| #pragma once |
| #ifndef XBYAK_XBYAK_H_ |
| #define XBYAK_XBYAK_H_ |
| /*! |
| @file xbyak.h |
| @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++ |
| @author herumi |
| @url https://github.com/herumi/xbyak |
| @note modified new BSD license |
| http://opensource.org/licenses/BSD-3-Clause |
| */ |
| #if (not +0) && !defined(XBYAK_NO_OP_NAMES) // trick to detect whether 'not' is operator or not |
| #define XBYAK_NO_OP_NAMES |
| #endif |
| |
| #include <stdio.h> // for debug print |
| #include <assert.h> |
| #include <list> |
| #include <string> |
| #include <algorithm> |
| #ifndef NDEBUG |
| #include <iostream> |
| #endif |
| |
| // #define XBYAK_DISABLE_AVX512 |
| |
| #if !defined(XBYAK_USE_MMAP_ALLOCATOR) && !defined(XBYAK_DONT_USE_MMAP_ALLOCATOR) |
| #define XBYAK_USE_MMAP_ALLOCATOR |
| #endif |
| #if !defined(__GNUC__) || defined(__MINGW32__) |
| #undef XBYAK_USE_MMAP_ALLOCATOR |
| #endif |
| |
| #ifdef __GNUC__ |
| #define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor)) |
| #else |
| #define XBYAK_GNUC_PREREQ(major, minor) 0 |
| #endif |
| |
| // This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft. |
| #if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\ |
| ((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__))) |
| #include <unordered_set> |
| #define XBYAK_STD_UNORDERED_SET std::unordered_set |
| #include <unordered_map> |
| #define XBYAK_STD_UNORDERED_MAP std::unordered_map |
| #define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap |
| |
| /* |
| Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using |
| libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version). |
| */ |
| #elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__) |
| #include <tr1/unordered_set> |
| #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set |
| #include <tr1/unordered_map> |
| #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map |
| #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap |
| |
| #elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600) |
| #include <unordered_set> |
| #define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set |
| #include <unordered_map> |
| #define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map |
| #define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap |
| |
| #else |
| #include <set> |
| #define XBYAK_STD_UNORDERED_SET std::set |
| #include <map> |
| #define XBYAK_STD_UNORDERED_MAP std::map |
| #define XBYAK_STD_UNORDERED_MULTIMAP std::multimap |
| #endif |
| #ifdef _WIN32 |
| #include <winsock2.h> |
| #include <windows.h> |
| #include <malloc.h> |
| #elif defined(__GNUC__) |
| #include <unistd.h> |
| #include <sys/mman.h> |
| #include <stdlib.h> |
| #endif |
| #if defined(__APPLE__) && !defined(XBYAK_DONT_USE_MAP_JIT) |
| #define XBYAK_USE_MAP_JIT |
| #include <sys/sysctl.h> |
| #ifndef MAP_JIT |
| #define MAP_JIT 0x800 |
| #endif |
| #endif |
| #if !defined(_MSC_VER) || (_MSC_VER >= 1600) |
| #include <stdint.h> |
| #endif |
| |
| #if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__)) |
| #define XBYAK64_WIN |
| #elif defined(__x86_64__) |
| #define XBYAK64_GCC |
| #endif |
| #if !defined(XBYAK64) && !defined(XBYAK32) |
| #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN) |
| #define XBYAK64 |
| #else |
| #define XBYAK32 |
| #endif |
| #endif |
| |
| #if (__cplusplus >= 201103) || (_MSC_VER >= 1800) |
| #define XBYAK_VARIADIC_TEMPLATE |
| #endif |
| |
| #ifdef _MSC_VER |
| #pragma warning(push) |
| #pragma warning(disable : 4514) /* remove inline function */ |
| #pragma warning(disable : 4786) /* identifier is too long */ |
| #pragma warning(disable : 4503) /* name is too long */ |
| #pragma warning(disable : 4127) /* constant expresison */ |
