blob: ca7a12a85e26ee306d39bbc8121b91cd0228b615 [file] [log] [blame]
var BASIS = (() => {
var _scriptName = typeof document != 'undefined' ? document.currentScript?.src : undefined;
return (
async function(moduleArg = {}) {
var moduleRtn;
// include: shell.js
// The Module object: Our interface to the outside world. We import
// and export values on it. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(moduleArg) => Promise<Module>
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to check if Module already exists (e.g. case 3 above).
// Substitution will be replaced with actual code on later stage of the build,
// this way Closure Compiler will not mangle it (e.g. case 4. above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module = moduleArg;
// Determine the runtime environment we are in. You can customize this by
// setting the ENVIRONMENT setting at compile time (see settings.js).
// Attempt to auto-detect the environment
var ENVIRONMENT_IS_WEB = typeof window == 'object';
var ENVIRONMENT_IS_WORKER = typeof WorkerGlobalScope != 'undefined';
// N.b. Electron.js environment is simultaneously a NODE-environment, but
// also a web environment.
var ENVIRONMENT_IS_NODE = typeof process == 'object' && process.versions?.node && process.type != 'renderer';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
// --pre-jses are emitted after the Module integration code, so that they can
// refer to Module (if they choose; they can also define Module)
var arguments_ = [];
var thisProgram = './this.program';
var quit_ = (status, toThrow) => {
throw toThrow;
};
if (typeof __filename != 'undefined') { // Node
_scriptName = __filename;
} else
if (ENVIRONMENT_IS_WORKER) {
_scriptName = self.location.href;
}
// `/` should be present at the end if `scriptDirectory` is not empty
var scriptDirectory = '';
function locateFile(path) {
if (Module['locateFile']) {
return Module['locateFile'](path, scriptDirectory);
}
return scriptDirectory + path;
}
// Hooks that are implemented differently in different runtime environments.
var readAsync, readBinary;
if (ENVIRONMENT_IS_NODE) {
// These modules will usually be used on Node.js. Load them eagerly to avoid
// the complexity of lazy-loading.
var fs = require('fs');
scriptDirectory = __dirname + '/';
// include: node_shell_read.js
readBinary = (filename) => {
// We need to re-wrap `file://` strings to URLs.
filename = isFileURI(filename) ? new URL(filename) : filename;
var ret = fs.readFileSync(filename);
return ret;
};
readAsync = async (filename, binary = true) => {
// See the comment in the `readBinary` function.
filename = isFileURI(filename) ? new URL(filename) : filename;
var ret = fs.readFileSync(filename, binary ? undefined : 'utf8');
return ret;
};
// end include: node_shell_read.js
if (process.argv.length > 1) {
thisProgram = process.argv[1].replace(/\\/g, '/');
}
arguments_ = process.argv.slice(2);
quit_ = (status, toThrow) => {
process.exitCode = status;
throw toThrow;
};
} else
// Note that this includes Node.js workers when relevant (pthreads is enabled).
// Node.js workers are detected as a combination of ENVIRONMENT_IS_WORKER and
// ENVIRONMENT_IS_NODE.
if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
try {
scriptDirectory = new URL('.', _scriptName).href; // includes trailing slash
} catch {
// Must be a `blob:` or `data:` URL (e.g. `blob:http://site.com/etc/etc`), we cannot
// infer anything from them.
}
{
// include: web_or_worker_shell_read.js
if (ENVIRONMENT_IS_WORKER) {
readBinary = (url) => {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.responseType = 'arraybuffer';
xhr.send(null);
return new Uint8Array(/** @type{!ArrayBuffer} */(xhr.response));
};
}
readAsync = async (url) => {
// Fetch has some additional restrictions over XHR, like it can't be used on a file:// url.
// See https://github.com/github/fetch/pull/92#issuecomment-140665932
// Cordova or Electron apps are typically loaded from a file:// url.
// So use XHR on webview if URL is a file URL.
if (isFileURI(url)) {
return new Promise((resolve, reject) => {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = () => {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
resolve(xhr.response);
return;
}
reject(xhr.status);
};
xhr.onerror = reject;
xhr.send(null);
});
}
var response = await fetch(url, { credentials: 'same-origin' });
if (response.ok) {
return response.arrayBuffer();
}
throw new Error(response.status + ' : ' + response.url);
};
// end include: web_or_worker_shell_read.js
}
} else
{
}
var out = console.log.bind(console);
var err = console.error.bind(console);
// end include: shell.js
// include: preamble.js
// === Preamble library stuff ===
// Documentation for the public APIs defined in this file must be updated in:
// site/source/docs/api_reference/preamble.js.rst
// A prebuilt local version of the documentation is available at:
// site/build/text/docs/api_reference/preamble.js.txt
// You can also build docs locally as HTML or other formats in site/
// An online HTML version (which may be of a different version of Emscripten)
// is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html
var wasmBinary;
// Wasm globals
//========================================
// Runtime essentials
//========================================
// whether we are quitting the application. no code should run after this.
// set in exit() and abort()
var ABORT = false;
// set by exit() and abort(). Passed to 'onExit' handler.
// NOTE: This is also used as the process return code code in shell environments
// but only when noExitRuntime is false.
var EXITSTATUS;
// In STRICT mode, we only define assert() when ASSERTIONS is set. i.e. we
// don't define it at all in release modes. This matches the behaviour of
// MINIMAL_RUNTIME.
// TODO(sbc): Make this the default even without STRICT enabled.
/** @type {function(*, string=)} */
function assert(condition, text) {
if (!condition) {
// This build was created without ASSERTIONS defined. `assert()` should not
// ever be called in this configuration but in case there are callers in
// the wild leave this simple abort() implementation here for now.
abort(text);
}
}
/**
* Indicates whether filename is delivered via file protocol (as opposed to http/https)
* @noinline
*/
var isFileURI = (filename) => filename.startsWith('file://');
// include: runtime_common.js
// include: runtime_stack_check.js
// end include: runtime_stack_check.js
// include: runtime_exceptions.js
// end include: runtime_exceptions.js
// include: runtime_debug.js
// end include: runtime_debug.js
var readyPromiseResolve, readyPromiseReject;
// Memory management
var wasmMemory;
var
/** @type {!Int8Array} */
HEAP8,
/** @type {!Uint8Array} */
HEAPU8,
/** @type {!Int16Array} */
HEAP16,
/** @type {!Uint16Array} */
HEAPU16,
/** @type {!Int32Array} */
HEAP32,
/** @type {!Uint32Array} */
HEAPU32,
/** @type {!Float32Array} */
HEAPF32,
/** @type {!Float64Array} */
HEAPF64;
// BigInt64Array type is not correctly defined in closure
var
/** not-@type {!BigInt64Array} */
HEAP64,
/* BigUint64Array type is not correctly defined in closure
/** not-@type {!BigUint64Array} */
HEAPU64;
var runtimeInitialized = false;
function updateMemoryViews() {
var b = wasmMemory.buffer;
Module['HEAP8'] = HEAP8 = new Int8Array(b);
HEAP16 = new Int16Array(b);
HEAPU8 = new Uint8Array(b);
HEAPU16 = new Uint16Array(b);
HEAP32 = new Int32Array(b);
HEAPU32 = new Uint32Array(b);
HEAPF32 = new Float32Array(b);
HEAPF64 = new Float64Array(b);
HEAP64 = new BigInt64Array(b);
HEAPU64 = new BigUint64Array(b);
}
// include: memoryprofiler.js
// end include: memoryprofiler.js
// end include: runtime_common.js
function preRun() {
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
while (Module['preRun'].length) {
addOnPreRun(Module['preRun'].shift());
}
}
// Begin ATPRERUNS hooks
callRuntimeCallbacks(onPreRuns);
// End ATPRERUNS hooks
}
function initRuntime() {
runtimeInitialized = true;
// Begin ATINITS hooks
if (!Module['noFSInit'] && !FS.initialized) FS.init();
TTY.init();
// End ATINITS hooks
wasmExports['__wasm_call_ctors']();
// Begin ATPOSTCTORS hooks
FS.ignorePermissions = false;
// End ATPOSTCTORS hooks
}
function postRun() {
// PThreads reuse the runtime from the main thread.
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length) {
addOnPostRun(Module['postRun'].shift());
}
}
// Begin ATPOSTRUNS hooks
callRuntimeCallbacks(onPostRuns);
// End ATPOSTRUNS hooks
}
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// Module.preRun (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled
function addRunDependency(id) {
runDependencies++;
Module['monitorRunDependencies']?.(runDependencies);
}
function removeRunDependency(id) {
runDependencies--;
Module['monitorRunDependencies']?.(runDependencies);
if (runDependencies == 0) {
if (dependenciesFulfilled) {
var callback = dependenciesFulfilled;
dependenciesFulfilled = null;
callback(); // can add another dependenciesFulfilled
}
}
}
/** @param {string|number=} what */
function abort(what) {
Module['onAbort']?.(what);
what = 'Aborted(' + what + ')';
// TODO(sbc): Should we remove printing and leave it up to whoever
// catches the exception?
err(what);
ABORT = true;
what += '. Build with -sASSERTIONS for more info.';
// Use a wasm runtime error, because a JS error might be seen as a foreign
// exception, which means we'd run destructors on it. We need the error to
// simply make the program stop.
// FIXME This approach does not work in Wasm EH because it currently does not assume
// all RuntimeErrors are from traps; it decides whether a RuntimeError is from
// a trap or not based on a hidden field within the object. So at the moment
// we don't have a way of throwing a wasm trap from JS. TODO Make a JS API that
// allows this in the wasm spec.
// Suppress closure compiler warning here. Closure compiler's builtin extern
// definition for WebAssembly.RuntimeError claims it takes no arguments even
// though it can.
// TODO(https://github.com/google/closure-compiler/pull/3913): Remove if/when upstream closure gets fixed.
/** @suppress {checkTypes} */
var e = new WebAssembly.RuntimeError(what);
readyPromiseReject?.(e);
// Throw the error whether or not MODULARIZE is set because abort is used
// in code paths apart from instantiation where an exception is expected
// to be thrown when abort is called.
throw e;
}
var wasmBinaryFile;
function findWasmBinary() {
return locateFile('basis_encoder.wasm');
}
function getBinarySync(file) {
if (file == wasmBinaryFile && wasmBinary) {
return new Uint8Array(wasmBinary);
}
if (readBinary) {
return readBinary(file);
}
throw 'both async and sync fetching of the wasm failed';
}
async function getWasmBinary(binaryFile) {
// If we don't have the binary yet, load it asynchronously using readAsync.
if (!wasmBinary) {
// Fetch the binary using readAsync
try {
var response = await readAsync(binaryFile);
return new Uint8Array(response);
} catch {
// Fall back to getBinarySync below;
}
}
// Otherwise, getBinarySync should be able to get it synchronously
return getBinarySync(binaryFile);
}
async function instantiateArrayBuffer(binaryFile, imports) {
try {
var binary = await getWasmBinary(binaryFile);
var instance = await WebAssembly.instantiate(binary, imports);
return instance;
} catch (reason) {
err(`failed to asynchronously prepare wasm: ${reason}`);
abort(reason);
}
}
async function instantiateAsync(binary, binaryFile, imports) {
if (!binary && typeof WebAssembly.instantiateStreaming == 'function'
// Don't use streaming for file:// delivered objects in a webview, fetch them synchronously.
&& !isFileURI(binaryFile)
// Avoid instantiateStreaming() on Node.js environment for now, as while
// Node.js v18.1.0 implements it, it does not have a full fetch()
// implementation yet.
//
// Reference:
// https://github.com/emscripten-core/emscripten/pull/16917
&& !ENVIRONMENT_IS_NODE
) {
try {
var response = fetch(binaryFile, { credentials: 'same-origin' });
var instantiationResult = await WebAssembly.instantiateStreaming(response, imports);
return instantiationResult;
} catch (reason) {
// We expect the most common failure cause to be a bad MIME type for the binary,
// in which case falling back to ArrayBuffer instantiation should work.
err(`wasm streaming compile failed: ${reason}`);
err('falling back to ArrayBuffer instantiation');
// fall back of instantiateArrayBuffer below
};
}
return instantiateArrayBuffer(binaryFile, imports);
}
function getWasmImports() {
// prepare imports
return {
'env': wasmImports,
'wasi_snapshot_preview1': wasmImports,
}
}
// Create the wasm instance.
// Receives the wasm imports, returns the exports.
async function createWasm() {
// Load the wasm module and create an instance of using native support in the JS engine.
// handle a generated wasm instance, receiving its exports and
// performing other necessary setup
/** @param {WebAssembly.Module=} module*/
function receiveInstance(instance, module) {
wasmExports = instance.exports;
wasmMemory = wasmExports['memory'];
updateMemoryViews();
wasmTable = wasmExports['__indirect_function_table'];
assignWasmExports(wasmExports);
removeRunDependency('wasm-instantiate');
return wasmExports;
}
// wait for the pthread pool (if any)
addRunDependency('wasm-instantiate');
// Prefer streaming instantiation if available.
function receiveInstantiationResult(result) {
// 'result' is a ResultObject object which has both the module and instance.
// receiveInstance() will swap in the exports (to Module.asm) so they can be called
// TODO: Due to Closure regression https://github.com/google/closure-compiler/issues/3193, the above line no longer optimizes out down to the following line.
// When the regression is fixed, can restore the above PTHREADS-enabled path.
return receiveInstance(result['instance']);
}
var info = getWasmImports();
// User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback
// to manually instantiate the Wasm module themselves. This allows pages to
// run the instantiation parallel to any other async startup actions they are
// performing.
// Also pthreads and wasm workers initialize the wasm instance through this
// path.
if (Module['instantiateWasm']) {
return new Promise((resolve, reject) => {
Module['instantiateWasm'](info, (mod, inst) => {
resolve(receiveInstance(mod, inst));
});
});
}
wasmBinaryFile ??= findWasmBinary();
var result = await instantiateAsync(wasmBinary, wasmBinaryFile, info);
var exports = receiveInstantiationResult(result);
return exports;
}
// end include: preamble.js
// Begin JS library code
class ExitStatus {
name = 'ExitStatus';
constructor(status) {
this.message = `Program terminated with exit(${status})`;
this.status = status;
}
}
var callRuntimeCallbacks = (callbacks) => {
while (callbacks.length > 0) {
// Pass the module as the first argument.
callbacks.shift()(Module);
}
};
var onPostRuns = [];
var addOnPostRun = (cb) => onPostRuns.push(cb);
var onPreRuns = [];
var addOnPreRun = (cb) => onPreRuns.push(cb);
/**
* @param {number} ptr
* @param {string} type
*/
function getValue(ptr, type = 'i8') {
if (type.endsWith('*')) type = '*';
switch (type) {
case 'i1': return HEAP8[ptr];
case 'i8': return HEAP8[ptr];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP64[((ptr)>>3)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
case '*': return HEAPU32[((ptr)>>2)];
default: abort(`invalid type for getValue: ${type}`);
}
}
var noExitRuntime = true;
/**
* @param {number} ptr
* @param {number} value
* @param {string} type
*/
function setValue(ptr, value, type = 'i8') {
if (type.endsWith('*')) type = '*';
switch (type) {
case 'i1': HEAP8[ptr] = value; break;
case 'i8': HEAP8[ptr] = value; break;
case 'i16': HEAP16[((ptr)>>1)] = value; break;
case 'i32': HEAP32[((ptr)>>2)] = value; break;
case 'i64': HEAP64[((ptr)>>3)] = BigInt(value); break;
case 'float': HEAPF32[((ptr)>>2)] = value; break;
case 'double': HEAPF64[((ptr)>>3)] = value; break;
case '*': HEAPU32[((ptr)>>2)] = value; break;
default: abort(`invalid type for setValue: ${type}`);
}
}
var stackRestore = (val) => __emscripten_stack_restore(val);
var stackSave = () => _emscripten_stack_get_current();
class ExceptionInfo {
// excPtr - Thrown object pointer to wrap. Metadata pointer is calculated from it.
constructor(excPtr) {
this.excPtr = excPtr;
this.ptr = excPtr - 24;
}
set_type(type) {
HEAPU32[(((this.ptr)+(4))>>2)] = type;
}
get_type() {
return HEAPU32[(((this.ptr)+(4))>>2)];
}
set_destructor(destructor) {
HEAPU32[(((this.ptr)+(8))>>2)] = destructor;
}
get_destructor() {
return HEAPU32[(((this.ptr)+(8))>>2)];
}
set_caught(caught) {
caught = caught ? 1 : 0;
HEAP8[(this.ptr)+(12)] = caught;
}
get_caught() {
return HEAP8[(this.ptr)+(12)] != 0;
}
set_rethrown(rethrown) {
rethrown = rethrown ? 1 : 0;
HEAP8[(this.ptr)+(13)] = rethrown;
}
get_rethrown() {
return HEAP8[(this.ptr)+(13)] != 0;
}
// Initialize native structure fields. Should be called once after allocated.
init(type, destructor) {
this.set_adjusted_ptr(0);
this.set_type(type);
this.set_destructor(destructor);
}
set_adjusted_ptr(adjustedPtr) {
HEAPU32[(((this.ptr)+(16))>>2)] = adjustedPtr;
}
get_adjusted_ptr() {
return HEAPU32[(((this.ptr)+(16))>>2)];
}
}
var exceptionLast = 0;
var uncaughtExceptionCount = 0;
var ___cxa_throw = (ptr, type, destructor) => {
var info = new ExceptionInfo(ptr);
// Initialize ExceptionInfo content after it was allocated in __cxa_allocate_exception.
info.init(type, destructor);
exceptionLast = ptr;
uncaughtExceptionCount++;
throw exceptionLast;
};
/** @suppress {duplicate } */
var syscallGetVarargI = () => {
// the `+` prepended here is necessary to convince the JSCompiler that varargs is indeed a number.
var ret = HEAP32[((+SYSCALLS.varargs)>>2)];
SYSCALLS.varargs += 4;
return ret;
};
var syscallGetVarargP = syscallGetVarargI;
var PATH = {
isAbs:(path) => path.charAt(0) === '/',
splitPath:(filename) => {
var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;
return splitPathRe.exec(filename).slice(1);
},
normalizeArray:(parts, allowAboveRoot) => {
// if the path tries to go above the root, `up` ends up > 0
var up = 0;
for (var i = parts.length - 1; i >= 0; i--) {
var last = parts[i];
if (last === '.') {
parts.splice(i, 1);
} else if (last === '..') {
parts.splice(i, 1);
up++;
} else if (up) {
parts.splice(i, 1);
up--;
}
}
// if the path is allowed to go above the root, restore leading ..s
if (allowAboveRoot) {
for (; up; up--) {
parts.unshift('..');
}
}
return parts;
},
normalize:(path) => {
var isAbsolute = PATH.isAbs(path),
trailingSlash = path.slice(-1) === '/';
// Normalize the path
path = PATH.normalizeArray(path.split('/').filter((p) => !!p), !isAbsolute).join('/');
if (!path && !isAbsolute) {
path = '.';
}
if (path && trailingSlash) {
path += '/';
}
return (isAbsolute ? '/' : '') + path;
},
dirname:(path) => {
var result = PATH.splitPath(path),
root = result[0],
dir = result[1];
if (!root && !dir) {
// No dirname whatsoever
return '.';
}
if (dir) {
// It has a dirname, strip trailing slash
dir = dir.slice(0, -1);
}
return root + dir;
},
basename:(path) => path && path.match(/([^\/]+|\/)\/*$/)[1],
join:(...paths) => PATH.normalize(paths.join('/')),
join2:(l, r) => PATH.normalize(l + '/' + r),
};
var initRandomFill = () => {
// This block is not needed on v19+ since crypto.getRandomValues is builtin
if (ENVIRONMENT_IS_NODE) {
var nodeCrypto = require('crypto');
return (view) => nodeCrypto.randomFillSync(view);
}
return (view) => crypto.getRandomValues(view);
};
var randomFill = (view) => {
// Lazily init on the first invocation.
(randomFill = initRandomFill())(view);
};
var PATH_FS = {
resolve:(...args) => {
var resolvedPath = '',
resolvedAbsolute = false;
for (var i = args.length - 1; i >= -1 && !resolvedAbsolute; i--) {
var path = (i >= 0) ? args[i] : FS.cwd();
// Skip empty and invalid entries
if (typeof path != 'string') {
throw new TypeError('Arguments to path.resolve must be strings');
} else if (!path) {
return ''; // an invalid portion invalidates the whole thing
}
resolvedPath = path + '/' + resolvedPath;
resolvedAbsolute = PATH.isAbs(path);
}
// At this point the path should be resolved to a full absolute path, but
// handle relative paths to be safe (might happen when process.cwd() fails)
resolvedPath = PATH.normalizeArray(resolvedPath.split('/').filter((p) => !!p), !resolvedAbsolute).join('/');
return ((resolvedAbsolute ? '/' : '') + resolvedPath) || '.';
},
relative:(from, to) => {
from = PATH_FS.resolve(from).slice(1);
to = PATH_FS.resolve(to).slice(1);
function trim(arr) {
var start = 0;
for (; start < arr.length; start++) {
if (arr[start] !== '') break;
}
var end = arr.length - 1;
for (; end >= 0; end--) {
if (arr[end] !== '') break;
}
if (start > end) return [];
return arr.slice(start, end - start + 1);
}
var fromParts = trim(from.split('/'));
var toParts = trim(to.split('/'));
var length = Math.min(fromParts.length, toParts.length);
var samePartsLength = length;
for (var i = 0; i < length; i++) {
if (fromParts[i] !== toParts[i]) {
samePartsLength = i;
break;
}
}
var outputParts = [];
for (var i = samePartsLength; i < fromParts.length; i++) {
outputParts.push('..');
}
outputParts = outputParts.concat(toParts.slice(samePartsLength));
return outputParts.join('/');
},
};
var UTF8Decoder = typeof TextDecoder != 'undefined' ? new TextDecoder() : undefined;
/**
* Given a pointer 'idx' to a null-terminated UTF8-encoded string in the given
* array that contains uint8 values, returns a copy of that string as a
* Javascript String object.
