDATION_FAILED_EXT;
+            }
+        }
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_Linear::Alloc(
+    const VmaAllocationRequest& request,
+    VmaSuballocationType type,
+    VkDeviceSize allocSize,
+    VmaAllocation hAllocation)
+{
+    const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type };
+
+    switch(request.type)
+    {
+    case VmaAllocationRequestType::UpperAddress:
+        {
+            VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
+                "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
+            SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+            suballocations2nd.push_back(newSuballoc);
+            m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
+        }
+        break;
+    case VmaAllocationRequestType::EndOf1st:
+        {
+            SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+
+            VMA_ASSERT(suballocations1st.empty() ||
+                request.offset >= suballocations1st.back().offset + suballocations1st.back().size);
+            // Check if it fits before the end of the block.
+            VMA_ASSERT(request.offset + allocSize <= GetSize());
+
+            suballocations1st.push_back(newSuballoc);
+        }
+        break;
+    case VmaAllocationRequestType::EndOf2nd:
+        {
+            SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+            // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
+            VMA_ASSERT(!suballocations1st.empty() &&
+                request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset);
+            SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+            switch(m_2ndVectorMode)
+            {
+            case SECOND_VECTOR_EMPTY:
+                // First allocation from second part ring buffer.
+                VMA_ASSERT(suballocations2nd.empty());
+                m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
+                break;
+            case SECOND_VECTOR_RING_BUFFER:
+                // 2-part ring buffer is already started.
+                VMA_ASSERT(!suballocations2nd.empty());
+                break;
+            case SECOND_VECTOR_DOUBLE_STACK:
+                VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
+                break;
+            default:
+                VMA_ASSERT(0);
+            }
+
+            suballocations2nd.push_back(newSuballoc);
+        }
+        break;
+    default:
+        VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
+    }
+
+    m_SumFreeSize -= newSuballoc.size;
+}
+
+void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation)
+{
+    FreeAtOffset(allocation->GetOffset());
+}
+
+void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset)
+{
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+    if(!suballocations1st.empty())
+    {
+        // First allocation: Mark it as next empty at the beginning.
+        VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
+        if(firstSuballoc.offset == offset)
+        {
+            firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+            firstSuballoc.hAllocation = VK_NULL_HANDLE;
+            m_SumFreeSize += firstSuballoc.size;
+            ++m_1stNullItemsBeginCount;
+            CleanupAfterFree();
+            return;
+        }
+    }
+
+    // Last allocation in 2-part ring buffer or top of upper stack (same logic).
+    if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
+        m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+    {
+        VmaSuballocation& lastSuballoc = suballocations2nd.back();
+        if(lastSuballoc.offset == offset)
+        {
+            m_SumFreeSize += lastSuballoc.size;
+            suballocations2nd.pop_back();
+            CleanupAfterFree();
+            return;
+        }
+    }
+    // Last allocation in 1st vector.
+    else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY)
+    {
+        VmaSuballocation& lastSuballoc = suballocations1st.back();
+        if(lastSuballoc.offset == offset)
+        {
+            m_SumFreeSize += lastSuballoc.size;
+            suballocations1st.pop_back();
+            CleanupAfterFree();
+            return;
+        }
+    }
+
+    // Item from the middle of 1st vector.
+    {
+        VmaSuballocation refSuballoc;
+        refSuballoc.offset = offset;
+        // Rest of members stays uninitialized intentionally for better performance.
+        SuballocationVectorType::iterator it = VmaBinaryFindSorted(
+            suballocations1st.begin() + m_1stNullItemsBeginCount,
+            suballocations1st.end(),
+            refSuballoc,
+            VmaSuballocationOffsetLess());
+        if(it != suballocations1st.end())
+        {
+            it->type = VMA_SUBALLOCATION_TYPE_FREE;
+            it->hAllocation = VK_NULL_HANDLE;
+            ++m_1stNullItemsMiddleCount;
+            m_SumFreeSize += it->size;
+            CleanupAfterFree();
+            return;
+        }
+    }
+
+    if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)
+    {
+        // Item from the middle of 2nd vector.
+        VmaSuballocation refSuballoc;
+        refSuballoc.offset = offset;
+        // Rest of members stays uninitialized intentionally for better performance.
+        SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
+            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
+            VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
+        if(it != suballocations2nd.end())
+        {
+            it->type = VMA_SUBALLOCATION_TYPE_FREE;
+            it->hAllocation = VK_NULL_HANDLE;
+            ++m_2ndNullItemsCount;
+            m_SumFreeSize += it->size;
+            CleanupAfterFree();
+            return;
+        }
+    }
+
+    VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
+}
+
+bool VmaBlockMetadata_Linear::ShouldCompact1st() const
+{
+    const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+    const size_t suballocCount = AccessSuballocations1st().size();
+    return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
+}
+
+void VmaBlockMetadata_Linear::CleanupAfterFree()
+{
+    SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+    SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+    if(IsEmpty())
+    {
+        suballocations1st.clear();
+        suballocations2nd.clear();
+        m_1stNullItemsBeginCount = 0;
+        m_1stNullItemsMiddleCount = 0;
+        m_2ndNullItemsCount = 0;
+        m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+    }
+    else
+    {
+        const size_t suballoc1stCount = suballocations1st.size();
+        const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+        VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
+
+        // Find more null items at the beginning of 1st vector.
+        while(m_1stNullItemsBeginCount < suballoc1stCount &&
+            suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
+        {
+            ++m_1stNullItemsBeginCount;
+            --m_1stNullItemsMiddleCount;
+        }
+
+        // Find more null items at the end of 1st vector.
+        while(m_1stNullItemsMiddleCount > 0 &&
+            suballocations1st.back().hAllocation == VK_NULL_HANDLE)
+        {
+            --m_1stNullItemsMiddleCount;
+            suballocations1st.pop_back();
+        }
+
+        // Find more null items at the end of 2nd vector.
+        while(m_2ndNullItemsCount > 0 &&
+            suballocations2nd.back().hAllocation == VK_NULL_HANDLE)
+        {
+            --m_2ndNullItemsCount;
+            suballocations2nd.pop_back();
+        }
+
+        // Find more null items at the beginning of 2nd vector.
+        while(m_2ndNullItemsCount > 0 &&
+            suballocations2nd[0].hAllocation == VK_NULL_HANDLE)
+        {
+            --m_2ndNullItemsCount;
+            VmaVectorRemove(suballocations2nd, 0);
+        }
+
+        if(ShouldCompact1st())
+        {
+            const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
+            size_t srcIndex = m_1stNullItemsBeginCount;
+            for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
+            {
+                while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE)
+                {
+                    ++srcIndex;
+                }
+                if(dstIndex != srcIndex)
+                {
+                    suballocations1st[dstIndex] = suballocations1st[srcIndex];
+                }
+                ++srcIndex;
+            }
+            suballocations1st.resize(nonNullItemCount);
+            m_1stNullItemsBeginCount = 0;
+            m_1stNullItemsMiddleCount = 0;
+        }
+
+        // 2nd vector became empty.
+        if(suballocations2nd.empty())
+        {
+            m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+        }
+
+        // 1st vector became empty.
+        if(suballocations1st.size() - m_1stNullItemsBeginCount == 0)
+        {
+            suballocations1st.clear();
+            m_1stNullItemsBeginCount = 0;
+
+            if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+            {
+                // Swap 1st with 2nd. Now 2nd is empty.
+                m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+                m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
+                while(m_1stNullItemsBeginCount < suballocations2nd.size() &&
+                    suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
+                {
+                    ++m_1stNullItemsBeginCount;
+                    --m_1stNullItemsMiddleCount;
+                }
+                m_2ndNullItemsCount = 0;
+                m_1stVectorIndex ^= 1;
+            }
+        }
+    }
+
+    VMA_HEAVY_ASSERT(Validate());
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Buddy
+
+VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) :
+    VmaBlockMetadata(hAllocator),
+    m_Root(VMA_NULL),
+    m_AllocationCount(0),
+    m_FreeCount(1),
+    m_SumFreeSize(0)
+{
+    memset(m_FreeList, 0, sizeof(m_FreeList));
+}
+
+VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
+{
+    DeleteNode(m_Root);
+}
+
+void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
+{
+    VmaBlockMetadata::Init(size);
+
+    m_UsableSize = VmaPrevPow2(size);
+    m_SumFreeSize = m_UsableSize;
+
+    // Calculate m_LevelCount.
+    m_LevelCount = 1;
+    while(m_LevelCount < MAX_LEVELS &&
+        LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE)
+    {
+        ++m_LevelCount;
+    }
+
+    Node* rootNode = vma_new(GetAllocationCallbacks(), Node)();
+    rootNode->offset = 0;
+    rootNode->type = Node::TYPE_FREE;
+    rootNode->parent = VMA_NULL;
+    rootNode->buddy = VMA_NULL;
+
+    m_Root = rootNode;
+    AddToFreeListFront(0, rootNode);
+}
+
+bool VmaBlockMetadata_Buddy::Validate() const
+{
+    // Validate tree.
+    ValidationContext ctx;
+    if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
+    {
+        VMA_VALIDATE(false && "ValidateNode failed.");
+    }
+    VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
+    VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
+
+    // Validate free node lists.
+    for(uint32_t level = 0; level < m_LevelCount; ++level)
+    {
+        VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
+            m_FreeList[level].front->free.prev == VMA_NULL);
+
+        for(Node* node = m_FreeList[level].front;
+            node != VMA_NULL;
+            node = node->free.next)
+        {
+            VMA_VALIDATE(node->type == Node::TYPE_FREE);
+            
+            if(node->free.next == VMA_NULL)
+            {
+                VMA_VALIDATE(m_FreeList[level].back == node);
+            }
+            else
+            {
+                VMA_VALIDATE(node->free.next->free.prev == node);
+            }
+        }
+    }
+
+    // Validate that free lists ar higher levels are empty.
+    for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
+    {
+        VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
+    }
+
+    return true;
+}
+
+VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const
+{
+    for(uint32_t level = 0; level < m_LevelCount; ++level)
+    {
+        if(m_FreeList[level].front != VMA_NULL)
+        {
+            return LevelToNodeSize(level);
+        }
+    }
+    return 0;
+}
+
+void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+    const VkDeviceSize unusableSize = GetUnusableSize();
+
+    outInfo.blockCount = 1;
+
+    outInfo.allocationCount = outInfo.unusedRangeCount = 0;
+    outInfo.usedBytes = outInfo.unusedBytes = 0;
+
+    outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0;
+    outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX;
+    outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused.
+
+    CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));
+
+    if(unusableSize > 0)
+    {
+        ++outInfo.unusedRangeCount;
+        outInfo.unusedBytes += unusableSize;
+        outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize);
+        outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize);
+    }
+}
+
+void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+    const VkDeviceSize unusableSize = GetUnusableSize();
+
+    inoutStats.size += GetSize();
+    inoutStats.unusedSize += m_SumFreeSize + unusableSize;
+    inoutStats.allocationCount += m_AllocationCount;
+    inoutStats.unusedRangeCount += m_FreeCount;
+    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+
+    if(unusableSize > 0)
+    {
+        ++inoutStats.unusedRangeCount;
+        // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+    // TODO optimize
+    VmaStatInfo stat;
+    CalcAllocationStatInfo(stat);
+
+    PrintDetailedMap_Begin(
+        json,
+        stat.unusedBytes,
+        stat.allocationCount,
+        stat.unusedRangeCount);
+
+    PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
+
+    const VkDeviceSize unusableSize = GetUnusableSize();
+    if(unusableSize > 0)
+    {
+        PrintDetailedMap_UnusedRange(json,
+            m_UsableSize, // offset
+            unusableSize); // size
+    }
+
+    PrintDetailedMap_End(json);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    bool upperAddress,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    uint32_t strategy,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
+
+    // Simple way to respect bufferImageGranularity. May be optimized some day.
+    // Whenever it might be an OPTIMAL image...
+    if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
+        allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+        allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
+    {
+        allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);
+        allocSize = VMA_MAX(allocSize, bufferImageGranularity);
+    }
+
+    if(allocSize > m_UsableSize)
+    {
+        return false;
+    }
+
+    const uint32_t targetLevel = AllocSizeToLevel(allocSize);
+    for(uint32_t level = targetLevel + 1; level--; )
+    {
+        for(Node* freeNode = m_FreeList[level].front;
+            freeNode != VMA_NULL;
+            freeNode = freeNode->free.next)
+        {
+            if(freeNode->offset % allocAlignment == 0)
+            {
+                pAllocationRequest->type = VmaAllocationRequestType::Normal;
+                pAllocationRequest->offset = freeNode->offset;
+                pAllocationRequest->sumFreeSize = LevelToNodeSize(level);
+                pAllocationRequest->sumItemSize = 0;
+                pAllocationRequest->itemsToMakeLostCount = 0;
+                pAllocationRequest->customData = (void*)(uintptr_t)level;
+                return true;
+            }
+        }
+    }
+
+    return false;
+}
+
+bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    /*
+    Lost allocations are not supported in buddy allocator at the moment.
+    Support might be added in the future.
+    */
+    return pAllocationRequest->itemsToMakeLostCount == 0;
+}
+
+uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    /*
+    Lost allocations are not supported in buddy allocator at the moment.
+    Support might be added in the future.
+    */
+    return 0;
+}
+
+void VmaBlockMetadata_Buddy::Alloc(
+    const VmaAllocationRequest& request,
+    VmaSuballocationType type,
+    VkDeviceSize allocSize,
+    VmaAllocation hAllocation)
+{
+    VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
+
+    const uint32_t targetLevel = AllocSizeToLevel(allocSize);
+    uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
+    
+    Node* currNode = m_FreeList[currLevel].front;
+    VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
+    while(currNode->offset != request.offset)
+    {
+        currNode = currNode->free.next;
+        VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
+    }
+    
+    // Go down, splitting free nodes.
+    while(currLevel < targetLevel)
+    {
+        // currNode is already first free node at currLevel.
+        // Remove it from list of free nodes at this currLevel.
+        RemoveFromFreeList(currLevel, currNode);
+         
+        const uint32_t childrenLevel = currLevel + 1;
+
+        // Create two free sub-nodes.
+        Node* leftChild = vma_new(GetAllocationCallbacks(), Node)();
+        Node* rightChild = vma_new(GetAllocationCallbacks(), Node)();
+
+        leftChild->offset = currNode->offset;
+        leftChild->type = Node::TYPE_FREE;
+        leftChild->parent = currNode;
+        leftChild->buddy = rightChild;
+
+        rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
+        rightChild->type = Node::TYPE_FREE;
+        rightChild->parent = currNode;
+        rightChild->buddy = leftChild;
+
+        // Convert current currNode to split type.
+        currNode->type = Node::TYPE_SPLIT;
+        currNode->split.leftChild = leftChild;
+
+        // Add child nodes to free list. Order is important!
+        AddToFreeListFront(childrenLevel, rightChild);
+        AddToFreeListFront(childrenLevel, leftChild);
+
+        ++m_FreeCount;
+        //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2.
+        ++currLevel;
+        currNode = m_FreeList[currLevel].front;
+
+        /*
+        We can be sure that currNode, as left child of node previously split,
+        also fullfills the alignment requirement.
+        */
+    }
+
+    // Remove from free list.
+    VMA_ASSERT(currLevel == targetLevel &&
+        currNode != VMA_NULL &&
+        currNode->type == Node::TYPE_FREE);
+    RemoveFromFreeList(currLevel, currNode);
+
+    // Convert to allocation node.
+    currNode->type = Node::TYPE_ALLOCATION;
+    currNode->allocation.alloc = hAllocation;
+
+    ++m_AllocationCount;
+    --m_FreeCount;
+    m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata_Buddy::DeleteNode(Node* node)
+{
+    if(node->type == Node::TYPE_SPLIT)
+    {
+        DeleteNode(node->split.leftChild->buddy);
+        DeleteNode(node->split.leftChild);
+    }
+
+    vma_delete(GetAllocationCallbacks(), node);
+}
+
+bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
+{
+    VMA_VALIDATE(level < m_LevelCount);
+    VMA_VALIDATE(curr->parent == parent);
+    VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
+    VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
+    switch(curr->type)
+    {
+    case Node::TYPE_FREE:
+        // curr->free.prev, next are validated separately.
+        ctx.calculatedSumFreeSize += levelNodeSize;
+        ++ctx.calculatedFreeCount;
+        break;
+    case Node::TYPE_ALLOCATION:
+        ++ctx.calculatedAllocationCount;
+        ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize();
+        VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE);
+        break;
+    case Node::TYPE_SPLIT:
+        {
+            const uint32_t childrenLevel = level + 1;
+            const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2;
+            const Node* const leftChild = curr->split.leftChild;
+            VMA_VALIDATE(leftChild != VMA_NULL);
+            VMA_VALIDATE(leftChild->offset == curr->offset);
+            if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
+            {
+                VMA_VALIDATE(false && "ValidateNode for left child failed.");
+            }
+            const Node* const rightChild = leftChild->buddy;
+            VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
+            if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
+            {
+                VMA_VALIDATE(false && "ValidateNode for right child failed.");
+            }
+        }
+        break;
+    default:
+        return false;
+    }
+
+    return true;
+}
+
+uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
+{
+    // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
+    uint32_t level = 0;
+    VkDeviceSize currLevelNodeSize = m_UsableSize;
+    VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
+    while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
+    {
+        ++level;
+        currLevelNodeSize = nextLevelNodeSize;
+        nextLevelNodeSize = currLevelNodeSize >> 1;
+    }
+    return level;
+}
+
+void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset)
+{
+    // Find node and level.
+    Node* node = m_Root;
+    VkDeviceSize nodeOffset = 0;
+    uint32_t level = 0;
+    VkDeviceSize levelNodeSize = LevelToNodeSize(0);
+    while(node->type == Node::TYPE_SPLIT)
+    {
+        const VkDeviceSize nextLevelSize = levelNodeSize >> 1;
+        if(offset < nodeOffset + nextLevelSize)
+        {
+            node = node->split.leftChild;
+        }
+        else
+        {
+            node = node->split.leftChild->buddy;
+            nodeOffset += nextLevelSize;
+        }
+        ++level;
+        levelNodeSize = nextLevelSize;
+    }
+
+    VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
+    VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc);
+
+    ++m_FreeCount;
+    --m_AllocationCount;
+    m_SumFreeSize += alloc->GetSize();
+
+    node->type = Node::TYPE_FREE;
+
+    // Join free nodes if possible.
+    while(level > 0 && node->buddy->type == Node::TYPE_FREE)
+    {
+        RemoveFromFreeList(level, node->buddy);
+        Node* const parent = node->parent;
+
+        vma_delete(GetAllocationCallbacks(), node->buddy);
+        vma_delete(GetAllocationCallbacks(), node);
+        parent->type = Node::TYPE_FREE;
+        
+        node = parent;
+        --level;
+        //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2.
+        --m_FreeCount;
+    }
+
+    AddToFreeListFront(level, node);
+}
+
+void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const
+{
+    switch(node->type)
+    {
+    case Node::TYPE_FREE:
+        ++outInfo.unusedRangeCount;
+        outInfo.unusedBytes += levelNodeSize;
+        outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize);
+        outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize);
+        break;
+    case Node::TYPE_ALLOCATION:
+        {
+            const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
+            ++outInfo.allocationCount;
+            outInfo.usedBytes += allocSize;
+            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize);
+            outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize);
+
+            const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize;
+            if(unusedRangeSize > 0)
+            {
+                ++outInfo.unusedRangeCount;
+                outInfo.unusedBytes += unusedRangeSize;
+                outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize);
+                outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize);
+            }
+        }
+        break;
+    case Node::TYPE_SPLIT:
+        {
+            const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
+            const Node* const leftChild = node->split.leftChild;
+            CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize);
+            const Node* const rightChild = leftChild->buddy;
+            CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize);
+        }
+        break;
+    default:
+        VMA_ASSERT(0);
+    }
+}
+
+void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
+{
+    VMA_ASSERT(node->type == Node::TYPE_FREE);
+
+    // List is empty.
+    Node* const frontNode = m_FreeList[level].front;
+    if(frontNode == VMA_NULL)
+    {
+        VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
+        node->free.prev = node->free.next = VMA_NULL;
+        m_FreeList[level].front = m_FreeList[level].back = node;
+    }
+    else
+    {
+        VMA_ASSERT(frontNode->free.prev == VMA_NULL);
+        node->free.prev = VMA_NULL;
+        node->free.next = frontNode;
+        frontNode->free.prev = node;
+        m_FreeList[level].front = node;
+    }
+}
+
+void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
+{
+    VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
+
+    // It is at the front.
