blob: 5b61c0ae2c7936574d666a87f9d1cbcf99bf0927 [file] [log] [blame]
package stepfit
import (
"math"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"go.skia.org/infra/go/vec32"
"go.skia.org/infra/perf/go/types"
)
const (
// x values are supplied but ignored in all the tests below.
x = vec32.MissingDataSentinel
// minStdDev is the minimum standard deviation used in all tests.
minStdDev = 0.1
)
func TestStepFit_Empty(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 0, StepSize: 0, Status: UNINTERESTING, Regression: 0},
GetStepFitAtMid([]float32{}, minStdDev, 20, types.OriginalStep))
}
func TestStepFit_SimpleStepUp(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -2.0412414, Status: HIGH, Regression: -20.412415},
GetStepFitAtMid([]float32{0, 0, 1, 1, 1}, minStdDev, 20, types.OriginalStep))
}
func TestStepFit_RealWorldExample(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 0.17183419, TurningPoint: 1, StepSize: -2.0251877, Regression: -11.785709, Status: "High"},
GetStepFitAtMid([]float32{608100,
672970,
653180}, minStdDev, 2, types.OriginalStep))
}
func TestStepFit_RealWorldExample_SlidingWindow_Comparisons(t *testing.T) {
// Visualization of the data generated by Gemini:
// -------------------------------------------------------
// | * *
// | * *
// | * * * * * * * *
// | * * * *
// |
// | * * *
// | * * * * * * * * * *
// | * *
// +-----------------------------------------------------> Time/Index
data := []float32{
90.851, 92.554, 91.193, 91.48547, 90.128, 91.268, 91.349, 92.264, 91.703, 90.687, 91.807,
91.564, 90.507, 91.64, 91.89145, 91.283, 95.879, 94.949, 95.22, 94.745, 95.321, 94.471, 96.363, 95.182, 95.259,
94.179, 94.02346, 96.905, 94.943, 96.395, 95.376,
}
const (
expectedTurningPointValue float32 = 95.879
interestingThreshold float32 = 2
)
// Result struct to hold what we need to verify
type windowResult struct {
maxAbsRegression float64
turningPointValue float32
}
// Helper to run the sliding window
analyzeWindow := func(windowSize int) windowResult {
t.Helper()
var maxRegression float32 = 0
var maxRegressionIndex = -1
var maxSF *StepFit
for i := 0; i+windowSize <= len(data); i++ {
window := data[i : i+windowSize]
sf := GetStepFitAtMid(window, minStdDev, interestingThreshold, types.CohenStep)
if math.Abs(float64(sf.Regression)) > math.Abs(float64(maxRegression)) {
maxRegression = sf.Regression
maxRegressionIndex = i
maxSF = sf
}
}
// Ensure we found a regression (test sanity check)
require.NotNil(t, maxSF, "Failed to find any regression for window size %d", windowSize)
// Resolve the value at the turning point relative to the window start:
// data[start_index + relative_offset]
actualValue := data[maxRegressionIndex+maxSF.TurningPoint]
return windowResult{
maxAbsRegression: math.Abs(float64(maxRegression)),
turningPointValue: actualValue,
}
}
// 1. Establish Baseline (Medium Window Size = 9)
// Reference values for Window 9:
// [ 0.333, -0.421, -0.761, -0.863, -0.271, 0.923, 0.193, 0.336, 0.197, -1.097,
// -1.490, -2.186, -7.053, -1.976, -1.083, -0.613, -0.213, -0.498, -0.473, 0.758,
// 0.230, 0.290, -0.289 ]
baselineWindowSize := 9
baselineRes := analyzeWindow(baselineWindowSize)
assert.Equal(t, expectedTurningPointValue, baselineRes.turningPointValue,
"Baseline window (9) failed to identify correct turning point")
tests := []struct {
name string
windowSize int
checkFunc func(t *testing.T, res windowResult, baselineReg float64)
}{
{
name: "Smaller Window (Size 6)",
windowSize: 6,
checkFunc: func(t *testing.T, res windowResult, baselineReg float64) {
// A. Check Invariant: Turning point location must not change
assert.Equal(t, expectedTurningPointValue, res.turningPointValue)
// B. Check Property: Less smoothing -> Higher Regression magnitude