* heapOrArray is either a regular array, or a JavaScript typed array view.
* @param {number=} idx
* @param {number=} maxBytesToRead
* @return {string}
*/
var UTF8ArrayToString = (heapOrArray, idx = 0, maxBytesToRead = NaN) => {
var endIdx = idx + maxBytesToRead;
var endPtr = idx;
// TextDecoder needs to know the byte length in advance, it doesn't stop on
// null terminator by itself. Also, use the length info to avoid running tiny
// strings through TextDecoder, since .subarray() allocates garbage.
// (As a tiny code save trick, compare endPtr against endIdx using a negation,
// so that undefined/NaN means Infinity)
while (heapOrArray[endPtr] && !(endPtr >= endIdx)) ++endPtr;
// When using conditional TextDecoder, skip it for short strings as the overhead of the native call is not worth it.
if (endPtr - idx > 16 && heapOrArray.buffer && UTF8Decoder) {
return UTF8Decoder.decode(heapOrArray.subarray(idx, endPtr));
}
var str = '';
// If building with TextDecoder, we have already computed the string length
// above, so test loop end condition against that
while (idx < endPtr) {
// For UTF8 byte structure, see:
// http://en.wikipedia.org/wiki/UTF-8#Description
// https://www.ietf.org/rfc/rfc2279.txt
// https://tools.ietf.org/html/rfc3629
var u0 = heapOrArray[idx++];
if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; }
var u1 = heapOrArray[idx++] & 63;
if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; }
var u2 = heapOrArray[idx++] & 63;
if ((u0 & 0xF0) == 0xE0) {
u0 = ((u0 & 15) << 12) | (u1 << 6) | u2;
} else {
u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | (heapOrArray[idx++] & 63);
}
if (u0 < 0x10000) {
str += String.fromCharCode(u0);
} else {
var ch = u0 - 0x10000;
str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF));
}
}
return str;
};
var FS_stdin_getChar_buffer = [];
var lengthBytesUTF8 = (str) => {
var len = 0;
for (var i = 0; i < str.length; ++i) {
// Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code
// unit, not a Unicode code point of the character! So decode
// UTF16->UTF32->UTF8.
// See http://unicode.org/faq/utf_bom.html#utf16-3
var c = str.charCodeAt(i); // possibly a lead surrogate
if (c <= 0x7F) {
len++;
} else if (c <= 0x7FF) {
len += 2;
} else if (c >= 0xD800 && c <= 0xDFFF) {
len += 4; ++i;
} else {
len += 3;
}
}
return len;
};
var stringToUTF8Array = (str, heap, outIdx, maxBytesToWrite) => {
// Parameter maxBytesToWrite is not optional. Negative values, 0, null,
// undefined and false each don't write out any bytes.
if (!(maxBytesToWrite > 0))
return 0;
var startIdx = outIdx;
var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator.
for (var i = 0; i < str.length; ++i) {
// For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description
// and https://www.ietf.org/rfc/rfc2279.txt
// and https://tools.ietf.org/html/rfc3629
var u = str.codePointAt(i);
if (u <= 0x7F) {
if (outIdx >= endIdx) break;
heap[outIdx++] = u;
} else if (u <= 0x7FF) {
if (outIdx + 1 >= endIdx) break;
heap[outIdx++] = 0xC0 | (u >> 6);
heap[outIdx++] = 0x80 | (u & 63);
} else if (u <= 0xFFFF) {
if (outIdx + 2 >= endIdx) break;
heap[outIdx++] = 0xE0 | (u >> 12);
heap[outIdx++] = 0x80 | ((u >> 6) & 63);
heap[outIdx++] = 0x80 | (u & 63);
} else {
if (outIdx + 3 >= endIdx) break;
heap[outIdx++] = 0xF0 | (u >> 18);
heap[outIdx++] = 0x80 | ((u >> 12) & 63);
heap[outIdx++] = 0x80 | ((u >> 6) & 63);
heap[outIdx++] = 0x80 | (u & 63);
// Gotcha: if codePoint is over 0xFFFF, it is represented as a surrogate pair in UTF-16.
// We need to manually skip over the second code unit for correct iteration.
i++;
}
}
// Null-terminate the pointer to the buffer.
heap[outIdx] = 0;
return outIdx - startIdx;
};
/** @type {function(string, boolean=, number=)} */
var intArrayFromString = (stringy, dontAddNull, length) => {
var len = length > 0 ? length : lengthBytesUTF8(stringy)+1;
var u8array = new Array(len);
var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length);
if (dontAddNull) u8array.length = numBytesWritten;
return u8array;
};
var FS_stdin_getChar = () => {
if (!FS_stdin_getChar_buffer.length) {
var result = null;
if (ENVIRONMENT_IS_NODE) {
// we will read data by chunks of BUFSIZE
var BUFSIZE = 256;
var buf = Buffer.alloc(BUFSIZE);
var bytesRead = 0;
// For some reason we must suppress a closure warning here, even though
// fd definitely exists on process.stdin, and is even the proper way to
// get the fd of stdin,
// https://github.com/nodejs/help/issues/2136#issuecomment-523649904
// This started to happen after moving this logic out of library_tty.js,
// so it is related to the surrounding code in some unclear manner.
/** @suppress {missingProperties} */
var fd = process.stdin.fd;
try {
bytesRead = fs.readSync(fd, buf, 0, BUFSIZE);
} catch(e) {
// Cross-platform differences: on Windows, reading EOF throws an
// exception, but on other OSes, reading EOF returns 0. Uniformize
// behavior by treating the EOF exception to return 0.
if (e.toString().includes('EOF')) bytesRead = 0;
else throw e;
}
if (bytesRead > 0) {
result = buf.slice(0, bytesRead).toString('utf-8');
}
} else
if (typeof window != 'undefined' &&
typeof window.prompt == 'function') {
// Browser.
result = window.prompt('Input: '); // returns null on cancel
if (result !== null) {
result += '\n';
}
} else
{}
if (!result) {
return null;
}
FS_stdin_getChar_buffer = intArrayFromString(result, true);
}
return FS_stdin_getChar_buffer.shift();
};
var TTY = {
ttys:[],
init() {
// https://github.com/emscripten-core/emscripten/pull/1555
// if (ENVIRONMENT_IS_NODE) {
// // currently, FS.init does not distinguish if process.stdin is a file or TTY
// // device, it always assumes it's a TTY device. because of this, we're forcing
// // process.stdin to UTF8 encoding to at least make stdin reading compatible
// // with text files until FS.init can be refactored.
// process.stdin.setEncoding('utf8');
// }
},
shutdown() {
// https://github.com/emscripten-core/emscripten/pull/1555
// if (ENVIRONMENT_IS_NODE) {
// // inolen: any idea as to why node -e 'process.stdin.read()' wouldn't exit immediately (with process.stdin being a tty)?
// // isaacs: because now it's reading from the stream, you've expressed interest in it, so that read() kicks off a _read() which creates a ReadReq operation
// // inolen: I thought read() in that case was a synchronous operation that just grabbed some amount of buffered data if it exists?
// // isaacs: it is. but it also triggers a _read() call, which calls readStart() on the handle
// // isaacs: do process.stdin.pause() and i'd think it'd probably close the pending call
// process.stdin.pause();
// }
},
register(dev, ops) {
TTY.ttys[dev] = { input: [], output: [], ops: ops };
FS.registerDevice(dev, TTY.stream_ops);
},
stream_ops:{
open(stream) {
var tty = TTY.ttys[stream.node.rdev];
if (!tty) {
throw new FS.ErrnoError(43);
}
stream.tty = tty;
stream.seekable = false;
},
close(stream) {
// flush any pending line data
stream.tty.ops.fsync(stream.tty);
},
fsync(stream) {
stream.tty.ops.fsync(stream.tty);
},
read(stream, buffer, offset, length, pos /* ignored */) {
if (!stream.tty || !stream.tty.ops.get_char) {
throw new FS.ErrnoError(60);
}
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = stream.tty.ops.get_char(stream.tty);
} catch (e) {
throw new FS.ErrnoError(29);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(6);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.atime = Date.now();
}
return bytesRead;
},
write(stream, buffer, offset, length, pos) {
if (!stream.tty || !stream.tty.ops.put_char) {
throw new FS.ErrnoError(60);
}
try {
for (var i = 0; i < length; i++) {
stream.tty.ops.put_char(stream.tty, buffer[offset+i]);
}
} catch (e) {
throw new FS.ErrnoError(29);
}
if (length) {
stream.node.mtime = stream.node.ctime = Date.now();
}
return i;
},
},
default_tty_ops:{
get_char(tty) {
return FS_stdin_getChar();
},
put_char(tty, val) {
if (val === null || val === 10) {
out(UTF8ArrayToString(tty.output));
tty.output = [];
} else {
if (val != 0) tty.output.push(val); // val == 0 would cut text output off in the middle.
}
},
fsync(tty) {
if (tty.output?.length > 0) {
out(UTF8ArrayToString(tty.output));
tty.output = [];
}
},
ioctl_tcgets(tty) {
// typical setting
return {
c_iflag: 25856,
c_oflag: 5,
c_cflag: 191,
c_lflag: 35387,
c_cc: [
0x03, 0x1c, 0x7f, 0x15, 0x04, 0x00, 0x01, 0x00, 0x11, 0x13, 0x1a, 0x00,
0x12, 0x0f, 0x17, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
]
};
},
ioctl_tcsets(tty, optional_actions, data) {
// currently just ignore
return 0;
},
ioctl_tiocgwinsz(tty) {
return [24, 80];
},
},
default_tty1_ops:{
put_char(tty, val) {
if (val === null || val === 10) {
err(UTF8ArrayToString(tty.output));
tty.output = [];
} else {
if (val != 0) tty.output.push(val);
}
},
fsync(tty) {
if (tty.output?.length > 0) {
err(UTF8ArrayToString(tty.output));
tty.output = [];
}
},
},
};
var zeroMemory = (ptr, size) => HEAPU8.fill(0, ptr, ptr + size);
var alignMemory = (size, alignment) => {
return Math.ceil(size / alignment) * alignment;
};
var mmapAlloc = (size) => {
size = alignMemory(size, 65536);
var ptr = _emscripten_builtin_memalign(65536, size);
if (ptr) zeroMemory(ptr, size);
return ptr;
};
var MEMFS = {
ops_table:null,
mount(mount) {
return MEMFS.createNode(null, '/', 16895, 0);
},
createNode(parent, name, mode, dev) {
if (FS.isBlkdev(mode) || FS.isFIFO(mode)) {
// no supported
throw new FS.ErrnoError(63);
}
MEMFS.ops_table ||= {
dir: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
lookup: MEMFS.node_ops.lookup,
mknod: MEMFS.node_ops.mknod,
rename: MEMFS.node_ops.rename,
unlink: MEMFS.node_ops.unlink,
rmdir: MEMFS.node_ops.rmdir,
readdir: MEMFS.node_ops.readdir,
symlink: MEMFS.node_ops.symlink
},
stream: {
llseek: MEMFS.stream_ops.llseek
}
},
file: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
},
stream: {
llseek: MEMFS.stream_ops.llseek,
read: MEMFS.stream_ops.read,
write: MEMFS.stream_ops.write,
mmap: MEMFS.stream_ops.mmap,
msync: MEMFS.stream_ops.msync
}
},
link: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
readlink: MEMFS.node_ops.readlink
},
stream: {}
},
chrdev: {
node: {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
},
stream: FS.chrdev_stream_ops
}
};
var node = FS.createNode(parent, name, mode, dev);
if (FS.isDir(node.mode)) {
node.node_ops = MEMFS.ops_table.dir.node;
node.stream_ops = MEMFS.ops_table.dir.stream;
node.contents = {};
} else if (FS.isFile(node.mode)) {
node.node_ops = MEMFS.ops_table.file.node;
node.stream_ops = MEMFS.ops_table.file.stream;
node.usedBytes = 0; // The actual number of bytes used in the typed array, as opposed to contents.length which gives the whole capacity.
// When the byte data of the file is populated, this will point to either a typed array, or a normal JS array. Typed arrays are preferred
// for performance, and used by default. However, typed arrays are not resizable like normal JS arrays are, so there is a small disk size
// penalty involved for appending file writes that continuously grow a file similar to std::vector capacity vs used -scheme.
node.contents = null;
} else if (FS.isLink(node.mode)) {
node.node_ops = MEMFS.ops_table.link.node;
node.stream_ops = MEMFS.ops_table.link.stream;
} else if (FS.isChrdev(node.mode)) {
node.node_ops = MEMFS.ops_table.chrdev.node;
node.stream_ops = MEMFS.ops_table.chrdev.stream;
}
node.atime = node.mtime = node.ctime = Date.now();
// add the new node to the parent
if (parent) {
parent.contents[name] = node;
parent.atime = parent.mtime = parent.ctime = node.atime;
}
return node;
},
getFileDataAsTypedArray(node) {
if (!node.contents) return new Uint8Array(0);
if (node.contents.subarray) return node.contents.subarray(0, node.usedBytes); // Make sure to not return excess unused bytes.
return new Uint8Array(node.contents);
},
expandFileStorage(node, newCapacity) {
var prevCapacity = node.contents ? node.contents.length : 0;
if (prevCapacity >= newCapacity) return; // No need to expand, the storage was already large enough.
// Don't expand strictly to the given requested limit if it's only a very small increase, but instead geometrically grow capacity.
// For small filesizes (<1MB), perform size*2 geometric increase, but for large sizes, do a much more conservative size*1.125 increase to
// avoid overshooting the allocation cap by a very large margin.
var CAPACITY_DOUBLING_MAX = 1024 * 1024;
newCapacity = Math.max(newCapacity, (prevCapacity * (prevCapacity < CAPACITY_DOUBLING_MAX ? 2.0 : 1.125)) >>> 0);
if (prevCapacity != 0) newCapacity = Math.max(newCapacity, 256); // At minimum allocate 256b for each file when expanding.
var oldContents = node.contents;
node.contents = new Uint8Array(newCapacity); // Allocate new storage.
if (node.usedBytes > 0) node.contents.set(oldContents.subarray(0, node.usedBytes), 0); // Copy old data over to the new storage.
},
resizeFileStorage(node, newSize) {
if (node.usedBytes == newSize) return;
if (newSize == 0) {
node.contents = null; // Fully decommit when requesting a resize to zero.
node.usedBytes = 0;
} else {
var oldContents = node.contents;
node.contents = new Uint8Array(newSize); // Allocate new storage.
if (oldContents) {
node.contents.set(oldContents.subarray(0, Math.min(newSize, node.usedBytes))); // Copy old data over to the new storage.
}
node.usedBytes = newSize;
}
},
node_ops:{
getattr(node) {
var attr = {};
// device numbers reuse inode numbers.
attr.dev = FS.isChrdev(node.mode) ? node.id : 1;
attr.ino = node.id;
attr.mode = node.mode;
attr.nlink = 1;
attr.uid = 0;
attr.gid = 0;
attr.rdev = node.rdev;
if (FS.isDir(node.mode)) {
attr.size = 4096;
} else if (FS.isFile(node.mode)) {
attr.size = node.usedBytes;
} else if (FS.isLink(node.mode)) {
attr.size = node.link.length;
} else {
attr.size = 0;
}
attr.atime = new Date(node.atime);
attr.mtime = new Date(node.mtime);
attr.ctime = new Date(node.ctime);
// NOTE: In our implementation, st_blocks = Math.ceil(st_size/st_blksize),
// but this is not required by the standard.
attr.blksize = 4096;
attr.blocks = Math.ceil(attr.size / attr.blksize);
return attr;
},
setattr(node, attr) {
for (const key of ["mode", "atime", "mtime", "ctime"]) {
if (attr[key] != null) {
node[key] = attr[key];
}
}
if (attr.size !== undefined) {
MEMFS.resizeFileStorage(node, attr.size);
}
},
lookup(parent, name) {
throw MEMFS.doesNotExistError;
},
mknod(parent, name, mode, dev) {
return MEMFS.createNode(parent, name, mode, dev);
},
rename(old_node, new_dir, new_name) {
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {}
if (new_node) {
if (FS.isDir(old_node.mode)) {
// if we're overwriting a directory at new_name, make sure it's empty.
for (var i in new_node.contents) {
throw new FS.ErrnoError(55);
}
}
FS.hashRemoveNode(new_node);
}
// do the internal rewiring
delete old_node.parent.contents[old_node.name];
new_dir.contents[new_name] = old_node;
old_node.name = new_name;
new_dir.ctime = new_dir.mtime = old_node.parent.ctime = old_node.parent.mtime = Date.now();
},
unlink(parent, name) {
delete parent.contents[name];
parent.ctime = parent.mtime = Date.now();
},
rmdir(parent, name) {
var node = FS.lookupNode(parent, name);
for (var i in node.contents) {
throw new FS.ErrnoError(55);
}
delete parent.contents[name];
parent.ctime = parent.mtime = Date.now();
},
readdir(node) {
return ['.', '..', ...Object.keys(node.contents)];
},
symlink(parent, newname, oldpath) {
var node = MEMFS.createNode(parent, newname, 0o777 | 40960, 0);
node.link = oldpath;
return node;
},
readlink(node) {
if (!FS.isLink(node.mode)) {
throw new FS.ErrnoError(28);
}
return node.link;
},
},
stream_ops:{
read(stream, buffer, offset, length, position) {
var contents = stream.node.contents;
if (position >= stream.node.usedBytes) return 0;
var size = Math.min(stream.node.usedBytes - position, length);
if (size > 8 && contents.subarray) { // non-trivial, and typed array
buffer.set(contents.subarray(position, position + size), offset);
} else {
for (var i = 0; i < size; i++) buffer[offset + i] = contents[position + i];
}
return size;
},
write(stream, buffer, offset, length, position, canOwn) {
// If the buffer is located in main memory (HEAP), and if
// memory can grow, we can't hold on to references of the
// memory buffer, as they may get invalidated. That means we
// need to do copy its contents.
if (buffer.buffer === HEAP8.buffer) {
canOwn = false;
}
if (!length) return 0;
var node = stream.node;
node.mtime = node.ctime = Date.now();
if (buffer.subarray && (!node.contents || node.contents.subarray)) { // This write is from a typed array to a typed array?
if (canOwn) {
node.contents = buffer.subarray(offset, offset + length);
node.usedBytes = length;
return length;
} else if (node.usedBytes === 0 && position === 0) { // If this is a simple first write to an empty file, do a fast set since we don't need to care about old data.
node.contents = buffer.slice(offset, offset + length);
node.usedBytes = length;
return length;
} else if (position + length <= node.usedBytes) { // Writing to an already allocated and used subrange of the file?
node.contents.set(buffer.subarray(offset, offset + length), position);
return length;
}
}
// Appending to an existing file and we need to reallocate, or source data did not come as a typed array.
MEMFS.expandFileStorage(node, position+length);
if (node.contents.subarray && buffer.subarray) {
// Use typed array write which is available.
node.contents.set(buffer.subarray(offset, offset + length), position);
} else {
for (var i = 0; i < length; i++) {
node.contents[position + i] = buffer[offset + i]; // Or fall back to manual write if not.