| #endif |
| |
| namespace Xbyak { |
| |
| enum { |
| DEFAULT_MAX_CODE_SIZE = 4096, |
| VERSION = 0x5912 /* 0xABCD = A.BC(D) */ |
| }; |
| |
| #ifndef MIE_INTEGER_TYPE_DEFINED |
| #define MIE_INTEGER_TYPE_DEFINED |
| #ifdef _MSC_VER |
| typedef unsigned __int64 uint64; |
| typedef __int64 sint64; |
| #else |
| typedef uint64_t uint64; |
| typedef int64_t sint64; |
| #endif |
| typedef unsigned int uint32; |
| typedef unsigned short uint16; |
| typedef unsigned char uint8; |
| #endif |
| |
| #ifndef MIE_ALIGN |
| #ifdef _MSC_VER |
| #define MIE_ALIGN(x) __declspec(align(x)) |
| #else |
| #define MIE_ALIGN(x) __attribute__((aligned(x))) |
| #endif |
| #endif |
| #ifndef MIE_PACK // for shufps |
| #define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w)) |
| #endif |
| |
| enum { |
| ERR_NONE = 0, |
| ERR_BAD_ADDRESSING, |
| ERR_CODE_IS_TOO_BIG, |
| ERR_BAD_SCALE, |
| ERR_ESP_CANT_BE_INDEX, |
| ERR_BAD_COMBINATION, |
| ERR_BAD_SIZE_OF_REGISTER, |
| ERR_IMM_IS_TOO_BIG, |
| ERR_BAD_ALIGN, |
| ERR_LABEL_IS_REDEFINED, |
| ERR_LABEL_IS_TOO_FAR, |
| ERR_LABEL_IS_NOT_FOUND, |
| ERR_CODE_ISNOT_COPYABLE, |
| ERR_BAD_PARAMETER, |
| ERR_CANT_PROTECT, |
| ERR_CANT_USE_64BIT_DISP, |
| ERR_OFFSET_IS_TOO_BIG, |
| ERR_MEM_SIZE_IS_NOT_SPECIFIED, |
| ERR_BAD_MEM_SIZE, |
| ERR_BAD_ST_COMBINATION, |
| ERR_OVER_LOCAL_LABEL, // not used |
| ERR_UNDER_LOCAL_LABEL, |
| ERR_CANT_ALLOC, |
| ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW, |
| ERR_BAD_PROTECT_MODE, |
| ERR_BAD_PNUM, |
| ERR_BAD_TNUM, |
| ERR_BAD_VSIB_ADDRESSING, |
| ERR_CANT_CONVERT, |
| ERR_LABEL_ISNOT_SET_BY_L, |
| ERR_LABEL_IS_ALREADY_SET_BY_L, |
| ERR_BAD_LABEL_STR, |
| ERR_MUNMAP, |
| ERR_OPMASK_IS_ALREADY_SET, |
| ERR_ROUNDING_IS_ALREADY_SET, |
| ERR_K0_IS_INVALID, |
| ERR_EVEX_IS_INVALID, |
| ERR_SAE_IS_INVALID, |
| ERR_ER_IS_INVALID, |
| ERR_INVALID_BROADCAST, |
| ERR_INVALID_OPMASK_WITH_MEMORY, |
| ERR_INVALID_ZERO, |
| ERR_INVALID_RIP_IN_AUTO_GROW, |
| ERR_INVALID_MIB_ADDRESS, |
| ERR_X2APIC_IS_NOT_SUPPORTED, |
| ERR_NOT_SUPPORTED, |
| ERR_INTERNAL // Put it at last. |
| }; |
| |
| class Error : public std::exception { |
| int err_; |
| public: |
| explicit Error(int err) : err_(err) |
| { |
| if (err_ < 0 || err_ > ERR_INTERNAL) { |
| err_ = ERR_INTERNAL; |
| } |
| } |
| operator int() const { return err_; } |
| const char *what() const throw() |
| { |
| static const char *errTbl[] = { |
| "none", |
| "bad addressing", |
| "code is too big", |
| "bad scale", |
| "esp can't be index", |
| "bad combination", |
| "bad size of register", |
| "imm is too big", |
| "bad align", |
| "label is redefined", |
| "label is too far", |
| "label is not found", |
| "code is not copyable", |
| "bad parameter", |
| "can't protect", |
| "can't use 64bit disp(use (void*))", |
| "offset is too big", |
| "MEM size is not specified", |
| "bad mem size", |
| "bad st combination", |
| "over local label", |
| "under local label", |
| "can't alloc", |
| "T_SHORT is not supported in AutoGrow", |
| "bad protect mode", |
| "bad pNum", |
| "bad tNum", |
| "bad vsib addressing", |
| "can't convert", |
| "label is not set by L()", |
| "label is already set by L()", |
| "bad label string", |
| "err munmap", |
| "opmask is already set", |
| "rounding is already set", |
| "k0 is invalid", |
| "evex is invalid", |
| "sae(suppress all exceptions) is invalid", |
| "er(embedded rounding) is invalid", |
| "invalid broadcast", |
| "invalid opmask with memory", |
| "invalid zero", |
| "invalid rip in AutoGrow", |
| "invalid mib address", |
| "x2APIC is not supported", |
| "not supported", |
| "internal error" |
| }; |
| assert(err_ <= ERR_INTERNAL); |
| assert(ERR_INTERNAL + 1 == sizeof(errTbl) / sizeof(*errTbl)); |