+    if(node->free.prev == VMA_NULL)
+    {
+        VMA_ASSERT(m_FreeList[level].front == node);
+        m_FreeList[level].front = node->free.next;
+    }
+    else
+    {
+        Node* const prevFreeNode = node->free.prev;
+        VMA_ASSERT(prevFreeNode->free.next == node);
+        prevFreeNode->free.next = node->free.next;
+    }
+
+    // It is at the back.
+    if(node->free.next == VMA_NULL)
+    {
+        VMA_ASSERT(m_FreeList[level].back == node);
+        m_FreeList[level].back = node->free.prev;
+    }
+    else
+    {
+        Node* const nextFreeNode = node->free.next;
+        VMA_ASSERT(nextFreeNode->free.prev == node);
+        nextFreeNode->free.prev = node->free.prev;
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
+{
+    switch(node->type)
+    {
+    case Node::TYPE_FREE:
+        PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
+        break;
+    case Node::TYPE_ALLOCATION:
+        {   
+            PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc);
+            const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
+            if(allocSize < levelNodeSize)
+            {
+                PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize);
+            }
+        }
+        break;
+    case Node::TYPE_SPLIT:
+        {
+            const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
+            const Node* const leftChild = node->split.leftChild;
+            PrintDetailedMapNode(json, leftChild, childrenNodeSize);
+            const Node* const rightChild = leftChild->buddy;
+            PrintDetailedMapNode(json, rightChild, childrenNodeSize);
+        }
+        break;
+    default:
+        VMA_ASSERT(0);
+    }
+}
+#endif // #if VMA_STATS_STRING_ENABLED
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaDeviceMemoryBlock
+
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
+    m_pMetadata(VMA_NULL),
+    m_MemoryTypeIndex(UINT32_MAX),
+    m_Id(0),
+    m_hMemory(VK_NULL_HANDLE),
+    m_MapCount(0),
+    m_pMappedData(VMA_NULL)
+{
+}
+
+void VmaDeviceMemoryBlock::Init(
+    VmaAllocator hAllocator,
+    VmaPool hParentPool,
+    uint32_t newMemoryTypeIndex,
+    VkDeviceMemory newMemory,
+    VkDeviceSize newSize,
+    uint32_t id,
+    uint32_t algorithm)
+{
+    VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+
+    m_hParentPool = hParentPool;
+    m_MemoryTypeIndex = newMemoryTypeIndex;
+    m_Id = id;
+    m_hMemory = newMemory;
+
+    switch(algorithm)
+    {
+    case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
+        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator);
+        break;
+    case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
+        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator);
+        break;
+    default:
+        VMA_ASSERT(0);
+        // Fall-through.
+    case 0:
+        m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator);
+    }
+    m_pMetadata->Init(newSize);
+}
+
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
+{
+    // This is the most important assert in the entire library.
+    // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
+    VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
+
+    VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
+    allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
+    m_hMemory = VK_NULL_HANDLE;
+
+    vma_delete(allocator, m_pMetadata);
+    m_pMetadata = VMA_NULL;
+}
+
+bool VmaDeviceMemoryBlock::Validate() const
+{
+    VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
+        (m_pMetadata->GetSize() != 0));
+    
+    return m_pMetadata->Validate();
+}
+
+VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
+{
+    void* pData = nullptr;
+    VkResult res = Map(hAllocator, 1, &pData);
+    if(res != VK_SUCCESS)
+    {
+        return res;
+    }
+
+    res = m_pMetadata->CheckCorruption(pData);
+
+    Unmap(hAllocator, 1);
+
+    return res;
+}
+
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
+{
+    if(count == 0)
+    {
+        return VK_SUCCESS;
+    }
+
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    if(m_MapCount != 0)
+    {
+        m_MapCount += count;
+        VMA_ASSERT(m_pMappedData != VMA_NULL);
+        if(ppData != VMA_NULL)
+        {
+            *ppData = m_pMappedData;
+        }
+        return VK_SUCCESS;
+    }
+    else
+    {
+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+            hAllocator->m_hDevice,
+            m_hMemory,
+            0, // offset
+            VK_WHOLE_SIZE,
+            0, // flags
+            &m_pMappedData);
+        if(result == VK_SUCCESS)
+        {
+            if(ppData != VMA_NULL)
+            {
+                *ppData = m_pMappedData;
+            }
+            m_MapCount = count;
+        }
+        return result;
+    }
+}
+
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
+{
+    if(count == 0)
+    {
+        return;
+    }
+
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    if(m_MapCount >= count)
+    {
+        m_MapCount -= count;
+        if(m_MapCount == 0)
+        {
+            m_pMappedData = VMA_NULL;
+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
+        }
+    }
+    else
+    {
+        VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
+    }
+}
+
+VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+    VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
+
+    void* pData;
+    VkResult res = Map(hAllocator, 1, &pData);
+    if(res != VK_SUCCESS)
+    {
+        return res;
+    }
+
+    VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);
+    VmaWriteMagicValue(pData, allocOffset + allocSize);
+
+    Unmap(hAllocator, 1);
+
+    return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+    VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+    VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
+
+    void* pData;
+    VkResult res = Map(hAllocator, 1, &pData);
+    if(res != VK_SUCCESS)
+    {
+        return res;
+    }
+
+    if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN))
+    {
+        VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");
+    }
+    else if(!VmaValidateMagicValue(pData, allocOffset + allocSize))
+    {
+        VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
+    }
+
+    Unmap(hAllocator, 1);
+
+    return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::BindBufferMemory(
+    const VmaAllocator hAllocator,
+    const VmaAllocation hAllocation,
+    VkDeviceSize allocationLocalOffset,
+    VkBuffer hBuffer,
+    const void* pNext)
+{
+    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+        hAllocation->GetBlock() == this);
+    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
+}
+
+VkResult VmaDeviceMemoryBlock::BindImageMemory(
+    const VmaAllocator hAllocator,
+    const VmaAllocation hAllocation,
+    VkDeviceSize allocationLocalOffset,
+    VkImage hImage,
+    const void* pNext)
+{
+    VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+        hAllocation->GetBlock() == this);
+    VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+        "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+    const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+    // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
+}
+
+static void InitStatInfo(VmaStatInfo& outInfo)
+{
+    memset(&outInfo, 0, sizeof(outInfo));
+    outInfo.allocationSizeMin = UINT64_MAX;
+    outInfo.unusedRangeSizeMin = UINT64_MAX;
+}
+
+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
+{
+    inoutInfo.blockCount += srcInfo.blockCount;
+    inoutInfo.allocationCount += srcInfo.allocationCount;
+    inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
+    inoutInfo.usedBytes += srcInfo.usedBytes;
+    inoutInfo.unusedBytes += srcInfo.unusedBytes;
+    inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
+    inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
+    inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
+    inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
+}
+
+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
+{
+    inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
+        VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
+    inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
+        VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
+}
+
+VmaPool_T::VmaPool_T(
+    VmaAllocator hAllocator,
+    const VmaPoolCreateInfo& createInfo,
+    VkDeviceSize preferredBlockSize) :
+    m_BlockVector(
+        hAllocator,
+        this, // hParentPool
+        createInfo.memoryTypeIndex,
+        createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
+        createInfo.minBlockCount,
+        createInfo.maxBlockCount,
+        (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+        createInfo.frameInUseCount,
+        createInfo.blockSize != 0, // explicitBlockSize
+        createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm
+    m_Id(0),
+    m_Name(VMA_NULL)
+{
+}
+
+VmaPool_T::~VmaPool_T()
+{
+}
+
+void VmaPool_T::SetName(const char* pName)
+{
+    const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
+    VmaFreeString(allocs, m_Name);
+    
+    if(pName != VMA_NULL)
+    {
+        m_Name = VmaCreateStringCopy(allocs, pName);
+    }
+    else
+    {
+        m_Name = VMA_NULL;
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaBlockVector::VmaBlockVector(
+    VmaAllocator hAllocator,
+    VmaPool hParentPool,
+    uint32_t memoryTypeIndex,
+    VkDeviceSize preferredBlockSize,
+    size_t minBlockCount,
+    size_t maxBlockCount,
+    VkDeviceSize bufferImageGranularity,
+    uint32_t frameInUseCount,
+    bool explicitBlockSize,
+    uint32_t algorithm) :
+    m_hAllocator(hAllocator),
+    m_hParentPool(hParentPool),
+    m_MemoryTypeIndex(memoryTypeIndex),
+    m_PreferredBlockSize(preferredBlockSize),
+    m_MinBlockCount(minBlockCount),
+    m_MaxBlockCount(maxBlockCount),
+    m_BufferImageGranularity(bufferImageGranularity),
+    m_FrameInUseCount(frameInUseCount),
+    m_ExplicitBlockSize(explicitBlockSize),
+    m_Algorithm(algorithm),
+    m_HasEmptyBlock(false),
+    m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
+    m_NextBlockId(0)
+{
+}
+
+VmaBlockVector::~VmaBlockVector()
+{
+    for(size_t i = m_Blocks.size(); i--; )
+    {
+        m_Blocks[i]->Destroy(m_hAllocator);
+        vma_delete(m_hAllocator, m_Blocks[i]);
+    }
+}
+
+VkResult VmaBlockVector::CreateMinBlocks()
+{
+    for(size_t i = 0; i < m_MinBlockCount; ++i)
+    {
+        VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
+        if(res != VK_SUCCESS)
+        {
+            return res;
+        }
+    }
+    return VK_SUCCESS;
+}
+
+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
+{
+    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    const size_t blockCount = m_Blocks.size();
+
+    pStats->size = 0;
+    pStats->unusedSize = 0;
+    pStats->allocationCount = 0;
+    pStats->unusedRangeCount = 0;
+    pStats->unusedRangeSizeMax = 0;
+    pStats->blockCount = blockCount;
+
+    for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+        pBlock->m_pMetadata->AddPoolStats(*pStats);
+    }
+}
+
+bool VmaBlockVector::IsEmpty()
+{
+    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+    return m_Blocks.empty();
+}
+
+bool VmaBlockVector::IsCorruptionDetectionEnabled() const
+{
+    const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+    return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
+        (VMA_DEBUG_MARGIN > 0) &&
+        (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
+        (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
+}
+
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
+
+VkResult VmaBlockVector::Allocate(
+    uint32_t currentFrameIndex,
+    VkDeviceSize size,
+    VkDeviceSize alignment,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaSuballocationType suballocType,
+    size_t allocationCount,
+    VmaAllocation* pAllocations)
+{
+    size_t allocIndex;
+    VkResult res = VK_SUCCESS;
+
+    if(IsCorruptionDetectionEnabled())
+    {
+        size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+        alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+    }
+
+    {
+        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+        for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+        {
+            res = AllocatePage(
+                currentFrameIndex,
+                size,
+                alignment,
+                createInfo,
+                suballocType,
+                pAllocations + allocIndex);
+            if(res != VK_SUCCESS)
+            {
+                break;
+            }
+        }
+    }
+
+    if(res != VK_SUCCESS)
+    {
+        // Free all already created allocations.
+        while(allocIndex--)
+        {
+            Free(pAllocations[allocIndex]);
+        }
+        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+    }
+
+    return res;
+}
+
+VkResult VmaBlockVector::AllocatePage(
+    uint32_t currentFrameIndex,
+    VkDeviceSize size,
+    VkDeviceSize alignment,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaSuballocationType suballocType,
+    VmaAllocation* pAllocation)
+{
+    const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+    bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
+    const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+    const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+    
+    VkDeviceSize freeMemory;
+    {
+        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
+        VmaBudget heapBudget = {};
+        m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);
+        freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
+    }
+    
+    const bool canFallbackToDedicated = !IsCustomPool();
+    const bool canCreateNewBlock =
+        ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
+        (m_Blocks.size() < m_MaxBlockCount) &&
+        (freeMemory >= size || !canFallbackToDedicated);
+    uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
+
+    // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
+    // Which in turn is available only when maxBlockCount = 1.
+    if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1)
+    {
+        canMakeOtherLost = false;
+    }
+
+    // Upper address can only be used with linear allocator and within single memory block.
+    if(isUpperAddress &&
+        (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
+    {
+        return VK_ERROR_FEATURE_NOT_PRESENT;
+    }
+
+    // Validate strategy.
+    switch(strategy)
+    {
+    case 0:
+        strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;
+        break;
+    case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:
+    case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:
+    case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:
+        break;
+    default:
+        return VK_ERROR_FEATURE_NOT_PRESENT;
+    }
+
+    // Early reject: requested allocation size is larger that maximum block size for this block vector.
+    if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize)
+    {
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+
+    /*
+    Under certain condition, this whole section can be skipped for optimization, so
+    we move on directly to trying to allocate with canMakeOtherLost. That's the case
+    e.g. for custom pools with linear algorithm.
+    */
+    if(!canMakeOtherLost || canCreateNewBlock)
+    {
+        // 1. Search existing allocations. Try to allocate without making other allocations lost.
+        VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
+        allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+        if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+        {
+            // Use only last block.
+            if(!m_Blocks.empty())
+            {
+                VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
+                VMA_ASSERT(pCurrBlock);
+                VkResult res = AllocateFromBlock(
+                    pCurrBlock,
+                    currentFrameIndex,
+                    size,
+                    alignment,
+                    allocFlagsCopy,
+                    createInfo.pUserData,
+                    suballocType,
+                    strategy,
+                    pAllocation);
+                if(res == VK_SUCCESS)
+                {
+                    VMA_DEBUG_LOG("    Returned from last block #%u", pCurrBlock->GetId());
+                    return VK_SUCCESS;
+                }
+            }
+        }
+        else
+        {
+            if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+            {
+                // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+                for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+                {
+                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+                    VMA_ASSERT(pCurrBlock);
+                    VkResult res = AllocateFromBlock(
+                        pCurrBlock,
+                        currentFrameIndex,
+                        size,
+                        alignment,
+                        allocFlagsCopy,
+                        createInfo.pUserData,
+                        suballocType,
+                        strategy,
+                        pAllocation);
+                    if(res == VK_SUCCESS)
+                    {
+                        VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());
+                        return VK_SUCCESS;
+                    }
+                }
+            }
+            else // WORST_FIT, FIRST_FIT
+            {
+                // Backward order in m_Blocks - prefer blocks with largest amount of free space.
+                for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+                {
+                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+                    VMA_ASSERT(pCurrBlock);
+                    VkResult res = AllocateFromBlock(
+                        pCurrBlock,
+                        currentFrameIndex,
+                        size,
+                        alignment,
+                        allocFlagsCopy,
+                        createInfo.pUserData,
+                        suballocType,
+                        strategy,
+                        pAllocation);
+                    if(res == VK_SUCCESS)
+                    {
+                        VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());
+                        return VK_SUCCESS;
+                    }
+                }
+            }
+        }
+
+        // 2. Try to create new block.
+        if(canCreateNewBlock)
+        {
+            // Calculate optimal size for new block.
+            VkDeviceSize newBlockSize = m_PreferredBlockSize;
+            uint32_t newBlockSizeShift = 0;
+            const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
+
+            if(!m_ExplicitBlockSize)
+            {
+                // Allocate 1/8, 1/4, 1/2 as first blocks.
+                const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
+                for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
+                {
+                    const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+                    if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
+                    {
+                        newBlockSize = smallerNewBlockSize;
+                        ++newBlockSizeShift;
+                    }
+                    else
+                    {
+                        break;
+                    }
+                }
+            }
+
+            size_t newBlockIndex = 0;
+            VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
+                CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
+            // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
+            if(!m_ExplicitBlockSize)
+            {
+                while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
+                {
+                    const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+                    if(smallerNewBlockSize >= size)
+                    {
+                        newBlockSize = smallerNewBlockSize;
+                        ++newBlockSizeShift;
+                        res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
+                            CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
+                    }
+                    else
+                    {
+                        break;
+                    }
+                }
+            }
+
+            if(res == VK_SUCCESS)
+            {
+                VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
+                VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
+
+                res = AllocateFromBlock(
+                    pBlock,
+                    currentFrameIndex,
+                    size,
+                    alignment,
+                    allocFlagsCopy,
+                    createInfo.pUserData,
+                    suballocType,
+                    strategy,
+                    pAllocation);
+                if(res == VK_SUCCESS)
+                {
+                    VMA_DEBUG_LOG("    Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);
+                    return VK_SUCCESS;
+                }
+                else
+                {
+                    // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
+                    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+                }
+            }
+        }
+    }
+
+    // 3. Try to allocate from existing blocks with making other allocations lost.
+    if(canMakeOtherLost)
+    {
+        uint32_t tryIndex = 0;
+        for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
+        {
+            VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
+            VmaAllocationRequest bestRequest = {};
+            VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
+
+            // 1. Search existing allocations.
+            if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+            {
+                // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+                for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+                {
+                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+                    VMA_ASSERT(pCurrBlock);
+                    VmaAllocationRequest currRequest = {};
+                    if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
+                        currentFrameIndex,
+                        m_FrameInUseCount,
+                        m_BufferImageGranularity,
+                        size,
+                        alignment,
+                        (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
+                        suballocType,
+                        canMakeOtherLost,
+                        strategy,
+                        &currRequest))
+                    {
+                        const VkDeviceSize currRequestCost = currRequest.CalcCost();
+                        if(pBestRequestBlock == VMA_NULL ||
+                            currRequestCost < bestRequestCost)
+                        {
+                            pBestRequestBlock = pCurrBlock;
+                            bestRequest = currRequest;
+                            bestRequestCost = currRequestCost;
+
+                            if(bestRequestCost == 0)
+                            {
+                                break;
+                            }
+                        }
+                    }
+                }
+            }
+            else // WORST_FIT, FIRST_FIT
+            {
+                // Backward order in m_Blocks - prefer blocks with largest amount of free space.
+                for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+                {
+                    VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+                    VMA_ASSERT(pCurrBlock);
+                    VmaAllocationRequest currRequest = {};
+                    if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
+                        currentFrameIndex,
+                        m_FrameInUseCount,
+                        m_BufferImageGranularity,
+                        size,
+                        alignment,
+                        (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
+                        suballocType,
+                        canMakeOtherLost,
+                        strategy,
+                        &currRequest))
+                    {
+                        const VkDeviceSize currRequestCost = currRequest.CalcCost();
+                        if(pBestRequestBlock == VMA_NULL ||
+                            currRequestCost < bestRequestCost ||
+                            strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+                        {
+                            pBestRequestBlock = pCurrBlock;
+                            bestRequest = currRequest;
+                            bestRequestCost = currRequestCost;
+
+                            if(bestRequestCost == 0 ||
+                                strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+                            {
+                                break;
+                            }
+                        }
+                    }
+                }
+            }
+
+            if(pBestRequestBlock != VMA_NULL)
+            {
+                if(mapped)
+                {
+                    VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
+                    if(res != VK_SUCCESS)
+                    {
+                        return res;
+                    }
+                }
+
+                if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(
+                    currentFrameIndex,
+                    m_FrameInUseCount,
+                    &bestRequest))
+                {
+                    // Allocate from this pBlock.
+                    *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);
+                    pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation);
+                    UpdateHasEmptyBlock();
+                    (*pAllocation)->InitBlockAllocation(
+                        pBestRequestBlock,
+                        bestRequest.offset,
+                        alignment,
+                        size,
+                        m_MemoryTypeIndex,
+                        suballocType,
+                        mapped,
+                        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+                    VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
+                    VMA_DEBUG_LOG("    Returned from existing block");
+                    (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+                    m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);
+                    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+                    {
+                        m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+                    }
+                    if(IsCorruptionDetectionEnabled())
+                    {
+                        VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size);
+                        VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
+                    }
+                    return VK_SUCCESS;
+                }
+                // else: Some allocations must have been touched while we are here. Next try.
+            }
+            else
+            {
+                // Could not find place in any of the blocks - break outer loop.
+                break;
+            }
+        }
+        /* Maximum number of tries exceeded - a very unlike event when many other
+        threads are simultaneously touching allocations making it impossible to make
+        lost at the same time as we try to allocate. */
+        if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
+        {
+            return VK_ERROR_TOO_MANY_OBJECTS;
+        }
+    }
+
+    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaBlockVector::Free(
+    const VmaAllocation hAllocation)
+{
+    VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
+
+    bool budgetExceeded = false;
+    {
+        const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
+        VmaBudget heapBudget = {};
+        m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);
+        budgetExceeded = heapBudget.usage >= heapBudget.budget;
+    }
+
+    // Scope for lock.
+    {
+        VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+
+        if(IsCorruptionDetectionEnabled())
+        {
+            VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
+            VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
+        }
+
+        if(hAllocation->IsPersistentMap())
+        {
+            pBlock->Unmap(m_hAllocator, 1);
+        }
+
+        pBlock->m_pMetadata->Free(hAllocation);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+
+        VMA_DEBUG_LOG("  Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
+
+        const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
+        // pBlock became empty after this deallocation.
+        if(pBlock->m_pMetadata->IsEmpty())
+        {
+            // Already has empty block. We don't want to have two, so delete this one.