assert.Greater(t, res.maxAbsRegression, baselineReg,
"Expected small window (6) to be more sensitive (higher regression) than baseline")
// Reference values for Window 6 (for understanding):
// [ 0.799, 1.079, 0.953, -1.084, -1.694, -0.566, 0.643, 1.279, -0.138,
// 0.014, 0.746, -1.081, -1.179, -1.741, -8.281, -0.797, 0.660, 0.763,
// -0.627, -0.448, -1.118, 0.560, 1.704, 0.220, -0.511, -3.510 ]
},
},
{
name: "Larger Window (Size 15)",
windowSize: 15,
checkFunc: func(t *testing.T, res windowResult, baselineReg float64) {
// A. Check Invariant: Turning point location must not change
assert.Equal(t, expectedTurningPointValue, res.turningPointValue)
// B. Check Property: More smoothing -> Lower Regression magnitude
assert.Less(t, res.maxAbsRegression, baselineReg,
"Expected large window (15) to be smoother (lower regression) than baseline")
// Reference values for Window 15 (for understanding):
// [-0.282, 0.093, 0.002, -0.668, -0.882, -1.134, -1.738, -2.232, -3.043,
// -6.551, -2.649, -2.049, -1.384, -0.947, -0.695, -0.554, 0.010 ]
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
res := analyzeWindow(tt.windowSize)
tt.checkFunc(t, res, baselineRes.maxAbsRegression)
})
}
}
func TestStepFit_SimpleStepDown(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: 2.0412414, Status: LOW, Regression: 20.412415},
GetStepFitAtMid([]float32{1, 1, 0, 0, 0}, minStdDev, 20, types.OriginalStep))
}
func TestStepFit_NoStep(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -1, Status: UNINTERESTING, Regression: -2.7105057e-19,
LeastSquares: 3.6893486e+18},
GetStepFitAtMid([]float32{1, 1, 1, 1, 1}, minStdDev, 50, types.OriginalStep))
}
func TestStepFit_Absolute_NoStep(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: 0, Status: UNINTERESTING, Regression: 0, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 2, 1, 2, x}, minStdDev, 1.0, types.AbsoluteStep))
}
func TestStepFit_Absolute_StepExactMatch(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -1, Status: HIGH, Regression: -1, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1, 2, 2, x}, minStdDev, 1.0, types.AbsoluteStep))
}
func TestStepFit_Absolute_StepTooSmall(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -0.5, Status: UNINTERESTING, Regression: -0.5, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1, 1.5, 1.5, x}, minStdDev, 1.0, types.AbsoluteStep))
}
func TestStepFit_Const_NoRegression(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -1, Status: UNINTERESTING, Regression: -1, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, 1, 0, x}, minStdDev, 2.0, types.Const))
}
func TestStepFit_Const_RegressionExactlyAtThreshhold(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: 0, Status: HIGH, Regression: -1, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, 1, 0, x}, minStdDev, 1.0, types.Const))
}
func TestStepFit_Const_RegressionAfterApplyingAbs(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: 1, Status: HIGH, Regression: -2, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, -2, 0, x}, minStdDev, 1.0, types.Const))
}
func TestStepFit_Percent_NoStep(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: 0, Status: UNINTERESTING, Regression: 0, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 2, 1, 2, x}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Percent_StepExactMatch(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 1, StepSize: -1, Status: HIGH, Regression: -1, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 2, x}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Percent_StepTooSmall(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 1, StepSize: -0.5, Status: UNINTERESTING, Regression: -0.5, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1.5, x}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Percent_DefendAgainstNegativeInf(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 