}
}
node.usedBytes = Math.max(node.usedBytes, position + length);
return length;
},
llseek(stream, offset, whence) {
var position = offset;
if (whence === 1) {
position += stream.position;
} else if (whence === 2) {
if (FS.isFile(stream.node.mode)) {
position += stream.node.usedBytes;
}
}
if (position < 0) {
throw new FS.ErrnoError(28);
}
return position;
},
mmap(stream, length, position, prot, flags) {
if (!FS.isFile(stream.node.mode)) {
throw new FS.ErrnoError(43);
}
var ptr;
var allocated;
var contents = stream.node.contents;
// Only make a new copy when MAP_PRIVATE is specified.
if (!(flags & 2) && contents && contents.buffer === HEAP8.buffer) {
// We can't emulate MAP_SHARED when the file is not backed by the
// buffer we're mapping to (e.g. the HEAP buffer).
allocated = false;
ptr = contents.byteOffset;
} else {
allocated = true;
ptr = mmapAlloc(length);
if (!ptr) {
throw new FS.ErrnoError(48);
}
if (contents) {
// Try to avoid unnecessary slices.
if (position > 0 || position + length < contents.length) {
if (contents.subarray) {
contents = contents.subarray(position, position + length);
} else {
contents = Array.prototype.slice.call(contents, position, position + length);
}
}
HEAP8.set(contents, ptr);
}
}
return { ptr, allocated };
},
msync(stream, buffer, offset, length, mmapFlags) {
MEMFS.stream_ops.write(stream, buffer, 0, length, offset, false);
// should we check if bytesWritten and length are the same?
return 0;
},
},
};
var asyncLoad = async (url) => {
var arrayBuffer = await readAsync(url);
return new Uint8Array(arrayBuffer);
};
var FS_createDataFile = (...args) => FS.createDataFile(...args);
var getUniqueRunDependency = (id) => {
return id;
};
var preloadPlugins = [];
var FS_handledByPreloadPlugin = (byteArray, fullname, finish, onerror) => {
// Ensure plugins are ready.
if (typeof Browser != 'undefined') Browser.init();
var handled = false;
preloadPlugins.forEach((plugin) => {
if (handled) return;
if (plugin['canHandle'](fullname)) {
plugin['handle'](byteArray, fullname, finish, onerror);
handled = true;
}
});
return handled;
};
var FS_createPreloadedFile = (parent, name, url, canRead, canWrite, onload, onerror, dontCreateFile, canOwn, preFinish) => {
// TODO we should allow people to just pass in a complete filename instead
// of parent and name being that we just join them anyways
var fullname = name ? PATH_FS.resolve(PATH.join2(parent, name)) : parent;
var dep = getUniqueRunDependency(`cp ${fullname}`); // might have several active requests for the same fullname
function processData(byteArray) {
function finish(byteArray) {
preFinish?.();
if (!dontCreateFile) {
FS_createDataFile(parent, name, byteArray, canRead, canWrite, canOwn);
}
onload?.();
removeRunDependency(dep);
}
if (FS_handledByPreloadPlugin(byteArray, fullname, finish, () => {
onerror?.();
removeRunDependency(dep);
})) {
return;
}
finish(byteArray);
}
addRunDependency(dep);
if (typeof url == 'string') {
asyncLoad(url).then(processData, onerror);
} else {
processData(url);
}
};
var FS_modeStringToFlags = (str) => {
var flagModes = {
'r': 0,
'r+': 2,
'w': 512 | 64 | 1,
'w+': 512 | 64 | 2,
'a': 1024 | 64 | 1,
'a+': 1024 | 64 | 2,
};
var flags = flagModes[str];
if (typeof flags == 'undefined') {
throw new Error(`Unknown file open mode: ${str}`);
}
return flags;
};
var FS_getMode = (canRead, canWrite) => {
var mode = 0;
if (canRead) mode |= 292 | 73;
if (canWrite) mode |= 146;
return mode;
};
var FS = {
root:null,
mounts:[],
devices:{
},
streams:[],
nextInode:1,
nameTable:null,
currentPath:"/",
initialized:false,
ignorePermissions:true,
filesystems:null,
syncFSRequests:0,
readFiles:{
},
ErrnoError:class {
name = 'ErrnoError';
// We set the `name` property to be able to identify `FS.ErrnoError`
// - the `name` is a standard ECMA-262 property of error objects. Kind of good to have it anyway.
// - when using PROXYFS, an error can come from an underlying FS
// as different FS objects have their own FS.ErrnoError each,
// the test `err instanceof FS.ErrnoError` won't detect an error coming from another filesystem, causing bugs.
// we'll use the reliable test `err.name == "ErrnoError"` instead
constructor(errno) {
this.errno = errno;
}
},
FSStream:class {
shared = {};
get object() {
return this.node;
}
set object(val) {
this.node = val;
}
get isRead() {
return (this.flags & 2097155) !== 1;
}
get isWrite() {
return (this.flags & 2097155) !== 0;
}
get isAppend() {
return (this.flags & 1024);
}
get flags() {
return this.shared.flags;
}
set flags(val) {
this.shared.flags = val;
}
get position() {
return this.shared.position;
}
set position(val) {
this.shared.position = val;
}
},
FSNode:class {
node_ops = {};
stream_ops = {};
readMode = 292 | 73;
writeMode = 146;
mounted = null;
constructor(parent, name, mode, rdev) {
if (!parent) {
parent = this; // root node sets parent to itself
}
this.parent = parent;
this.mount = parent.mount;
this.id = FS.nextInode++;
this.name = name;
this.mode = mode;
this.rdev = rdev;
this.atime = this.mtime = this.ctime = Date.now();
}
get read() {
return (this.mode & this.readMode) === this.readMode;
}
set read(val) {
val ? this.mode |= this.readMode : this.mode &= ~this.readMode;
}
get write() {
return (this.mode & this.writeMode) === this.writeMode;
}
set write(val) {
val ? this.mode |= this.writeMode : this.mode &= ~this.writeMode;
}
get isFolder() {
return FS.isDir(this.mode);
}
get isDevice() {
return FS.isChrdev(this.mode);
}
},
lookupPath(path, opts = {}) {
if (!path) {
throw new FS.ErrnoError(44);
}
opts.follow_mount ??= true
if (!PATH.isAbs(path)) {
path = FS.cwd() + '/' + path;
}
// limit max consecutive symlinks to 40 (SYMLOOP_MAX).
linkloop: for (var nlinks = 0; nlinks < 40; nlinks++) {
// split the absolute path
var parts = path.split('/').filter((p) => !!p);
// start at the root
var current = FS.root;
var current_path = '/';
for (var i = 0; i < parts.length; i++) {
var islast = (i === parts.length-1);
if (islast && opts.parent) {
// stop resolving
break;
}
if (parts[i] === '.') {
continue;
}
if (parts[i] === '..') {
current_path = PATH.dirname(current_path);
if (FS.isRoot(current)) {
path = current_path + '/' + parts.slice(i + 1).join('/');
continue linkloop;
} else {
current = current.parent;
}
continue;
}
current_path = PATH.join2(current_path, parts[i]);
try {
current = FS.lookupNode(current, parts[i]);
} catch (e) {
// if noent_okay is true, suppress a ENOENT in the last component
// and return an object with an undefined node. This is needed for
// resolving symlinks in the path when creating a file.
if ((e?.errno === 44) && islast && opts.noent_okay) {
return { path: current_path };
}
throw e;
}
// jump to the mount's root node if this is a mountpoint
if (FS.isMountpoint(current) && (!islast || opts.follow_mount)) {
current = current.mounted.root;
}
// by default, lookupPath will not follow a symlink if it is the final path component.
// setting opts.follow = true will override this behavior.
if (FS.isLink(current.mode) && (!islast || opts.follow)) {
if (!current.node_ops.readlink) {
throw new FS.ErrnoError(52);
}
var link = current.node_ops.readlink(current);
if (!PATH.isAbs(link)) {
link = PATH.dirname(current_path) + '/' + link;
}
path = link + '/' + parts.slice(i + 1).join('/');
continue linkloop;
}
}
return { path: current_path, node: current };
}
throw new FS.ErrnoError(32);
},
getPath(node) {
var path;
while (true) {
if (FS.isRoot(node)) {
var mount = node.mount.mountpoint;
if (!path) return mount;
return mount[mount.length-1] !== '/' ? `${mount}/${path}` : mount + path;
}
path = path ? `${node.name}/${path}` : node.name;
node = node.parent;
}
},
hashName(parentid, name) {
var hash = 0;
for (var i = 0; i < name.length; i++) {
hash = ((hash << 5) - hash + name.charCodeAt(i)) | 0;
}
return ((parentid + hash) >>> 0) % FS.nameTable.length;
},
hashAddNode(node) {
var hash = FS.hashName(node.parent.id, node.name);
node.name_next = FS.nameTable[hash];
FS.nameTable[hash] = node;
},
hashRemoveNode(node) {
var hash = FS.hashName(node.parent.id, node.name);
if (FS.nameTable[hash] === node) {
FS.nameTable[hash] = node.name_next;
} else {
var current = FS.nameTable[hash];
while (current) {
if (current.name_next === node) {
current.name_next = node.name_next;
break;
}
current = current.name_next;
}
}
},
lookupNode(parent, name) {
var errCode = FS.mayLookup(parent);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
var hash = FS.hashName(parent.id, name);
for (var node = FS.nameTable[hash]; node; node = node.name_next) {
var nodeName = node.name;
if (node.parent.id === parent.id && nodeName === name) {
return node;
}
}
// if we failed to find it in the cache, call into the VFS
return FS.lookup(parent, name);
},
createNode(parent, name, mode, rdev) {
var node = new FS.FSNode(parent, name, mode, rdev);
FS.hashAddNode(node);
return node;
},
destroyNode(node) {
FS.hashRemoveNode(node);
},
isRoot(node) {
return node === node.parent;
},
isMountpoint(node) {
return !!node.mounted;
},
isFile(mode) {
return (mode & 61440) === 32768;
},
isDir(mode) {
return (mode & 61440) === 16384;
},
isLink(mode) {
return (mode & 61440) === 40960;
},
isChrdev(mode) {
return (mode & 61440) === 8192;
},
isBlkdev(mode) {
return (mode & 61440) === 24576;
},
isFIFO(mode) {
return (mode & 61440) === 4096;
},
isSocket(mode) {
return (mode & 49152) === 49152;
},
flagsToPermissionString(flag) {
var perms = ['r', 'w', 'rw'][flag & 3];
if ((flag & 512)) {
perms += 'w';
}
return perms;
},
nodePermissions(node, perms) {
if (FS.ignorePermissions) {
return 0;
}
// return 0 if any user, group or owner bits are set.
if (perms.includes('r') && !(node.mode & 292)) {
return 2;
} else if (perms.includes('w') && !(node.mode & 146)) {
return 2;
} else if (perms.includes('x') && !(node.mode & 73)) {
return 2;
}
return 0;
},
mayLookup(dir) {
if (!FS.isDir(dir.mode)) return 54;
var errCode = FS.nodePermissions(dir, 'x');
if (errCode) return errCode;
if (!dir.node_ops.lookup) return 2;
return 0;
},
mayCreate(dir, name) {
if (!FS.isDir(dir.mode)) {
return 54;
}
try {
var node = FS.lookupNode(dir, name);
return 20;
} catch (e) {
}
return FS.nodePermissions(dir, 'wx');
},
mayDelete(dir, name, isdir) {
var node;
try {
node = FS.lookupNode(dir, name);
} catch (e) {
return e.errno;
}
var errCode = FS.nodePermissions(dir, 'wx');
if (errCode) {
return errCode;
}
if (isdir) {
if (!FS.isDir(node.mode)) {
return 54;
}
if (FS.isRoot(node) || FS.getPath(node) === FS.cwd()) {
return 10;
}
} else {
if (FS.isDir(node.mode)) {
return 31;
}
}
return 0;
},
mayOpen(node, flags) {
if (!node) {
return 44;
}
if (FS.isLink(node.mode)) {
return 32;
} else if (FS.isDir(node.mode)) {
if (FS.flagsToPermissionString(flags) !== 'r' // opening for write
|| (flags & (512 | 64))) { // TODO: check for O_SEARCH? (== search for dir only)
return 31;
}
}
return FS.nodePermissions(node, FS.flagsToPermissionString(flags));
},
checkOpExists(op, err) {
if (!op) {
throw new FS.ErrnoError(err);
}
return op;
},
MAX_OPEN_FDS:4096,
nextfd() {
for (var fd = 0; fd <= FS.MAX_OPEN_FDS; fd++) {
if (!FS.streams[fd]) {
return fd;
}
}
throw new FS.ErrnoError(33);
},
getStreamChecked(fd) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(8);
}
return stream;
},
getStream:(fd) => FS.streams[fd],
createStream(stream, fd = -1) {
// clone it, so we can return an instance of FSStream
stream = Object.assign(new FS.FSStream(), stream);
if (fd == -1) {
fd = FS.nextfd();
}
stream.fd = fd;
FS.streams[fd] = stream;
return stream;
},
closeStream(fd) {
FS.streams[fd] = null;
},
dupStream(origStream, fd = -1) {
var stream = FS.createStream(origStream, fd);
stream.stream_ops?.dup?.(stream);
return stream;
},
doSetAttr(stream, node, attr) {
var setattr = stream?.stream_ops.setattr;
var arg = setattr ? stream : node;
setattr ??= node.node_ops.setattr;
FS.checkOpExists(setattr, 63)
setattr(arg, attr);
},
chrdev_stream_ops:{
open(stream) {
var device = FS.getDevice(stream.node.rdev);
// override node's stream ops with the device's
stream.stream_ops = device.stream_ops;
// forward the open call
stream.stream_ops.open?.(stream);
},
llseek() {
throw new FS.ErrnoError(70);
},
},
major:(dev) => ((dev) >> 8),
minor:(dev) => ((dev) & 0xff),
makedev:(ma, mi) => ((ma) << 8 | (mi)),
registerDevice(dev, ops) {
FS.devices[dev] = { stream_ops: ops };
},
getDevice:(dev) => FS.devices[dev],
getMounts(mount) {
var mounts = [];
var check = [mount];
while (check.length) {
var m = check.pop();
mounts.push(m);
check.push(...m.mounts);
}
return mounts;
},
syncfs(populate, callback) {
if (typeof populate == 'function') {
callback = populate;
populate = false;
}
FS.syncFSRequests++;
if (FS.syncFSRequests > 1) {
err(`warning: ${FS.syncFSRequests} FS.syncfs operations in flight at once, probably just doing extra work`);
}
var mounts = FS.getMounts(FS.root.mount);
var completed = 0;
function doCallback(errCode) {
FS.syncFSRequests--;
return callback(errCode);
}
function done(errCode) {
if (errCode) {
if (!done.errored) {
done.errored = true;
return doCallback(errCode);
}
return;
}
if (++completed >= mounts.length) {
doCallback(null);
}
};
// sync all mounts
mounts.forEach((mount) => {
if (!mount.type.syncfs) {
return done(null);
}
mount.type.syncfs(mount, populate, done);
});
},
mount(type, opts, mountpoint) {
var root = mountpoint === '/';
var pseudo = !mountpoint;
var node;
if (root && FS.root) {
throw new FS.ErrnoError(10);
} else if (!root && !pseudo) {
var lookup = FS.lookupPath(mountpoint, { follow_mount: false });
mountpoint = lookup.path; // use the absolute path
node = lookup.node;
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(10);
}
if (!FS.isDir(node.mode)) {
throw new FS.ErrnoError(54);
}
}
var mount = {
type,
opts,
mountpoint,
mounts: []
};
// create a root node for the fs
var mountRoot = type.mount(mount);
mountRoot.mount = mount;
mount.root = mountRoot;
if (root) {
FS.root = mountRoot;
} else if (node) {
// set as a mountpoint
node.mounted = mount;
// add the new mount to the current mount's children
if (node.mount) {
node.mount.mounts.push(mount);
}
}
return mountRoot;
},
unmount(mountpoint) {
var lookup = FS.lookupPath(mountpoint, { follow_mount: false });
if (!FS.isMountpoint(lookup.node)) {
throw new FS.ErrnoError(28);
}
// destroy the nodes for this mount, and all its child mounts
var node = lookup.node;
var mount = node.mounted;
var mounts = FS.getMounts(mount);
Object.keys(FS.nameTable).forEach((hash) => {
var current = FS.nameTable[hash];
while (current) {
var next = current.name_next;
if (mounts.includes(current.mount)) {
FS.destroyNode(current);
}
current = next;
}
});
// no longer a mountpoint
node.mounted = null;
// remove this mount from the child mounts
var idx = node.mount.mounts.indexOf(mount);
node.mount.mounts.splice(idx, 1);
},
lookup(parent, name) {
return parent.node_ops.lookup(parent, name);
},
mknod(path, mode, dev) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
if (!name) {
throw new FS.ErrnoError(28);
}
if (name === '.' || name === '..') {
throw new FS.ErrnoError(20);
}
var errCode = FS.mayCreate(parent, name);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
if (!parent.node_ops.mknod) {
throw new FS.ErrnoError(63);
}
return parent.node_ops.mknod(parent, name, mode, dev);
},
statfs(path) {
return FS.statfsNode(FS.lookupPath(path, {follow: true}).node);
},
statfsStream(stream) {
// We keep a separate statfsStream function because noderawfs overrides
// it. In noderawfs, stream.node is sometimes null. Instead, we need to
// look at stream.path.
return FS.statfsNode(stream.node);
},
statfsNode(node) {
// NOTE: None of the defaults here are true. We're just returning safe and
// sane values. Currently nodefs and rawfs replace these defaults,
// other file systems leave them alone.
var rtn = {
bsize: 4096,
frsize: 4096,
blocks: 1e6,
bfree: 5e5,
bavail: 5e5,
files: FS.nextInode,
ffree: FS.nextInode - 1,
fsid: 42,
flags: 2,
namelen: 255,
};
if (node.node_ops.statfs) {
Object.assign(rtn, node.node_ops.statfs(node.mount.opts.root));
}
return rtn;
},
create(path, mode = 0o666) {
mode &= 4095;
mode |= 32768;
return FS.mknod(path, mode, 0);
},
mkdir(path, mode = 0o777) {
mode &= 511 | 512;
mode |= 16384;
return FS.mknod(path, mode, 0);
},
mkdirTree(path, mode) {
var dirs = path.split('/');
var d = '';
for (var dir of dirs) {
if (!dir) continue;
if (d || PATH.isAbs(path)) d += '/';
d += dir;
try {
FS.mkdir(d, mode);
} catch(e) {
if (e.errno != 20) throw e;
}
}
},
mkdev(path, mode, dev) {
if (typeof dev == 'undefined') {
dev = mode;
mode = 0o666;
}
mode |= 8192;
return FS.mknod(path, mode, dev);
},
symlink(oldpath, newpath) {
if (!PATH_FS.resolve(oldpath)) {
throw new FS.ErrnoError(44);
}
var lookup = FS.lookupPath(newpath, { parent: true });
var parent = lookup.node;
if (!parent) {
throw new FS.ErrnoError(44);
}
var newname = PATH.basename(newpath);
var errCode = FS.mayCreate(parent, newname);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
if (!parent.node_ops.symlink) {
throw new FS.ErrnoError(63);
}
return parent.node_ops.symlink(parent, newname, oldpath);
},
rename(old_path, new_path) {
var old_dirname = PATH.dirname(old_path);
var new_dirname = PATH.dirname(new_path);
var old_name = PATH.basename(old_path);
var new_name = PATH.basename(new_path);
// parents must exist
var lookup, old_dir, new_dir;
// let the errors from non existent directories percolate up
lookup = FS.lookupPath(old_path, { parent: true });
old_dir = lookup.node;
lookup = FS.lookupPath(new_path, { parent: true });
new_dir = lookup.node;
if (!old_dir || !new_dir) throw new FS.ErrnoError(44);
// need to be part of the same mount
if (old_dir.mount !== new_dir.mount) {
throw new FS.ErrnoError(75);
}
// source must exist
var old_node = FS.lookupNode(old_dir, old_name);
// old path should not be an ancestor of the new path
var relative = PATH_FS.relative(old_path, new_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(28);
}
// new path should not be an ancestor of the old path
relative = PATH_FS.relative(new_path, old_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(55);
}
// see if the new path already exists
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {
// not fatal
}
// early out if nothing needs to change
if (old_node === new_node) {
return;
}
// we'll need to delete the old entry
var isdir = FS.isDir(old_node.mode);
var errCode = FS.mayDelete(old_dir, old_name, isdir);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
// need delete permissions if we'll be overwriting.
// need create permissions if new doesn't already exist.
errCode = new_node ?