| return errTbl[err_]; |
| } |
| }; |
| |
| inline const char *ConvertErrorToString(const Error& err) |
| { |
| return err.what(); |
| } |
| |
| inline void *AlignedMalloc(size_t size, size_t alignment) |
| { |
| #ifdef __MINGW32__ |
| return __mingw_aligned_malloc(size, alignment); |
| #elif defined(_WIN32) |
| return _aligned_malloc(size, alignment); |
| #else |
| void *p; |
| int ret = posix_memalign(&p, alignment, size); |
| return (ret == 0) ? p : 0; |
| #endif |
| } |
| |
| inline void AlignedFree(void *p) |
| { |
| #ifdef __MINGW32__ |
| __mingw_aligned_free(p); |
| #elif defined(_MSC_VER) |
| _aligned_free(p); |
| #else |
| free(p); |
| #endif |
| } |
| |
| template<class To, class From> |
| inline const To CastTo(From p) throw() |
| { |
| return (const To)(size_t)(p); |
| } |
| namespace inner { |
| |
| static const size_t ALIGN_PAGE_SIZE = 4096; |
| |
| inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; } |
| inline bool IsInInt32(uint64 x) { return ~uint64(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; } |
| |
| inline uint32 VerifyInInt32(uint64 x) |
| { |
| #ifdef XBYAK64 |
| if (!IsInInt32(x)) throw Error(ERR_OFFSET_IS_TOO_BIG); |
| #endif |
| return static_cast<uint32>(x); |
| } |
| |
| enum LabelMode { |
| LasIs, // as is |
| Labs, // absolute |
| LaddTop // (addr + top) for mov(reg, label) with AutoGrow |
| }; |
| |
| } // inner |
| |
| /* |
| custom allocator |
| */ |
| struct Allocator { |
| virtual uint8 *alloc(size_t size) { return reinterpret_cast<uint8*>(AlignedMalloc(size, inner::ALIGN_PAGE_SIZE)); } |
| virtual void free(uint8 *p) { AlignedFree(p); } |
| virtual ~Allocator() {} |
| /* override to return false if you call protect() manually */ |
| virtual bool useProtect() const { return true; } |
| }; |
| |
| #ifdef XBYAK_USE_MMAP_ALLOCATOR |
| #ifdef XBYAK_USE_MAP_JIT |
| namespace util { |
| |
| inline int getMacOsVersionPure() |
| { |
| char buf[64]; |
| size_t size = sizeof(buf); |
| int err = sysctlbyname("kern.osrelease", buf, &size, NULL, 0); |
| if (err != 0) return 0; |
| char *endp; |
| int major = strtol(buf, &endp, 10); |
| if (*endp != '.') return 0; |
| return major; |
| } |
| |
| inline int getMacOsVersion() |
| { |
| static const int version = getMacOsVersionPure(); |
| return version; |
| } |
| |
| } // util |
| #endif |
| class MmapAllocator : Allocator { |
| typedef XBYAK_STD_UNORDERED_MAP<uintptr_t, size_t> SizeList; |
| SizeList sizeList_; |
| public: |
| uint8 *alloc(size_t size) |
| { |
| const size_t alignedSizeM1 = inner::ALIGN_PAGE_SIZE - 1; |
| size = (size + alignedSizeM1) & ~alignedSizeM1; |
| #if defined(XBYAK_USE_MAP_JIT) |
| int mode = MAP_PRIVATE | MAP_ANONYMOUS; |
| const int mojaveVersion = 18; |
| if (util::getMacOsVersion() >= mojaveVersion) mode |= MAP_JIT; |
| #elif defined(MAP_ANONYMOUS) |
| const int mode = MAP_PRIVATE | MAP_ANONYMOUS; |
| #elif defined(MAP_ANON) |
| const int mode = MAP_PRIVATE | MAP_ANON; |
| #else |
| #error "not supported" |
| #endif |
| void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, -1, 0); |
| if (p == MAP_FAILED) throw Error(ERR_CANT_ALLOC); |
| assert(p); |
| sizeList_[(uintptr_t)p] = size; |
| return (uint8*)p; |
| } |
| void free(uint8 *p) |
| { |
| if (p == 0) return; |
| SizeList::iterator i = sizeList_.find((uintptr_t)p); |
| if (i == sizeList_.end()) throw Error(ERR_BAD_PARAMETER); |
| if (munmap((void*)i->first, i->second) < 0) throw Error(ERR_MUNMAP); |
| sizeList_.erase(i); |
| } |
| }; |
| #endif |
| |
| class Address; |
| class Reg; |
| |
| class Operand { |
| static const uint8 EXT8BIT = 0x20; |
| unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil |
| unsigned int kind_:10; |
| unsigned int bit_:14; |
| protected: |