+            if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock)
+            {
+                pBlockToDelete = pBlock;
+                Remove(pBlock);
+            }
+            // else: We now have an empty block - leave it.
+        }
+        // pBlock didn't become empty, but we have another empty block - find and free that one.
+        // (This is optional, heuristics.)
+        else if(m_HasEmptyBlock && canDeleteBlock)
+        {
+            VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
+            if(pLastBlock->m_pMetadata->IsEmpty())
+            {
+                pBlockToDelete = pLastBlock;
+                m_Blocks.pop_back();
+            }
+        }
+
+        UpdateHasEmptyBlock();
+        IncrementallySortBlocks();
+    }
+
+    // Destruction of a free block. Deferred until this point, outside of mutex
+    // lock, for performance reason.
+    if(pBlockToDelete != VMA_NULL)
+    {
+        VMA_DEBUG_LOG("    Deleted empty block");
+        pBlockToDelete->Destroy(m_hAllocator);
+        vma_delete(m_hAllocator, pBlockToDelete);
+    }
+}
+
+VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
+{
+    VkDeviceSize result = 0;
+    for(size_t i = m_Blocks.size(); i--; )
+    {
+        result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
+        if(result >= m_PreferredBlockSize)
+        {
+            break;
+        }
+    }
+    return result;
+}
+
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
+{
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        if(m_Blocks[blockIndex] == pBlock)
+        {
+            VmaVectorRemove(m_Blocks, blockIndex);
+            return;
+        }
+    }
+    VMA_ASSERT(0);
+}
+
+void VmaBlockVector::IncrementallySortBlocks()
+{
+    if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+    {
+        // Bubble sort only until first swap.
+        for(size_t i = 1; i < m_Blocks.size(); ++i)
+        {
+            if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
+            {
+                VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
+                return;
+            }
+        }
+    }
+}
+
+VkResult VmaBlockVector::AllocateFromBlock(
+    VmaDeviceMemoryBlock* pBlock,
+    uint32_t currentFrameIndex,
+    VkDeviceSize size,
+    VkDeviceSize alignment,
+    VmaAllocationCreateFlags allocFlags,
+    void* pUserData,
+    VmaSuballocationType suballocType,
+    uint32_t strategy,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
+    const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+    const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+    const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+
+    VmaAllocationRequest currRequest = {};
+    if(pBlock->m_pMetadata->CreateAllocationRequest(
+        currentFrameIndex,
+        m_FrameInUseCount,
+        m_BufferImageGranularity,
+        size,
+        alignment,
+        isUpperAddress,
+        suballocType,
+        false, // canMakeOtherLost
+        strategy,
+        &currRequest))
+    {
+        // Allocate from pCurrBlock.
+        VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
+
+        if(mapped)
+        {
+            VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
+            if(res != VK_SUCCESS)
+            {
+                return res;
+            }
+        }
+            
+        *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);
+        pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation);
+        UpdateHasEmptyBlock();
+        (*pAllocation)->InitBlockAllocation(
+            pBlock,
+            currRequest.offset,
+            alignment,
+            size,
+            m_MemoryTypeIndex,
+            suballocType,
+            mapped,
+            (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+        (*pAllocation)->SetUserData(m_hAllocator, pUserData);
+        m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);
+        if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+        {
+            m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+        }
+        if(IsCorruptionDetectionEnabled())
+        {
+            VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
+            VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
+        }
+        return VK_SUCCESS;
+    }
+    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
+{
+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+    allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
+    allocInfo.allocationSize = blockSize;
+
+#if VMA_BUFFER_DEVICE_ADDRESS
+    // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
+    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
+    if(m_hAllocator->m_UseKhrBufferDeviceAddress)
+    {
+        allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
+        VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
+    }
+#endif // #if VMA_BUFFER_DEVICE_ADDRESS
+
+    VkDeviceMemory mem = VK_NULL_HANDLE;
+    VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
+    if(res < 0)
+    {
+        return res;
+    }
+
+    // New VkDeviceMemory successfully created.
+
+    // Create new Allocation for it.
+    VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
+    pBlock->Init(
+        m_hAllocator,
+        m_hParentPool,
+        m_MemoryTypeIndex,
+        mem,
+        allocInfo.allocationSize,
+        m_NextBlockId++,
+        m_Algorithm);
+
+    m_Blocks.push_back(pBlock);
+    if(pNewBlockIndex != VMA_NULL)
+    {
+        *pNewBlockIndex = m_Blocks.size() - 1;
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaBlockVector::ApplyDefragmentationMovesCpu(
+    class VmaBlockVectorDefragmentationContext* pDefragCtx,
+    const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)
+{
+    const size_t blockCount = m_Blocks.size();
+    const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
+
+    enum BLOCK_FLAG
+    {
+        BLOCK_FLAG_USED = 0x00000001,
+        BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
+    };
+
+    struct BlockInfo
+    {
+        uint32_t flags;
+        void* pMappedData;
+    };
+    VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
+        blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
+    memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
+
+    // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
+    const size_t moveCount = moves.size();
+    for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+    {
+        const VmaDefragmentationMove& move = moves[moveIndex];
+        blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
+        blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
+    }
+
+    VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
+
+    // Go over all blocks. Get mapped pointer or map if necessary.
+    for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
+    {
+        BlockInfo& currBlockInfo = blockInfo[blockIndex];
+        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+        if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
+        {
+            currBlockInfo.pMappedData = pBlock->GetMappedData();
+            // It is not originally mapped - map it.
+            if(currBlockInfo.pMappedData == VMA_NULL)
+            {
+                pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
+                if(pDefragCtx->res == VK_SUCCESS)
+                {
+                    currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
+                }
+            }
+        }
+    }
+
+    // Go over all moves. Do actual data transfer.
+    if(pDefragCtx->res == VK_SUCCESS)
+    {
+        const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
+        VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+
+        for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+        {
+            const VmaDefragmentationMove& move = moves[moveIndex];
+
+            const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
+            const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
+
+            VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
+
+            // Invalidate source.
+            if(isNonCoherent)
+            {
+                VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
+                memRange.memory = pSrcBlock->GetDeviceMemory();
+                memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
+                memRange.size = VMA_MIN(
+                    VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
+                    pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
+                (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
+            }
+
+            // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
+            memmove(
+                reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
+                reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
+                static_cast<size_t>(move.size));
+
+            if(IsCorruptionDetectionEnabled())
+            {
+                VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
+                VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
+            }
+
+            // Flush destination.
+            if(isNonCoherent)
+            {
+                VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
+                memRange.memory = pDstBlock->GetDeviceMemory();
+                memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
+                memRange.size = VMA_MIN(
+                    VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
+                    pDstBlock->m_pMetadata->GetSize() - memRange.offset);
+                (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
+            }
+        }
+    }
+
+    // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
+    // Regardless of pCtx->res == VK_SUCCESS.
+    for(size_t blockIndex = blockCount; blockIndex--; )
+    {
+        const BlockInfo& currBlockInfo = blockInfo[blockIndex];
+        if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
+        {
+            VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+            pBlock->Unmap(m_hAllocator, 1);
+        }
+    }
+}
+
+void VmaBlockVector::ApplyDefragmentationMovesGpu(
+    class VmaBlockVectorDefragmentationContext* pDefragCtx,
+    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+    VkCommandBuffer commandBuffer)
+{
+    const size_t blockCount = m_Blocks.size();
+
+    pDefragCtx->blockContexts.resize(blockCount);
+    memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));
+
+    // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
+    const size_t moveCount = moves.size();
+    for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+    {
+        const VmaDefragmentationMove& move = moves[moveIndex];
+
+        //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN)
+        {
+            // Old school move still require us to map the whole block
+            pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
+            pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
+        }
+    }
+
+    VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
+
+    // Go over all blocks. Create and bind buffer for whole block if necessary.
+    {
+        VkBufferCreateInfo bufCreateInfo;
+        VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);
+
+        for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
+        {
+            VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex];
+            VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+            if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0)
+            {
+                bufCreateInfo.size = pBlock->m_pMetadata->GetSize();
+                pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(
+                    m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);
+                if(pDefragCtx->res == VK_SUCCESS)
+                {
+                    pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(
+                        m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);
+                }
+            }
+        }
+    }
+
+    // Go over all moves. Post data transfer commands to command buffer.
+    if(pDefragCtx->res == VK_SUCCESS)
+    {
+        for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+        {
+            const VmaDefragmentationMove& move = moves[moveIndex];
+
+            const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];
+            const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];
+
+            VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);
+
+            VkBufferCopy region = {
+                move.srcOffset,
+                move.dstOffset,
+                move.size };
+            (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(
+                commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, &region);
+        }
+    }
+
+    // Save buffers to defrag context for later destruction.
+    if(pDefragCtx->res == VK_SUCCESS && moveCount > 0)
+    {
+        pDefragCtx->res = VK_NOT_READY;
+    }
+}
+
+void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)
+{
+    for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+    {
+        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+        if(pBlock->m_pMetadata->IsEmpty())
+        {
+            if(m_Blocks.size() > m_MinBlockCount)
+            {
+                if(pDefragmentationStats != VMA_NULL)
+                {
+                    ++pDefragmentationStats->deviceMemoryBlocksFreed;
+                    pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
+                }
+
+                VmaVectorRemove(m_Blocks, blockIndex);
+                pBlock->Destroy(m_hAllocator);
+                vma_delete(m_hAllocator, pBlock);
+            }
+            else
+            {
+                break;
+            }
+        }
+    }
+    UpdateHasEmptyBlock();
+}
+
+void VmaBlockVector::UpdateHasEmptyBlock()
+{
+    m_HasEmptyBlock = false;
+    for(size_t index = 0, count = m_Blocks.size(); index < count; ++index)
+    {
+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
+        if(pBlock->m_pMetadata->IsEmpty())
+        {
+            m_HasEmptyBlock = true;
+            break;
+        }
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
+{
+    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    json.BeginObject();
+
+    if(IsCustomPool())
+    {
+        const char* poolName = m_hParentPool->GetName();
+        if(poolName != VMA_NULL && poolName[0] != '\0')
+        {
+            json.WriteString("Name");
+            json.WriteString(poolName);
+        }
+
+        json.WriteString("MemoryTypeIndex");
+        json.WriteNumber(m_MemoryTypeIndex);
+
+        json.WriteString("BlockSize");
+        json.WriteNumber(m_PreferredBlockSize);
+
+        json.WriteString("BlockCount");
+        json.BeginObject(true);
+        if(m_MinBlockCount > 0)
+        {
+            json.WriteString("Min");
+            json.WriteNumber((uint64_t)m_MinBlockCount);
+        }
+        if(m_MaxBlockCount < SIZE_MAX)
+        {
+            json.WriteString("Max");
+            json.WriteNumber((uint64_t)m_MaxBlockCount);
+        }
+        json.WriteString("Cur");
+        json.WriteNumber((uint64_t)m_Blocks.size());
+        json.EndObject();
+
+        if(m_FrameInUseCount > 0)
+        {
+            json.WriteString("FrameInUseCount");
+            json.WriteNumber(m_FrameInUseCount);
+        }
+
+        if(m_Algorithm != 0)
+        {
+            json.WriteString("Algorithm");
+            json.WriteString(VmaAlgorithmToStr(m_Algorithm));
+        }
+    }
+    else
+    {
+        json.WriteString("PreferredBlockSize");
+        json.WriteNumber(m_PreferredBlockSize);
+    }
+
+    json.WriteString("Blocks");
+    json.BeginObject();
+    for(size_t i = 0; i < m_Blocks.size(); ++i)
+    {
+        json.BeginString();
+        json.ContinueString(m_Blocks[i]->GetId());
+        json.EndString();
+
+        m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
+    }
+    json.EndObject();
+
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::Defragment(
+    class VmaBlockVectorDefragmentationContext* pCtx,
+    VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,
+    VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
+    VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
+    VkCommandBuffer commandBuffer)
+{
+    pCtx->res = VK_SUCCESS;
+    
+    const VkMemoryPropertyFlags memPropFlags =
+        m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;
+    const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
+
+    const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&
+        isHostVisible;
+    const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&
+        !IsCorruptionDetectionEnabled() &&
+        ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;
+
+    // There are options to defragment this memory type.
+    if(canDefragmentOnCpu || canDefragmentOnGpu)
+    {
+        bool defragmentOnGpu;
+        // There is only one option to defragment this memory type.
+        if(canDefragmentOnGpu != canDefragmentOnCpu)
+        {
+            defragmentOnGpu = canDefragmentOnGpu;
+        }
+        // Both options are available: Heuristics to choose the best one.
+        else
+        {
+            defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||
+                m_hAllocator->IsIntegratedGpu();
+        }
+
+        bool overlappingMoveSupported = !defragmentOnGpu;
+
+        if(m_hAllocator->m_UseMutex)
+        {
+            if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
+            {
+                if(!m_Mutex.TryLockWrite())
+                {
+                    pCtx->res = VK_ERROR_INITIALIZATION_FAILED;
+                    return;
+                }
+            }
+            else
+            {
+                m_Mutex.LockWrite();
+                pCtx->mutexLocked = true;
+            }
+        }
+
+        pCtx->Begin(overlappingMoveSupported, flags);
+
+        // Defragment.
+
+        const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;
+        const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;
+        pCtx->res = pCtx->GetAlgorithm()->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags);
+
+        // Accumulate statistics.
+        if(pStats != VMA_NULL)
+        {
+            const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved();
+            const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved();
+            pStats->bytesMoved += bytesMoved;
+            pStats->allocationsMoved += allocationsMoved;
+            VMA_ASSERT(bytesMoved <= maxBytesToMove);
+            VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
+            if(defragmentOnGpu)
+            {
+                maxGpuBytesToMove -= bytesMoved;
+                maxGpuAllocationsToMove -= allocationsMoved;
+            }
+            else
+            {
+                maxCpuBytesToMove -= bytesMoved;
+                maxCpuAllocationsToMove -= allocationsMoved;
+            }
+        }
+
+        if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
+        {
+            if(m_hAllocator->m_UseMutex)
+                m_Mutex.UnlockWrite();
+            
+            if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty())
+                pCtx->res = VK_NOT_READY;
+
+            return;
+        }
+    
+        if(pCtx->res >= VK_SUCCESS)
+        {
+            if(defragmentOnGpu)
+            {
+                ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer);
+            }
+            else
+            {
+                ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves);
+            }
+        }
+    }
+}
+
+void VmaBlockVector::DefragmentationEnd(
+    class VmaBlockVectorDefragmentationContext* pCtx,
+    uint32_t flags,
+    VmaDefragmentationStats* pStats)
+{
+    if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex)
+    {
+        VMA_ASSERT(pCtx->mutexLocked == false);
+
+        // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any
+        // lock protecting us. Since we mutate state here, we have to take the lock out now
+        m_Mutex.LockWrite();
+        pCtx->mutexLocked = true;
+    }
+
+    // If the mutex isn't locked we didn't do any work and there is nothing to delete.
+    if(pCtx->mutexLocked || !m_hAllocator->m_UseMutex)
+    {
+        // Destroy buffers.
+        for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;)
+        {
+            VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex];
+            if(blockCtx.hBuffer)
+            {
+                (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());
+            }
+        }
+
+        if(pCtx->res >= VK_SUCCESS)
+        {
+            FreeEmptyBlocks(pStats);
+        }
+    }
+
+    if(pCtx->mutexLocked)
+    {
+        VMA_ASSERT(m_hAllocator->m_UseMutex);
+        m_Mutex.UnlockWrite();
+    }
+}
+
+uint32_t VmaBlockVector::ProcessDefragmentations(
+    class VmaBlockVectorDefragmentationContext *pCtx,
+    VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves)
+{
+    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+    
+    const uint32_t moveCount = std::min(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves);
+
+    for(uint32_t i = 0; i < moveCount; ++ i)
+    {
+        VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i];
+
+        pMove->allocation = move.hAllocation;
+        pMove->memory = move.pDstBlock->GetDeviceMemory();
+        pMove->offset = move.dstOffset;
+
+        ++ pMove;
+    }
+
+    pCtx->defragmentationMovesProcessed += moveCount;
+
+    return moveCount;
+}
+
+void VmaBlockVector::CommitDefragmentations(
+    class VmaBlockVectorDefragmentationContext *pCtx,
+    VmaDefragmentationStats* pStats)
+{
+    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+    
+    for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i)
+    {
+        const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i];
+
+        move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset);
+        move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset);
+    }
+
+    pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed;
+    FreeEmptyBlocks(pStats);
+}
+
+size_t VmaBlockVector::CalcAllocationCount() const
+{
+    size_t result = 0;
+    for(size_t i = 0; i < m_Blocks.size(); ++i)
+    {
+        result += m_Blocks[i]->m_pMetadata->GetAllocationCount();
+    }
+    return result;
+}
+
+bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const
+{
+    if(m_BufferImageGranularity == 1)
+    {
+        return false;
+    }
+    VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;
+    for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
+    {
+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[i];
+        VMA_ASSERT(m_Algorithm == 0);
+        VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata;
+        if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType))
+        {
+            return true;
+        }
+    }
+    return false;
+}
+
+void VmaBlockVector::MakePoolAllocationsLost(
+    uint32_t currentFrameIndex,
+    size_t* pLostAllocationCount)
+{
+    VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+    size_t lostAllocationCount = 0;
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
+    }
+    if(pLostAllocationCount != VMA_NULL)
+    {
+        *pLostAllocationCount = lostAllocationCount;
+    }
+}
+
+VkResult VmaBlockVector::CheckCorruption()
+{
+    if(!IsCorruptionDetectionEnabled())
+    {
+        return VK_ERROR_FEATURE_NOT_PRESENT;
+    }
+
+    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        VkResult res = pBlock->CheckCorruption(m_hAllocator);
+        if(res != VK_SUCCESS)
+        {
+            return res;
+        }
+    }
+    return VK_SUCCESS;
+}
+
+void VmaBlockVector::AddStats(VmaStats* pStats)
+{
+    const uint32_t memTypeIndex = m_MemoryTypeIndex;
+    const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
+
+    VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+        VmaStatInfo allocationStatInfo;
+        pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);
+        VmaAddStatInfo(pStats->total, allocationStatInfo);
+        VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+        VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationAlgorithm_Generic members definition
+
+VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(
+    VmaAllocator hAllocator,
+    VmaBlockVector* pBlockVector,
+    uint32_t currentFrameIndex,
+    bool overlappingMoveSupported) :
+    VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
+    m_AllocationCount(0),
+    m_AllAllocations(false),
+    m_BytesMoved(0),
+    m_AllocationsMoved(0),
+    m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
+{
+    // Create block info for each block.
+    const size_t blockCount = m_pBlockVector->m_Blocks.size();
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
+        pBlockInfo->m_OriginalBlockIndex = blockIndex;
+        pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
+        m_Blocks.push_back(pBlockInfo);
+    }
+
+    // Sort them by m_pBlock pointer value.
+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
+}
+
+VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic()
+{
+    for(size_t i = m_Blocks.size(); i--; )
+    {
+        vma_delete(m_hAllocator, m_Blocks[i]);
+    }
+}
+
+void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+    // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
+    if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+    {
+        VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock();
+        BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
+        if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
+        {
+            AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);
+            (*it)->m_Allocations.push_back(allocInfo);
+        }
+        else
+        {
+            VMA_ASSERT(0);
+        }
+
+        ++m_AllocationCount;
+    }
+}
+
+VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(
+    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+    VkDeviceSize maxBytesToMove,
+    uint32_t maxAllocationsToMove,
+    bool freeOldAllocations)
+{
+    if(m_Blocks.empty())
+    {
+        return VK_SUCCESS;
+    }
+
+    // This is a choice based on research.
+    // Option 1:
+    uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;
+    // Option 2:
+    //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;
+    // Option 3:
+    //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;
+
+    size_t srcBlockMinIndex = 0;
+    // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.
+    /*
+    if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)
+    {
+        const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();
+        if(blocksWithNonMovableCount > 0)
+        {
+            srcBlockMinIndex = blocksWithNonMovableCount - 1;
+        }
+    }
+    */
+
+    size_t srcBlockIndex = m_Blocks.size() - 1;
+    size_t srcAllocIndex = SIZE_MAX;
+    for(;;)
+    {
+        // 1. Find next allocation to move.
+        // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
+        // 1.2. Then start from last to first m_Allocations.
+        while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
+        {
+            if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
+            {
+                // Finished: no more allocations to process.
+                if(srcBlockIndex == srcBlockMinIndex)
+                {
+                    return VK_SUCCESS;
+                }
+                else
+                {
+                    --srcBlockIndex;
+                    srcAllocIndex = SIZE_MAX;
+                }
+            }
+            else
+            {
+                srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
+            }
+        }
+        
+        BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
+        AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
+
+        const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
+        const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
+        const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
+        const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
+
+        // 2. Try to find new place for this allocation in preceding or current block.