FS.mayDelete(new_dir, new_name, isdir) :
FS.mayCreate(new_dir, new_name);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
if (!old_dir.node_ops.rename) {
throw new FS.ErrnoError(63);
}
if (FS.isMountpoint(old_node) || (new_node && FS.isMountpoint(new_node))) {
throw new FS.ErrnoError(10);
}
// if we are going to change the parent, check write permissions
if (new_dir !== old_dir) {
errCode = FS.nodePermissions(old_dir, 'w');
if (errCode) {
throw new FS.ErrnoError(errCode);
}
}
// remove the node from the lookup hash
FS.hashRemoveNode(old_node);
// do the underlying fs rename
try {
old_dir.node_ops.rename(old_node, new_dir, new_name);
// update old node (we do this here to avoid each backend
// needing to)
old_node.parent = new_dir;
} catch (e) {
throw e;
} finally {
// add the node back to the hash (in case node_ops.rename
// changed its name)
FS.hashAddNode(old_node);
}
},
rmdir(path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var errCode = FS.mayDelete(parent, name, true);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
if (!parent.node_ops.rmdir) {
throw new FS.ErrnoError(63);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(10);
}
parent.node_ops.rmdir(parent, name);
FS.destroyNode(node);
},
readdir(path) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
var readdir = FS.checkOpExists(node.node_ops.readdir, 54);
return readdir(node);
},
unlink(path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
if (!parent) {
throw new FS.ErrnoError(44);
}
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var errCode = FS.mayDelete(parent, name, false);
if (errCode) {
// According to POSIX, we should map EISDIR to EPERM, but
// we instead do what Linux does (and we must, as we use
// the musl linux libc).
throw new FS.ErrnoError(errCode);
}
if (!parent.node_ops.unlink) {
throw new FS.ErrnoError(63);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(10);
}
parent.node_ops.unlink(parent, name);
FS.destroyNode(node);
},
readlink(path) {
var lookup = FS.lookupPath(path);
var link = lookup.node;
if (!link) {
throw new FS.ErrnoError(44);
}
if (!link.node_ops.readlink) {
throw new FS.ErrnoError(28);
}
return link.node_ops.readlink(link);
},
stat(path, dontFollow) {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
var node = lookup.node;
var getattr = FS.checkOpExists(node.node_ops.getattr, 63);
return getattr(node);
},
fstat(fd) {
var stream = FS.getStreamChecked(fd);
var node = stream.node;
var getattr = stream.stream_ops.getattr;
var arg = getattr ? stream : node;
getattr ??= node.node_ops.getattr;
FS.checkOpExists(getattr, 63)
return getattr(arg);
},
lstat(path) {
return FS.stat(path, true);
},
doChmod(stream, node, mode, dontFollow) {
FS.doSetAttr(stream, node, {
mode: (mode & 4095) | (node.mode & ~4095),
ctime: Date.now(),
dontFollow
});
},
chmod(path, mode, dontFollow) {
var node;
if (typeof path == 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
FS.doChmod(null, node, mode, dontFollow);
},
lchmod(path, mode) {
FS.chmod(path, mode, true);
},
fchmod(fd, mode) {
var stream = FS.getStreamChecked(fd);
FS.doChmod(stream, stream.node, mode, false);
},
doChown(stream, node, dontFollow) {
FS.doSetAttr(stream, node, {
timestamp: Date.now(),
dontFollow
// we ignore the uid / gid for now
});
},
chown(path, uid, gid, dontFollow) {
var node;
if (typeof path == 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
FS.doChown(null, node, dontFollow);
},
lchown(path, uid, gid) {
FS.chown(path, uid, gid, true);
},
fchown(fd, uid, gid) {
var stream = FS.getStreamChecked(fd);
FS.doChown(stream, stream.node, false);
},
doTruncate(stream, node, len) {
if (FS.isDir(node.mode)) {
throw new FS.ErrnoError(31);
}
if (!FS.isFile(node.mode)) {
throw new FS.ErrnoError(28);
}
var errCode = FS.nodePermissions(node, 'w');
if (errCode) {
throw new FS.ErrnoError(errCode);
}
FS.doSetAttr(stream, node, {
size: len,
timestamp: Date.now()
});
},
truncate(path, len) {
if (len < 0) {
throw new FS.ErrnoError(28);
}
var node;
if (typeof path == 'string') {
var lookup = FS.lookupPath(path, { follow: true });
node = lookup.node;
} else {
node = path;
}
FS.doTruncate(null, node, len);
},
ftruncate(fd, len) {
var stream = FS.getStreamChecked(fd);
if (len < 0 || (stream.flags & 2097155) === 0) {
throw new FS.ErrnoError(28);
}
FS.doTruncate(stream, stream.node, len);
},
utime(path, atime, mtime) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
var setattr = FS.checkOpExists(node.node_ops.setattr, 63);
setattr(node, {
atime: atime,
mtime: mtime
});
},
open(path, flags, mode = 0o666) {
if (path === "") {
throw new FS.ErrnoError(44);
}
flags = typeof flags == 'string' ? FS_modeStringToFlags(flags) : flags;
if ((flags & 64)) {
mode = (mode & 4095) | 32768;
} else {
mode = 0;
}
var node;
var isDirPath;
if (typeof path == 'object') {
node = path;
} else {
isDirPath = path.endsWith("/");
// noent_okay makes it so that if the final component of the path
// doesn't exist, lookupPath returns `node: undefined`. `path` will be
// updated to point to the target of all symlinks.
var lookup = FS.lookupPath(path, {
follow: !(flags & 131072),
noent_okay: true
});
node = lookup.node;
path = lookup.path;
}
// perhaps we need to create the node
var created = false;
if ((flags & 64)) {
if (node) {
// if O_CREAT and O_EXCL are set, error out if the node already exists
if ((flags & 128)) {
throw new FS.ErrnoError(20);
}
} else if (isDirPath) {
throw new FS.ErrnoError(31);
} else {
// node doesn't exist, try to create it
// Ignore the permission bits here to ensure we can `open` this new
// file below. We use chmod below the apply the permissions once the
// file is open.
node = FS.mknod(path, mode | 0o777, 0);
created = true;
}
}
if (!node) {
throw new FS.ErrnoError(44);
}
// can't truncate a device
if (FS.isChrdev(node.mode)) {
flags &= ~512;
}
// if asked only for a directory, then this must be one
if ((flags & 65536) && !FS.isDir(node.mode)) {
throw new FS.ErrnoError(54);
}
// check permissions, if this is not a file we just created now (it is ok to
// create and write to a file with read-only permissions; it is read-only
// for later use)
if (!created) {
var errCode = FS.mayOpen(node, flags);
if (errCode) {
throw new FS.ErrnoError(errCode);
}
}
// do truncation if necessary
if ((flags & 512) && !created) {
FS.truncate(node, 0);
}
// we've already handled these, don't pass down to the underlying vfs
flags &= ~(128 | 512 | 131072);
// register the stream with the filesystem
var stream = FS.createStream({
node,
path: FS.getPath(node), // we want the absolute path to the node
flags,
seekable: true,
position: 0,
stream_ops: node.stream_ops,
// used by the file family libc calls (fopen, fwrite, ferror, etc.)
ungotten: [],
error: false
});
// call the new stream's open function
if (stream.stream_ops.open) {
stream.stream_ops.open(stream);
}
if (created) {
FS.chmod(node, mode & 0o777);
}
if (Module['logReadFiles'] && !(flags & 1)) {
if (!(path in FS.readFiles)) {
FS.readFiles[path] = 1;
}
}
return stream;
},
close(stream) {
if (FS.isClosed(stream)) {
throw new FS.ErrnoError(8);
}
if (stream.getdents) stream.getdents = null; // free readdir state
try {
if (stream.stream_ops.close) {
stream.stream_ops.close(stream);
}
} catch (e) {
throw e;
} finally {
FS.closeStream(stream.fd);
}
stream.fd = null;
},
isClosed(stream) {
return stream.fd === null;
},
llseek(stream, offset, whence) {
if (FS.isClosed(stream)) {
throw new FS.ErrnoError(8);
}
if (!stream.seekable || !stream.stream_ops.llseek) {
throw new FS.ErrnoError(70);
}
if (whence != 0 && whence != 1 && whence != 2) {
throw new FS.ErrnoError(28);
}
stream.position = stream.stream_ops.llseek(stream, offset, whence);
stream.ungotten = [];
return stream.position;
},
read(stream, buffer, offset, length, position) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(28);
}
if (FS.isClosed(stream)) {
throw new FS.ErrnoError(8);
}
if ((stream.flags & 2097155) === 1) {
throw new FS.ErrnoError(8);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(31);
}
if (!stream.stream_ops.read) {
throw new FS.ErrnoError(28);
}
var seeking = typeof position != 'undefined';
if (!seeking) {
position = stream.position;
} else if (!stream.seekable) {
throw new FS.ErrnoError(70);
}
var bytesRead = stream.stream_ops.read(stream, buffer, offset, length, position);
if (!seeking) stream.position += bytesRead;
return bytesRead;
},
write(stream, buffer, offset, length, position, canOwn) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(28);
}
if (FS.isClosed(stream)) {
throw new FS.ErrnoError(8);
}
if ((stream.flags & 2097155) === 0) {
throw new FS.ErrnoError(8);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(31);
}
if (!stream.stream_ops.write) {
throw new FS.ErrnoError(28);
}
if (stream.seekable && stream.flags & 1024) {
// seek to the end before writing in append mode
FS.llseek(stream, 0, 2);
}
var seeking = typeof position != 'undefined';
if (!seeking) {
position = stream.position;
} else if (!stream.seekable) {
throw new FS.ErrnoError(70);
}
var bytesWritten = stream.stream_ops.write(stream, buffer, offset, length, position, canOwn);
if (!seeking) stream.position += bytesWritten;
return bytesWritten;
},
mmap(stream, length, position, prot, flags) {
// User requests writing to file (prot & PROT_WRITE != 0).
// Checking if we have permissions to write to the file unless
// MAP_PRIVATE flag is set. According to POSIX spec it is possible
// to write to file opened in read-only mode with MAP_PRIVATE flag,
// as all modifications will be visible only in the memory of
// the current process.
if ((prot & 2) !== 0
&& (flags & 2) === 0
&& (stream.flags & 2097155) !== 2) {
throw new FS.ErrnoError(2);
}
if ((stream.flags & 2097155) === 1) {
throw new FS.ErrnoError(2);
}
if (!stream.stream_ops.mmap) {
throw new FS.ErrnoError(43);
}
if (!length) {
throw new FS.ErrnoError(28);
}
return stream.stream_ops.mmap(stream, length, position, prot, flags);
},
msync(stream, buffer, offset, length, mmapFlags) {
if (!stream.stream_ops.msync) {
return 0;
}
return stream.stream_ops.msync(stream, buffer, offset, length, mmapFlags);
},
ioctl(stream, cmd, arg) {
if (!stream.stream_ops.ioctl) {
throw new FS.ErrnoError(59);
}
return stream.stream_ops.ioctl(stream, cmd, arg);
},
readFile(path, opts = {}) {
opts.flags = opts.flags || 0;
opts.encoding = opts.encoding || 'binary';
if (opts.encoding !== 'utf8' && opts.encoding !== 'binary') {
throw new Error(`Invalid encoding type "${opts.encoding}"`);
}
var stream = FS.open(path, opts.flags);
var stat = FS.stat(path);
var length = stat.size;
var buf = new Uint8Array(length);
FS.read(stream, buf, 0, length, 0);
if (opts.encoding === 'utf8') {
buf = UTF8ArrayToString(buf);
}
FS.close(stream);
return buf;
},
writeFile(path, data, opts = {}) {
opts.flags = opts.flags || 577;
var stream = FS.open(path, opts.flags, opts.mode);
if (typeof data == 'string') {
data = new Uint8Array(intArrayFromString(data, true));
}
if (ArrayBuffer.isView(data)) {
FS.write(stream, data, 0, data.byteLength, undefined, opts.canOwn);
} else {
throw new Error('Unsupported data type');
}
FS.close(stream);
},
cwd:() => FS.currentPath,
chdir(path) {
var lookup = FS.lookupPath(path, { follow: true });
if (lookup.node === null) {
throw new FS.ErrnoError(44);
}
if (!FS.isDir(lookup.node.mode)) {
throw new FS.ErrnoError(54);
}
var errCode = FS.nodePermissions(lookup.node, 'x');
if (errCode) {
throw new FS.ErrnoError(errCode);
}
FS.currentPath = lookup.path;
},
createDefaultDirectories() {
FS.mkdir('/tmp');
FS.mkdir('/home');
FS.mkdir('/home/web_user');
},
createDefaultDevices() {
// create /dev
FS.mkdir('/dev');
// setup /dev/null
FS.registerDevice(FS.makedev(1, 3), {
read: () => 0,
write: (stream, buffer, offset, length, pos) => length,
llseek: () => 0,
});
FS.mkdev('/dev/null', FS.makedev(1, 3));
// setup /dev/tty and /dev/tty1
// stderr needs to print output using err() rather than out()
// so we register a second tty just for it.
TTY.register(FS.makedev(5, 0), TTY.default_tty_ops);
TTY.register(FS.makedev(6, 0), TTY.default_tty1_ops);
FS.mkdev('/dev/tty', FS.makedev(5, 0));
FS.mkdev('/dev/tty1', FS.makedev(6, 0));
// setup /dev/[u]random
// use a buffer to avoid overhead of individual crypto calls per byte
var randomBuffer = new Uint8Array(1024), randomLeft = 0;
var randomByte = () => {
if (randomLeft === 0) {
randomFill(randomBuffer);
randomLeft = randomBuffer.byteLength;
}
return randomBuffer[--randomLeft];
};
FS.createDevice('/dev', 'random', randomByte);
FS.createDevice('/dev', 'urandom', randomByte);
// we're not going to emulate the actual shm device,
// just create the tmp dirs that reside in it commonly
FS.mkdir('/dev/shm');
FS.mkdir('/dev/shm/tmp');
},
createSpecialDirectories() {
// create /proc/self/fd which allows /proc/self/fd/6 => readlink gives the
// name of the stream for fd 6 (see test_unistd_ttyname)
FS.mkdir('/proc');
var proc_self = FS.mkdir('/proc/self');
FS.mkdir('/proc/self/fd');
FS.mount({
mount() {
var node = FS.createNode(proc_self, 'fd', 16895, 73);
node.stream_ops = {
llseek: MEMFS.stream_ops.llseek,
};
node.node_ops = {
lookup(parent, name) {
var fd = +name;
var stream = FS.getStreamChecked(fd);
var ret = {
parent: null,
mount: { mountpoint: 'fake' },
node_ops: { readlink: () => stream.path },
id: fd + 1,
};
ret.parent = ret; // make it look like a simple root node
return ret;
},
readdir() {
return Array.from(FS.streams.entries())
.filter(([k, v]) => v)
.map(([k, v]) => k.toString());
}
};
return node;
}
}, {}, '/proc/self/fd');
},
createStandardStreams(input, output, error) {
// TODO deprecate the old functionality of a single
// input / output callback and that utilizes FS.createDevice
// and instead require a unique set of stream ops
// by default, we symlink the standard streams to the
// default tty devices. however, if the standard streams
// have been overwritten we create a unique device for
// them instead.
if (input) {
FS.createDevice('/dev', 'stdin', input);
} else {
FS.symlink('/dev/tty', '/dev/stdin');
}
if (output) {
FS.createDevice('/dev', 'stdout', null, output);
} else {
FS.symlink('/dev/tty', '/dev/stdout');
}
if (error) {
FS.createDevice('/dev', 'stderr', null, error);
} else {
FS.symlink('/dev/tty1', '/dev/stderr');
}
// open default streams for the stdin, stdout and stderr devices
var stdin = FS.open('/dev/stdin', 0);
var stdout = FS.open('/dev/stdout', 1);
var stderr = FS.open('/dev/stderr', 1);
},
staticInit() {
FS.nameTable = new Array(4096);
FS.mount(MEMFS, {}, '/');
FS.createDefaultDirectories();
FS.createDefaultDevices();
FS.createSpecialDirectories();
FS.filesystems = {
'MEMFS': MEMFS,
};
},
init(input, output, error) {
FS.initialized = true;
// Allow Module.stdin etc. to provide defaults, if none explicitly passed to us here
input ??= Module['stdin'];
output ??= Module['stdout'];
error ??= Module['stderr'];
FS.createStandardStreams(input, output, error);
},
quit() {
FS.initialized = false;
// force-flush all streams, so we get musl std streams printed out
// close all of our streams
for (var stream of FS.streams) {
if (stream) {
FS.close(stream);
}
}
},
findObject(path, dontResolveLastLink) {
var ret = FS.analyzePath(path, dontResolveLastLink);
if (!ret.exists) {
return null;
}
return ret.object;
},
analyzePath(path, dontResolveLastLink) {
// operate from within the context of the symlink's target
try {
var lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
path = lookup.path;
} catch (e) {
}
var ret = {
isRoot: false, exists: false, error: 0, name: null, path: null, object: null,
parentExists: false, parentPath: null, parentObject: null
};
try {
var lookup = FS.lookupPath(path, { parent: true });
ret.parentExists = true;
ret.parentPath = lookup.path;
ret.parentObject = lookup.node;
ret.name = PATH.basename(path);
lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
ret.exists = true;
ret.path = lookup.path;
ret.object = lookup.node;
ret.name = lookup.node.name;
ret.isRoot = lookup.path === '/';
} catch (e) {
ret.error = e.errno;
};
return ret;
},
createPath(parent, path, canRead, canWrite) {
parent = typeof parent == 'string' ? parent : FS.getPath(parent);
var parts = path.split('/').reverse();
while (parts.length) {
var part = parts.pop();
if (!part) continue;
var current = PATH.join2(parent, part);
try {
FS.mkdir(current);
} catch (e) {
if (e.errno != 20) throw e;
}
parent = current;
}
return current;
},
createFile(parent, name, properties, canRead, canWrite) {
var path = PATH.join2(typeof parent == 'string' ? parent : FS.getPath(parent), name);
var mode = FS_getMode(canRead, canWrite);
return FS.create(path, mode);
},
createDataFile(parent, name, data, canRead, canWrite, canOwn) {
var path = name;
if (parent) {
parent = typeof parent == 'string' ? parent : FS.getPath(parent);
path = name ? PATH.join2(parent, name) : parent;
}
var mode = FS_getMode(canRead, canWrite);
var node = FS.create(path, mode);
if (data) {
if (typeof data == 'string') {
var arr = new Array(data.length);
for (var i = 0, len = data.length; i < len; ++i) arr[i] = data.charCodeAt(i);
data = arr;
}
// make sure we can write to the file
FS.chmod(node, mode | 146);
var stream = FS.open(node, 577);
FS.write(stream, data, 0, data.length, 0, canOwn);
FS.close(stream);
FS.chmod(node, mode);
}
},
createDevice(parent, name, input, output) {
var path = PATH.join2(typeof parent == 'string' ? parent : FS.getPath(parent), name);
var mode = FS_getMode(!!input, !!output);
FS.createDevice.major ??= 64;
var dev = FS.makedev(FS.createDevice.major++, 0);
// Create a fake device that a set of stream ops to emulate
// the old behavior.
FS.registerDevice(dev, {
open(stream) {
stream.seekable = false;
},
close(stream) {
// flush any pending line data
if (output?.buffer?.length) {
output(10);
}
},
read(stream, buffer, offset, length, pos /* ignored */) {
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = input();
} catch (e) {
throw new FS.ErrnoError(29);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(6);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.atime = Date.now();
}
return bytesRead;
},
write(stream, buffer, offset, length, pos) {
for (var i = 0; i < length; i++) {
try {
output(buffer[offset+i]);
} catch (e) {
throw new FS.ErrnoError(29);
}
}
if (length) {
stream.node.mtime = stream.node.ctime = Date.now();
}
return i;
}
});
return FS.mkdev(path, mode, dev);
},
forceLoadFile(obj) {
if (obj.isDevice || obj.isFolder || obj.link || obj.contents) return true;
if (typeof XMLHttpRequest != 'undefined') {
throw new Error("Lazy loading should have been performed (contents set) in createLazyFile, but it was not. Lazy loading only works in web workers. Use --embed-file or --preload-file in emcc on the main thread.");
} else { // Command-line.
try {
obj.contents = readBinary(obj.url);
obj.usedBytes = obj.contents.length;
} catch (e) {
throw new FS.ErrnoError(29);
}
}
},
createLazyFile(parent, name, url, canRead, canWrite) {
// Lazy chunked Uint8Array (implements get and length from Uint8Array).
// Actual getting is abstracted away for eventual reuse.
class LazyUint8Array {
lengthKnown = false;
chunks = []; // Loaded chunks. Index is the chunk number
get(idx) {
if (idx > this.length-1 || idx < 0) {
return undefined;
}
var chunkOffset = idx % this.chunkSize;
var chunkNum = (idx / this.chunkSize)|0;
return this.getter(chunkNum)[chunkOffset];
}
setDataGetter(getter) {
this.getter = getter;
}
cacheLength() {
// Find length
var xhr = new XMLHttpRequest();
xhr.open('HEAD', url, false);
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
var datalength = Number(xhr.getResponseHeader("Content-length"));
var header;
var hasByteServing = (header = xhr.getResponseHeader("Accept-Ranges")) && header === "bytes";
var usesGzip = (header = xhr.getResponseHeader("Content-Encoding")) && header === "gzip";
var chunkSize = 1024*1024; // Chunk size in bytes
if (!hasByteServing) chunkSize = datalength;
// Function to get a range from the remote URL.
var doXHR = (from, to) => {
if (from > to) throw new Error("invalid range (" + from + ", " + to + ") or no bytes requested!");
if (to > datalength-1) throw new Error("only " + datalength + " bytes available! programmer error!");
// TODO: Use mozResponseArrayBuffer, responseStream, etc. if available.
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
if (datalength !== chunkSize) xhr.setRequestHeader("Range", "bytes=" + from + "-" + to);
// Some hints to the browser that we want binary data.
xhr.responseType = 'arraybuffer';
if (xhr.overrideMimeType) {
xhr.overrideMimeType('text/plain; charset=x-user-defined');
}
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
if (xhr.response !== undefined) {
return new Uint8Array(/** @type{Array<number>} */(xhr.response || []));
}
return intArrayFromString(xhr.responseText || '', true);
};
var lazyArray = this;
lazyArray.setDataGetter((chunkNum) => {
var start = chunkNum * chunkSize;
var end = (chunkNum+1) * chunkSize - 1; // including this byte
end = Math.min(end, datalength-1); // if datalength-1 is selected, this is the last block
if (typeof lazyArray.chunks[chunkNum] == 'undefined') {
lazyArray.chunks[chunkNum] = doXHR(start, end);
}
if (typeof lazyArray.chunks[chunkNum] == 'undefined') throw new Error('doXHR failed!');
return lazyArray.chunks[chunkNum];
});
if (usesGzip || !datalength) {
// if the server uses gzip or doesn't supply the length, we have to download the whole file to get the (uncompressed) length
chunkSize = datalength = 1; // this will force getter(0)/doXHR do download the whole file
datalength = this.getter(0).length;
chunkSize = datalength;
out("LazyFiles on gzip forces download of the whole file when length is accessed");
}
this._length = datalength;
this._chunkSize = chunkSize;
this.lengthKnown = true;
}
get length() {
if (!this.lengthKnown) {
this.cacheLength();
}
return this._length;
}
get chunkSize() {
if (!this.lengthKnown) {
this.cacheLength();
}
return this._chunkSize;
}
}
if (typeof XMLHttpRequest != 'undefined') {
if (!ENVIRONMENT_IS_WORKER) throw 'Cannot do synchronous binary XHRs outside webworkers in modern browsers. Use --embed-file or --preload-file in emcc';
var lazyArray = new LazyUint8Array();
var properties = { isDevice: false, contents: lazyArray };
} else {
var properties = { isDevice: false, url: url };
}
var node = FS.createFile(parent, name, properties, canRead, canWrite);
// This is a total hack, but I want to get this lazy file code out of the
// core of MEMFS. If we want to keep this lazy file concept I feel it should
// be its own thin LAZYFS proxying calls to MEMFS.
if (properties.contents) {
node.contents = properties.contents;
} else if (properties.url) {
node.contents = null;
node.url = properties.url;
}
// Add a function that defers querying the file size until it is asked the first time.