1, StepSize: -math.MaxFloat32, Status: HIGH, Regression: -math.MaxFloat32, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, 1, 1}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Percent_DefendAgainstInf(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 1, StepSize: math.MaxFloat32, Status: LOW, Regression: math.MaxFloat32, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, -1, -1}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Percent_DefendAgainstNaN(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 1, StepSize: 0, Status: UNINTERESTING, Regression: 0, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{0, 0, 0, 0}, minStdDev, 1.0, types.PercentStep))
}
func TestStepFit_Cohen_NoStep(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 3, StepSize: -0.1999998, Status: UNINTERESTING, Regression: -0.1999998, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1.1, 0.9, 1.02, 1.12, 0.92, x}, minStdDev, 1.0, types.CohenStep))
}
func TestStepFit_Cohen_Step(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 3, StepSize: -0.1999998, Status: HIGH, Regression: -0.1999998, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1.1, 0.9, 1.02, 1.12, 0.92, x}, minStdDev, 0.1, types.CohenStep))
}
func TestStepFit_Cohen_StepWithZeroStandardDeviation(t *testing.T) {
assert.Equal(t,
&StepFit{TurningPoint: 2, StepSize: -10, Status: HIGH, Regression: -10, LeastSquares: InvalidLeastSquaresError},
GetStepFitAtMid([]float32{1, 1, 2, 2, x}, minStdDev, 0.2, types.CohenStep))
}
func TestStepFit_Cohen_StepWithLargeStandardDeviation(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: InvalidLeastSquaresError, TurningPoint: 2, StepSize: -2.828427, Regression: -2.828427, Status: "High"},
GetStepFitAtMid([]float32{1, 2, 3, 4, x}, minStdDev, 0.2, types.CohenStep))
}
func TestStepFit_MannWhitneyU_StepHigh(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 0, TurningPoint: 4, StepSize: -10, Regression: -0.028571428571428577 /* value copied from stats/utest_test.go:49 */, Status: "High"},
GetStepFitAtMid([]float32{2, 1, 3, 5, 12, 11, 13, 15, x}, minStdDev, 0.05, types.MannWhitneyU))
}
func TestStepFit_MannWhitneyU_StepLow(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 16, TurningPoint: 4, StepSize: 10, Regression: 0.028571428571428577 /* value copied from stats/utest_test.go:49 */, Status: "Low"},
GetStepFitAtMid([]float32{12, 11, 13, 15, 2, 1, 3, 5, x}, minStdDev, 0.05, types.MannWhitneyU))
}
func TestStepFit_MannWhitneyU_UninterestingBecauseInterestingThreshholdTooLow(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 16, TurningPoint: 4, StepSize: 10, Regression: 0.028571428571428577 /* value copied from stats/utest_test.go:49 */, Status: "Uninteresting"},
GetStepFitAtMid([]float32{12, 11, 13, 15, 2, 1, 3, 5, x}, minStdDev, 0.01, types.MannWhitneyU))
}
func TestStepFit_MannWhitneyU_UninterestingBecauseBothSidesAreEqual(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 8, TurningPoint: 4, StepSize: 0, Regression: 1, Status: "Uninteresting"},
GetStepFitAtMid([]float32{2, 1, 3, 5, 2, 1, 3, 5, x}, minStdDev, 0.01, types.MannWhitneyU))
}
func TestStepFit_MannWhitneyU_UninterestingBecauseBothSidesAreConstant(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 0, TurningPoint: 0, StepSize: 0, Regression: 0, Status: "Uninteresting"},
GetStepFitAtMid([]float32{1, 1, 1, 1, 1, 1, 1, 1, x}, minStdDev, 0.01, types.MannWhitneyU))
}
func TestStepFit_MannWhitneyU_UninterestingBecauseNotEnoughData(t *testing.T) {
assert.Equal(t,
&StepFit{LeastSquares: 0, TurningPoint: 0, StepSize: 0, Regression: 0, Status: "Uninteresting"},
GetStepFitAtMid([]float32{2, 2, x}, minStdDev, 0.01, types.MannWhitneyU))
}