+        for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
+        {
+            BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
+            VmaAllocationRequest dstAllocRequest;
+            if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(
+                m_CurrentFrameIndex,
+                m_pBlockVector->GetFrameInUseCount(),
+                m_pBlockVector->GetBufferImageGranularity(),
+                size,
+                alignment,
+                false, // upperAddress
+                suballocType,
+                false, // canMakeOtherLost
+                strategy,
+                &dstAllocRequest) &&
+            MoveMakesSense(
+                dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
+            {
+                VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
+
+                // Reached limit on number of allocations or bytes to move.
+                if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
+                    (m_BytesMoved + size > maxBytesToMove))
+                {
+                    return VK_SUCCESS;
+                }
+
+                VmaDefragmentationMove move = {};
+                move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;
+                move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;
+                move.srcOffset = srcOffset;
+                move.dstOffset = dstAllocRequest.offset;
+                move.size = size;
+                move.hAllocation = allocInfo.m_hAllocation;
+                move.pSrcBlock = pSrcBlockInfo->m_pBlock;
+                move.pDstBlock = pDstBlockInfo->m_pBlock;
+
+                moves.push_back(move);
+
+                pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(
+                    dstAllocRequest,
+                    suballocType,
+                    size,
+                    allocInfo.m_hAllocation);
+
+                if(freeOldAllocations)
+                {
+                    pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);
+                    allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
+                }
+                
+                if(allocInfo.m_pChanged != VMA_NULL)
+                {
+                    *allocInfo.m_pChanged = VK_TRUE;
+                }
+
+                ++m_AllocationsMoved;
+                m_BytesMoved += size;
+
+                VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
+
+                break;
+            }
+        }
+
+        // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
+
+        if(srcAllocIndex > 0)
+        {
+            --srcAllocIndex;
+        }
+        else
+        {
+            if(srcBlockIndex > 0)
+            {
+                --srcBlockIndex;
+                srcAllocIndex = SIZE_MAX;
+            }
+            else
+            {
+                return VK_SUCCESS;
+            }
+        }
+    }
+}
+
+size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const
+{
+    size_t result = 0;
+    for(size_t i = 0; i < m_Blocks.size(); ++i)
+    {
+        if(m_Blocks[i]->m_HasNonMovableAllocations)
+        {
+            ++result;
+        }
+    }
+    return result;
+}
+
+VkResult VmaDefragmentationAlgorithm_Generic::Defragment(
+    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+    VkDeviceSize maxBytesToMove,
+    uint32_t maxAllocationsToMove,
+    VmaDefragmentationFlags flags)
+{
+    if(!m_AllAllocations && m_AllocationCount == 0)
+    {
+        return VK_SUCCESS;
+    }
+
+    const size_t blockCount = m_Blocks.size();
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        BlockInfo* pBlockInfo = m_Blocks[blockIndex];
+
+        if(m_AllAllocations)
+        {
+            VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata;
+            for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();
+                it != pMetadata->m_Suballocations.end();
+                ++it)
+            {
+                if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+                {
+                    AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL);
+                    pBlockInfo->m_Allocations.push_back(allocInfo);
+                }
+            }
+        }
+
+        pBlockInfo->CalcHasNonMovableAllocations();
+        
+        // This is a choice based on research.
+        // Option 1:
+        pBlockInfo->SortAllocationsByOffsetDescending();
+        // Option 2:
+        //pBlockInfo->SortAllocationsBySizeDescending();
+    }
+
+    // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
+
+    // This is a choice based on research.
+    const uint32_t roundCount = 2;
+
+    // Execute defragmentation rounds (the main part).
+    VkResult result = VK_SUCCESS;
+    for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round)
+    {
+        result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL));
+    }
+
+    return result;
+}
+
+bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(
+        size_t dstBlockIndex, VkDeviceSize dstOffset,
+        size_t srcBlockIndex, VkDeviceSize srcOffset)
+{
+    if(dstBlockIndex < srcBlockIndex)
+    {
+        return true;
+    }
+    if(dstBlockIndex > srcBlockIndex)
+    {
+        return false;
+    }
+    if(dstOffset < srcOffset)
+    {
+        return true;
+    }
+    return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationAlgorithm_Fast
+
+VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(
+    VmaAllocator hAllocator,
+    VmaBlockVector* pBlockVector,
+    uint32_t currentFrameIndex,
+    bool overlappingMoveSupported) :
+    VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
+    m_OverlappingMoveSupported(overlappingMoveSupported),
+    m_AllocationCount(0),
+    m_AllAllocations(false),
+    m_BytesMoved(0),
+    m_AllocationsMoved(0),
+    m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks()))
+{
+    VMA_ASSERT(VMA_DEBUG_MARGIN == 0);
+
+}
+
+VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast()
+{
+}
+
+VkResult VmaDefragmentationAlgorithm_Fast::Defragment(
+    VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+    VkDeviceSize maxBytesToMove,
+    uint32_t maxAllocationsToMove,
+    VmaDefragmentationFlags flags)
+{
+    VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);
+
+    const size_t blockCount = m_pBlockVector->GetBlockCount();
+    if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0)
+    {
+        return VK_SUCCESS;
+    }
+
+    PreprocessMetadata();
+
+    // Sort blocks in order from most destination.
+
+    m_BlockInfos.resize(blockCount);
+    for(size_t i = 0; i < blockCount; ++i)
+    {
+        m_BlockInfos[i].origBlockIndex = i;
+    }
+
+    VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool {
+        return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <
+            m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();
+    });
+
+    // THE MAIN ALGORITHM
+
+    FreeSpaceDatabase freeSpaceDb;
+
+    size_t dstBlockInfoIndex = 0;
+    size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
+    VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
+    VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
+    VkDeviceSize dstBlockSize = pDstMetadata->GetSize();
+    VkDeviceSize dstOffset = 0;
+
+    bool end = false;
+    for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex)
+    {
+        const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;
+        VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);
+        VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata;
+        for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();
+            !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); )
+        {
+            VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation;
+            const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();
+            const VkDeviceSize srcAllocSize = srcSuballocIt->size;
+            if(m_AllocationsMoved == maxAllocationsToMove ||
+                m_BytesMoved + srcAllocSize > maxBytesToMove)
+            {
+                end = true;
+                break;
+            }
+            const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;
+
+            VmaDefragmentationMove move = {};
+            // Try to place it in one of free spaces from the database.
+            size_t freeSpaceInfoIndex;
+            VkDeviceSize dstAllocOffset;
+            if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,
+                freeSpaceInfoIndex, dstAllocOffset))
+            {
+                size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;
+                VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);
+                VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata;
+
+                // Same block
+                if(freeSpaceInfoIndex == srcBlockInfoIndex)
+                {
+                    VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
+
+                    // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
+
+                    VmaSuballocation suballoc = *srcSuballocIt;
+                    suballoc.offset = dstAllocOffset;
+                    suballoc.hAllocation->ChangeOffset(dstAllocOffset);
+                    m_BytesMoved += srcAllocSize;
+                    ++m_AllocationsMoved;
+                    
+                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+                    ++nextSuballocIt;
+                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+                    srcSuballocIt = nextSuballocIt;
+
+                    InsertSuballoc(pFreeSpaceMetadata, suballoc);
+
+                    move.srcBlockIndex = srcOrigBlockIndex;
+                    move.dstBlockIndex = freeSpaceOrigBlockIndex;
+                    move.srcOffset = srcAllocOffset;
+                    move.dstOffset = dstAllocOffset;
+                    move.size = srcAllocSize;
+                    
+                    moves.push_back(move);
+                }
+                // Different block
+                else
+                {
+                    // MOVE OPTION 2: Move the allocation to a different block.
+
+                    VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);
+
+                    VmaSuballocation suballoc = *srcSuballocIt;
+                    suballoc.offset = dstAllocOffset;
+                    suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);
+                    m_BytesMoved += srcAllocSize;
+                    ++m_AllocationsMoved;
+
+                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+                    ++nextSuballocIt;
+                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+                    srcSuballocIt = nextSuballocIt;
+
+                    InsertSuballoc(pFreeSpaceMetadata, suballoc);
+
+                    move.srcBlockIndex = srcOrigBlockIndex;
+                    move.dstBlockIndex = freeSpaceOrigBlockIndex;
+                    move.srcOffset = srcAllocOffset;
+                    move.dstOffset = dstAllocOffset;
+                    move.size = srcAllocSize;
+                    
+                    moves.push_back(move);
+                }
+            }
+            else
+            {
+                dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);
+
+                // If the allocation doesn't fit before the end of dstBlock, forward to next block.
+                while(dstBlockInfoIndex < srcBlockInfoIndex &&
+                    dstAllocOffset + srcAllocSize > dstBlockSize)
+                {
+                    // But before that, register remaining free space at the end of dst block.
+                    freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);
+
+                    ++dstBlockInfoIndex;
+                    dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
+                    pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
+                    pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
+                    dstBlockSize = pDstMetadata->GetSize();
+                    dstOffset = 0;
+                    dstAllocOffset = 0;
+                }
+
+                // Same block
+                if(dstBlockInfoIndex == srcBlockInfoIndex)
+                {
+                    VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
+
+                    const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;
+
+                    bool skipOver = overlap;
+                    if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset)
+                    {
+                        // If destination and source place overlap, skip if it would move it
+                        // by only < 1/64 of its size.
+                        skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;
+                    }
+
+                    if(skipOver)
+                    {
+                        freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);
+
+                        dstOffset = srcAllocOffset + srcAllocSize;
+                        ++srcSuballocIt;
+                    }
+                    // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
+                    else
+                    {
+                        srcSuballocIt->offset = dstAllocOffset;
+                        srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset);
+                        dstOffset = dstAllocOffset + srcAllocSize;
+                        m_BytesMoved += srcAllocSize;
+                        ++m_AllocationsMoved;
+                        ++srcSuballocIt;
+                        
+                        move.srcBlockIndex = srcOrigBlockIndex;
+                        move.dstBlockIndex = dstOrigBlockIndex;
+                        move.srcOffset = srcAllocOffset;
+                        move.dstOffset = dstAllocOffset;
+                        move.size = srcAllocSize;
+                        
+                        moves.push_back(move);
+                    }
+                }
+                // Different block
+                else
+                {
+                    // MOVE OPTION 2: Move the allocation to a different block.
+
+                    VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);
+                    VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);
+
+                    VmaSuballocation suballoc = *srcSuballocIt;
+                    suballoc.offset = dstAllocOffset;
+                    suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);
+                    dstOffset = dstAllocOffset + srcAllocSize;
+                    m_BytesMoved += srcAllocSize;
+                    ++m_AllocationsMoved;
+
+                    VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+                    ++nextSuballocIt;
+                    pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+                    srcSuballocIt = nextSuballocIt;
+
+                    pDstMetadata->m_Suballocations.push_back(suballoc);
+
+                    move.srcBlockIndex = srcOrigBlockIndex;
+                    move.dstBlockIndex = dstOrigBlockIndex;
+                    move.srcOffset = srcAllocOffset;
+                    move.dstOffset = dstAllocOffset;
+                    move.size = srcAllocSize;
+                    
+                    moves.push_back(move);
+                }
+            }
+        }
+    }
+
+    m_BlockInfos.clear();
+    
+    PostprocessMetadata();
+
+    return VK_SUCCESS;
+}
+
+void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata()
+{
+    const size_t blockCount = m_pBlockVector->GetBlockCount();
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        VmaBlockMetadata_Generic* const pMetadata =
+            (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
+        pMetadata->m_FreeCount = 0;
+        pMetadata->m_SumFreeSize = pMetadata->GetSize();
+        pMetadata->m_FreeSuballocationsBySize.clear();
+        for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
+            it != pMetadata->m_Suballocations.end(); )
+        {
+            if(it->type == VMA_SUBALLOCATION_TYPE_FREE)
+            {
+                VmaSuballocationList::iterator nextIt = it;
+                ++nextIt;
+                pMetadata->m_Suballocations.erase(it);
+                it = nextIt;
+            }
+            else
+            {
+                ++it;
+            }
+        }
+    }
+}
+
+void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata()
+{
+    const size_t blockCount = m_pBlockVector->GetBlockCount();
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        VmaBlockMetadata_Generic* const pMetadata =
+            (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
+        const VkDeviceSize blockSize = pMetadata->GetSize();
+        
+        // No allocations in this block - entire area is free.
+        if(pMetadata->m_Suballocations.empty())
+        {
+            pMetadata->m_FreeCount = 1;
+            //pMetadata->m_SumFreeSize is already set to blockSize.
+            VmaSuballocation suballoc = {
+                0, // offset
+                blockSize, // size
+                VMA_NULL, // hAllocation
+                VMA_SUBALLOCATION_TYPE_FREE };
+            pMetadata->m_Suballocations.push_back(suballoc);
+            pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());
+        }
+        // There are some allocations in this block.
+        else
+        {
+            VkDeviceSize offset = 0;
+            VmaSuballocationList::iterator it;
+            for(it = pMetadata->m_Suballocations.begin();
+                it != pMetadata->m_Suballocations.end();
+                ++it)
+            {
+                VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);
+                VMA_ASSERT(it->offset >= offset);
+
+                // Need to insert preceding free space.
+                if(it->offset > offset)
+                {
+                    ++pMetadata->m_FreeCount;
+                    const VkDeviceSize freeSize = it->offset - offset;
+                    VmaSuballocation suballoc = {
+                        offset, // offset
+                        freeSize, // size
+                        VMA_NULL, // hAllocation
+                        VMA_SUBALLOCATION_TYPE_FREE };
+                    VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
+                    if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+                    {
+                        pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);
+                    }
+                }
+
+                pMetadata->m_SumFreeSize -= it->size;
+                offset = it->offset + it->size;
+            }
+
+            // Need to insert trailing free space.
+            if(offset < blockSize)
+            {
+                ++pMetadata->m_FreeCount;
+                const VkDeviceSize freeSize = blockSize - offset;
+                VmaSuballocation suballoc = {
+                    offset, // offset
+                    freeSize, // size
+                    VMA_NULL, // hAllocation
+                    VMA_SUBALLOCATION_TYPE_FREE };
+                VMA_ASSERT(it == pMetadata->m_Suballocations.end());
+                VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
+                if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+                {
+                    pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);
+                }
+            }
+
+            VMA_SORT(
+                pMetadata->m_FreeSuballocationsBySize.begin(),
+                pMetadata->m_FreeSuballocationsBySize.end(),
+                VmaSuballocationItemSizeLess());
+        }
+
+        VMA_HEAVY_ASSERT(pMetadata->Validate());
+    }
+}
+
+void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc)
+{
+    // TODO: Optimize somehow. Remember iterator instead of searching for it linearly.
+    VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
+    while(it != pMetadata->m_Suballocations.end())
+    {
+        if(it->offset < suballoc.offset)
+        {
+            ++it;
+        }
+    }
+    pMetadata->m_Suballocations.insert(it, suballoc);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaBlockVectorDefragmentationContext
+
+VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(
+    VmaAllocator hAllocator,
+    VmaPool hCustomPool,
+    VmaBlockVector* pBlockVector,
+    uint32_t currFrameIndex) :
+    res(VK_SUCCESS),
+    mutexLocked(false),
+    blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),
+    defragmentationMoves(VmaStlAllocator<VmaDefragmentationMove>(hAllocator->GetAllocationCallbacks())),
+    defragmentationMovesProcessed(0),
+    defragmentationMovesCommitted(0),
+    hasDefragmentationPlan(0),
+    m_hAllocator(hAllocator),
+    m_hCustomPool(hCustomPool),
+    m_pBlockVector(pBlockVector),
+    m_CurrFrameIndex(currFrameIndex),
+    m_pAlgorithm(VMA_NULL),
+    m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),
+    m_AllAllocations(false)
+{
+}
+
+VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext()
+{
+    vma_delete(m_hAllocator, m_pAlgorithm);
+}
+
+void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+    AllocInfo info = { hAlloc, pChanged };
+    m_Allocations.push_back(info);
+}
+
+void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags)
+{
+    const bool allAllocations = m_AllAllocations ||
+        m_Allocations.size() == m_pBlockVector->CalcAllocationCount();
+
+    /********************************
+    HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.
+    ********************************/
+
+    /*
+    Fast algorithm is supported only when certain criteria are met:
+    - VMA_DEBUG_MARGIN is 0.
+    - All allocations in this block vector are moveable.
+    - There is no possibility of image/buffer granularity conflict.
+    - The defragmentation is not incremental
+    */
+    if(VMA_DEBUG_MARGIN == 0 &&
+        allAllocations &&
+        !m_pBlockVector->IsBufferImageGranularityConflictPossible() &&
+        !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL))
+    {
+        m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(
+            m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
+    }
+    else
+    {
+        m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(
+            m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
+    }
+
+    if(allAllocations)
+    {
+        m_pAlgorithm->AddAll();
+    }
+    else
+    {
+        for(size_t i = 0, count = m_Allocations.size(); i < count; ++i)
+        {
+            m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);
+        }
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationContext
+
+VmaDefragmentationContext_T::VmaDefragmentationContext_T(
+    VmaAllocator hAllocator,
+    uint32_t currFrameIndex,
+    uint32_t flags,
+    VmaDefragmentationStats* pStats) :
+    m_hAllocator(hAllocator),
+    m_CurrFrameIndex(currFrameIndex),
+    m_Flags(flags),
+    m_pStats(pStats),
+    m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks()))
+{
+    memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));
+}
+
+VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
+{
+    for(size_t i = m_CustomPoolContexts.size(); i--; )
+    {
+        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i];
+        pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);
+        vma_delete(m_hAllocator, pBlockVectorCtx);
+    }
+    for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; )
+    {
+        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i];
+        if(pBlockVectorCtx)
+        {
+            pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);
+            vma_delete(m_hAllocator, pBlockVectorCtx);
+        }
+    }
+}
+
+void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools)
+{
+    for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+    {
+        VmaPool pool = pPools[poolIndex];
+        VMA_ASSERT(pool);
+        // Pools with algorithm other than default are not defragmented.
+        if(pool->m_BlockVector.GetAlgorithm() == 0)
+        {
+            VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
+            
+            for(size_t i = m_CustomPoolContexts.size(); i--; )
+            {
+                if(m_CustomPoolContexts[i]->GetCustomPool() == pool)
+                {
+                    pBlockVectorDefragCtx = m_CustomPoolContexts[i];
+                    break;
+                }
+            }
+            
+            if(!pBlockVectorDefragCtx)
+            {
+                pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+                    m_hAllocator,
+                    pool,
+                    &pool->m_BlockVector,
+                    m_CurrFrameIndex);
+                m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
+            }
+
+            pBlockVectorDefragCtx->AddAll();
+        }
+    }
+}
+
+void VmaDefragmentationContext_T::AddAllocations(
+    uint32_t allocationCount,
+    const VmaAllocation* pAllocations,
+    VkBool32* pAllocationsChanged)
+{
+    // Dispatch pAllocations among defragmentators. Create them when necessary.
+    for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+    {
+        const VmaAllocation hAlloc = pAllocations[allocIndex];
+        VMA_ASSERT(hAlloc);
+        // DedicatedAlloc cannot be defragmented.
+        if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
+            // Lost allocation cannot be defragmented.
+            (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
+        {
+            VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
+
+            const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();
+            // This allocation belongs to custom pool.
+            if(hAllocPool != VK_NULL_HANDLE)
+            {
+                // Pools with algorithm other than default are not defragmented.
+                if(hAllocPool->m_BlockVector.GetAlgorithm() == 0)
+                {
+                    for(size_t i = m_CustomPoolContexts.size(); i--; )
+                    {
+                        if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool)
+                        {
+                            pBlockVectorDefragCtx = m_CustomPoolContexts[i];
+                            break;
+                        }
+                    }
+                    if(!pBlockVectorDefragCtx)
+                    {
+                        pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+                            m_hAllocator,
+                            hAllocPool,
+                            &hAllocPool->m_BlockVector,
+                            m_CurrFrameIndex);
+                        m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
+                    }
+                }
+            }
+            // This allocation belongs to default pool.