Object.defineProperties(node, {
usedBytes: {
get: function() { return this.contents.length; }
}
});
// override each stream op with one that tries to force load the lazy file first
var stream_ops = {};
var keys = Object.keys(node.stream_ops);
keys.forEach((key) => {
var fn = node.stream_ops[key];
stream_ops[key] = (...args) => {
FS.forceLoadFile(node);
return fn(...args);
};
});
function writeChunks(stream, buffer, offset, length, position) {
var contents = stream.node.contents;
if (position >= contents.length)
return 0;
var size = Math.min(contents.length - position, length);
if (contents.slice) { // normal array
for (var i = 0; i < size; i++) {
buffer[offset + i] = contents[position + i];
}
} else {
for (var i = 0; i < size; i++) { // LazyUint8Array from sync binary XHR
buffer[offset + i] = contents.get(position + i);
}
}
return size;
}
// use a custom read function
stream_ops.read = (stream, buffer, offset, length, position) => {
FS.forceLoadFile(node);
return writeChunks(stream, buffer, offset, length, position)
};
// use a custom mmap function
stream_ops.mmap = (stream, length, position, prot, flags) => {
FS.forceLoadFile(node);
var ptr = mmapAlloc(length);
if (!ptr) {
throw new FS.ErrnoError(48);
}
writeChunks(stream, HEAP8, ptr, length, position);
return { ptr, allocated: true };
};
node.stream_ops = stream_ops;
return node;
},
};
/**
* Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the
* emscripten HEAP, returns a copy of that string as a Javascript String object.
*
* @param {number} ptr
* @param {number=} maxBytesToRead - An optional length that specifies the
* maximum number of bytes to read. You can omit this parameter to scan the
* string until the first 0 byte. If maxBytesToRead is passed, and the string
* at [ptr, ptr+maxBytesToReadr[ contains a null byte in the middle, then the
* string will cut short at that byte index (i.e. maxBytesToRead will not
* produce a string of exact length [ptr, ptr+maxBytesToRead[) N.B. mixing
* frequent uses of UTF8ToString() with and without maxBytesToRead may throw
* JS JIT optimizations off, so it is worth to consider consistently using one
* @return {string}
*/
var UTF8ToString = (ptr, maxBytesToRead) => {
return ptr ? UTF8ArrayToString(HEAPU8, ptr, maxBytesToRead) : '';
};
var SYSCALLS = {
DEFAULT_POLLMASK:5,
calculateAt(dirfd, path, allowEmpty) {
if (PATH.isAbs(path)) {
return path;
}
// relative path
var dir;
if (dirfd === -100) {
dir = FS.cwd();
} else {
var dirstream = SYSCALLS.getStreamFromFD(dirfd);
dir = dirstream.path;
}
if (path.length == 0) {
if (!allowEmpty) {
throw new FS.ErrnoError(44);;
}
return dir;
}
return dir + '/' + path;
},
writeStat(buf, stat) {
HEAP32[((buf)>>2)] = stat.dev;
HEAP32[(((buf)+(4))>>2)] = stat.mode;
HEAPU32[(((buf)+(8))>>2)] = stat.nlink;
HEAP32[(((buf)+(12))>>2)] = stat.uid;
HEAP32[(((buf)+(16))>>2)] = stat.gid;
HEAP32[(((buf)+(20))>>2)] = stat.rdev;
HEAP64[(((buf)+(24))>>3)] = BigInt(stat.size);
HEAP32[(((buf)+(32))>>2)] = 4096;
HEAP32[(((buf)+(36))>>2)] = stat.blocks;
var atime = stat.atime.getTime();
var mtime = stat.mtime.getTime();
var ctime = stat.ctime.getTime();
HEAP64[(((buf)+(40))>>3)] = BigInt(Math.floor(atime / 1000));
HEAPU32[(((buf)+(48))>>2)] = (atime % 1000) * 1000 * 1000;
HEAP64[(((buf)+(56))>>3)] = BigInt(Math.floor(mtime / 1000));
HEAPU32[(((buf)+(64))>>2)] = (mtime % 1000) * 1000 * 1000;
HEAP64[(((buf)+(72))>>3)] = BigInt(Math.floor(ctime / 1000));
HEAPU32[(((buf)+(80))>>2)] = (ctime % 1000) * 1000 * 1000;
HEAP64[(((buf)+(88))>>3)] = BigInt(stat.ino);
return 0;
},
writeStatFs(buf, stats) {
HEAP32[(((buf)+(4))>>2)] = stats.bsize;
HEAP32[(((buf)+(40))>>2)] = stats.bsize;
HEAP32[(((buf)+(8))>>2)] = stats.blocks;
HEAP32[(((buf)+(12))>>2)] = stats.bfree;
HEAP32[(((buf)+(16))>>2)] = stats.bavail;
HEAP32[(((buf)+(20))>>2)] = stats.files;
HEAP32[(((buf)+(24))>>2)] = stats.ffree;
HEAP32[(((buf)+(28))>>2)] = stats.fsid;
HEAP32[(((buf)+(44))>>2)] = stats.flags; // ST_NOSUID
HEAP32[(((buf)+(36))>>2)] = stats.namelen;
},
doMsync(addr, stream, len, flags, offset) {
if (!FS.isFile(stream.node.mode)) {
throw new FS.ErrnoError(43);
}
if (flags & 2) {
// MAP_PRIVATE calls need not to be synced back to underlying fs
return 0;
}
var buffer = HEAPU8.slice(addr, addr + len);
FS.msync(stream, buffer, offset, len, flags);
},
getStreamFromFD(fd) {
var stream = FS.getStreamChecked(fd);
return stream;
},
varargs:undefined,
getStr(ptr) {
var ret = UTF8ToString(ptr);
return ret;
},
};
function ___syscall_fcntl64(fd, cmd, varargs) {
SYSCALLS.varargs = varargs;
try {
var stream = SYSCALLS.getStreamFromFD(fd);
switch (cmd) {
case 0: {
var arg = syscallGetVarargI();
if (arg < 0) {
return -28;
}
while (FS.streams[arg]) {
arg++;
}
var newStream;
newStream = FS.dupStream(stream, arg);
return newStream.fd;
}
case 1:
case 2:
return 0; // FD_CLOEXEC makes no sense for a single process.
case 3:
return stream.flags;
case 4: {
var arg = syscallGetVarargI();
stream.flags |= arg;
return 0;
}
case 12: {
var arg = syscallGetVarargP();
var offset = 0;
// We're always unlocked.
HEAP16[(((arg)+(offset))>>1)] = 2;
return 0;
}
case 13:
case 14:
// Pretend that the locking is successful. These are process-level locks,
// and Emscripten programs are a single process. If we supported linking a
// filesystem between programs, we'd need to do more here.
// See https://github.com/emscripten-core/emscripten/issues/23697
return 0;
}
return -28;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_fstat64(fd, buf) {
try {
return SYSCALLS.writeStat(buf, FS.fstat(fd));
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_ioctl(fd, op, varargs) {
SYSCALLS.varargs = varargs;
try {
var stream = SYSCALLS.getStreamFromFD(fd);
switch (op) {
case 21509: {
if (!stream.tty) return -59;
return 0;
}
case 21505: {
if (!stream.tty) return -59;
if (stream.tty.ops.ioctl_tcgets) {
var termios = stream.tty.ops.ioctl_tcgets(stream);
var argp = syscallGetVarargP();
HEAP32[((argp)>>2)] = termios.c_iflag || 0;
HEAP32[(((argp)+(4))>>2)] = termios.c_oflag || 0;
HEAP32[(((argp)+(8))>>2)] = termios.c_cflag || 0;
HEAP32[(((argp)+(12))>>2)] = termios.c_lflag || 0;
for (var i = 0; i < 32; i++) {
HEAP8[(argp + i)+(17)] = termios.c_cc[i] || 0;
}
return 0;
}
return 0;
}
case 21510:
case 21511:
case 21512: {
if (!stream.tty) return -59;
return 0; // no-op, not actually adjusting terminal settings
}
case 21506:
case 21507:
case 21508: {
if (!stream.tty) return -59;
if (stream.tty.ops.ioctl_tcsets) {
var argp = syscallGetVarargP();
var c_iflag = HEAP32[((argp)>>2)];
var c_oflag = HEAP32[(((argp)+(4))>>2)];
var c_cflag = HEAP32[(((argp)+(8))>>2)];
var c_lflag = HEAP32[(((argp)+(12))>>2)];
var c_cc = []
for (var i = 0; i < 32; i++) {
c_cc.push(HEAP8[(argp + i)+(17)]);
}
return stream.tty.ops.ioctl_tcsets(stream.tty, op, { c_iflag, c_oflag, c_cflag, c_lflag, c_cc });
}
return 0; // no-op, not actually adjusting terminal settings
}
case 21519: {
if (!stream.tty) return -59;
var argp = syscallGetVarargP();
HEAP32[((argp)>>2)] = 0;
return 0;
}
case 21520: {
if (!stream.tty) return -59;
return -28; // not supported
}
case 21531: {
var argp = syscallGetVarargP();
return FS.ioctl(stream, op, argp);
}
case 21523: {
// TODO: in theory we should write to the winsize struct that gets
// passed in, but for now musl doesn't read anything on it
if (!stream.tty) return -59;
if (stream.tty.ops.ioctl_tiocgwinsz) {
var winsize = stream.tty.ops.ioctl_tiocgwinsz(stream.tty);
var argp = syscallGetVarargP();
HEAP16[((argp)>>1)] = winsize[0];
HEAP16[(((argp)+(2))>>1)] = winsize[1];
}
return 0;
}
case 21524: {
// TODO: technically, this ioctl call should change the window size.
// but, since emscripten doesn't have any concept of a terminal window
// yet, we'll just silently throw it away as we do TIOCGWINSZ
if (!stream.tty) return -59;
return 0;
}
case 21515: {
if (!stream.tty) return -59;
return 0;
}
default: return -28; // not supported
}
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_lstat64(path, buf) {
try {
path = SYSCALLS.getStr(path);
return SYSCALLS.writeStat(buf, FS.lstat(path));
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_newfstatat(dirfd, path, buf, flags) {
try {
path = SYSCALLS.getStr(path);
var nofollow = flags & 256;
var allowEmpty = flags & 4096;
flags = flags & (~6400);
path = SYSCALLS.calculateAt(dirfd, path, allowEmpty);
return SYSCALLS.writeStat(buf, nofollow ? FS.lstat(path) : FS.stat(path));
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_openat(dirfd, path, flags, varargs) {
SYSCALLS.varargs = varargs;
try {
path = SYSCALLS.getStr(path);
path = SYSCALLS.calculateAt(dirfd, path);
var mode = varargs ? syscallGetVarargI() : 0;
return FS.open(path, flags, mode).fd;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
function ___syscall_stat64(path, buf) {
try {
path = SYSCALLS.getStr(path);
return SYSCALLS.writeStat(buf, FS.stat(path));
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
}
var __abort_js = () =>
abort('');
var structRegistrations = {
};
var runDestructors = (destructors) => {
while (destructors.length) {
var ptr = destructors.pop();
var del = destructors.pop();
del(ptr);
}
};
/** @suppress {globalThis} */
function readPointer(pointer) {
return this['fromWireType'](HEAPU32[((pointer)>>2)]);
}
var awaitingDependencies = {
};
var registeredTypes = {
};
var typeDependencies = {
};
var InternalError = class InternalError extends Error { constructor(message) { super(message); this.name = 'InternalError'; }};
var throwInternalError = (message) => { throw new InternalError(message); };
var whenDependentTypesAreResolved = (myTypes, dependentTypes, getTypeConverters) => {
myTypes.forEach((type) => typeDependencies[type] = dependentTypes);
function onComplete(typeConverters) {
var myTypeConverters = getTypeConverters(typeConverters);
if (myTypeConverters.length !== myTypes.length) {
throwInternalError('Mismatched type converter count');
}
for (var i = 0; i < myTypes.length; ++i) {
registerType(myTypes[i], myTypeConverters[i]);
}
}
var typeConverters = new Array(dependentTypes.length);
var unregisteredTypes = [];
var registered = 0;
dependentTypes.forEach((dt, i) => {
if (registeredTypes.hasOwnProperty(dt)) {
typeConverters[i] = registeredTypes[dt];
} else {
unregisteredTypes.push(dt);
if (!awaitingDependencies.hasOwnProperty(dt)) {
awaitingDependencies[dt] = [];
}
awaitingDependencies[dt].push(() => {
typeConverters[i] = registeredTypes[dt];
++registered;
if (registered === unregisteredTypes.length) {
onComplete(typeConverters);
}
});
}
});
if (0 === unregisteredTypes.length) {
onComplete(typeConverters);
}
};
var __embind_finalize_value_object = (structType) => {
var reg = structRegistrations[structType];
delete structRegistrations[structType];
var rawConstructor = reg.rawConstructor;
var rawDestructor = reg.rawDestructor;
var fieldRecords = reg.fields;
var fieldTypes = fieldRecords.map((field) => field.getterReturnType).
concat(fieldRecords.map((field) => field.setterArgumentType));
whenDependentTypesAreResolved([structType], fieldTypes, (fieldTypes) => {
var fields = {};
fieldRecords.forEach((field, i) => {
var fieldName = field.fieldName;
var getterReturnType = fieldTypes[i];
var optional = fieldTypes[i].optional;
var getter = field.getter;
var getterContext = field.getterContext;
var setterArgumentType = fieldTypes[i + fieldRecords.length];
var setter = field.setter;
var setterContext = field.setterContext;
fields[fieldName] = {
read: (ptr) => getterReturnType['fromWireType'](getter(getterContext, ptr)),
write: (ptr, o) => {
var destructors = [];
setter(setterContext, ptr, setterArgumentType['toWireType'](destructors, o));
runDestructors(destructors);
},
optional,
};
});
return [{
name: reg.name,
'fromWireType': (ptr) => {
var rv = {};
for (var i in fields) {
rv[i] = fields[i].read(ptr);
}
rawDestructor(ptr);
return rv;
},
'toWireType': (destructors, o) => {
// todo: Here we have an opportunity for -O3 level "unsafe" optimizations:
// assume all fields are present without checking.
for (var fieldName in fields) {
if (!(fieldName in o) && !fields[fieldName].optional) {
throw new TypeError(`Missing field: "${fieldName}"`);
}
}
var ptr = rawConstructor();
for (fieldName in fields) {
fields[fieldName].write(ptr, o[fieldName]);
}
if (destructors !== null) {
destructors.push(rawDestructor, ptr);
}
return ptr;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': readPointer,
destructorFunction: rawDestructor,
}];
});
};
var AsciiToString = (ptr) => {
var str = '';
while (1) {
var ch = HEAPU8[ptr++];
if (!ch) return str;
str += String.fromCharCode(ch);
}
};
var BindingError = class BindingError extends Error { constructor(message) { super(message); this.name = 'BindingError'; }};
var throwBindingError = (message) => { throw new BindingError(message); };
/** @param {Object=} options */
function sharedRegisterType(rawType, registeredInstance, options = {}) {
var name = registeredInstance.name;
if (!rawType) {
throwBindingError(`type "${name}" must have a positive integer typeid pointer`);
}
if (registeredTypes.hasOwnProperty(rawType)) {
if (options.ignoreDuplicateRegistrations) {
return;
} else {
throwBindingError(`Cannot register type '${name}' twice`);
}
}
registeredTypes[rawType] = registeredInstance;
delete typeDependencies[rawType];
if (awaitingDependencies.hasOwnProperty(rawType)) {
var callbacks = awaitingDependencies[rawType];
delete awaitingDependencies[rawType];
callbacks.forEach((cb) => cb());
}
}
/** @param {Object=} options */
function registerType(rawType, registeredInstance, options = {}) {
return sharedRegisterType(rawType, registeredInstance, options);
}
var integerReadValueFromPointer = (name, width, signed) => {
// integers are quite common, so generate very specialized functions
switch (width) {
case 1: return signed ?
(pointer) => HEAP8[pointer] :
(pointer) => HEAPU8[pointer];
case 2: return signed ?
(pointer) => HEAP16[((pointer)>>1)] :
(pointer) => HEAPU16[((pointer)>>1)]
case 4: return signed ?
(pointer) => HEAP32[((pointer)>>2)] :
(pointer) => HEAPU32[((pointer)>>2)]
case 8: return signed ?
(pointer) => HEAP64[((pointer)>>3)] :
(pointer) => HEAPU64[((pointer)>>3)]
default:
throw new TypeError(`invalid integer width (${width}): ${name}`);
}
};
/** @suppress {globalThis} */
var __embind_register_bigint = (primitiveType, name, size, minRange, maxRange) => {
name = AsciiToString(name);
const isUnsignedType = minRange === 0n;
let fromWireType = (value) => value;
if (isUnsignedType) {
// uint64 get converted to int64 in ABI, fix them up like we do for 32-bit integers.
const bitSize = size * 8;
fromWireType = (value) => {
return BigInt.asUintN(bitSize, value);
}
maxRange = fromWireType(maxRange);
}
registerType(primitiveType, {
name,
'fromWireType': fromWireType,
'toWireType': (destructors, value) => {
if (typeof value == "number") {
value = BigInt(value);
}
return value;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': integerReadValueFromPointer(name, size, !isUnsignedType),
destructorFunction: null, // This type does not need a destructor
});
};
var GenericWireTypeSize = 8;
/** @suppress {globalThis} */
var __embind_register_bool = (rawType, name, trueValue, falseValue) => {
name = AsciiToString(name);
registerType(rawType, {
name,
'fromWireType': function(wt) {
// ambiguous emscripten ABI: sometimes return values are
// true or false, and sometimes integers (0 or 1)
return !!wt;
},
'toWireType': function(destructors, o) {
return o ? trueValue : falseValue;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': function(pointer) {
return this['fromWireType'](HEAPU8[pointer]);
},
destructorFunction: null, // This type does not need a destructor
});
};
var shallowCopyInternalPointer = (o) => {
return {
count: o.count,
deleteScheduled: o.deleteScheduled,
preservePointerOnDelete: o.preservePointerOnDelete,
ptr: o.ptr,
ptrType: o.ptrType,
smartPtr: o.smartPtr,
smartPtrType: o.smartPtrType,
};
};
var throwInstanceAlreadyDeleted = (obj) => {
function getInstanceTypeName(handle) {
return handle.$$.ptrType.registeredClass.name;
}
throwBindingError(getInstanceTypeName(obj) + ' instance already deleted');
};
var finalizationRegistry = false;
var detachFinalizer = (handle) => {};
var runDestructor = ($$) => {
if ($$.smartPtr) {
$$.smartPtrType.rawDestructor($$.smartPtr);
} else {
$$.ptrType.registeredClass.rawDestructor($$.ptr);
}
};
var releaseClassHandle = ($$) => {
$$.count.value -= 1;
var toDelete = 0 === $$.count.value;
if (toDelete) {
runDestructor($$);
}
};
var attachFinalizer = (handle) => {
if ('undefined' === typeof FinalizationRegistry) {
attachFinalizer = (handle) => handle;
return handle;
}
// If the running environment has a FinalizationRegistry (see
// https://github.com/tc39/proposal-weakrefs), then attach finalizers
// for class handles. We check for the presence of FinalizationRegistry
// at run-time, not build-time.
finalizationRegistry = new FinalizationRegistry((info) => {
releaseClassHandle(info.$$);
});
attachFinalizer = (handle) => {
var $$ = handle.$$;
var hasSmartPtr = !!$$.smartPtr;
if (hasSmartPtr) {
// We should not call the destructor on raw pointers in case other code expects the pointee to live
var info = { $$: $$ };
finalizationRegistry.register(handle, info, handle);
}
return handle;
};
detachFinalizer = (handle) => finalizationRegistry.unregister(handle);
return attachFinalizer(handle);
};
var deletionQueue = [];
var flushPendingDeletes = () => {
while (deletionQueue.length) {
var obj = deletionQueue.pop();
obj.$$.deleteScheduled = false;
obj['delete']();
}
};
var delayFunction;
var init_ClassHandle = () => {
let proto = ClassHandle.prototype;
Object.assign(proto, {
"isAliasOf"(other) {
if (!(this instanceof ClassHandle)) {
return false;
}
if (!(other instanceof ClassHandle)) {
return false;
}
var leftClass = this.$$.ptrType.registeredClass;
var left = this.$$.ptr;
other.$$ = /** @type {Object} */ (other.$$);
var rightClass = other.$$.ptrType.registeredClass;
var right = other.$$.ptr;
while (leftClass.baseClass) {
left = leftClass.upcast(left);
leftClass = leftClass.baseClass;
}
while (rightClass.baseClass) {
right = rightClass.upcast(right);
rightClass = rightClass.baseClass;
}
return leftClass === rightClass && left === right;
},
"clone"() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.preservePointerOnDelete) {
this.$$.count.value += 1;
return this;
} else {
var clone = attachFinalizer(Object.create(Object.getPrototypeOf(this), {
$$: {
value: shallowCopyInternalPointer(this.$$),
}
}));
clone.$$.count.value += 1;
clone.$$.deleteScheduled = false;
return clone;
}
},
"delete"() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) {
throwBindingError('Object already scheduled for deletion');
}
detachFinalizer(this);
releaseClassHandle(this.$$);
if (!this.$$.preservePointerOnDelete) {
this.$$.smartPtr = undefined;
this.$$.ptr = undefined;
}
},
"isDeleted"() {
return !this.$$.ptr;
},
"deleteLater"() {
if (!this.$$.ptr) {
throwInstanceAlreadyDeleted(this);
}
if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) {
throwBindingError('Object already scheduled for deletion');
}
deletionQueue.push(this);
if (deletionQueue.length === 1 && delayFunction) {
delayFunction(flushPendingDeletes);
}
this.$$.deleteScheduled = true;
return this;
},
});
// Support `using ...` from https://github.com/tc39/proposal-explicit-resource-management.
const symbolDispose = Symbol.dispose;
if (symbolDispose) {
proto[symbolDispose] = proto['delete'];
}
};
/** @constructor */
function ClassHandle() {
}
var createNamedFunction = (name, func) => Object.defineProperty(func, 'name', { value: name });
var registeredPointers = {
};
var ensureOverloadTable = (proto, methodName, humanName) => {
if (undefined === proto[methodName].overloadTable) {
var prevFunc = proto[methodName];
// Inject an overload resolver function that routes to the appropriate overload based on the number of arguments.
proto[methodName] = function(...args) {
// TODO This check can be removed in -O3 level "unsafe" optimizations.
if (!proto[methodName].overloadTable.hasOwnProperty(args.length)) {
throwBindingError(`Function '${humanName}' called with an invalid number of arguments (${args.length}) - expects one of (${proto[methodName].overloadTable})!`);
}
return proto[methodName].overloadTable[args.length].apply(this, args);
};
// Move the previous function into the overload table.
proto[methodName].overloadTable = [];
proto[methodName].overloadTable[prevFunc.argCount] = prevFunc;
}
};
/** @param {number=} numArguments */
var exposePublicSymbol = (name, value, numArguments) => {
if (Module.hasOwnProperty(name)) {
if (undefined === numArguments || (undefined !== Module[name].overloadTable && undefined !== Module[name].overloadTable[numArguments])) {
throwBindingError(`Cannot register public name '${name}' twice`);
}
// We are exposing a function with the same name as an existing function. Create an overload table and a function selector
// that routes between the two.
ensureOverloadTable(Module, name, name);
if (Module[name].overloadTable.hasOwnProperty(numArguments)) {
throwBindingError(`Cannot register multiple overloads of a function with the same number of arguments (${numArguments})!`);
}
// Add the new function into the overload table.
Module[name].overloadTable[numArguments] = value;
} else {
Module[name] = value;
Module[name].argCount = numArguments;
}
};
var char_0 = 48;
var char_9 = 57;
var makeLegalFunctionName = (name) => {
name = name.replace(/[^a-zA-Z0-9_]/g, '$');
var f = name.charCodeAt(0);
if (f >= char_0 && f <= char_9) {
return `_${name}`;
}
return name;
};
/** @constructor */
function RegisteredClass(name,
constructor,
instancePrototype,
rawDestructor,
baseClass,
getActualType,
upcast,
downcast) {
this.name = name;
this.constructor = constructor;
this.instancePrototype = instancePrototype;
this.rawDestructor = rawDestructor;
this.baseClass = baseClass;
this.getActualType = getActualType;
this.upcast = upcast;
this.downcast = downcast;
this.pureVirtualFunctions = [];
}
var upcastPointer = (ptr, ptrClass, desiredClass) => {
while (ptrClass !== desiredClass) {
if (!ptrClass.upcast) {
throwBindingError(`Expected null or instance of ${desiredClass.name}, got an instance of ${ptrClass.name}`);
}
ptr = ptrClass.upcast(ptr);
ptrClass = ptrClass.baseClass;
}
return ptr;
};
var embindRepr = (v) => {
if (v === null) {
return 'null';
}
var t = typeof v;
if (t === 'object' || t === 'array' || t === 'function') {
return v.toString();
} else {
return '' + v;
}
};
/** @suppress {globalThis} */
function constNoSmartPtrRawPointerToWireType(destructors, handle) {
if (handle === null) {
if (this.isReference) {
throwBindingError(`null is not a valid ${this.name}`);
}
return 0;
}
if (!handle.$$) {
throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`);
}
if (!handle.$$.ptr) {
throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`);
}
var handleClass = handle.$$.ptrType.registeredClass;
var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
return ptr;
}
/** @suppress {globalThis} */
function genericPointerToWireType(destructors, handle) {
var ptr;
if (handle === null) {
if (this.isReference) {
throwBindingError(`null is not a valid ${this.name}`);
}
if (this.isSmartPointer) {
ptr = this.rawConstructor();
if (destructors !== null) {
destructors.push(this.rawDestructor, ptr);
}
return ptr;
} else {
return 0;
}
}
if (!handle || !handle.$$) {
throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`);
}
if (!handle.$$.ptr) {
throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`);
}
if (!this.isConst && handle.$$.ptrType.isConst) {
throwBindingError(`Cannot convert argument of type ${(handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name)} to parameter type ${this.name}`);
}
var handleClass = handle.$$.ptrType.registeredClass;
ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
if (this.isSmartPointer) {
// TODO: this is not strictly true
// We could support BY_EMVAL conversions from raw pointers to smart pointers
// because the smart pointer can hold a reference to the handle
if (undefined === handle.$$.smartPtr) {
throwBindingError('Passing raw pointer to smart pointer is illegal');
}
switch (this.sharingPolicy) {
case 0: // NONE
// no upcasting
if (handle.$$.smartPtrType === this) {
ptr = handle.$$.smartPtr;
} else {
throwBindingError(`Cannot convert argument of type ${(handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name)} to parameter type ${this.name}`);
}
break;
case 1: // INTRUSIVE
ptr = handle.$$.smartPtr;
break;
case 2: // BY_EMVAL
if (handle.$$.smartPtrType === this) {
ptr = handle.$$.smartPtr;
} else {
var clonedHandle = handle['clone']();
ptr = this.rawShare(
ptr,
Emval.toHandle(() => clonedHandle['delete']())
);
if (destructors !== null) {
destructors.push(this.rawDestructor, ptr);
}
}
break;
default:
throwBindingError('Unsupporting sharing policy');
}
}
return ptr;
}
/** @suppress {globalThis} */
function nonConstNoSmartPtrRawPointerToWireType(destructors, handle) {
if (handle === null) {
if (this.isReference) {
throwBindingError(`null is not a valid ${this.name}`);
}
return 0;
}
if (!handle.$$) {
throwBindingError(`Cannot pass "${embindRepr(handle)}" as a ${this.name}`);
}
if (!handle.$$.ptr) {
throwBindingError(`Cannot pass deleted object as a pointer of type ${this.name}`);
}
if (handle.$$.ptrType.isConst) {
throwBindingError(`Cannot convert argument of type ${handle.$$.ptrType.name} to parameter type ${this.name}`);
}
var handleClass = handle.$$.ptrType.registeredClass;
var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass);
return ptr;
}
var downcastPointer = (ptr, ptrClass, desiredClass) => {
if (ptrClass === desiredClass) {
return ptr;
}
if (undefined === desiredClass.baseClass) {
return null; // no conversion
}
var rv = downcastPointer(ptr, ptrClass, desiredClass.baseClass);
if (rv === null) {
return null;
}
return desiredClass.downcast(rv);
};
var registeredInstances = {
};
var getBasestPointer = (class_, ptr) => {
if (ptr === undefined) {
throwBindingError('ptr should not be undefined');
}
while (class_.baseClass) {
ptr = class_.upcast(ptr);
class_ = class_.baseClass;
}
return ptr;
};
var getInheritedInstance = (class_, ptr) => {
ptr = getBasestPointer(class_, ptr);
return registeredInstances[ptr];
};
var makeClassHandle = (prototype, record) => {
if (!record.ptrType || !record.ptr) {
throwInternalError('makeClassHandle requires ptr and ptrType');
}
var hasSmartPtrType = !!record.smartPtrType;
var hasSmartPtr = !!record.smartPtr;
if (hasSmartPtrType !== hasSmartPtr) {
throwInternalError('Both smartPtrType and smartPtr must be specified');
}
record.count = { value: 1 };
return attachFinalizer(Object.create(prototype, {
$$: {
value: record,
writable: true,
},
}));
};
/** @suppress {globalThis} */
function RegisteredPointer_fromWireType(ptr) {
// ptr is a raw pointer (or a raw smartpointer)
// rawPointer is a maybe-null raw pointer
var rawPointer = this.getPointee(ptr);
if (!rawPointer) {
this.destructor(ptr);
return null;
}
var registeredInstance = getInheritedInstance(this.registeredClass, rawPointer);
if (undefined !== registeredInstance) {
// JS object has been neutered, time to repopulate it
if (0 === registeredInstance.$$.count.value) {
registeredInstance.$$.ptr = rawPointer;
registeredInstance.$$.smartPtr = ptr;
return registeredInstance['clone']();
} else {
// else, just increment reference count on existing object
// it already has a reference to the smart pointer
var rv = registeredInstance['clone']();
this.destructor(ptr);
return rv;
}
}
function makeDefaultHandle() {
if (this.isSmartPointer) {
return makeClassHandle(this.registeredClass.instancePrototype, {
ptrType: this.pointeeType,
ptr: rawPointer,
smartPtrType: this,
smartPtr: ptr,
});
} else {
return makeClassHandle(this.registeredClass.instancePrototype, {
ptrType: this,
ptr,
});
}
}
var actualType = this.registeredClass.getActualType(rawPointer);
var registeredPointerRecord = registeredPointers[actualType];
if (!registeredPointerRecord) {
return makeDefaultHandle.call(this);
}
var toType;
if (this.isConst) {
toType = registeredPointerRecord.constPointerType;
} else {
toType = registeredPointerRecord.pointerType;
}
var dp = downcastPointer(
rawPointer,
this.registeredClass,
toType.registeredClass);
if (dp === null) {
return makeDefaultHandle.call(this);
}
if (this.isSmartPointer) {
return makeClassHandle(toType.registeredClass.instancePrototype, {
ptrType: toType,
ptr: dp,
smartPtrType: this,
smartPtr: ptr,
});
} else {
return makeClassHandle(toType.registeredClass.instancePrototype, {
ptrType: toType,
ptr: dp,
});
}
}
var init_RegisteredPointer = () => {
Object.assign(RegisteredPointer.prototype, {
getPointee(ptr) {
if (this.rawGetPointee) {
ptr = this.rawGetPointee(ptr);
}
return ptr;
},
destructor(ptr) {
this.rawDestructor?.(ptr);
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': readPointer,
'fromWireType': RegisteredPointer_fromWireType,
});
};
/** @constructor
@param {*=} pointeeType,
@param {*=} sharingPolicy,
@param {*=} rawGetPointee,
@param {*=} rawConstructor,
@param {*=} rawShare,
@param {*=} rawDestructor,
*/
function RegisteredPointer(
name,
registeredClass,
isReference,
isConst,
// smart pointer properties
isSmartPointer,
pointeeType,
sharingPolicy,
rawGetPointee,
rawConstructor,
rawShare,
rawDestructor
) {
this.name = name;
this.registeredClass = registeredClass;
this.isReference = isReference;
this.isConst = isConst;
// smart pointer properties
this.isSmartPointer = isSmartPointer;
this.pointeeType = pointeeType;
this.sharingPolicy = sharingPolicy;
this.rawGetPointee = rawGetPointee;
this.rawConstructor = rawConstructor;
this.rawShare = rawShare;
this.rawDestructor = rawDestructor;
if (!isSmartPointer && registeredClass.baseClass === undefined) {
if (isConst) {
this['toWireType'] = constNoSmartPtrRawPointerToWireType;
this.destructorFunction = null;
} else {
this['toWireType'] = nonConstNoSmartPtrRawPointerToWireType;
this.destructorFunction = null;
}
} else {
this['toWireType'] = genericPointerToWireType;
// Here we must leave this.destructorFunction undefined, since whether genericPointerToWireType returns
// a pointer that needs to be freed up is runtime-dependent, and cannot be evaluated at registration time.
// TODO: Create an alternative mechanism that allows removing the use of var destructors = []; array in
// craftInvokerFunction altogether.
}
}
/** @param {number=} numArguments */
var replacePublicSymbol = (name, value, numArguments) => {
if (!Module.hasOwnProperty(name)) {
throwInternalError('Replacing nonexistent public symbol');
}
// If there's an overload table for this symbol, replace the symbol in the overload table instead.
if (undefined !== Module[name].overloadTable && undefined !== numArguments) {
Module[name].overloadTable[numArguments] = value;
} else {
Module[name] = value;
Module[name].argCount = numArguments;
}
};
var wasmTableMirror = [];
/** @type {WebAssembly.Table} */
var wasmTable;
var getWasmTableEntry = (funcPtr) => {
var func = wasmTableMirror[funcPtr];
if (!func) {
/** @suppress {checkTypes} */
wasmTableMirror[funcPtr] = func = wasmTable.get(funcPtr);
}
return func;
};
var embind__requireFunction = (signature, rawFunction, isAsync = false) => {
signature = AsciiToString(signature);
function makeDynCaller() {
var rtn = getWasmTableEntry(rawFunction);
return rtn;
}
var fp = makeDynCaller();
if (typeof fp != 'function') {
throwBindingError(`unknown function pointer with signature ${signature}: ${rawFunction}`);
}
return fp;
};
class UnboundTypeError extends Error {}
var getTypeName = (type) => {
var ptr = ___getTypeName(type);
var rv = AsciiToString(ptr);
_free(ptr);
return rv;
};
var throwUnboundTypeError = (message, types) => {
var unboundTypes = [];
var seen = {};
function visit(type) {
if (seen[type]) {
return;
}
if (registeredTypes[type]) {
return;
}
if (typeDependencies[type]) {
typeDependencies[type].forEach(visit);
return;
}
unboundTypes.push(type);
seen[type] = true;
}
types.forEach(visit);
throw new UnboundTypeError(`${message}: ` + unboundTypes.map(getTypeName).join([', ']));
};
var __embind_register_class = (rawType,
rawPointerType,
rawConstPointerType,
baseClassRawType,
getActualTypeSignature,
getActualType,
upcastSignature,
upcast,
downcastSignature,
downcast,
name,
destructorSignature,
rawDestructor) => {
name = AsciiToString(name);
getActualType = embind__requireFunction(getActualTypeSignature, getActualType);
upcast &&= embind__requireFunction(upcastSignature, upcast);
downcast &&= embind__requireFunction(downcastSignature, downcast);
rawDestructor = embind__requireFunction(destructorSignature, rawDestructor);
var legalFunctionName = makeLegalFunctionName(name);
exposePublicSymbol(legalFunctionName, function() {
// this code cannot run if baseClassRawType is zero
throwUnboundTypeError(`Cannot construct ${name} due to unbound types`, [baseClassRawType]);
});
whenDependentTypesAreResolved(
[rawType, rawPointerType, rawConstPointerType],
baseClassRawType ? [baseClassRawType] : [],
(base) => {
base = base[0];
var baseClass;
var basePrototype;
if (baseClassRawType) {
baseClass = base.registeredClass;
basePrototype = baseClass.instancePrototype;
} else {
basePrototype = ClassHandle.prototype;
}
var constructor = createNamedFunction(name, function(...args) {
if (Object.getPrototypeOf(this) !== instancePrototype) {
throw new BindingError(`Use 'new' to construct ${name}`);
}
if (undefined === registeredClass.constructor_body) {
throw new BindingError(`${name} has no accessible constructor`);
}
var body = registeredClass.constructor_body[args.length];
if (undefined === body) {
throw new BindingError(`Tried to invoke ctor of ${name} with invalid number of parameters (${args.length}) - expected (${Object.keys(registeredClass.constructor_body).toString()}) parameters instead!`);
}
return body.apply(this, args);
});
var instancePrototype = Object.create(basePrototype, {
constructor: { value: constructor },
});
constructor.prototype = instancePrototype;
var registeredClass = new RegisteredClass(name,
constructor,
instancePrototype,
rawDestructor,
baseClass,
getActualType,
upcast,
downcast);
if (registeredClass.baseClass) {
// Keep track of class hierarchy. Used to allow sub-classes to inherit class functions.
registeredClass.baseClass.__derivedClasses ??= [];
registeredClass.baseClass.__derivedClasses.push(registeredClass);
}
var referenceConverter = new RegisteredPointer(name,
registeredClass,
true,
false,
false);
var pointerConverter = new RegisteredPointer(name + '*',
registeredClass,
false,
false,
false);
var constPointerConverter = new RegisteredPointer(name + ' const*',
registeredClass,
false,
true,
false);
registeredPointers[rawType] = {
pointerType: pointerConverter,
constPointerType: constPointerConverter
};
replacePublicSymbol(legalFunctionName, constructor);
return [referenceConverter, pointerConverter, constPointerConverter];
}
);
};
var heap32VectorToArray = (count, firstElement) => {
var array = [];
for (var i = 0; i < count; i++) {
// TODO(https://github.com/emscripten-core/emscripten/issues/17310):
// Find a way to hoist the `>> 2` or `>> 3` out of this loop.
array.push(HEAPU32[(((firstElement)+(i * 4))>>2)]);
}
return array;
};
function usesDestructorStack(argTypes) {
// Skip return value at index 0 - it's not deleted here.
for (var i = 1; i < argTypes.length; ++i) {
// The type does not define a destructor function - must use dynamic stack
if (argTypes[i] !== null && argTypes[i].destructorFunction === undefined) {
return true;
}
}
return false;
}
function createJsInvoker(argTypes, isClassMethodFunc, returns, isAsync) {
var needsDestructorStack = usesDestructorStack(argTypes);
var argCount = argTypes.length - 2;
var argsList = [];
var argsListWired = ['fn'];
if (isClassMethodFunc) {
argsListWired.push('thisWired');
}
for (var i = 0; i < argCount; ++i) {
argsList.push(`arg${i}`)
argsListWired.push(`arg${i}Wired`)
}
argsList = argsList.join(',')
argsListWired = argsListWired.join(',')
var invokerFnBody = `return function (${argsList}) {\n`;
if (needsDestructorStack) {
invokerFnBody += "var destructors = [];\n";
}
var dtorStack = needsDestructorStack ? "destructors" : "null";
var args1 = ["humanName", "throwBindingError", "invoker", "fn", "runDestructors", "retType", "classParam"];
if (isClassMethodFunc) {
invokerFnBody += `var thisWired = classParam['toWireType'](${dtorStack}, this);\n`;
}
for (var i = 0; i < argCount; ++i) {
invokerFnBody += `var arg${i}Wired = argType${i}['toWireType'](${dtorStack}, arg${i});\n`;
args1.push(`argType${i}`);
}
invokerFnBody += (returns || isAsync ? "var rv = ":"") + `invoker(${argsListWired});\n`;
var returnVal = returns ? "rv" : "";
if (needsDestructorStack) {
invokerFnBody += "runDestructors(destructors);\n";
} else {
for (var i = isClassMethodFunc?1:2; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. Also skip class type if not a method.
var paramName = (i === 1 ? "thisWired" : ("arg"+(i - 2)+"Wired"));
if (argTypes[i].destructorFunction !== null) {
invokerFnBody += `${paramName}_dtor(${paramName});\n`;
args1.push(`${paramName}_dtor`);
}
}
}
if (returns) {
invokerFnBody += "var ret = retType['fromWireType'](rv);\n" +
"return ret;\n";
} else {
}
invokerFnBody += "}\n";
return [args1, invokerFnBody];
}
function craftInvokerFunction(humanName, argTypes, classType, cppInvokerFunc, cppTargetFunc, /** boolean= */ isAsync) {
// humanName: a human-readable string name for the function to be generated.
// argTypes: An array that contains the embind type objects for all types in the function signature.
// argTypes[0] is the type object for the function return value.
// argTypes[1] is the type object for function this object/class type, or null if not crafting an invoker for a class method.
// argTypes[2...] are the actual function parameters.
// classType: The embind type object for the class to be bound, or null if this is not a method of a class.
// cppInvokerFunc: JS Function object to the C++-side function that interops into C++ code.
// cppTargetFunc: Function pointer (an integer to FUNCTION_TABLE) to the target C++ function the cppInvokerFunc will end up calling.
// isAsync: Optional. If true, returns an async function. Async bindings are only supported with JSPI.
var argCount = argTypes.length;
if (argCount < 2) {
throwBindingError("argTypes array size mismatch! Must at least get return value and 'this' types!");
}
var isClassMethodFunc = (argTypes[1] !== null && classType !== null);
// Free functions with signature "void function()" do not need an invoker that marshalls between wire types.
// TODO: This omits argument count check - enable only at -O3 or similar.
// if (ENABLE_UNSAFE_OPTS && argCount == 2 && argTypes[0].name == "void" && !isClassMethodFunc) {
// return FUNCTION_TABLE[fn];
// }
// Determine if we need to use a dynamic stack to store the destructors for the function parameters.