+            else
+            {
+                const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
+                pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
+                if(!pBlockVectorDefragCtx)
+                {
+                    pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+                        m_hAllocator,
+                        VMA_NULL, // hCustomPool
+                        m_hAllocator->m_pBlockVectors[memTypeIndex],
+                        m_CurrFrameIndex);
+                    m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;
+                }
+            }
+
+            if(pBlockVectorDefragCtx)
+            {
+                VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
+                    &pAllocationsChanged[allocIndex] : VMA_NULL;
+                pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);
+            }
+        }
+    }
+}
+
+VkResult VmaDefragmentationContext_T::Defragment(
+    VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
+    VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
+    VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags)
+{
+    if(pStats)
+    {
+        memset(pStats, 0, sizeof(VmaDefragmentationStats));
+    }
+
+    if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
+    {
+        // For incremental defragmetnations, we just earmark how much we can move
+        // The real meat is in the defragmentation steps
+        m_MaxCpuBytesToMove = maxCpuBytesToMove;
+        m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove;
+
+        m_MaxGpuBytesToMove = maxGpuBytesToMove;
+        m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove;
+
+        if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 &&
+            m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0)
+            return VK_SUCCESS;
+
+        return VK_NOT_READY;
+    }
+
+    if(commandBuffer == VK_NULL_HANDLE)
+    {
+        maxGpuBytesToMove = 0;
+        maxGpuAllocationsToMove = 0;
+    }
+
+    VkResult res = VK_SUCCESS;
+
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0;
+        memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;
+        ++memTypeIndex)
+    {
+        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
+        if(pBlockVectorCtx)
+        {
+            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
+            pBlockVectorCtx->GetBlockVector()->Defragment(
+                pBlockVectorCtx,
+                pStats, flags,
+                maxCpuBytesToMove, maxCpuAllocationsToMove,
+                maxGpuBytesToMove, maxGpuAllocationsToMove,
+                commandBuffer);
+            if(pBlockVectorCtx->res != VK_SUCCESS)
+            {
+                res = pBlockVectorCtx->res;
+            }
+        }
+    }
+
+    // Process custom pools.
+    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
+        customCtxIndex < customCtxCount && res >= VK_SUCCESS;
+        ++customCtxIndex)
+    {
+        VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
+        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
+        pBlockVectorCtx->GetBlockVector()->Defragment(
+            pBlockVectorCtx,
+            pStats, flags,
+            maxCpuBytesToMove, maxCpuAllocationsToMove,
+            maxGpuBytesToMove, maxGpuAllocationsToMove,
+            commandBuffer);
+        if(pBlockVectorCtx->res != VK_SUCCESS)
+        {
+            res = pBlockVectorCtx->res;
+        }
+    }
+
+    return res;
+}
+
+VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo)
+{
+    VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves;
+    uint32_t movesLeft = pInfo->moveCount;
+
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0;
+        memTypeIndex < m_hAllocator->GetMemoryTypeCount();
+        ++memTypeIndex)
+    {
+        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
+        if(pBlockVectorCtx)
+        {
+            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
+
+            if(!pBlockVectorCtx->hasDefragmentationPlan)
+            {
+                pBlockVectorCtx->GetBlockVector()->Defragment(
+                    pBlockVectorCtx,
+                    m_pStats, m_Flags,
+                    m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,
+                    m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,
+                    VK_NULL_HANDLE);
+
+                if(pBlockVectorCtx->res < VK_SUCCESS)
+                    continue;
+
+                pBlockVectorCtx->hasDefragmentationPlan = true;
+            }
+
+            const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(
+                pBlockVectorCtx,
+                pCurrentMove, movesLeft);
+
+            movesLeft -= processed;
+            pCurrentMove += processed;
+        }
+    }
+
+    // Process custom pools.
+    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
+        customCtxIndex < customCtxCount;
+        ++customCtxIndex)
+    {
+        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
+        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
+
+        if(!pBlockVectorCtx->hasDefragmentationPlan)
+        {
+            pBlockVectorCtx->GetBlockVector()->Defragment(
+                pBlockVectorCtx,
+                m_pStats, m_Flags,
+                m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,
+                m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,
+                VK_NULL_HANDLE);
+
+            if(pBlockVectorCtx->res < VK_SUCCESS)
+                continue;
+
+            pBlockVectorCtx->hasDefragmentationPlan = true;
+        }
+
+        const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(
+            pBlockVectorCtx,
+            pCurrentMove, movesLeft);
+
+        movesLeft -= processed;
+        pCurrentMove += processed;
+    }
+
+    pInfo->moveCount = pInfo->moveCount - movesLeft;
+
+    return VK_SUCCESS;
+}
+VkResult VmaDefragmentationContext_T::DefragmentPassEnd()
+{
+    VkResult res = VK_SUCCESS;
+
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0;
+        memTypeIndex < m_hAllocator->GetMemoryTypeCount();
+        ++memTypeIndex)
+    {
+        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
+        if(pBlockVectorCtx)
+        {
+            VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
+
+            if(!pBlockVectorCtx->hasDefragmentationPlan)
+            {
+                res = VK_NOT_READY;
+                continue;
+            }
+
+            pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(
+                pBlockVectorCtx, m_pStats);
+
+            if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)
+                res = VK_NOT_READY;
+        }
+    }
+
+    // Process custom pools.
+    for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
+        customCtxIndex < customCtxCount;
+        ++customCtxIndex)
+    {
+        VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
+        VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
+
+        if(!pBlockVectorCtx->hasDefragmentationPlan)
+        {
+            res = VK_NOT_READY;
+            continue;
+        }
+
+        pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(
+            pBlockVectorCtx, m_pStats);
+
+        if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)
+            res = VK_NOT_READY;
+    }
+
+    return res;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaRecorder
+
+#if VMA_RECORDING_ENABLED
+
+VmaRecorder::VmaRecorder() :
+    m_UseMutex(true),
+    m_Flags(0),
+    m_File(VMA_NULL),
+    m_Freq(INT64_MAX),
+    m_StartCounter(INT64_MAX)
+{
+}
+
+VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex)
+{
+    m_UseMutex = useMutex;
+    m_Flags = settings.flags;
+
+    QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq);
+    QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter);
+
+    // Open file for writing.
+    errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");
+    if(err != 0)
+    {
+        return VK_ERROR_INITIALIZATION_FAILED;
+    }
+
+    // Write header.
+    fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");
+    fprintf(m_File, "%s\n", "1,8");
+
+    return VK_SUCCESS;
+}
+
+VmaRecorder::~VmaRecorder()
+{
+    if(m_File != VMA_NULL)
+    {
+        fclose(m_File);
+    }
+}
+
+void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);
+    Flush();
+}
+
+void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);
+    Flush();
+}
+
+void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,
+        createInfo.memoryTypeIndex,
+        createInfo.flags,
+        createInfo.blockSize,
+        (uint64_t)createInfo.minBlockCount,
+        (uint64_t)createInfo.maxBlockCount,
+        createInfo.frameInUseCount,
+        pool);
+    Flush();
+}
+
+void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,
+        pool);
+    Flush();
+}
+
+void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        vkMemReq.size,
+        vkMemReq.alignment,
+        vkMemReq.memoryTypeBits,
+        createInfo.flags,
+        createInfo.usage,
+        createInfo.requiredFlags,
+        createInfo.preferredFlags,
+        createInfo.memoryTypeBits,
+        createInfo.pool,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,
+    const VkMemoryRequirements& vkMemReq,
+    const VmaAllocationCreateInfo& createInfo,
+    uint64_t allocationCount,
+    const VmaAllocation* pAllocations)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,
+        vkMemReq.size,
+        vkMemReq.alignment,
+        vkMemReq.memoryTypeBits,
+        createInfo.flags,
+        createInfo.usage,
+        createInfo.requiredFlags,
+        createInfo.preferredFlags,
+        createInfo.memoryTypeBits,
+        createInfo.pool);
+    PrintPointerList(allocationCount, pAllocations);
+    fprintf(m_File, ",%s\n", userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,
+    const VkMemoryRequirements& vkMemReq,
+    bool requiresDedicatedAllocation,
+    bool prefersDedicatedAllocation,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        vkMemReq.size,
+        vkMemReq.alignment,
+        vkMemReq.memoryTypeBits,
+        requiresDedicatedAllocation ? 1 : 0,
+        prefersDedicatedAllocation ? 1 : 0,
+        createInfo.flags,
+        createInfo.usage,
+        createInfo.requiredFlags,
+        createInfo.preferredFlags,
+        createInfo.memoryTypeBits,
+        createInfo.pool,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,
+    const VkMemoryRequirements& vkMemReq,
+    bool requiresDedicatedAllocation,
+    bool prefersDedicatedAllocation,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        vkMemReq.size,
+        vkMemReq.alignment,
+        vkMemReq.memoryTypeBits,
+        requiresDedicatedAllocation ? 1 : 0,
+        prefersDedicatedAllocation ? 1 : 0,
+        createInfo.flags,
+        createInfo.usage,
+        createInfo.requiredFlags,
+        createInfo.preferredFlags,
+        createInfo.memoryTypeBits,
+        createInfo.pool,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,
+    uint64_t allocationCount,
+    const VmaAllocation* pAllocations)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);
+    PrintPointerList(allocationCount, pAllocations);
+    fprintf(m_File, "\n");
+    Flush();
+}
+
+void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,
+    VmaAllocation allocation,
+    const void* pUserData)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(
+        allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,
+        pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordMapMemory(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,
+    VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
+        allocation,
+        offset,
+        size);
+    Flush();
+}
+
+void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,
+    VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
+        allocation,
+        offset,
+        size);
+    Flush();
+}
+
+void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,
+    const VkBufferCreateInfo& bufCreateInfo,
+    const VmaAllocationCreateInfo& allocCreateInfo,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        bufCreateInfo.flags,
+        bufCreateInfo.size,
+        bufCreateInfo.usage,
+        bufCreateInfo.sharingMode,
+        allocCreateInfo.flags,
+        allocCreateInfo.usage,
+        allocCreateInfo.requiredFlags,
+        allocCreateInfo.preferredFlags,
+        allocCreateInfo.memoryTypeBits,
+        allocCreateInfo.pool,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordCreateImage(uint32_t frameIndex,
+    const VkImageCreateInfo& imageCreateInfo,
+    const VmaAllocationCreateInfo& allocCreateInfo,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
+    fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        imageCreateInfo.flags,
+        imageCreateInfo.imageType,
+        imageCreateInfo.format,
+        imageCreateInfo.extent.width,
+        imageCreateInfo.extent.height,
+        imageCreateInfo.extent.depth,
+        imageCreateInfo.mipLevels,
+        imageCreateInfo.arrayLayers,
+        imageCreateInfo.samples,
+        imageCreateInfo.tiling,
+        imageCreateInfo.usage,
+        imageCreateInfo.sharingMode,
+        imageCreateInfo.initialLayout,
+        allocCreateInfo.flags,
+        allocCreateInfo.usage,
+        allocCreateInfo.requiredFlags,
+        allocCreateInfo.preferredFlags,
+        allocCreateInfo.memoryTypeBits,
+        allocCreateInfo.pool,
+        allocation,
+        userDataStr.GetString());
+    Flush();
+}
+
+void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,
+    VmaAllocation allocation)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,
+        allocation);
+    Flush();
+}
+
+void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,
+    VmaPool pool)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,
+        pool);
+    Flush();
+}
+
+void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,
+    const VmaDefragmentationInfo2& info,
+    VmaDefragmentationContext ctx)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,
+        info.flags);
+    PrintPointerList(info.allocationCount, info.pAllocations);
+    fprintf(m_File, ",");
+    PrintPointerList(info.poolCount, info.pPools);
+    fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",
+        info.maxCpuBytesToMove,
+        info.maxCpuAllocationsToMove,
+        info.maxGpuBytesToMove,
+        info.maxGpuAllocationsToMove,
+        info.commandBuffer,
+        ctx);
+    Flush();
+}
+
+void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,
+    VmaDefragmentationContext ctx)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,
+        ctx);
+    Flush();
+}
+
+void VmaRecorder::RecordSetPoolName(uint32_t frameIndex,
+    VmaPool pool,
+    const char* name)
+{
+    CallParams callParams;
+    GetBasicParams(callParams);
+
+    VmaMutexLock lock(m_FileMutex, m_UseMutex);
+    fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+        pool, name != VMA_NULL ? name : "");
+    Flush();
+}
+
+VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData)
+{
+    if(pUserData != VMA_NULL)
+    {
+        if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0)
+        {
+            m_Str = (const char*)pUserData;
+        }
+        else
+        {
+            sprintf_s(m_PtrStr, "%p", pUserData);
+            m_Str = m_PtrStr;
+        }
+    }
+    else
+    {
+        m_Str = "";
+    }
+}
+
+void VmaRecorder::WriteConfiguration(
+    const VkPhysicalDeviceProperties& devProps,
+    const VkPhysicalDeviceMemoryProperties& memProps,
+    uint32_t vulkanApiVersion,
+    bool dedicatedAllocationExtensionEnabled,
+    bool bindMemory2ExtensionEnabled,
+    bool memoryBudgetExtensionEnabled,
+    bool deviceCoherentMemoryExtensionEnabled)
+{
+    fprintf(m_File, "Config,Begin\n");
+
+    fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion));
+
+    fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);
+    fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);
+    fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);
+    fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);
+    fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);
+    fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);
+
+    fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);
+    fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);
+    fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);
+
+    fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);
+    for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i)
+    {
+        fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);
+        fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);
+    }
+    fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);
+    for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i)
+    {
+        fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);
+        fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);
+    }
+
+    fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);
+    fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0);
+    fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0);
+    fprintf(m_File, "Extension,VK_AMD_device_coherent_memory,%u\n", deviceCoherentMemoryExtensionEnabled ? 1 : 0);
+
+    fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);
+    fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT);
+    fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);
+    fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);
+    fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);
+    fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);
+    fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);
+    fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);
+    fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+    fprintf(m_File, "Config,End\n");
+}
+
+void VmaRecorder::GetBasicParams(CallParams& outParams)
+{
+    outParams.threadId = GetCurrentThreadId();
+
+    LARGE_INTEGER counter;
+    QueryPerformanceCounter(&counter);
+    outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq;
+}
+
+void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems)
+{
+    if(count)
+    {
+        fprintf(m_File, "%p", pItems[0]);
+        for(uint64_t i = 1; i < count; ++i)
+        {
+            fprintf(m_File, " %p", pItems[i]);
+        }
+    }
+}
+
+void VmaRecorder::Flush()
+{
+    if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0)
+    {
+        fflush(m_File);
+    }
+}
+
+#endif // #if VMA_RECORDING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocationObjectAllocator
+
+VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) :
+    m_Allocator(pAllocationCallbacks, 1024)
+{
+}
+
+template<typename... Types> VmaAllocation VmaAllocationObjectAllocator::Allocate(Types... args)
+{
+    VmaMutexLock mutexLock(m_Mutex);
+    return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
+}
+
+void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
+{
+    VmaMutexLock mutexLock(m_Mutex);
+    m_Allocator.Free(hAlloc);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocator_T
+
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
+    m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
+    m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
+    m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
+    m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
+    m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
+    m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
+    m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
+    m_hDevice(pCreateInfo->device),
+    m_hInstance(pCreateInfo->instance),
+    m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
+    m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
+        *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
+    m_AllocationObjectAllocator(&m_AllocationCallbacks),
+    m_HeapSizeLimitMask(0),
+    m_PreferredLargeHeapBlockSize(0),
+    m_PhysicalDevice(pCreateInfo->physicalDevice),
+    m_CurrentFrameIndex(0),
+    m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
+    m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())),
+    m_NextPoolId(0),
+    m_GlobalMemoryTypeBits(UINT32_MAX)
+#if VMA_RECORDING_ENABLED
+    ,m_pRecorder(VMA_NULL)
+#endif
+{
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        m_UseKhrDedicatedAllocation = false;
+        m_UseKhrBindMemory2 = false;
+    }
+
+    if(VMA_DEBUG_DETECT_CORRUPTION)
+    {
+        // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
+        VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
+    }
+
+    VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
+
+    if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
+    {
+#if !(VMA_DEDICATED_ALLOCATION)
+        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
+        {
+            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
+        }
+#endif
+#if !(VMA_BIND_MEMORY2)
+        if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
+        {
+            VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
+        }
+#endif
+    }
+#if !(VMA_MEMORY_BUDGET)
+    if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
+    {
+        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
+    }
+#endif
+#if !(VMA_BUFFER_DEVICE_ADDRESS)
+    if(m_UseKhrBufferDeviceAddress)
+    {
+        VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
+    }
+#endif
+#if VMA_VULKAN_VERSION < 1002000
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
+    {
+        VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
+    }
+#endif
+#if VMA_VULKAN_VERSION < 1001000
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
+    }
+#endif
+
+    memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
+    memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
+    memset(&m_MemProps, 0, sizeof(m_MemProps));
+        
+    memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
+    memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
+    memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
+
+    if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
+    {
+        m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
+        m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
+        m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
+    }
+
+    ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
+
+    (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
+    (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
+
+    VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT));
+    VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
+    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
+    VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
+
+    m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
+        pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+    m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
+
+    if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
+    {
+        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+        {
+            const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
+            if(limit != VK_WHOLE_SIZE)
+            {
+                m_HeapSizeLimitMask |= 1u << heapIndex;
+                if(limit < m_MemProps.memoryHeaps[heapIndex].size)
+                {
+                    m_MemProps.memoryHeaps[heapIndex].size = limit;
+                }
+            }
+        }
+    }
+
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
+
+        m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
+            this,
+            VK_NULL_HANDLE, // hParentPool
+            memTypeIndex,
+            preferredBlockSize,
+            0,
+            SIZE_MAX,
+            GetBufferImageGranularity(),
+            pCreateInfo->frameInUseCount,
+            false, // explicitBlockSize
+            false); // linearAlgorithm
+        // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
+        // becase minBlockCount is 0.
+        m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
+
+    }
+}
+
+VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
+{
+    VkResult res = VK_SUCCESS;
+
+    if(pCreateInfo->pRecordSettings != VMA_NULL &&
+        !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath))
+    {
+#if VMA_RECORDING_ENABLED
+        m_pRecorder = vma_new(this, VmaRecorder)();
+        res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);
+        if(res != VK_SUCCESS)
+        {
+            return res;
+        }
+        m_pRecorder->WriteConfiguration(
+            m_PhysicalDeviceProperties,
+            m_MemProps,
+            m_VulkanApiVersion,
+            m_UseKhrDedicatedAllocation,
+            m_UseKhrBindMemory2,
+            m_UseExtMemoryBudget,
+            m_UseAmdDeviceCoherentMemory);
+        m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());
+#else
+        VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");
+        return VK_ERROR_FEATURE_NOT_PRESENT;
+#endif
+    }
+
+#if VMA_MEMORY_BUDGET
+    if(m_UseExtMemoryBudget)
+    {
+        UpdateVulkanBudget();
+    }
+#endif // #if VMA_MEMORY_BUDGET
+
+    return res;
+}
+
+VmaAllocator_T::~VmaAllocator_T()
+{
+#if VMA_RECORDING_ENABLED
+    if(m_pRecorder != VMA_NULL)
+    {
+        m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());
+        vma_delete(this, m_pRecorder);
+    }
+#endif
+    
+    VMA_ASSERT(m_Pools.empty());
+
+    for(size_t i = GetMemoryTypeCount(); i--; )
+    {
+        if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty())
+        {
+            VMA_ASSERT(0 && "Unfreed dedicated allocations found.");
+        }
+
+        vma_delete(this, m_pDedicatedAllocations[i]);
+        vma_delete(this, m_pBlockVectors[i]);
+    }
+}
+
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
+{
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+    ImportVulkanFunctions_Static();
+#endif
+
+    if(pVulkanFunctions != VMA_NULL)
+    {
+        ImportVulkanFunctions_Custom(pVulkanFunctions);
+    }
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+    ImportVulkanFunctions_Dynamic();
+#endif
+
+    ValidateVulkanFunctions();
+}
+
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Static()
+{
+    // Vulkan 1.0
+    m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
+    m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
+    m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
+    m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
+    m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
+    m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
+    m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
+    m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
+    m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
+    m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
+    m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
+    m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
+    m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
+    m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
+    m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
+    m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
+    m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
+
+    // Vulkan 1.1
+#if VMA_VULKAN_VERSION >= 1001000
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
+        m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
+        m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
+        m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
+        m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
+    }
+#endif
+}
+
+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
+{
+    VMA_ASSERT(pVulkanFunctions != VMA_NULL);
+
+#define VMA_COPY_IF_NOT_NULL(funcName) \
+    if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
+
+    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
+    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
+    VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
+    VMA_COPY_IF_NOT_NULL(vkFreeMemory);
+    VMA_COPY_IF_NOT_NULL(vkMapMemory);
+    VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
+    VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
+    VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
+    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
+    VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
+    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
+    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
+    VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
+    VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
+    VMA_COPY_IF_NOT_NULL(vkCreateImage);
+    VMA_COPY_IF_NOT_NULL(vkDestroyImage);
+    VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
+    VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
+#endif
+
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+    VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
+    VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
+#endif
+
+#if VMA_MEMORY_BUDGET
+    VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
+#endif
+
+#undef VMA_COPY_IF_NOT_NULL
+}
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
+{
+#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
+    if(m_VulkanFunctions.memberName == VMA_NULL) \
+        m_VulkanFunctions.memberName = \
+            (functionPointerType)vkGetInstanceProcAddr(m_hInstance, functionNameString);
+#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
+    if(m_VulkanFunctions.memberName == VMA_NULL) \
+        m_VulkanFunctions.memberName = \
+            (functionPointerType)vkGetDeviceProcAddr(m_hDevice, functionNameString);
+
+    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
+    VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
+    VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
+    VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
+    VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
+    VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
+    VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
+    VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
+    VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
+    VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
+    VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
+    VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
+    VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
+    VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
+    VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
+    VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
+    VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
+
+#if VMA_DEDICATED_ALLOCATION
+    if(m_UseKhrDedicatedAllocation)
+    {
+        VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
+        VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
+    }
+#endif
+
+#if VMA_BIND_MEMORY2
+    if(m_UseKhrBindMemory2)
+    {
+        VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
+        VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
+    }
+#endif // #if VMA_BIND_MEMORY2
+
+#if VMA_MEMORY_BUDGET
+    if(m_UseExtMemoryBudget && m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
+    {
+        VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
+    }
+#endif // #if VMA_MEMORY_BUDGET
+
+#undef VMA_FETCH_DEVICE_FUNC
+#undef VMA_FETCH_INSTANCE_FUNC
+}
+
+#endif // #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ValidateVulkanFunctions()
+{
+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
+    {
+        VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
+        VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
+    }
+#endif
+
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+    if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
+    {
+        VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
+        VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
+    }
+#endif
+
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+    if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
+    }
+#endif
+}
+
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
+{
+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+    const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+    const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
+    return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
+}
+
+VkResult VmaAllocator_T::AllocateMemoryOfType(
+    VkDeviceSize size,
+    VkDeviceSize alignment,
+    bool dedicatedAllocation,
+    VkBuffer dedicatedBuffer,
+    VkBufferUsageFlags dedicatedBufferUsage,
+    VkImage dedicatedImage,
+    const VmaAllocationCreateInfo& createInfo,
+    uint32_t memTypeIndex,
+    VmaSuballocationType suballocType,
+    size_t allocationCount,
+    VmaAllocation* pAllocations)
+{
+    VMA_ASSERT(pAllocations != VMA_NULL);
+    VMA_DEBUG_LOG("  AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
+
+    VmaAllocationCreateInfo finalCreateInfo = createInfo;
+
+    // If memory type is not HOST_VISIBLE, disable MAPPED.