// TODO: Remove this completely once all function invokers are being dynamically generated.
var needsDestructorStack = usesDestructorStack(argTypes);
var returns = (argTypes[0].name !== 'void');
var expectedArgCount = argCount - 2;
// Builld the arguments that will be passed into the closure around the invoker
// function.
var closureArgs = [humanName, throwBindingError, cppInvokerFunc, cppTargetFunc, runDestructors, argTypes[0], argTypes[1]];
for (var i = 0; i < argCount - 2; ++i) {
closureArgs.push(argTypes[i+2]);
}
if (!needsDestructorStack) {
// Skip return value at index 0 - it's not deleted here. Also skip class type if not a method.
for (var i = isClassMethodFunc?1:2; i < argTypes.length; ++i) {
if (argTypes[i].destructorFunction !== null) {
closureArgs.push(argTypes[i].destructorFunction);
}
}
}
let [args, invokerFnBody] = createJsInvoker(argTypes, isClassMethodFunc, returns, isAsync);
var invokerFn = new Function(...args, invokerFnBody)(...closureArgs);
return createNamedFunction(humanName, invokerFn);
}
var __embind_register_class_constructor = (
rawClassType,
argCount,
rawArgTypesAddr,
invokerSignature,
invoker,
rawConstructor
) => {
var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
invoker = embind__requireFunction(invokerSignature, invoker);
var args = [rawConstructor];
var destructors = [];
whenDependentTypesAreResolved([], [rawClassType], (classType) => {
classType = classType[0];
var humanName = `constructor ${classType.name}`;
if (undefined === classType.registeredClass.constructor_body) {
classType.registeredClass.constructor_body = [];
}
if (undefined !== classType.registeredClass.constructor_body[argCount - 1]) {
throw new BindingError(`Cannot register multiple constructors with identical number of parameters (${argCount-1}) for class '${classType.name}'! Overload resolution is currently only performed using the parameter count, not actual type info!`);
}
classType.registeredClass.constructor_body[argCount - 1] = () => {
throwUnboundTypeError(`Cannot construct ${classType.name} due to unbound types`, rawArgTypes);
};
whenDependentTypesAreResolved([], rawArgTypes, (argTypes) => {
// Insert empty slot for context type (argTypes[1]).
argTypes.splice(1, 0, null);
classType.registeredClass.constructor_body[argCount - 1] = craftInvokerFunction(humanName, argTypes, null, invoker, rawConstructor);
return [];
});
return [];
});
};
var getFunctionName = (signature) => {
signature = signature.trim();
const argsIndex = signature.indexOf("(");
if (argsIndex === -1) return signature;
return signature.slice(0, argsIndex);
};
var __embind_register_class_function = (rawClassType,
methodName,
argCount,
rawArgTypesAddr, // [ReturnType, ThisType, Args...]
invokerSignature,
rawInvoker,
context,
isPureVirtual,
isAsync,
isNonnullReturn) => {
var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
methodName = AsciiToString(methodName);
methodName = getFunctionName(methodName);
rawInvoker = embind__requireFunction(invokerSignature, rawInvoker, isAsync);
whenDependentTypesAreResolved([], [rawClassType], (classType) => {
classType = classType[0];
var humanName = `${classType.name}.${methodName}`;
if (methodName.startsWith("@@")) {
methodName = Symbol[methodName.substring(2)];
}
if (isPureVirtual) {
classType.registeredClass.pureVirtualFunctions.push(methodName);
}
function unboundTypesHandler() {
throwUnboundTypeError(`Cannot call ${humanName} due to unbound types`, rawArgTypes);
}
var proto = classType.registeredClass.instancePrototype;
var method = proto[methodName];
if (undefined === method || (undefined === method.overloadTable && method.className !== classType.name && method.argCount === argCount - 2)) {
// This is the first overload to be registered, OR we are replacing a
// function in the base class with a function in the derived class.
unboundTypesHandler.argCount = argCount - 2;
unboundTypesHandler.className = classType.name;
proto[methodName] = unboundTypesHandler;
} else {
// There was an existing function with the same name registered. Set up
// a function overload routing table.
ensureOverloadTable(proto, methodName, humanName);
proto[methodName].overloadTable[argCount - 2] = unboundTypesHandler;
}
whenDependentTypesAreResolved([], rawArgTypes, (argTypes) => {
var memberFunction = craftInvokerFunction(humanName, argTypes, classType, rawInvoker, context, isAsync);
// Replace the initial unbound-handler-stub function with the
// appropriate member function, now that all types are resolved. If
// multiple overloads are registered for this function, the function
// goes into an overload table.
if (undefined === proto[methodName].overloadTable) {
// Set argCount in case an overload is registered later
memberFunction.argCount = argCount - 2;
proto[methodName] = memberFunction;
} else {
proto[methodName].overloadTable[argCount - 2] = memberFunction;
}
return [];
});
return [];
});
};
var __embind_register_constant = (name, type, value) => {
name = AsciiToString(name);
whenDependentTypesAreResolved([], [type], (type) => {
type = type[0];
Module[name] = type['fromWireType'](value);
return [];
});
};
var emval_freelist = [];
var emval_handles = [0,1,,1,null,1,true,1,false,1];
var __emval_decref = (handle) => {
if (handle > 9 && 0 === --emval_handles[handle + 1]) {
emval_handles[handle] = undefined;
emval_freelist.push(handle);
}
};
var Emval = {
toValue:(handle) => {
if (!handle) {
throwBindingError(`Cannot use deleted val. handle = ${handle}`);
}
return emval_handles[handle];
},
toHandle:(value) => {
switch (value) {
case undefined: return 2;
case null: return 4;
case true: return 6;
case false: return 8;
default:{
const handle = emval_freelist.pop() || emval_handles.length;
emval_handles[handle] = value;
emval_handles[handle + 1] = 1;
return handle;
}
}
},
};
var EmValType = {
name: 'emscripten::val',
'fromWireType': (handle) => {
var rv = Emval.toValue(handle);
__emval_decref(handle);
return rv;
},
'toWireType': (destructors, value) => Emval.toHandle(value),
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': readPointer,
destructorFunction: null, // This type does not need a destructor
// TODO: do we need a deleteObject here? write a test where
// emval is passed into JS via an interface
};
var __embind_register_emval = (rawType) => registerType(rawType, EmValType);
var enumReadValueFromPointer = (name, width, signed) => {
switch (width) {
case 1: return signed ?
function(pointer) { return this['fromWireType'](HEAP8[pointer]) } :
function(pointer) { return this['fromWireType'](HEAPU8[pointer]) };
case 2: return signed ?
function(pointer) { return this['fromWireType'](HEAP16[((pointer)>>1)]) } :
function(pointer) { return this['fromWireType'](HEAPU16[((pointer)>>1)]) };
case 4: return signed ?
function(pointer) { return this['fromWireType'](HEAP32[((pointer)>>2)]) } :
function(pointer) { return this['fromWireType'](HEAPU32[((pointer)>>2)]) };
default:
throw new TypeError(`invalid integer width (${width}): ${name}`);
}
};
/** @suppress {globalThis} */
var __embind_register_enum = (rawType, name, size, isSigned) => {
name = AsciiToString(name);
function ctor() {}
ctor.values = {};
registerType(rawType, {
name,
constructor: ctor,
'fromWireType': function(c) {
return this.constructor.values[c];
},
'toWireType': (destructors, c) => c.value,
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': enumReadValueFromPointer(name, size, isSigned),
destructorFunction: null,
});
exposePublicSymbol(name, ctor);
};
var requireRegisteredType = (rawType, humanName) => {
var impl = registeredTypes[rawType];
if (undefined === impl) {
throwBindingError(`${humanName} has unknown type ${getTypeName(rawType)}`);
}
return impl;
};
var __embind_register_enum_value = (rawEnumType, name, enumValue) => {
var enumType = requireRegisteredType(rawEnumType, 'enum');
name = AsciiToString(name);
var Enum = enumType.constructor;
var Value = Object.create(enumType.constructor.prototype, {
value: {value: enumValue},
constructor: {value: createNamedFunction(`${enumType.name}_${name}`, function() {})},
});
Enum.values[enumValue] = Value;
Enum[name] = Value;
};
var floatReadValueFromPointer = (name, width) => {
switch (width) {
case 4: return function(pointer) {
return this['fromWireType'](HEAPF32[((pointer)>>2)]);
};
case 8: return function(pointer) {
return this['fromWireType'](HEAPF64[((pointer)>>3)]);
};
default:
throw new TypeError(`invalid float width (${width}): ${name}`);
}
};
var __embind_register_float = (rawType, name, size) => {
name = AsciiToString(name);
registerType(rawType, {
name,
'fromWireType': (value) => value,
'toWireType': (destructors, value) => {
// The VM will perform JS to Wasm value conversion, according to the spec:
// https://www.w3.org/TR/wasm-js-api-1/#towebassemblyvalue
return value;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': floatReadValueFromPointer(name, size),
destructorFunction: null, // This type does not need a destructor
});
};
var __embind_register_function = (name, argCount, rawArgTypesAddr, signature, rawInvoker, fn, isAsync, isNonnullReturn) => {
var argTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
name = AsciiToString(name);
name = getFunctionName(name);
rawInvoker = embind__requireFunction(signature, rawInvoker, isAsync);
exposePublicSymbol(name, function() {
throwUnboundTypeError(`Cannot call ${name} due to unbound types`, argTypes);
}, argCount - 1);
whenDependentTypesAreResolved([], argTypes, (argTypes) => {
var invokerArgsArray = [argTypes[0] /* return value */, null /* no class 'this'*/].concat(argTypes.slice(1) /* actual params */);
replacePublicSymbol(name, craftInvokerFunction(name, invokerArgsArray, null /* no class 'this'*/, rawInvoker, fn, isAsync), argCount - 1);
return [];
});
};
/** @suppress {globalThis} */
var __embind_register_integer = (primitiveType, name, size, minRange, maxRange) => {
name = AsciiToString(name);
const isUnsignedType = minRange === 0;
let fromWireType = (value) => value;
if (isUnsignedType) {
var bitshift = 32 - 8*size;
fromWireType = (value) => (value << bitshift) >>> bitshift;
maxRange = fromWireType(maxRange);
}
registerType(primitiveType, {
name,
'fromWireType': fromWireType,
'toWireType': (destructors, value) => {
// The VM will perform JS to Wasm value conversion, according to the spec:
// https://www.w3.org/TR/wasm-js-api-1/#towebassemblyvalue
return value;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': integerReadValueFromPointer(name, size, minRange !== 0),
destructorFunction: null, // This type does not need a destructor
});
};
var __embind_register_memory_view = (rawType, dataTypeIndex, name) => {
var typeMapping = [
Int8Array,
Uint8Array,
Int16Array,
Uint16Array,
Int32Array,
Uint32Array,
Float32Array,
Float64Array,
BigInt64Array,
BigUint64Array,
];
var TA = typeMapping[dataTypeIndex];
function decodeMemoryView(handle) {
var size = HEAPU32[((handle)>>2)];
var data = HEAPU32[(((handle)+(4))>>2)];
return new TA(HEAP8.buffer, data, size);
}
name = AsciiToString(name);
registerType(rawType, {
name,
'fromWireType': decodeMemoryView,
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': decodeMemoryView,
}, {
ignoreDuplicateRegistrations: true,
});
};
var stringToUTF8 = (str, outPtr, maxBytesToWrite) => {
return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite);
};
var __embind_register_std_string = (rawType, name) => {
name = AsciiToString(name);
var stdStringIsUTF8
= true;
registerType(rawType, {
name,
// For some method names we use string keys here since they are part of
// the public/external API and/or used by the runtime-generated code.
'fromWireType'(value) {
var length = HEAPU32[((value)>>2)];
var payload = value + 4;
var str;
if (stdStringIsUTF8) {
var decodeStartPtr = payload;
// Looping here to support possible embedded '0' bytes
for (var i = 0; i <= length; ++i) {
var currentBytePtr = payload + i;
if (i == length || HEAPU8[currentBytePtr] == 0) {
var maxRead = currentBytePtr - decodeStartPtr;
var stringSegment = UTF8ToString(decodeStartPtr, maxRead);
if (str === undefined) {
str = stringSegment;
} else {
str += String.fromCharCode(0);
str += stringSegment;
}
decodeStartPtr = currentBytePtr + 1;
}
}
} else {
var a = new Array(length);
for (var i = 0; i < length; ++i) {
a[i] = String.fromCharCode(HEAPU8[payload + i]);
}
str = a.join('');
}
_free(value);
return str;
},
'toWireType'(destructors, value) {
if (value instanceof ArrayBuffer) {
value = new Uint8Array(value);
}
var length;
var valueIsOfTypeString = (typeof value == 'string');
// We accept `string` or array views with single byte elements
if (!(valueIsOfTypeString || (ArrayBuffer.isView(value) && value.BYTES_PER_ELEMENT == 1))) {
throwBindingError('Cannot pass non-string to std::string');
}
if (stdStringIsUTF8 && valueIsOfTypeString) {
length = lengthBytesUTF8(value);
} else {
length = value.length;
}
// assumes POINTER_SIZE alignment
var base = _malloc(4 + length + 1);
var ptr = base + 4;
HEAPU32[((base)>>2)] = length;
if (valueIsOfTypeString) {
if (stdStringIsUTF8) {
stringToUTF8(value, ptr, length + 1);
} else {
for (var i = 0; i < length; ++i) {
var charCode = value.charCodeAt(i);
if (charCode > 255) {
_free(base);
throwBindingError('String has UTF-16 code units that do not fit in 8 bits');
}
HEAPU8[ptr + i] = charCode;
}
}
} else {
HEAPU8.set(value, ptr);
}
if (destructors !== null) {
destructors.push(_free, base);
}
return base;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': readPointer,
destructorFunction(ptr) {
_free(ptr);
},
});
};
var UTF16Decoder = typeof TextDecoder != 'undefined' ? new TextDecoder('utf-16le') : undefined;;
var UTF16ToString = (ptr, maxBytesToRead) => {
var idx = ((ptr)>>1);
var maxIdx = idx + maxBytesToRead / 2;
// TextDecoder needs to know the byte length in advance, it doesn't stop on
// null terminator by itself.
// Also, use the length info to avoid running tiny strings through
// TextDecoder, since .subarray() allocates garbage.
var endIdx = idx;
// If maxBytesToRead is not passed explicitly, it will be undefined, and this
// will always evaluate to true. This saves on code size.
while (!(endIdx >= maxIdx) && HEAPU16[endIdx]) ++endIdx;
if (endIdx - idx > 16 && UTF16Decoder)
return UTF16Decoder.decode(HEAPU16.subarray(idx, endIdx));
// Fallback: decode without UTF16Decoder
var str = '';
// If maxBytesToRead is not passed explicitly, it will be undefined, and the
// for-loop's condition will always evaluate to true. The loop is then
// terminated on the first null char.
for (var i = idx; !(i >= maxIdx); ++i) {
var codeUnit = HEAPU16[i];
if (codeUnit == 0) break;
// fromCharCode constructs a character from a UTF-16 code unit, so we can
// pass the UTF16 string right through.
str += String.fromCharCode(codeUnit);
}
return str;
};
var stringToUTF16 = (str, outPtr, maxBytesToWrite) => {
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
maxBytesToWrite ??= 0x7FFFFFFF;
if (maxBytesToWrite < 2) return 0;
maxBytesToWrite -= 2; // Null terminator.
var startPtr = outPtr;
var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length;
for (var i = 0; i < numCharsToWrite; ++i) {
// charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP.
var codeUnit = str.charCodeAt(i); // possibly a lead surrogate
HEAP16[((outPtr)>>1)] = codeUnit;
outPtr += 2;
}
// Null-terminate the pointer to the HEAP.
HEAP16[((outPtr)>>1)] = 0;
return outPtr - startPtr;
};
var lengthBytesUTF16 = (str) => str.length*2;
var UTF32ToString = (ptr, maxBytesToRead) => {
var str = '';
// If maxBytesToRead is not passed explicitly, it will be undefined, and this
// will always evaluate to true. This saves on code size.
for (var i = 0; !(i >= maxBytesToRead / 4); i++) {
var utf32 = HEAP32[(((ptr)+(i*4))>>2)];
if (!utf32) break;
str += String.fromCodePoint(utf32);
}
return str;
};
var stringToUTF32 = (str, outPtr, maxBytesToWrite) => {
// Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed.
maxBytesToWrite ??= 0x7FFFFFFF;
if (maxBytesToWrite < 4) return 0;
var startPtr = outPtr;
var endPtr = startPtr + maxBytesToWrite - 4;
for (var i = 0; i < str.length; ++i) {
var codePoint = str.codePointAt(i);
// Gotcha: if codePoint is over 0xFFFF, it is represented as a surrogate pair in UTF-16.
// We need to manually skip over the second code unit for correct iteration.
if (codePoint > 0xFFFF) {
i++;
}
HEAP32[((outPtr)>>2)] = codePoint;
outPtr += 4;
if (outPtr + 4 > endPtr) break;
}
// Null-terminate the pointer to the HEAP.
HEAP32[((outPtr)>>2)] = 0;
return outPtr - startPtr;
};
var lengthBytesUTF32 = (str) => {
var len = 0;
for (var i = 0; i < str.length; ++i) {
var codePoint = str.codePointAt(i);
// Gotcha: if codePoint is over 0xFFFF, it is represented as a surrogate pair in UTF-16.
// We need to manually skip over the second code unit for correct iteration.
if (codePoint > 0xFFFF) {
i++;
}
len += 4;
}
return len;
};
var __embind_register_std_wstring = (rawType, charSize, name) => {
name = AsciiToString(name);
var decodeString, encodeString, readCharAt, lengthBytesUTF;
if (charSize === 2) {
decodeString = UTF16ToString;
encodeString = stringToUTF16;
lengthBytesUTF = lengthBytesUTF16;
readCharAt = (pointer) => HEAPU16[((pointer)>>1)];
} else if (charSize === 4) {
decodeString = UTF32ToString;
encodeString = stringToUTF32;
lengthBytesUTF = lengthBytesUTF32;
readCharAt = (pointer) => HEAPU32[((pointer)>>2)];
}
registerType(rawType, {
name,
'fromWireType': (value) => {
// Code mostly taken from _embind_register_std_string fromWireType
var length = HEAPU32[((value)>>2)];
var str;
var decodeStartPtr = value + 4;
// Looping here to support possible embedded '0' bytes
for (var i = 0; i <= length; ++i) {
var currentBytePtr = value + 4 + i * charSize;
if (i == length || readCharAt(currentBytePtr) == 0) {
var maxReadBytes = currentBytePtr - decodeStartPtr;
var stringSegment = decodeString(decodeStartPtr, maxReadBytes);
if (str === undefined) {
str = stringSegment;
} else {
str += String.fromCharCode(0);
str += stringSegment;
}
decodeStartPtr = currentBytePtr + charSize;
}
}
_free(value);
return str;
},
'toWireType': (destructors, value) => {
if (!(typeof value == 'string')) {
throwBindingError(`Cannot pass non-string to C++ string type ${name}`);
}
// assumes POINTER_SIZE alignment
var length = lengthBytesUTF(value);
var ptr = _malloc(4 + length + charSize);
HEAPU32[((ptr)>>2)] = length / charSize;
encodeString(value, ptr + 4, length + charSize);
if (destructors !== null) {
destructors.push(_free, ptr);
}
return ptr;
},
argPackAdvance: GenericWireTypeSize,
'readValueFromPointer': readPointer,
destructorFunction(ptr) {
_free(ptr);
}
});
};
var __embind_register_value_object = (
rawType,
name,
constructorSignature,
rawConstructor,
destructorSignature,
rawDestructor
) => {
structRegistrations[rawType] = {
name: AsciiToString(name),
rawConstructor: embind__requireFunction(constructorSignature, rawConstructor),
rawDestructor: embind__requireFunction(destructorSignature, rawDestructor),
fields: [],
};
};
var __embind_register_value_object_field = (
structType,
fieldName,
getterReturnType,
getterSignature,
getter,
getterContext,
setterArgumentType,
setterSignature,
setter,
setterContext
) => {
structRegistrations[structType].fields.push({
fieldName: AsciiToString(fieldName),
getterReturnType,
getter: embind__requireFunction(getterSignature, getter),
getterContext,
setterArgumentType,
setter: embind__requireFunction(setterSignature, setter),
setterContext,
});
};
var __embind_register_void = (rawType, name) => {
name = AsciiToString(name);
registerType(rawType, {
isVoid: true, // void return values can be optimized out sometimes
name,
argPackAdvance: 0,
'fromWireType': () => undefined,
// TODO: assert if anything else is given?