+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+        (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+    {
+        finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+    }
+    // If memory is lazily allocated, it should be always dedicated.
+    if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
+    {
+        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+    }
+
+    VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
+    VMA_ASSERT(blockVector);
+
+    const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
+    bool preferDedicatedMemory =
+        VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
+        dedicatedAllocation ||
+        // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
+        size > preferredBlockSize / 2;
+
+    if(preferDedicatedMemory &&
+        (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
+        finalCreateInfo.pool == VK_NULL_HANDLE)
+    {
+        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+    }
+
+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+    {
+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        else
+        {
+            return AllocateDedicatedMemory(
+                size,
+                suballocType,
+                memTypeIndex,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+                finalCreateInfo.pUserData,
+                dedicatedBuffer,
+                dedicatedBufferUsage,
+                dedicatedImage,
+                allocationCount,
+                pAllocations);
+        }
+    }
+    else
+    {
+        VkResult res = blockVector->Allocate(
+            m_CurrentFrameIndex.load(),
+            size,
+            alignment,
+            finalCreateInfo,
+            suballocType,
+            allocationCount,
+            pAllocations);
+        if(res == VK_SUCCESS)
+        {
+            return res;
+        }
+
+        // 5. Try dedicated memory.
+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        else
+        {
+            res = AllocateDedicatedMemory(
+                size,
+                suballocType,
+                memTypeIndex,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+                finalCreateInfo.pUserData,
+                dedicatedBuffer,
+                dedicatedBufferUsage,
+                dedicatedImage,
+                allocationCount,
+                pAllocations);
+            if(res == VK_SUCCESS)
+            {
+                // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
+                VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
+                return VK_SUCCESS;
+            }
+            else
+            {
+                // Everything failed: Return error code.
+                VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
+                return res;
+            }
+        }
+    }
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
+    VkDeviceSize size,
+    VmaSuballocationType suballocType,
+    uint32_t memTypeIndex,
+    bool withinBudget,
+    bool map,
+    bool isUserDataString,
+    void* pUserData,
+    VkBuffer dedicatedBuffer,
+    VkBufferUsageFlags dedicatedBufferUsage,
+    VkImage dedicatedImage,
+    size_t allocationCount,
+    VmaAllocation* pAllocations)
+{
+    VMA_ASSERT(allocationCount > 0 && pAllocations);
+
+    if(withinBudget)
+    {
+        const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+        VmaBudget heapBudget = {};
+        GetBudget(&heapBudget, heapIndex, 1);
+        if(heapBudget.usage + size * allocationCount > heapBudget.budget)
+        {
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+    }
+
+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+    allocInfo.memoryTypeIndex = memTypeIndex;
+    allocInfo.allocationSize = size;
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
+    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        if(dedicatedBuffer != VK_NULL_HANDLE)
+        {
+            VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
+            dedicatedAllocInfo.buffer = dedicatedBuffer;
+            VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
+        }
+        else if(dedicatedImage != VK_NULL_HANDLE)
+        {
+            dedicatedAllocInfo.image = dedicatedImage;
+            VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
+        }
+    }
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+
+#if VMA_BUFFER_DEVICE_ADDRESS
+    VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
+    if(m_UseKhrBufferDeviceAddress)
+    {
+        bool canContainBufferWithDeviceAddress = true;
+        if(dedicatedBuffer != VK_NULL_HANDLE)
+        {
+            canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown
+                (dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;
+        }
+        else if(dedicatedImage != VK_NULL_HANDLE)
+        {
+            canContainBufferWithDeviceAddress = false;
+        }
+        if(canContainBufferWithDeviceAddress)
+        {
+            allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
+            VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
+        }
+    }
+#endif // #if VMA_BUFFER_DEVICE_ADDRESS
+
+    size_t allocIndex;
+    VkResult res = VK_SUCCESS;
+    for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+    {
+        res = AllocateDedicatedMemoryPage(
+            size,
+            suballocType,
+            memTypeIndex,
+            allocInfo,
+            map,
+            isUserDataString,
+            pUserData,
+            pAllocations + allocIndex);
+        if(res != VK_SUCCESS)
+        {
+            break;
+        }
+    }
+
+    if(res == VK_SUCCESS)
+    {
+        // Register them in m_pDedicatedAllocations.
+        {
+            VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+            AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+            VMA_ASSERT(pDedicatedAllocations);
+            for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+            {
+                VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]);
+            }
+        }
+
+        VMA_DEBUG_LOG("    Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
+    }
+    else
+    {
+        // Free all already created allocations.
+        while(allocIndex--)
+        {
+            VmaAllocation currAlloc = pAllocations[allocIndex];
+            VkDeviceMemory hMemory = currAlloc->GetMemory();
+    
+            /*
+            There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+            before vkFreeMemory.
+
+            if(currAlloc->GetMappedData() != VMA_NULL)
+            {
+                (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+            }
+            */
+    
+            FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
+            m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
+            currAlloc->SetUserData(this, VMA_NULL);
+            m_AllocationObjectAllocator.Free(currAlloc);
+        }
+
+        memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+    }
+
+    return res;
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
+    VkDeviceSize size,
+    VmaSuballocationType suballocType,
+    uint32_t memTypeIndex,
+    const VkMemoryAllocateInfo& allocInfo,
+    bool map,
+    bool isUserDataString,
+    void* pUserData,
+    VmaAllocation* pAllocation)
+{
+    VkDeviceMemory hMemory = VK_NULL_HANDLE;
+    VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
+    if(res < 0)
+    {
+        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
+        return res;
+    }
+
+    void* pMappedData = VMA_NULL;
+    if(map)
+    {
+        res = (*m_VulkanFunctions.vkMapMemory)(
+            m_hDevice,
+            hMemory,
+            0,
+            VK_WHOLE_SIZE,
+            0,
+            &pMappedData);
+        if(res < 0)
+        {
+            VMA_DEBUG_LOG("    vkMapMemory FAILED");
+            FreeVulkanMemory(memTypeIndex, size, hMemory);
+            return res;
+        }
+    }
+
+    *pAllocation = m_AllocationObjectAllocator.Allocate(m_CurrentFrameIndex.load(), isUserDataString);
+    (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
+    (*pAllocation)->SetUserData(this, pUserData);
+    m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
+    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+    {
+        FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetBufferMemoryRequirements(
+    VkBuffer hBuffer,
+    VkMemoryRequirements& memReq,
+    bool& requiresDedicatedAllocation,
+    bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
+        memReqInfo.buffer = hBuffer;
+
+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
+
+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+        memReq = memReq2.memoryRequirements;
+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
+    }
+    else
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    {
+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
+        requiresDedicatedAllocation = false;
+        prefersDedicatedAllocation  = false;
+    }
+}
+
+void VmaAllocator_T::GetImageMemoryRequirements(
+    VkImage hImage,
+    VkMemoryRequirements& memReq,
+    bool& requiresDedicatedAllocation,
+    bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+    {
+        VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
+        memReqInfo.image = hImage;
+
+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+        VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
+
+        (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+        memReq = memReq2.memoryRequirements;
+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
+    }
+    else
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+    {
+        (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
+        requiresDedicatedAllocation = false;
+        prefersDedicatedAllocation  = false;
+    }
+}
+
+VkResult VmaAllocator_T::AllocateMemory(
+    const VkMemoryRequirements& vkMemReq,
+    bool requiresDedicatedAllocation,
+    bool prefersDedicatedAllocation,
+    VkBuffer dedicatedBuffer,
+    VkBufferUsageFlags dedicatedBufferUsage,
+    VkImage dedicatedImage,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaSuballocationType suballocType,
+    size_t allocationCount,
+    VmaAllocation* pAllocations)
+{
+    memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+
+    VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
+
+    if(vkMemReq.size == 0)
+    {
+        return VK_ERROR_VALIDATION_FAILED_EXT;
+    }
+    if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+        (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+    if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+    if(requiresDedicatedAllocation)
+    {
+        if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        if(createInfo.pool != VK_NULL_HANDLE)
+        {
+            VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+    }
+    if((createInfo.pool != VK_NULL_HANDLE) &&
+        ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+
+    if(createInfo.pool != VK_NULL_HANDLE)
+    {
+        const VkDeviceSize alignmentForPool = VMA_MAX(
+            vkMemReq.alignment,
+            GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex()));
+
+        VmaAllocationCreateInfo createInfoForPool = createInfo;
+        // If memory type is not HOST_VISIBLE, disable MAPPED.
+        if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+            (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+        {
+            createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+        }
+
+        return createInfo.pool->m_BlockVector.Allocate(
+            m_CurrentFrameIndex.load(),
+            vkMemReq.size,
+            alignmentForPool,
+            createInfoForPool,
+            suballocType,
+            allocationCount,
+            pAllocations);
+    }
+    else
+    {
+        // Bit mask of memory Vulkan types acceptable for this allocation.
+        uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+        uint32_t memTypeIndex = UINT32_MAX;
+        VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+        if(res == VK_SUCCESS)
+        {
+            VkDeviceSize alignmentForMemType = VMA_MAX(
+                vkMemReq.alignment,
+                GetMemoryTypeMinAlignment(memTypeIndex));
+
+            res = AllocateMemoryOfType(
+                vkMemReq.size,
+                alignmentForMemType,
+                requiresDedicatedAllocation || prefersDedicatedAllocation,
+                dedicatedBuffer,
+                dedicatedBufferUsage,
+                dedicatedImage,
+                createInfo,
+                memTypeIndex,
+                suballocType,
+                allocationCount,
+                pAllocations);
+            // Succeeded on first try.
+            if(res == VK_SUCCESS)
+            {
+                return res;
+            }
+            // Allocation from this memory type failed. Try other compatible memory types.
+            else
+            {
+                for(;;)
+                {
+                    // Remove old memTypeIndex from list of possibilities.
+                    memoryTypeBits &= ~(1u << memTypeIndex);
+                    // Find alternative memTypeIndex.
+                    res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+                    if(res == VK_SUCCESS)
+                    {
+                        alignmentForMemType = VMA_MAX(
+                            vkMemReq.alignment,
+                            GetMemoryTypeMinAlignment(memTypeIndex));
+                        
+                        res = AllocateMemoryOfType(
+                            vkMemReq.size,
+                            alignmentForMemType,
+                            requiresDedicatedAllocation || prefersDedicatedAllocation,
+                            dedicatedBuffer,
+                            dedicatedBufferUsage,
+                            dedicatedImage,
+                            createInfo,
+                            memTypeIndex,
+                            suballocType,
+                            allocationCount,
+                            pAllocations);
+                        // Allocation from this alternative memory type succeeded.
+                        if(res == VK_SUCCESS)
+                        {
+                            return res;
+                        }
+                        // else: Allocation from this memory type failed. Try next one - next loop iteration.
+                    }
+                    // No other matching memory type index could be found.
+                    else
+                    {
+                        // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+                        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+                    }
+                }
+            }
+        }
+        // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+        else
+            return res;
+    }
+}
+
+void VmaAllocator_T::FreeMemory(
+    size_t allocationCount,
+    const VmaAllocation* pAllocations)
+{
+    VMA_ASSERT(pAllocations);
+
+    for(size_t allocIndex = allocationCount; allocIndex--; )
+    {
+        VmaAllocation allocation = pAllocations[allocIndex];
+
+        if(allocation != VK_NULL_HANDLE)
+        {
+            if(TouchAllocation(allocation))
+            {
+                if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+                {
+                    FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
+                }
+
+                switch(allocation->GetType())
+                {
+                case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+                    {
+                        VmaBlockVector* pBlockVector = VMA_NULL;
+                        VmaPool hPool = allocation->GetBlock()->GetParentPool();
+                        if(hPool != VK_NULL_HANDLE)
+                        {
+                            pBlockVector = &hPool->m_BlockVector;
+                        }
+                        else
+                        {
+                            const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+                            pBlockVector = m_pBlockVectors[memTypeIndex];
+                        }
+                        pBlockVector->Free(allocation);
+                    }
+                    break;
+                case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+                    FreeDedicatedMemory(allocation);
+                    break;
+                default:
+                    VMA_ASSERT(0);
+                }
+            }
+
+            // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes.
+            m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
+            allocation->SetUserData(this, VMA_NULL);
+            m_AllocationObjectAllocator.Free(allocation);
+        }
+    }
+}
+
+VkResult VmaAllocator_T::ResizeAllocation(
+    const VmaAllocation alloc,
+    VkDeviceSize newSize)
+{
+    // This function is deprecated and so it does nothing. It's left for backward compatibility.
+    if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST)
+    {
+        return VK_ERROR_VALIDATION_FAILED_EXT;
+    }
+    if(newSize == alloc->GetSize())
+    {
+        return VK_SUCCESS;
+    }
+    return VK_ERROR_OUT_OF_POOL_MEMORY;
+}
+
+void VmaAllocator_T::CalculateStats(VmaStats* pStats)
+{
+    // Initialize.
+    InitStatInfo(pStats->total);
+    for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
+        InitStatInfo(pStats->memoryType[i]);
+    for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+        InitStatInfo(pStats->memoryHeap[i]);
+    
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+        VMA_ASSERT(pBlockVector);
+        pBlockVector->AddStats(pStats);
+    }
+
+    // Process custom pools.
+    {
+        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+        {
+            m_Pools[poolIndex]->m_BlockVector.AddStats(pStats);
+        }
+    }
+
+    // Process dedicated allocations.
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+        VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocVector);
+        for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
+        {
+            VmaStatInfo allocationStatInfo;
+            (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
+            VmaAddStatInfo(pStats->total, allocationStatInfo);
+            VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+            VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+        }
+    }
+
+    // Postprocess.
+    VmaPostprocessCalcStatInfo(pStats->total);
+    for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
+        VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
+    for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
+        VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
+}
+
+void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount)
+{
+#if VMA_MEMORY_BUDGET
+    if(m_UseExtMemoryBudget)
+    {
+        if(m_Budget.m_OperationsSinceBudgetFetch < 30)
+        {
+            VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
+            for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)
+            {
+                const uint32_t heapIndex = firstHeap + i;
+
+                outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];
+                outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
+
+                if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
+                {
+                    outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] +
+                        outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
+                }
+                else
+                {
+                    outBudget->usage = 0;
+                }
+
+                // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
+                outBudget->budget = VMA_MIN(
+                    m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
+            }
+        }
+        else
+        {
+            UpdateVulkanBudget(); // Outside of mutex lock
+            GetBudget(outBudget, firstHeap, heapCount); // Recursion
+        }
+    }
+    else
+#endif
+    {
+        for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)
+        {
+            const uint32_t heapIndex = firstHeap + i;
+
+            outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];
+            outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
+
+            outBudget->usage = outBudget->blockBytes;
+            outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
+        }
+    }
+}
+
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
+
+VkResult VmaAllocator_T::DefragmentationBegin(
+    const VmaDefragmentationInfo2& info,
+    VmaDefragmentationStats* pStats,
+    VmaDefragmentationContext* pContext)
+{
+    if(info.pAllocationsChanged != VMA_NULL)
+    {
+        memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));
+    }
+
+    *pContext = vma_new(this, VmaDefragmentationContext_T)(
+        this, m_CurrentFrameIndex.load(), info.flags, pStats);
+
+    (*pContext)->AddPools(info.poolCount, info.pPools);
+    (*pContext)->AddAllocations(
+        info.allocationCount, info.pAllocations, info.pAllocationsChanged);
+
+    VkResult res = (*pContext)->Defragment(
+        info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,
+        info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,
+        info.commandBuffer, pStats, info.flags);
+
+    if(res != VK_NOT_READY)
+    {
+        vma_delete(this, *pContext);
+        *pContext = VMA_NULL;
+    }
+
+    return res;
+}
+
+VkResult VmaAllocator_T::DefragmentationEnd(
+    VmaDefragmentationContext context)
+{
+    vma_delete(this, context);
+    return VK_SUCCESS;
+}
+
+VkResult VmaAllocator_T::DefragmentationPassBegin(
+    VmaDefragmentationPassInfo* pInfo,
+    VmaDefragmentationContext context)
+{
+    return context->DefragmentPassBegin(pInfo);
+}
+VkResult VmaAllocator_T::DefragmentationPassEnd(
+    VmaDefragmentationContext context)
+{
+    return context->DefragmentPassEnd();
+    
+}
+
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
+{
+    if(hAllocation->CanBecomeLost())
+    {
+        /*
+        Warning: This is a carefully designed algorithm.
+        Do not modify unless you really know what you're doing :)
+        */
+        const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+        for(;;)
+        {
+            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+            {
+                pAllocationInfo->memoryType = UINT32_MAX;
+                pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
+                pAllocationInfo->offset = 0;
+                pAllocationInfo->size = hAllocation->GetSize();
+                pAllocationInfo->pMappedData = VMA_NULL;
+                pAllocationInfo->pUserData = hAllocation->GetUserData();
+                return;
+            }
+            else if(localLastUseFrameIndex == localCurrFrameIndex)
+            {
+                pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+                pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+                pAllocationInfo->offset = hAllocation->GetOffset();
+                pAllocationInfo->size = hAllocation->GetSize();
+                pAllocationInfo->pMappedData = VMA_NULL;
+                pAllocationInfo->pUserData = hAllocation->GetUserData();
+                return;
+            }
+            else // Last use time earlier than current time.
+            {
+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+                {
+                    localLastUseFrameIndex = localCurrFrameIndex;
+                }
+            }
+        }
+    }
+    else
+    {
+#if VMA_STATS_STRING_ENABLED
+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+        for(;;)
+        {
+            VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
+            if(localLastUseFrameIndex == localCurrFrameIndex)
+            {
+                break;
+            }
+            else // Last use time earlier than current time.
+            {
+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+                {
+                    localLastUseFrameIndex = localCurrFrameIndex;
+                }
+            }
+        }
+#endif
+
+        pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+        pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+        pAllocationInfo->offset = hAllocation->GetOffset();
+        pAllocationInfo->size = hAllocation->GetSize();
+        pAllocationInfo->pMappedData = hAllocation->GetMappedData();
+        pAllocationInfo->pUserData = hAllocation->GetUserData();
+    }
+}
+
+bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)
+{
+    // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
+    if(hAllocation->CanBecomeLost())
+    {
+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+        for(;;)
+        {
+            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+            {
+                return false;
+            }
+            else if(localLastUseFrameIndex == localCurrFrameIndex)
+            {
+                return true;
+            }
+            else // Last use time earlier than current time.
+            {
+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+                {
+                    localLastUseFrameIndex = localCurrFrameIndex;
+                }
+            }
+        }
+    }
+    else
+    {
+#if VMA_STATS_STRING_ENABLED
+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+        for(;;)
+        {
+            VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
+            if(localLastUseFrameIndex == localCurrFrameIndex)
+            {
+                break;
+            }
+            else // Last use time earlier than current time.
+            {
+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+                {
+                    localLastUseFrameIndex = localCurrFrameIndex;
+                }
+            }
+        }
+#endif
+
+        return true;
+    }
+}
+
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
+{
+    VMA_DEBUG_LOG("  CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
+
+    VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
+
+    if(newCreateInfo.maxBlockCount == 0)
+    {
+        newCreateInfo.maxBlockCount = SIZE_MAX;
+    }
+    if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
+    {
+        return VK_ERROR_INITIALIZATION_FAILED;
+    }
+    // Memory type index out of range or forbidden.
+    if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
+        ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
+    {
+        return VK_ERROR_FEATURE_NOT_PRESENT;
+    }
+
+    const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
+
+    *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
+
+    VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
+    if(res != VK_SUCCESS)
+    {
+        vma_delete(this, *pPool);
+        *pPool = VMA_NULL;
+        return res;
+    }
+
+    // Add to m_Pools.
+    {
+        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+        (*pPool)->SetId(m_NextPoolId++);
+        VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaAllocator_T::DestroyPool(VmaPool pool)
+{
+    // Remove from m_Pools.
+    {
+        VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
+        VMA_ASSERT(success && "Pool not found in Allocator.");
+    }
+
+    vma_delete(this, pool);
+}
+
+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
+{
+    pool->m_BlockVector.GetPoolStats(pPoolStats);
+}
+
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
+{
+    m_CurrentFrameIndex.store(frameIndex);
+
+#if VMA_MEMORY_BUDGET
+    if(m_UseExtMemoryBudget)
+    {
+        UpdateVulkanBudget();
+    }
+#endif // #if VMA_MEMORY_BUDGET
+}
+
+void VmaAllocator_T::MakePoolAllocationsLost(
+    VmaPool hPool,
+    size_t* pLostAllocationCount)
+{
+    hPool->m_BlockVector.MakePoolAllocationsLost(
+        m_CurrentFrameIndex.load(),
+        pLostAllocationCount);
+}
+
+VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
+{
+    return hPool->m_BlockVector.CheckCorruption();
+}
+
+VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
+{
+    VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
+
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        if(((1u << memTypeIndex) & memoryTypeBits) != 0)
+        {
+            VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+            VMA_ASSERT(pBlockVector);
+            VkResult localRes = pBlockVector->CheckCorruption();
+            switch(localRes)
+            {
+            case VK_ERROR_FEATURE_NOT_PRESENT:
+                break;
+            case VK_SUCCESS:
+                finalRes = VK_SUCCESS;
+                break;
+            default:
+                return localRes;
+            }
+        }
+    }
+
+    // Process custom pools.
+    {
+        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+        {
+            if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
+            {
+                VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption();
+                switch(localRes)
+                {
+                case VK_ERROR_FEATURE_NOT_PRESENT:
+                    break;
+                case VK_SUCCESS:
+                    finalRes = VK_SUCCESS;
+                    break;
+                default:
+                    return localRes;
+                }
+            }
+        }
+    }
+
+    return finalRes;
+}
+
+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
+{
+    *pAllocation = m_AllocationObjectAllocator.Allocate(VMA_FRAME_INDEX_LOST, false);
+    (*pAllocation)->InitLost();
+}
+
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
+{
+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
+
+    // HeapSizeLimit is in effect for this heap.
+    if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
+    {
+        const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+        VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
+        for(;;)
+        {
+            const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
+            if(blockBytesAfterAllocation > heapSize)
+            {
+                return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+            }
+            if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
+            {
+                break;
+            }
+        }
+    }
+    else
+    {
+        m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
+    }
+
+    // VULKAN CALL vkAllocateMemory.
+    VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+
+    if(res == VK_SUCCESS)
+    {
+#if VMA_MEMORY_BUDGET
+        ++m_Budget.m_OperationsSinceBudgetFetch;
+#endif
+
+        // Informative callback.
+        if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
+        {
+            (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
+        }
+    }
+    else
+    {
+        m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
+    }
+
+    return res;
+}
+
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
+{
+    // Informative callback.
+    if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
+    {
+        (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
+    }
+
+    // VULKAN CALL vkFreeMemory.
+    (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
+
+    m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size;
+}
+
+VkResult VmaAllocator_T::BindVulkanBuffer(
+    VkDeviceMemory memory,
+    VkDeviceSize memoryOffset,
+    VkBuffer buffer,
+    const void* pNext)
+{
+    if(pNext != VMA_NULL)
+    {
+#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
+            m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
+        {
+            VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
+            bindBufferMemoryInfo.pNext = pNext;
+            bindBufferMemoryInfo.buffer = buffer;
+            bindBufferMemoryInfo.memory = memory;
+            bindBufferMemoryInfo.memoryOffset = memoryOffset;
+            return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+        }
+        else
+#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+        {
+            return VK_ERROR_EXTENSION_NOT_PRESENT;
+        }
+    }
+    else
+    {
+        return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
+    }
+}
+
+VkResult VmaAllocator_T::BindVulkanImage(
+    VkDeviceMemory memory,
+    VkDeviceSize memoryOffset,
+    VkImage image,
+    const void* pNext)
+{
+    if(pNext != VMA_NULL)
+    {
+#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+        if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
+            m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
+        {
+            VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
+            bindBufferMemoryInfo.pNext = pNext;
+            bindBufferMemoryInfo.image = image;
+            bindBufferMemoryInfo.memory = memory;
+            bindBufferMemoryInfo.memoryOffset = memoryOffset;
+            return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+        }
+        else
+#endif // #if VMA_BIND_MEMORY2
+        {
+            return VK_ERROR_EXTENSION_NOT_PRESENT;
+        }
+    }
+    else
+    {
+        return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
+    }
+}
+
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
+{
+    if(hAllocation->CanBecomeLost())
+    {
+        return VK_ERROR_MEMORY_MAP_FAILED;
+    }
+
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+        {
+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+            char *pBytes = VMA_NULL;
+            VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
+            if(res == VK_SUCCESS)
+            {
+                *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
+                hAllocation->BlockAllocMap();
+            }
+            return res;
+        }
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        return hAllocation->DedicatedAllocMap(this, ppData);
+    default:
+        VMA_ASSERT(0);
+        return VK_ERROR_MEMORY_MAP_FAILED;
+    }
+}
+
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
+{
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+        {
+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+            hAllocation->BlockAllocUnmap();
+            pBlock->Unmap(this, 1);
+        }
+        break;
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        hAllocation->DedicatedAllocUnmap(this);
+        break;
+    default:
+        VMA_ASSERT(0);
+    }
+}
+
+VkResult VmaAllocator_T::BindBufferMemory(
+    VmaAllocation hAllocation,
+    VkDeviceSize allocationLocalOffset,
+    VkBuffer hBuffer,
+    const void* pNext)
+{
+    VkResult res = VK_SUCCESS;
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
+        break;
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+    {
+        VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+        VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
+        res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
+        break;
+    }
+    default:
+        VMA_ASSERT(0);
+    }
+    return res;
+}
+
+VkResult VmaAllocator_T::BindImageMemory(
+    VmaAllocation hAllocation,
+    VkDeviceSize allocationLocalOffset,
+    VkImage hImage,
+    const void* pNext)
+{
+    VkResult res = VK_SUCCESS;
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
+        break;
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+    {
+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+        VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
+        res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
+        break;
+    }
+    default:
+        VMA_ASSERT(0);
+    }
+    return res;
+}
+
+void VmaAllocator_T::FlushOrInvalidateAllocation(
+    VmaAllocation hAllocation,
+    VkDeviceSize offset, VkDeviceSize size,
+    VMA_CACHE_OPERATION op)
+{
+    const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex();
+    if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
+    {
+        const VkDeviceSize allocationSize = hAllocation->GetSize();
+        VMA_ASSERT(offset <= allocationSize);
+
+        const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
+
+        VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+        memRange.memory = hAllocation->GetMemory();
+        
+        switch(hAllocation->GetType())
+        {
+        case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+            memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+            if(size == VK_WHOLE_SIZE)
+            {
+                memRange.size = allocationSize - memRange.offset;
+            }
+            else
+            {
+                VMA_ASSERT(offset + size <= allocationSize);
+                memRange.size = VMA_MIN(
+                    VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize),
+                    allocationSize - memRange.offset);
+            }
+            break;
+
+        case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+        {
+            // 1. Still within this allocation.
+            memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+            if(size == VK_WHOLE_SIZE)
+            {
+                size = allocationSize - offset;
+            }
+            else
+            {
+                VMA_ASSERT(offset + size <= allocationSize);
+            }
+            memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize);
+
+            // 2. Adjust to whole block.
+            const VkDeviceSize allocationOffset = hAllocation->GetOffset();
+            VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
+            const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
+            memRange.offset += allocationOffset;
+            memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset);
+            
+            break;
+        }
+        
+        default:
+            VMA_ASSERT(0);
+        }
+
+        switch(op)
+        {
+        case VMA_CACHE_FLUSH:
+            (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
+            break;
+        case VMA_CACHE_INVALIDATE:
+            (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
+            break;
+        default:
+            VMA_ASSERT(0);
+        }
+    }
+    // else: Just ignore this call.
+}
+
+void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
+{
+    VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+
+    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+    {
+        VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocations);
+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
+        VMA_ASSERT(success);
+    }
+
+    VkDeviceMemory hMemory = allocation->GetMemory();
+    
+    /*
+    There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+    before vkFreeMemory.
+
+    if(allocation->GetMappedData() != VMA_NULL)
+    {
+        (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+    }
+    */
+    
+    FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
+
+    VMA_DEBUG_LOG("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
+}
+
+uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
+{
+    VkBufferCreateInfo dummyBufCreateInfo;
+    VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
+
+    uint32_t memoryTypeBits = 0;
+
+    // Create buffer.
+    VkBuffer buf = VK_NULL_HANDLE;
+    VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
+        m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
+    if(res == VK_SUCCESS)
+    {
+        // Query for supported memory types.
+        VkMemoryRequirements memReq;
+        (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
+        memoryTypeBits = memReq.memoryTypeBits;
+
+        // Destroy buffer.
+        (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
+    }
+
+    return memoryTypeBits;
+}
+
+uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
+{
+    // Make sure memory information is already fetched.
+    VMA_ASSERT(GetMemoryTypeCount() > 0);
+
+    uint32_t memoryTypeBits = UINT32_MAX;
+
+    if(!m_UseAmdDeviceCoherentMemory)
+    {
+        // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
+        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+        {
+            if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
+            {
+                memoryTypeBits &= ~(1u << memTypeIndex);
+            }
+        }
+    }
+
+    return memoryTypeBits;
+}
+
+#if VMA_MEMORY_BUDGET
+
+void VmaAllocator_T::UpdateVulkanBudget()
+{
+    VMA_ASSERT(m_UseExtMemoryBudget);
+
+    VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
+
+    VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
+    VmaPnextChainPushFront(&memProps, &budgetProps);
+
+    GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
+
+    {
+        VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
+
+        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+        {
+            m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
+            m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
+            m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
+
+            // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
+            if(m_Budget.m_VulkanBudget[heapIndex] == 0)
+            {
+                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
+            }
+            else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
+            {
+                m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
+            }
+            if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
+            {
+                m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
+            }
+        }
+        m_Budget.m_OperationsSinceBudgetFetch = 0;
+    }
+}
+
+#endif // #if VMA_MEMORY_BUDGET
+
+void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
+{
+    if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
+        !hAllocation->CanBecomeLost() &&
+        (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+    {
+        void* pData = VMA_NULL;
+        VkResult res = Map(hAllocation, &pData);
+        if(res == VK_SUCCESS)
+        {
+            memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
+            FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
+            Unmap(hAllocation);
+        }
+        else
+        {
+            VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
+        }
+    }
+}
+
+uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
+{
+    uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
+    if(memoryTypeBits == UINT32_MAX)
+    {
+        memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
+        m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
+    }
+    return memoryTypeBits;
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
+{
+    bool dedicatedAllocationsStarted = false;
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocVector);
+        if(pDedicatedAllocVector->empty() == false)
+        {
+            if(dedicatedAllocationsStarted == false)
+            {
+                dedicatedAllocationsStarted = true;
+                json.WriteString("DedicatedAllocations");
+                json.BeginObject();
+            }
+
+            json.BeginString("Type ");
+            json.ContinueString(memTypeIndex);
+            json.EndString();
+                
+            json.BeginArray();
+
+            for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
+            {
+                json.BeginObject(true);
+                const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
+                hAlloc->PrintParameters(json);
+                json.EndObject();
+            }
+
+            json.EndArray();
+        }
+    }
+    if(dedicatedAllocationsStarted)
+    {
+        json.EndObject();
+    }
+
+    {
+        bool allocationsStarted = false;
+        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+        {
+            if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
+            {
+                if(allocationsStarted == false)
+                {
+                    allocationsStarted = true;
+                    json.WriteString("DefaultPools");
+                    json.BeginObject();
+                }
+
+                json.BeginString("Type ");
+                json.ContinueString(memTypeIndex);
+                json.EndString();
+
+                m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
+            }
+        }
+        if(allocationsStarted)
+        {
+            json.EndObject();
+        }
+    }
+
+    // Custom pools
+    {
+        VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+        const size_t poolCount = m_Pools.size();
+        if(poolCount > 0)
+        {
+            json.WriteString("Pools");
+            json.BeginObject();
+            for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+            {
+                json.BeginString();
+                json.ContinueString(m_Pools[poolIndex]->GetId());
+                json.EndString();
+
+                m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
+            }
+            json.EndObject();
+        }
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// Public interface
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
+    const VmaAllocatorCreateInfo* pCreateInfo,
+    VmaAllocator* pAllocator)
+{
+    VMA_ASSERT(pCreateInfo && pAllocator);
+    VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
+        (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 2));
+    VMA_DEBUG_LOG("vmaCreateAllocator");
+    *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
+    return (*pAllocator)->Init(pCreateInfo);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
+    VmaAllocator allocator)
+{
+    if(allocator != VK_NULL_HANDLE)
+    {
+        VMA_DEBUG_LOG("vmaDestroyAllocator");
+        VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
+        vma_delete(&allocationCallbacks, allocator);
+    }
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
+{
+    VMA_ASSERT(allocator && pAllocatorInfo);
+    pAllocatorInfo->instance = allocator->m_hInstance;
+    pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
+    pAllocatorInfo->device = allocator->m_hDevice;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
+{
+    VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
+    *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
+{
+    VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
+    *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
+    VmaAllocator allocator,
+    uint32_t memoryTypeIndex,
+    VkMemoryPropertyFlags* pFlags)
+{
+    VMA_ASSERT(allocator && pFlags);
+    VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
+    *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
+    VmaAllocator allocator,
+    uint32_t frameIndex)
+{
+    VMA_ASSERT(allocator);
+    VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->SetCurrentFrameIndex(frameIndex);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
+    VmaAllocator allocator,
+    VmaStats* pStats)
+{
+    VMA_ASSERT(allocator && pStats);
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+    allocator->CalculateStats(pStats);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(
+    VmaAllocator allocator,
+    VmaBudget* pBudget)
+{
+    VMA_ASSERT(allocator && pBudget);
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+    allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
+    VmaAllocator allocator,
+    char** ppStatsString,
+    VkBool32 detailedMap)
+{
+    VMA_ASSERT(allocator && ppStatsString);
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VmaStringBuilder sb(allocator);
+    {
+        VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
+        json.BeginObject();
+
+        VmaBudget budget[VK_MAX_MEMORY_HEAPS];
+        allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount());
+
+        VmaStats stats;
+        allocator->CalculateStats(&stats);
+
+        json.WriteString("Total");
+        VmaPrintStatInfo(json, stats.total);
+    
+        for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
+        {
+            json.BeginString("Heap ");
+            json.ContinueString(heapIndex);
+            json.EndString();
+            json.BeginObject();
+
+            json.WriteString("Size");
+            json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
+
+            json.WriteString("Flags");
+            json.BeginArray(true);
+            if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
+            {
+                json.WriteString("DEVICE_LOCAL");
+            }
+            json.EndArray();
+
+            json.WriteString("Budget");
+            json.BeginObject();
+            {
+                json.WriteString("BlockBytes");
+                json.WriteNumber(budget[heapIndex].blockBytes);
+                json.WriteString("AllocationBytes");
+                json.WriteNumber(budget[heapIndex].allocationBytes);
+                json.WriteString("Usage");
+                json.WriteNumber(budget[heapIndex].usage);
+                json.WriteString("Budget");
+                json.WriteNumber(budget[heapIndex].budget);
+            }
+            json.EndObject();
+
+            if(stats.memoryHeap[heapIndex].blockCount > 0)
+            {
+                json.WriteString("Stats");
+                VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
+            }
+
+            for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
+            {
+                if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
+                {
+                    json.BeginString("Type ");
+                    json.ContinueString(typeIndex);
+                    json.EndString();
+
+                    json.BeginObject();
+
+                    json.WriteString("Flags");
+                    json.BeginArray(true);
+                    VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
+                    if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
+                    {
+                        json.WriteString("DEVICE_LOCAL");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+                    {
+                        json.WriteString("HOST_VISIBLE");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
+                    {
+                        json.WriteString("HOST_COHERENT");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
+                    {
+                        json.WriteString("HOST_CACHED");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
+                    {
+                        json.WriteString("LAZILY_ALLOCATED");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0)
+                    {
+                        json.WriteString(" PROTECTED");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
+                    {
+                        json.WriteString(" DEVICE_COHERENT");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0)
+                    {
+                        json.WriteString(" DEVICE_UNCACHED");
+                    }
+                    json.EndArray();
+
+                    if(stats.memoryType[typeIndex].blockCount > 0)
+                    {
+                        json.WriteString("Stats");
+                        VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
+                    }
+
+                    json.EndObject();
+                }
+            }
+
+            json.EndObject();
+        }
+        if(detailedMap == VK_TRUE)
+        {
+            allocator->PrintDetailedMap(json);
+        }
+
+        json.EndObject();
+    }
+
+    const size_t len = sb.GetLength();
+    char* const pChars = vma_new_array(allocator, char, len + 1);
+    if(len > 0)
+    {
+        memcpy(pChars, sb.GetData(), len);
+    }
+    pChars[len] = '\0';
+    *ppStatsString = pChars;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
+    VmaAllocator allocator,
+    char* pStatsString)
+{
+    if(pStatsString != VMA_NULL)
+    {
+        VMA_ASSERT(allocator);
+        size_t len = strlen(pStatsString);
+        vma_delete_array(allocator, pStatsString, len + 1);
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+This function is not protected by any mutex because it just reads immutable data.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
+    VmaAllocator allocator,
+    uint32_t memoryTypeBits,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    uint32_t* pMemoryTypeIndex)
+{
+    VMA_ASSERT(allocator != VK_NULL_HANDLE);
+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+    memoryTypeBits &= allocator->GetGlobalMemoryTypeBits();
+
+    if(pAllocationCreateInfo->memoryTypeBits != 0)
+    {
+        memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
+    }
+    
+    uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
+    uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
+    uint32_t notPreferredFlags = 0;
+
+    // Convert usage to requiredFlags and preferredFlags.
+    switch(pAllocationCreateInfo->usage)
+    {
+    case VMA_MEMORY_USAGE_UNKNOWN:
+        break;
+    case VMA_MEMORY_USAGE_GPU_ONLY:
+        if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+        {
+            preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+        }
+        break;
+    case VMA_MEMORY_USAGE_CPU_ONLY:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+        break;
+    case VMA_MEMORY_USAGE_CPU_TO_GPU:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+        if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+        {
+            preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+        }
+        break;
+    case VMA_MEMORY_USAGE_GPU_TO_CPU:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+        preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+        break;
+    case VMA_MEMORY_USAGE_CPU_COPY:
+        notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+        break;
+    case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
+        requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+        break;
+    default:
+        VMA_ASSERT(0);
+        break;
+    }
+
+    // Avoid DEVICE_COHERENT unless explicitly requested.
+    if(((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) &
+        (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
+    {
+        notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY;
+    }
+
+    *pMemoryTypeIndex = UINT32_MAX;
+    uint32_t minCost = UINT32_MAX;
+    for(uint32_t memTypeIndex = 0, memTypeBit = 1;
+        memTypeIndex < allocator->GetMemoryTypeCount();
+        ++memTypeIndex, memTypeBit <<= 1)
+    {
+        // This memory type is acceptable according to memoryTypeBits bitmask.
+        if((memTypeBit & memoryTypeBits) != 0)
+        {
+            const VkMemoryPropertyFlags currFlags =
+                allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+            // This memory type contains requiredFlags.