'toWireType': (destructors, o) => undefined,
});
};
var __emscripten_throw_longjmp = () => {
throw Infinity;
};
var emval_returnValue = (returnType, destructorsRef, handle) => {
var destructors = [];
var result = returnType['toWireType'](destructors, handle);
if (destructors.length) {
// void, primitives and any other types w/o destructors don't need to allocate a handle
HEAPU32[((destructorsRef)>>2)] = Emval.toHandle(destructors);
}
return result;
};
var __emval_as = (handle, returnType, destructorsRef) => {
handle = Emval.toValue(handle);
returnType = requireRegisteredType(returnType, 'emval::as');
return emval_returnValue(returnType, destructorsRef, handle);
};
var emval_methodCallers = [];
var __emval_call = (caller, handle, destructorsRef, args) => {
caller = emval_methodCallers[caller];
handle = Emval.toValue(handle);
return caller(null, handle, destructorsRef, args);
};
var emval_symbols = {
};
var getStringOrSymbol = (address) => {
var symbol = emval_symbols[address];
if (symbol === undefined) {
return AsciiToString(address);
}
return symbol;
};
var __emval_call_method = (caller, objHandle, methodName, destructorsRef, args) => {
caller = emval_methodCallers[caller];
objHandle = Emval.toValue(objHandle);
methodName = getStringOrSymbol(methodName);
return caller(objHandle, objHandle[methodName], destructorsRef, args);
};
var emval_get_global = () => globalThis;
var __emval_get_global = (name) => {
if (name===0) {
return Emval.toHandle(emval_get_global());
} else {
name = getStringOrSymbol(name);
return Emval.toHandle(emval_get_global()[name]);
}
};
var emval_addMethodCaller = (caller) => {
var id = emval_methodCallers.length;
emval_methodCallers.push(caller);
return id;
};
var emval_lookupTypes = (argCount, argTypes) => {
var a = new Array(argCount);
for (var i = 0; i < argCount; ++i) {
a[i] = requireRegisteredType(HEAPU32[(((argTypes)+(i*4))>>2)],
`parameter ${i}`);
}
return a;
};
var __emval_get_method_caller = (argCount, argTypes, kind) => {
var types = emval_lookupTypes(argCount, argTypes);
var retType = types.shift();
argCount--; // remove the shifted off return type
var functionBody =
`return function (obj, func, destructorsRef, args) {\n`;
var offset = 0;
var argsList = []; // 'obj?, arg0, arg1, arg2, ... , argN'
if (kind === /* FUNCTION */ 0) {
argsList.push('obj');
}
var params = ['retType'];
var args = [retType];
for (var i = 0; i < argCount; ++i) {
argsList.push(`arg${i}`);
params.push(`argType${i}`);
args.push(types[i]);
functionBody +=
` var arg${i} = argType${i}.readValueFromPointer(args${offset ? '+' + offset : ''});\n`;
offset += types[i].argPackAdvance;
}
var invoker = kind === /* CONSTRUCTOR */ 1 ? 'new func' : 'func.call';
functionBody +=
` var rv = ${invoker}(${argsList.join(', ')});\n`;
if (!retType.isVoid) {
params.push('emval_returnValue');
args.push(emval_returnValue);
functionBody +=
' return emval_returnValue(retType, destructorsRef, rv);\n';
}
functionBody +=
"};\n";
var invokerFunction = new Function(...params, functionBody)(...args);
var functionName = `methodCaller<(${types.map(t => t.name).join(', ')}) => ${retType.name}>`;
return emval_addMethodCaller(createNamedFunction(functionName, invokerFunction));
};
var __emval_get_module_property = (name) => {
name = getStringOrSymbol(name);
return Emval.toHandle(Module[name]);
};
var __emval_get_property = (handle, key) => {
handle = Emval.toValue(handle);
key = Emval.toValue(key);
return Emval.toHandle(handle[key]);
};
var __emval_incref = (handle) => {
if (handle > 9) {
emval_handles[handle + 1] += 1;
}
};
var __emval_new_cstring = (v) => Emval.toHandle(getStringOrSymbol(v));
var __emval_run_destructors = (handle) => {
var destructors = Emval.toValue(handle);
runDestructors(destructors);
__emval_decref(handle);
};
var INT53_MAX = 9007199254740992;
var INT53_MIN = -9007199254740992;
var bigintToI53Checked = (num) => (num < INT53_MIN || num > INT53_MAX) ? NaN : Number(num);
function __mmap_js(len, prot, flags, fd, offset, allocated, addr) {
offset = bigintToI53Checked(offset);
try {
var stream = SYSCALLS.getStreamFromFD(fd);
var res = FS.mmap(stream, len, offset, prot, flags);
var ptr = res.ptr;
HEAP32[((allocated)>>2)] = res.allocated;
HEAPU32[((addr)>>2)] = ptr;
return 0;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
;
}
function __munmap_js(addr, len, prot, flags, fd, offset) {
offset = bigintToI53Checked(offset);
try {
var stream = SYSCALLS.getStreamFromFD(fd);
if (prot & 2) {
SYSCALLS.doMsync(addr, stream, len, flags, offset);
}
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return -e.errno;
}
;
}
var __tzset_js = (timezone, daylight, std_name, dst_name) => {
// TODO: Use (malleable) environment variables instead of system settings.
var currentYear = new Date().getFullYear();
var winter = new Date(currentYear, 0, 1);
var summer = new Date(currentYear, 6, 1);
var winterOffset = winter.getTimezoneOffset();
var summerOffset = summer.getTimezoneOffset();
// Local standard timezone offset. Local standard time is not adjusted for
// daylight savings. This code uses the fact that getTimezoneOffset returns
// a greater value during Standard Time versus Daylight Saving Time (DST).
// Thus it determines the expected output during Standard Time, and it
// compares whether the output of the given date the same (Standard) or less
// (DST).
var stdTimezoneOffset = Math.max(winterOffset, summerOffset);
// timezone is specified as seconds west of UTC ("The external variable
// `timezone` shall be set to the difference, in seconds, between
// Coordinated Universal Time (UTC) and local standard time."), the same
// as returned by stdTimezoneOffset.
// See http://pubs.opengroup.org/onlinepubs/009695399/functions/tzset.html
HEAPU32[((timezone)>>2)] = stdTimezoneOffset * 60;
HEAP32[((daylight)>>2)] = Number(winterOffset != summerOffset);
var extractZone = (timezoneOffset) => {
// Why inverse sign?
// Read here https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset
var sign = timezoneOffset >= 0 ? "-" : "+";
var absOffset = Math.abs(timezoneOffset)
var hours = String(Math.floor(absOffset / 60)).padStart(2, "0");
var minutes = String(absOffset % 60).padStart(2, "0");
return `UTC${sign}${hours}${minutes}`;
}
var winterName = extractZone(winterOffset);
var summerName = extractZone(summerOffset);
if (summerOffset < winterOffset) {
// Northern hemisphere
stringToUTF8(winterName, std_name, 17);
stringToUTF8(summerName, dst_name, 17);
} else {
stringToUTF8(winterName, dst_name, 17);
stringToUTF8(summerName, std_name, 17);
}
};
var _emscripten_get_now = () => performance.now();
var _emscripten_date_now = () => Date.now();
var nowIsMonotonic = 1;
var checkWasiClock = (clock_id) => clock_id >= 0 && clock_id <= 3;
function _clock_time_get(clk_id, ignored_precision, ptime) {
ignored_precision = bigintToI53Checked(ignored_precision);
if (!checkWasiClock(clk_id)) {
return 28;
}
var now;
// all wasi clocks but realtime are monotonic
if (clk_id === 0) {
now = _emscripten_date_now();
} else if (nowIsMonotonic) {
now = _emscripten_get_now();
} else {
return 52;
}
// "now" is in ms, and wasi times are in ns.
var nsec = Math.round(now * 1000 * 1000);
HEAP64[((ptime)>>3)] = BigInt(nsec);
return 0;
;
}
var getHeapMax = () =>
// Stay one Wasm page short of 4GB: while e.g. Chrome is able to allocate
// full 4GB Wasm memories, the size will wrap back to 0 bytes in Wasm side
// for any code that deals with heap sizes, which would require special
// casing all heap size related code to treat 0 specially.
2147483648;
var _emscripten_get_heap_max = () => getHeapMax();
var growMemory = (size) => {
var b = wasmMemory.buffer;
var pages = ((size - b.byteLength + 65535) / 65536) | 0;
try {
// round size grow request up to wasm page size (fixed 64KB per spec)
wasmMemory.grow(pages); // .grow() takes a delta compared to the previous size
updateMemoryViews();
return 1 /*success*/;
} catch(e) {
}
// implicit 0 return to save code size (caller will cast "undefined" into 0
// anyhow)
};
var _emscripten_resize_heap = (requestedSize) => {
var oldSize = HEAPU8.length;
// With CAN_ADDRESS_2GB or MEMORY64, pointers are already unsigned.
requestedSize >>>= 0;
// With multithreaded builds, races can happen (another thread might increase the size
// in between), so return a failure, and let the caller retry.
// Memory resize rules:
// 1. Always increase heap size to at least the requested size, rounded up
// to next page multiple.
// 2a. If MEMORY_GROWTH_LINEAR_STEP == -1, excessively resize the heap
// geometrically: increase the heap size according to
// MEMORY_GROWTH_GEOMETRIC_STEP factor (default +20%), At most
// overreserve by MEMORY_GROWTH_GEOMETRIC_CAP bytes (default 96MB).
// 2b. If MEMORY_GROWTH_LINEAR_STEP != -1, excessively resize the heap
// linearly: increase the heap size by at least
// MEMORY_GROWTH_LINEAR_STEP bytes.
// 3. Max size for the heap is capped at 2048MB-WASM_PAGE_SIZE, or by
// MAXIMUM_MEMORY, or by ASAN limit, depending on which is smallest
// 4. If we were unable to allocate as much memory, it may be due to
// over-eager decision to excessively reserve due to (3) above.
// Hence if an allocation fails, cut down on the amount of excess
// growth, in an attempt to succeed to perform a smaller allocation.
// A limit is set for how much we can grow. We should not exceed that
// (the wasm binary specifies it, so if we tried, we'd fail anyhow).
var maxHeapSize = getHeapMax();
if (requestedSize > maxHeapSize) {
return false;
}
// Loop through potential heap size increases. If we attempt a too eager
// reservation that fails, cut down on the attempted size and reserve a
// smaller bump instead. (max 3 times, chosen somewhat arbitrarily)
for (var cutDown = 1; cutDown <= 4; cutDown *= 2) {
var overGrownHeapSize = oldSize * (1 + 0.2 / cutDown); // ensure geometric growth
// but limit overreserving (default to capping at +96MB overgrowth at most)
overGrownHeapSize = Math.min(overGrownHeapSize, requestedSize + 100663296 );
var newSize = Math.min(maxHeapSize, alignMemory(Math.max(requestedSize, overGrownHeapSize), 65536));
var replacement = growMemory(newSize);
if (replacement) {
return true;
}
}
return false;
};
var ENV = {
};
var getExecutableName = () => thisProgram || './this.program';
var getEnvStrings = () => {
if (!getEnvStrings.strings) {
// Default values.
// Browser language detection #8751
var lang = ((typeof navigator == 'object' && navigator.language) || 'C').replace('-', '_') + '.UTF-8';
var env = {
'USER': 'web_user',
'LOGNAME': 'web_user',
'PATH': '/',
'PWD': '/',
'HOME': '/home/web_user',
'LANG': lang,
'_': getExecutableName()
};
// Apply the user-provided values, if any.
for (var x in ENV) {
// x is a key in ENV; if ENV[x] is undefined, that means it was
// explicitly set to be so. We allow user code to do that to
// force variables with default values to remain unset.
if (ENV[x] === undefined) delete env[x];
else env[x] = ENV[x];
}
var strings = [];
for (var x in env) {
strings.push(`${x}=${env[x]}`);
}
getEnvStrings.strings = strings;
}
return getEnvStrings.strings;
};
var _environ_get = (__environ, environ_buf) => {
var bufSize = 0;
var envp = 0;
for (var string of getEnvStrings()) {
var ptr = environ_buf + bufSize;
HEAPU32[(((__environ)+(envp))>>2)] = ptr;
bufSize += stringToUTF8(string, ptr, Infinity) + 1;
envp += 4;
}
return 0;
};
var _environ_sizes_get = (penviron_count, penviron_buf_size) => {
var strings = getEnvStrings();
HEAPU32[((penviron_count)>>2)] = strings.length;
var bufSize = 0;
for (var string of strings) {
bufSize += lengthBytesUTF8(string) + 1;
}
HEAPU32[((penviron_buf_size)>>2)] = bufSize;
return 0;
};
function _fd_close(fd) {
try {
var stream = SYSCALLS.getStreamFromFD(fd);
FS.close(stream);
return 0;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return e.errno;
}
}
/** @param {number=} offset */
var doReadv = (stream, iov, iovcnt, offset) => {
var ret = 0;
for (var i = 0; i < iovcnt; i++) {
var ptr = HEAPU32[((iov)>>2)];
var len = HEAPU32[(((iov)+(4))>>2)];
iov += 8;
var curr = FS.read(stream, HEAP8, ptr, len, offset);
if (curr < 0) return -1;
ret += curr;
if (curr < len) break; // nothing more to read
if (typeof offset != 'undefined') {
offset += curr;
}
}
return ret;
};
function _fd_read(fd, iov, iovcnt, pnum) {
try {
var stream = SYSCALLS.getStreamFromFD(fd);
var num = doReadv(stream, iov, iovcnt);
HEAPU32[((pnum)>>2)] = num;
return 0;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return e.errno;
}
}
function _fd_seek(fd, offset, whence, newOffset) {
offset = bigintToI53Checked(offset);
try {
if (isNaN(offset)) return 61;
var stream = SYSCALLS.getStreamFromFD(fd);
FS.llseek(stream, offset, whence);
HEAP64[((newOffset)>>3)] = BigInt(stream.position);
if (stream.getdents && offset === 0 && whence === 0) stream.getdents = null; // reset readdir state
return 0;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return e.errno;
}
;
}
/** @param {number=} offset */
var doWritev = (stream, iov, iovcnt, offset) => {
var ret = 0;
for (var i = 0; i < iovcnt; i++) {
var ptr = HEAPU32[((iov)>>2)];
var len = HEAPU32[(((iov)+(4))>>2)];
iov += 8;
var curr = FS.write(stream, HEAP8, ptr, len, offset);
if (curr < 0) return -1;
ret += curr;
if (curr < len) {
// No more space to write.
break;
}
if (typeof offset != 'undefined') {
offset += curr;
}
}
return ret;
};
function _fd_write(fd, iov, iovcnt, pnum) {
try {
var stream = SYSCALLS.getStreamFromFD(fd);
var num = doWritev(stream, iov, iovcnt);
HEAPU32[((pnum)>>2)] = num;
return 0;
} catch (e) {
if (typeof FS == 'undefined' || !(e.name === 'ErrnoError')) throw e;
return e.errno;
}
}
FS.createPreloadedFile = FS_createPreloadedFile;
FS.staticInit();;
// This error may happen quite a bit. To avoid overhead we reuse it (and
// suffer a lack of stack info).
MEMFS.doesNotExistError = new FS.ErrnoError(44);
/** @suppress {checkTypes} */
MEMFS.doesNotExistError.stack = '<generic error, no stack>';
;
init_ClassHandle();
init_RegisteredPointer();
// End JS library code
// include: postlibrary.js
// This file is included after the automatically-generated JS library code
// but before the wasm module is created.
{
// Begin ATMODULES hooks
if (Module['noExitRuntime']) noExitRuntime = Module['noExitRuntime'];
if (Module['preloadPlugins']) preloadPlugins = Module['preloadPlugins'];
if (Module['print']) out = Module['print'];
if (Module['printErr']) err = Module['printErr'];
if (Module['wasmBinary']) wasmBinary = Module['wasmBinary'];
// End ATMODULES hooks
if (Module['arguments']) arguments_ = Module['arguments'];
if (Module['thisProgram']) thisProgram = Module['thisProgram'];
}
// Begin runtime exports
// End runtime exports
// Begin JS library exports
// End JS library exports
// end include: postlibrary.js
// Imports from the Wasm binary.
var ___getTypeName,
_free,
_malloc,
_emscripten_builtin_memalign,
_setThrew,
__emscripten_stack_restore,
__emscripten_stack_alloc,
_emscripten_stack_get_current;
function assignWasmExports(wasmExports) {
___getTypeName = wasmExports['__getTypeName'];
_free = wasmExports['free'];
_malloc = wasmExports['malloc'];
_emscripten_builtin_memalign = wasmExports['emscripten_builtin_memalign'];
_setThrew = wasmExports['setThrew'];
__emscripten_stack_restore = wasmExports['_emscripten_stack_restore'];
__emscripten_stack_alloc = wasmExports['_emscripten_stack_alloc'];
_emscripten_stack_get_current = wasmExports['emscripten_stack_get_current'];
}
var wasmImports = {
/** @export */
__cxa_throw: ___cxa_throw,
/** @export */
__syscall_fcntl64: ___syscall_fcntl64,
/** @export */
__syscall_fstat64: ___syscall_fstat64,
/** @export */
__syscall_ioctl: ___syscall_ioctl,
/** @export */
__syscall_lstat64: ___syscall_lstat64,
/** @export */
__syscall_newfstatat: ___syscall_newfstatat,
/** @export */
__syscall_openat: ___syscall_openat,
/** @export */
__syscall_stat64: ___syscall_stat64,
/** @export */
_abort_js: __abort_js,
/** @export */
_embind_finalize_value_object: __embind_finalize_value_object,
/** @export */
_embind_register_bigint: __embind_register_bigint,
/** @export */
_embind_register_bool: __embind_register_bool,
/** @export */
_embind_register_class: __embind_register_class,
/** @export */
_embind_register_class_constructor: __embind_register_class_constructor,
/** @export */
_embind_register_class_function: __embind_register_class_function,
/** @export */
_embind_register_constant: __embind_register_constant,
/** @export */
_embind_register_emval: __embind_register_emval,
/** @export */
_embind_register_enum: __embind_register_enum,
/** @export */
_embind_register_enum_value: __embind_register_enum_value,
/** @export */
_embind_register_float: __embind_register_float,
/** @export */
_embind_register_function: __embind_register_function,
/** @export */
_embind_register_integer: __embind_register_integer,
/** @export */
_embind_register_memory_view: __embind_register_memory_view,
/** @export */
_embind_register_std_string: __embind_register_std_string,
/** @export */
_embind_register_std_wstring: __embind_register_std_wstring,
/** @export */
_embind_register_value_object: __embind_register_value_object,
/** @export */
_embind_register_value_object_field: __embind_register_value_object_field,
/** @export */
_embind_register_void: __embind_register_void,
/** @export */
_emscripten_throw_longjmp: __emscripten_throw_longjmp,
/** @export */
_emval_as: __emval_as,
/** @export */
_emval_call: __emval_call,
/** @export */
_emval_call_method: __emval_call_method,
/** @export */
_emval_decref: __emval_decref,
/** @export */
_emval_get_global: __emval_get_global,
/** @export */
_emval_get_method_caller: __emval_get_method_caller,
/** @export */
_emval_get_module_property: __emval_get_module_property,
/** @export */
_emval_get_property: __emval_get_property,
/** @export */
_emval_incref: __emval_incref,
/** @export */
_emval_new_cstring: __emval_new_cstring,
/** @export */
_emval_run_destructors: __emval_run_destructors,
/** @export */
_mmap_js: __mmap_js,
/** @export */
_munmap_js: __munmap_js,
/** @export */
_tzset_js: __tzset_js,
/** @export */
clock_time_get: _clock_time_get,
/** @export */
emscripten_date_now: _emscripten_date_now,
/** @export */
emscripten_get_heap_max: _emscripten_get_heap_max,
/** @export */
emscripten_get_now: _emscripten_get_now,
/** @export */
emscripten_resize_heap: _emscripten_resize_heap,
/** @export */
environ_get: _environ_get,
/** @export */
environ_sizes_get: _environ_sizes_get,
/** @export */
fd_close: _fd_close,
/** @export */
fd_read: _fd_read,
/** @export */
fd_seek: _fd_seek,
/** @export */
fd_write: _fd_write,
/** @export */
invoke_ii,
/** @export */
invoke_vi,
/** @export */
invoke_vii,
/** @export */
invoke_viii
};
var wasmExports = await createWasm();
function invoke_vi(index,a1) {
var sp = stackSave();
try {
getWasmTableEntry(index)(a1);
} catch(e) {
stackRestore(sp);
if (e !== e+0) throw e;
_setThrew(1, 0);
}
}
function invoke_viii(index,a1,a2,a3) {
var sp = stackSave();
try {
getWasmTableEntry(index)(a1,a2,a3);
} catch(e) {
stackRestore(sp);
if (e !== e+0) throw e;
_setThrew(1, 0);
}
}
function invoke_ii(index,a1) {
var sp = stackSave();
try {
return getWasmTableEntry(index)(a1);
} catch(e) {
stackRestore(sp);
if (e !== e+0) throw e;
_setThrew(1, 0);
}
}
function invoke_vii(index,a1,a2) {
var sp = stackSave();
try {
getWasmTableEntry(index)(a1,a2);
} catch(e) {
stackRestore(sp);
if (e !== e+0) throw e;
_setThrew(1, 0);
}
}
// include: postamble.js
// === Auto-generated postamble setup entry stuff ===
function run() {
if (runDependencies > 0) {
dependenciesFulfilled = run;
return;
}
preRun();
// a preRun added a dependency, run will be called later
if (runDependencies > 0) {
dependenciesFulfilled = run;
return;
}
function doRun() {
// run may have just been called through dependencies being fulfilled just in this very frame,
// or while the async setStatus time below was happening
Module['calledRun'] = true;
if (ABORT) return;
initRuntime();
readyPromiseResolve?.(Module);
Module['onRuntimeInitialized']?.();
postRun();
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(() => {
setTimeout(() => Module['setStatus'](''), 1);
doRun();
}, 1);
} else
{
doRun();
}
}
function preInit() {
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].shift()();
}
}
}
preInit();
run();
// end include: postamble.js
// include: postamble_modularize.js
// In MODULARIZE mode we wrap the generated code in a factory function
// and return either the Module itself, or a promise of the module.
//
// We assign to the `moduleRtn` global here and configure closure to see
// this as and extern so it won't get minified.
if (runtimeInitialized) {
moduleRtn = Module;
} else {
// Set up the promise that indicates the Module is initialized
moduleRtn = new Promise((resolve, reject) => {
readyPromiseResolve = resolve;
readyPromiseReject = reject;
});
}
// end include: postamble_modularize.js
return moduleRtn;
}
);
})();
if (typeof exports === 'object' && typeof module === 'object') {
module.exports = BASIS;
// This default export looks redundant, but it allows TS to import this
// commonjs style module.
module.exports.default = BASIS;
} else if (typeof define === 'function' && define['amd'])
define([], () => BASIS);