+            if((requiredFlags & ~currFlags) == 0)
+            {
+                // Calculate cost as number of bits from preferredFlags not present in this memory type.
+                uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) +
+                    VmaCountBitsSet(currFlags & notPreferredFlags);
+                // Remember memory type with lowest cost.
+                if(currCost < minCost)
+                {
+                    *pMemoryTypeIndex = memTypeIndex;
+                    if(currCost == 0)
+                    {
+                        return VK_SUCCESS;
+                    }
+                    minCost = currCost;
+                }
+            }
+        }
+    }
+    return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
+    VmaAllocator allocator,
+    const VkBufferCreateInfo* pBufferCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    uint32_t* pMemoryTypeIndex)
+{
+    VMA_ASSERT(allocator != VK_NULL_HANDLE);
+    VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+    const VkDevice hDev = allocator->m_hDevice;
+    VkBuffer hBuffer = VK_NULL_HANDLE;
+    VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(
+        hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
+    if(res == VK_SUCCESS)
+    {
+        VkMemoryRequirements memReq = {};
+        allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(
+            hDev, hBuffer, &memReq);
+
+        res = vmaFindMemoryTypeIndex(
+            allocator,
+            memReq.memoryTypeBits,
+            pAllocationCreateInfo,
+            pMemoryTypeIndex);
+
+        allocator->GetVulkanFunctions().vkDestroyBuffer(
+            hDev, hBuffer, allocator->GetAllocationCallbacks());
+    }
+    return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
+    VmaAllocator allocator,
+    const VkImageCreateInfo* pImageCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    uint32_t* pMemoryTypeIndex)
+{
+    VMA_ASSERT(allocator != VK_NULL_HANDLE);
+    VMA_ASSERT(pImageCreateInfo != VMA_NULL);
+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+    const VkDevice hDev = allocator->m_hDevice;
+    VkImage hImage = VK_NULL_HANDLE;
+    VkResult res = allocator->GetVulkanFunctions().vkCreateImage(
+        hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
+    if(res == VK_SUCCESS)
+    {
+        VkMemoryRequirements memReq = {};
+        allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(
+            hDev, hImage, &memReq);
+
+        res = vmaFindMemoryTypeIndex(
+            allocator,
+            memReq.memoryTypeBits,
+            pAllocationCreateInfo,
+            pMemoryTypeIndex);
+
+        allocator->GetVulkanFunctions().vkDestroyImage(
+            hDev, hImage, allocator->GetAllocationCallbacks());
+    }
+    return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
+	VmaAllocator allocator,
+	const VmaPoolCreateInfo* pCreateInfo,
+	VmaPool* pPool)
+{
+    VMA_ASSERT(allocator && pCreateInfo && pPool);
+    
+    VMA_DEBUG_LOG("vmaCreatePool");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+    
+    VkResult res = allocator->CreatePool(pCreateInfo, pPool);
+    
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);
+    }
+#endif
+    
+    return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
+    VmaAllocator allocator,
+    VmaPool pool)
+{
+    VMA_ASSERT(allocator);
+    
+    if(pool == VK_NULL_HANDLE)
+    {
+        return;
+    }
+    
+    VMA_DEBUG_LOG("vmaDestroyPool");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+    
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);
+    }
+#endif
+
+    allocator->DestroyPool(pool);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
+    VmaAllocator allocator,
+    VmaPool pool,
+    VmaPoolStats* pPoolStats)
+{
+    VMA_ASSERT(allocator && pool && pPoolStats);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->GetPoolStats(pool, pPoolStats);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
+    VmaAllocator allocator,
+    VmaPool pool,
+    size_t* pLostAllocationCount)
+{
+    VMA_ASSERT(allocator && pool);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);
+    }
+#endif
+
+    allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
+{
+    VMA_ASSERT(allocator && pool);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VMA_DEBUG_LOG("vmaCheckPoolCorruption");
+
+    return allocator->CheckPoolCorruption(pool);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
+    VmaAllocator allocator,
+    VmaPool pool,
+    const char** ppName)
+{
+    VMA_ASSERT(allocator && pool && ppName);
+    
+    VMA_DEBUG_LOG("vmaGetPoolName");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    *ppName = pool->GetName();
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
+    VmaAllocator allocator,
+    VmaPool pool,
+    const char* pName)
+{
+    VMA_ASSERT(allocator && pool);
+
+    VMA_DEBUG_LOG("vmaSetPoolName");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    pool->SetName(pName);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName);
+    }
+#endif
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
+    VmaAllocator allocator,
+    const VkMemoryRequirements* pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemory");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+	VkResult result = allocator->AllocateMemory(
+        *pVkMemoryRequirements,
+        false, // requiresDedicatedAllocation
+        false, // prefersDedicatedAllocation
+        VK_NULL_HANDLE, // dedicatedBuffer
+        UINT32_MAX, // dedicatedBufferUsage
+        VK_NULL_HANDLE, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_UNKNOWN,
+        1, // allocationCount
+        pAllocation);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordAllocateMemory(
+            allocator->GetCurrentFrameIndex(),
+            *pVkMemoryRequirements,
+            *pCreateInfo,
+            *pAllocation);
+    }
+#endif
+        
+    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
+    VmaAllocator allocator,
+    const VkMemoryRequirements* pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    size_t allocationCount,
+    VmaAllocation* pAllocations,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    if(allocationCount == 0)
+    {
+        return VK_SUCCESS;
+    }
+
+    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
+
+    VMA_DEBUG_LOG("vmaAllocateMemoryPages");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+	VkResult result = allocator->AllocateMemory(
+        *pVkMemoryRequirements,
+        false, // requiresDedicatedAllocation
+        false, // prefersDedicatedAllocation
+        VK_NULL_HANDLE, // dedicatedBuffer
+        UINT32_MAX, // dedicatedBufferUsage
+        VK_NULL_HANDLE, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_UNKNOWN,
+        allocationCount,
+        pAllocations);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordAllocateMemoryPages(
+            allocator->GetCurrentFrameIndex(),
+            *pVkMemoryRequirements,
+            *pCreateInfo,
+            (uint64_t)allocationCount,
+            pAllocations);
+    }
+#endif
+        
+    if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+    {
+        for(size_t i = 0; i < allocationCount; ++i)
+        {
+            allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
+        }
+    }
+
+	return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkMemoryRequirements vkMemReq = {};
+    bool requiresDedicatedAllocation = false;
+    bool prefersDedicatedAllocation = false;
+    allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation);
+
+    VkResult result = allocator->AllocateMemory(
+        vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation,
+        buffer, // dedicatedBuffer
+        UINT32_MAX, // dedicatedBufferUsage
+        VK_NULL_HANDLE, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_BUFFER,
+        1, // allocationCount
+        pAllocation);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordAllocateMemoryForBuffer(
+            allocator->GetCurrentFrameIndex(),
+            vkMemReq,
+            requiresDedicatedAllocation,
+            prefersDedicatedAllocation,
+            *pCreateInfo,
+            *pAllocation);
+    }
+#endif
+
+    if(pAllocationInfo && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
+    VmaAllocator allocator,
+    VkImage image,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkMemoryRequirements vkMemReq = {};
+    bool requiresDedicatedAllocation = false;
+    bool prefersDedicatedAllocation  = false;
+    allocator->GetImageMemoryRequirements(image, vkMemReq,
+        requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+    VkResult result = allocator->AllocateMemory(
+        vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation,
+        VK_NULL_HANDLE, // dedicatedBuffer
+        UINT32_MAX, // dedicatedBufferUsage
+        image, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
+        1, // allocationCount
+        pAllocation);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordAllocateMemoryForImage(
+            allocator->GetCurrentFrameIndex(),
+            vkMemReq,
+            requiresDedicatedAllocation,
+            prefersDedicatedAllocation,
+            *pCreateInfo,
+            *pAllocation);
+    }
+#endif
+
+    if(pAllocationInfo && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator);
+    
+    if(allocation == VK_NULL_HANDLE)
+    {
+        return;
+    }
+    
+    VMA_DEBUG_LOG("vmaFreeMemory");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordFreeMemory(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+    
+    allocator->FreeMemory(
+        1, // allocationCount
+        &allocation);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
+    VmaAllocator allocator,
+    size_t allocationCount,
+    const VmaAllocation* pAllocations)
+{
+    if(allocationCount == 0)
+    {
+        return;
+    }
+
+    VMA_ASSERT(allocator);
+    
+    VMA_DEBUG_LOG("vmaFreeMemoryPages");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordFreeMemoryPages(
+            allocator->GetCurrentFrameIndex(),
+            (uint64_t)allocationCount,
+            pAllocations);
+    }
+#endif
+    
+    allocator->FreeMemory(allocationCount, pAllocations);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VkDeviceSize newSize)
+{
+    VMA_ASSERT(allocator && allocation);
+    
+    VMA_DEBUG_LOG("vmaResizeAllocation");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->ResizeAllocation(allocation, newSize);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordGetAllocationInfo(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    allocator->GetAllocationInfo(allocation, pAllocationInfo);
+}
+
+VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
+    VmaAllocator allocator,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordTouchAllocation(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    return allocator->TouchAllocation(allocation);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void* pUserData)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocation->SetUserData(allocator, pUserData);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordSetAllocationUserData(
+            allocator->GetCurrentFrameIndex(),
+            allocation,
+            pUserData);
+    }
+#endif
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
+    VmaAllocator allocator,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT(allocator && pAllocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+
+    allocator->CreateLostAllocation(pAllocation);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordCreateLostAllocation(
+            allocator->GetCurrentFrameIndex(),
+            *pAllocation);
+    }
+#endif
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void** ppData)
+{
+    VMA_ASSERT(allocator && allocation && ppData);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkResult res = allocator->Map(allocation, ppData);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordMapMemory(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordUnmapMemory(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    allocator->Unmap(allocation);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_LOG("vmaFlushAllocation");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordFlushAllocation(
+            allocator->GetCurrentFrameIndex(),
+            allocation, offset, size);
+    }
+#endif
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_LOG("vmaInvalidateAllocation");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordInvalidateAllocation(
+            allocator->GetCurrentFrameIndex(),
+            allocation, offset, size);
+    }
+#endif
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits)
+{
+    VMA_ASSERT(allocator);
+
+    VMA_DEBUG_LOG("vmaCheckCorruption");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->CheckCorruption(memoryTypeBits);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
+    VmaAllocator allocator,
+    const VmaAllocation* pAllocations,
+    size_t allocationCount,
+    VkBool32* pAllocationsChanged,
+    const VmaDefragmentationInfo *pDefragmentationInfo,
+    VmaDefragmentationStats* pDefragmentationStats)
+{
+    // Deprecated interface, reimplemented using new one.
+
+    VmaDefragmentationInfo2 info2 = {};
+    info2.allocationCount = (uint32_t)allocationCount;
+    info2.pAllocations = pAllocations;
+    info2.pAllocationsChanged = pAllocationsChanged;
+    if(pDefragmentationInfo != VMA_NULL)
+    {
+        info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
+        info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;
+    }
+    else
+    {
+        info2.maxCpuAllocationsToMove = UINT32_MAX;
+        info2.maxCpuBytesToMove = VK_WHOLE_SIZE;
+    }
+    // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.
+
+    VmaDefragmentationContext ctx;
+    VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);
+    if(res == VK_NOT_READY)
+    {
+        res = vmaDefragmentationEnd( allocator, ctx);
+    }
+    return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
+    VmaAllocator allocator,
+    const VmaDefragmentationInfo2* pInfo,
+    VmaDefragmentationStats* pStats,
+    VmaDefragmentationContext *pContext)
+{
+    VMA_ASSERT(allocator && pInfo && pContext);
+
+    // Degenerate case: Nothing to defragment.
+    if(pInfo->allocationCount == 0 && pInfo->poolCount == 0)
+    {
+        return VK_SUCCESS;
+    }
+
+    VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);
+    VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);
+    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));
+    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));
+
+    VMA_DEBUG_LOG("vmaDefragmentationBegin");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordDefragmentationBegin(
+            allocator->GetCurrentFrameIndex(), *pInfo, *pContext);
+    }
+#endif
+
+    return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
+    VmaAllocator allocator,
+    VmaDefragmentationContext context)
+{
+    VMA_ASSERT(allocator);
+
+    VMA_DEBUG_LOG("vmaDefragmentationEnd");
+
+    if(context != VK_NULL_HANDLE)
+    {
+        VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+        if(allocator->GetRecorder() != VMA_NULL)
+        {
+            allocator->GetRecorder()->RecordDefragmentationEnd(
+                allocator->GetCurrentFrameIndex(), context);
+        }
+#endif
+
+        return allocator->DefragmentationEnd(context);
+    }
+    else
+    {
+        return VK_SUCCESS;
+    }
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
+    VmaAllocator allocator,
+    VmaDefragmentationContext context,
+    VmaDefragmentationPassInfo* pInfo
+    )
+{
+    VMA_ASSERT(allocator);
+    VMA_ASSERT(pInfo);
+    VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->moveCount, pInfo->pMoves));
+
+    VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    if(context == VK_NULL_HANDLE)
+    {
+        pInfo->moveCount = 0;
+        return VK_SUCCESS;
+    }
+
+    return allocator->DefragmentationPassBegin(pInfo, context);
+}
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
+    VmaAllocator allocator,
+    VmaDefragmentationContext context)
+{
+    VMA_ASSERT(allocator);
+
+    VMA_DEBUG_LOG("vmaEndDefragmentationPass");
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    if(context == VK_NULL_HANDLE)
+        return VK_SUCCESS;
+
+    return allocator->DefragmentationPassEnd(context);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VkBuffer buffer)
+{
+    VMA_ASSERT(allocator && allocation && buffer);
+
+    VMA_DEBUG_LOG("vmaBindBufferMemory");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VkDeviceSize allocationLocalOffset,
+    VkBuffer buffer,
+    const void* pNext)
+{
+    VMA_ASSERT(allocator && allocation && buffer);
+
+    VMA_DEBUG_LOG("vmaBindBufferMemory2");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VkImage image)
+{
+    VMA_ASSERT(allocator && allocation && image);
+
+    VMA_DEBUG_LOG("vmaBindImageMemory");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VkDeviceSize allocationLocalOffset,
+    VkImage image,
+    const void* pNext)
+{
+    VMA_ASSERT(allocator && allocation && image);
+
+    VMA_DEBUG_LOG("vmaBindImageMemory2");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+        return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
+    VmaAllocator allocator,
+    const VkBufferCreateInfo* pBufferCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkBuffer* pBuffer,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
+
+    if(pBufferCreateInfo->size == 0)
+    {
+        return VK_ERROR_VALIDATION_FAILED_EXT;
+    }
+    if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
+        !allocator->m_UseKhrBufferDeviceAddress)
+    {
+        VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
+        return VK_ERROR_VALIDATION_FAILED_EXT;
+    }
+    
+    VMA_DEBUG_LOG("vmaCreateBuffer");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    *pBuffer = VK_NULL_HANDLE;
+    *pAllocation = VK_NULL_HANDLE;
+
+    // 1. Create VkBuffer.
+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+        allocator->m_hDevice,
+        pBufferCreateInfo,
+        allocator->GetAllocationCallbacks(),
+        pBuffer);
+    if(res >= 0)
+    {
+        // 2. vkGetBufferMemoryRequirements.
+        VkMemoryRequirements vkMemReq = {};
+        bool requiresDedicatedAllocation = false;
+        bool prefersDedicatedAllocation  = false;
+        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+            requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+        // 3. Allocate memory using allocator.
+        res = allocator->AllocateMemory(
+            vkMemReq,
+            requiresDedicatedAllocation,
+            prefersDedicatedAllocation,
+            *pBuffer, // dedicatedBuffer
+            pBufferCreateInfo->usage, // dedicatedBufferUsage
+            VK_NULL_HANDLE, // dedicatedImage
+            *pAllocationCreateInfo,
+            VMA_SUBALLOCATION_TYPE_BUFFER,
+            1, // allocationCount
+            pAllocation);
+
+#if VMA_RECORDING_ENABLED
+        if(allocator->GetRecorder() != VMA_NULL)
+        {
+            allocator->GetRecorder()->RecordCreateBuffer(
+                allocator->GetCurrentFrameIndex(),
+                *pBufferCreateInfo,
+                *pAllocationCreateInfo,
+                *pAllocation);
+        }
+#endif
+
+        if(res >= 0)
+        {
+            // 3. Bind buffer with memory.
+            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+            {
+                res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
+            }
+            if(res >= 0)
+            {
+                // All steps succeeded.
+                #if VMA_STATS_STRING_ENABLED
+                    (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
+                #endif
+                if(pAllocationInfo != VMA_NULL)
+                {
+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+                }
+
+                return VK_SUCCESS;
+            }
+            allocator->FreeMemory(
+                1, // allocationCount
+                pAllocation);
+            *pAllocation = VK_NULL_HANDLE;
+            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+            *pBuffer = VK_NULL_HANDLE;
+            return res;
+        }
+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+        *pBuffer = VK_NULL_HANDLE;
+        return res;
+    }
+    return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator);
+
+    if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+    {
+        return;
+    }
+
+    VMA_DEBUG_LOG("vmaDestroyBuffer");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordDestroyBuffer(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    if(buffer != VK_NULL_HANDLE)
+    {
+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
+    }
+
+    if(allocation != VK_NULL_HANDLE)
+    {
+        allocator->FreeMemory(
+            1, // allocationCount
+            &allocation);
+    }
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
+    VmaAllocator allocator,
+    const VkImageCreateInfo* pImageCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkImage* pImage,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
+
+    if(pImageCreateInfo->extent.width == 0 ||
+        pImageCreateInfo->extent.height == 0 ||
+        pImageCreateInfo->extent.depth == 0 ||
+        pImageCreateInfo->mipLevels == 0 ||
+        pImageCreateInfo->arrayLayers == 0)
+    {
+        return VK_ERROR_VALIDATION_FAILED_EXT;
+    }
+
+    VMA_DEBUG_LOG("vmaCreateImage");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    *pImage = VK_NULL_HANDLE;
+    *pAllocation = VK_NULL_HANDLE;
+
+    // 1. Create VkImage.
+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+        allocator->m_hDevice,
+        pImageCreateInfo,
+        allocator->GetAllocationCallbacks(),
+        pImage);
+    if(res >= 0)
+    {
+        VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
+            VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
+            VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
+        
+        // 2. Allocate memory using allocator.
+        VkMemoryRequirements vkMemReq = {};
+        bool requiresDedicatedAllocation = false;
+        bool prefersDedicatedAllocation  = false;
+        allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
+            requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+        res = allocator->AllocateMemory(
+            vkMemReq,
+            requiresDedicatedAllocation,
+            prefersDedicatedAllocation,
+            VK_NULL_HANDLE, // dedicatedBuffer
+            UINT32_MAX, // dedicatedBufferUsage
+            *pImage, // dedicatedImage
+            *pAllocationCreateInfo,
+            suballocType,
+            1, // allocationCount
+            pAllocation);
+
+#if VMA_RECORDING_ENABLED
+        if(allocator->GetRecorder() != VMA_NULL)
+        {
+            allocator->GetRecorder()->RecordCreateImage(
+                allocator->GetCurrentFrameIndex(),
+                *pImageCreateInfo,
+                *pAllocationCreateInfo,
+                *pAllocation);
+        }
+#endif
+
+        if(res >= 0)
+        {
+            // 3. Bind image with memory.
+            if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+            {
+                res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
+            }
+            if(res >= 0)
+            {
+                // All steps succeeded.
+                #if VMA_STATS_STRING_ENABLED
+                    (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
+                #endif
+                if(pAllocationInfo != VMA_NULL)
+                {
+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+                }
+
+                return VK_SUCCESS;
+            }
+            allocator->FreeMemory(
+                1, // allocationCount
+                pAllocation);
+            *pAllocation = VK_NULL_HANDLE;
+            (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+            *pImage = VK_NULL_HANDLE;
+            return res;
+        }
+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+        *pImage = VK_NULL_HANDLE;
+        return res;
+    }
+    return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
+    VmaAllocator allocator,
+    VkImage image,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator);
+
+    if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+    {
+        return;
+    }
+
+    VMA_DEBUG_LOG("vmaDestroyImage");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+    if(allocator->GetRecorder() != VMA_NULL)
+    {
+        allocator->GetRecorder()->RecordDestroyImage(
+            allocator->GetCurrentFrameIndex(),
+            allocation);
+    }
+#endif
+
+    if(image != VK_NULL_HANDLE)
+    {
+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
+    }
+    if(allocation != VK_NULL_HANDLE)
+    {
+        allocator->FreeMemory(
+            1, // allocationCount
+            &allocation);
+    }
+}
+
+#endif // #ifdef VMA_IMPLEMENTATION