| unsigned int zero_:1; |
| unsigned int mask_:3; |
| unsigned int rounding_:3; |
| void setIdx(int idx) { idx_ = idx; } |
| public: |
| enum Kind { |
| NONE = 0, |
| MEM = 1 << 0, |
| REG = 1 << 1, |
| MMX = 1 << 2, |
| FPU = 1 << 3, |
| XMM = 1 << 4, |
| YMM = 1 << 5, |
| ZMM = 1 << 6, |
| OPMASK = 1 << 7, |
| BNDREG = 1 << 8, |
| TMM = 1 << 9 |
| }; |
| enum Code { |
| #ifdef XBYAK64 |
| RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, |
| R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D, |
| R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W, |
| R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B, |
| SPL = 4, BPL, SIL, DIL, |
| #endif |
| EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI, |
| AX = 0, CX, DX, BX, SP, BP, SI, DI, |
| AL = 0, CL, DL, BL, AH, CH, DH, BH |
| }; |
| Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0) { } |
| Operand(int idx, Kind kind, int bit, bool ext8bit = 0) |
| : idx_(static_cast<uint8>(idx | (ext8bit ? EXT8BIT : 0))) |
| , kind_(kind) |
| , bit_(bit) |
| , zero_(0), mask_(0), rounding_(0) |
| { |
| assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two |
| } |
| Kind getKind() const { return static_cast<Kind>(kind_); } |
| int getIdx() const { return idx_ & (EXT8BIT - 1); } |
| bool isNone() const { return kind_ == 0; } |
| bool isMMX() const { return is(MMX); } |
| bool isXMM() const { return is(XMM); } |
| bool isYMM() const { return is(YMM); } |
| bool isZMM() const { return is(ZMM); } |
| bool isTMM() const { return is(TMM); } |
| bool isXMEM() const { return is(XMM | MEM); } |
| bool isYMEM() const { return is(YMM | MEM); } |
| bool isZMEM() const { return is(ZMM | MEM); } |
| bool isOPMASK() const { return is(OPMASK); } |
| bool isBNDREG() const { return is(BNDREG); } |
| bool isREG(int bit = 0) const { return is(REG, bit); } |
| bool isMEM(int bit = 0) const { return is(MEM, bit); } |
| bool isFPU() const { return is(FPU); } |
| bool isExt8bit() const { return (idx_ & EXT8BIT) != 0; } |
| bool isExtIdx() const { return (getIdx() & 8) != 0; } |
| bool isExtIdx2() const { return (getIdx() & 16) != 0; } |
| bool hasEvex() const { return isZMM() || isExtIdx2() || getOpmaskIdx() || getRounding(); } |
| bool hasRex() const { return isExt8bit() || isREG(64) || isExtIdx(); } |
| bool hasZero() const { return zero_; } |
| int getOpmaskIdx() const { return mask_; } |
| int getRounding() const { return rounding_; } |
| void setKind(Kind kind) |
| { |
| if ((kind & (XMM|YMM|ZMM|TMM)) == 0) return; |
| kind_ = kind; |
| bit_ = kind == XMM ? 128 : kind == YMM ? 256 : kind == ZMM ? 512 : 8192; |
| } |
| // err if MMX/FPU/OPMASK/BNDREG |
| void setBit(int bit); |
| void setOpmaskIdx(int idx, bool /*ignore_idx0*/ = true) |
| { |
| if (mask_) throw Error(ERR_OPMASK_IS_ALREADY_SET); |
| mask_ = idx; |
| } |
| void setRounding(int idx) |
| { |
| if (rounding_) throw Error(ERR_ROUNDING_IS_ALREADY_SET); |
| rounding_ = idx; |
| } |
| void setZero() { zero_ = true; } |
| // ah, ch, dh, bh? |
| bool isHigh8bit() const |
| { |
| if (!isBit(8)) return false; |
| if (isExt8bit()) return false; |
| const int idx = getIdx(); |
| return AH <= idx && idx <= BH; |
| } |
| // any bit is accetable if bit == 0 |
| bool is(int kind, uint32 bit = 0) const |
| { |
| return (kind == 0 || (kind_ & kind)) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16) |
| } |
| bool isBit(uint32 bit) const { return (bit_ & bit) != 0; } |
| uint32 getBit() const { return bit_; } |
| const char *toString() const |
| { |
| const int idx = getIdx(); |
| if (kind_ == REG) { |
| if (isExt8bit()) { |
| static const char *tbl[4] = { "spl", "bpl", "sil", "dil" }; |
| return tbl[idx - 4]; |
| } |
| static const char *tbl[4][16] = { |
| { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }, |
| { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" }, |
| { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" }, |
| { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }, |
| }; |
| return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx]; |
| } else if (isOPMASK()) { |
| static const char *tbl[8] = { "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }; |
| return tbl[idx]; |
| } else if (isTMM()) { |
| static const char *tbl[8] = { |
| "tmm0", "tmm1", "tmm2", "tmm3", "tmm4", "tmm5", "tmm6", "tmm7" |
| }; |
| return tbl[idx]; |
| } else if (isZMM()) { |
| static const char *tbl[32] = { |
| "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", |
| "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31" |
| }; |
| return tbl[idx]; |
| } else if (isYMM()) { |
| static const char *tbl[32] = { |
| "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", |
| "ymm16", "ymm17", "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31" |
| }; |
| return tbl[idx]; |
| } else if (isXMM()) { |
| static const char *tbl[32] = { |
| "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", |
| "xmm16", "xmm17", "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31" |
| }; |
| return tbl[idx]; |
| } else if (isMMX()) { |
| static const char *tbl[8] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" }; |
| return tbl[idx]; |
| } else if (isFPU()) { |
| static const char *tbl[8] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" }; |
| return tbl[idx]; |
| } else if (isBNDREG()) { |
| static const char *tbl[4] = { "bnd0", "bnd1", "bnd2", "bnd3" }; |
| return tbl[idx]; |
| } |
| throw Error(ERR_INTERNAL); |
| } |
| bool isEqualIfNotInherited(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_ && zero_ == rhs.zero_ && mask_ == rhs.mask_ && rounding_ == rhs.rounding_; } |
| bool operator==(const Operand& rhs) const; |
| bool operator!=(const Operand& rhs) const { return !operator==(rhs); } |
| const Address& getAddress() const; |
| const Reg& getReg() const; |
| }; |
| |
| inline void Operand::setBit(int bit) |
| { |
| if (bit != 8 && bit != 16 && bit != 32 && bit != 64 && bit != 128 && bit != 256 && bit != 512 && bit != 8192) goto ERR; |
| if (isBit(bit)) return; |
| if (is(MEM | OPMASK)) { |
| bit_ = bit; |
| return; |
| } |
| if (is(REG | XMM | YMM | ZMM | TMM)) { |
| int idx = getIdx(); |
| // err if converting ah, bh, ch, dh |
| if (isREG(8) && (4 <= idx && idx < 8) && !isExt8bit()) goto ERR; |
| Kind kind = REG; |
| switch (bit) { |
| case 8: |
| if (idx >= 16) goto ERR; |
| #ifdef XBYAK32 |
| if (idx >= 4) goto ERR; |
| #else |
| if (4 <= idx && idx < 8) idx |= EXT8BIT; |
| #endif |
| break; |
| case 16: |
| case 32: |
| case 64: |
| if (idx >= 16) goto ERR; |
| break; |
| case 128: kind = XMM; break; |
| case 256: kind = YMM; break; |
| case 512: kind = ZMM; break; |
| case 8192: kind = TMM; break; |
| } |
| idx_ = idx; |
| kind_ = kind; |
| bit_ = bit; |
| if (bit >= 128) return; // keep mask_ and rounding_ |
| mask_ = 0; |
| rounding_ = 0; |
| return; |
| } |
| ERR: |
| throw Error(ERR_CANT_CONVERT); |
| } |
| |
| class Label; |
| |
| struct Reg8; |
| struct Reg16; |
| struct Reg32; |
| #ifdef XBYAK64 |
| struct Reg64; |
| #endif |
| class Reg : public Operand { |
| public: |
| Reg() { } |
| Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { } |
| // convert to Reg8/Reg16/Reg32/Reg64/XMM/YMM/ZMM |
| Reg changeBit(int bit) const { Reg r(*this); r.setBit(bit); return r; } |
| uint8 getRexW() const { return isREG(64) ? 8 : 0; } |
| uint8 getRexR() const { return isExtIdx() ? 4 : 0; } |
| uint8 getRexX() const { return isExtIdx() ? 2 : 0; } |
| uint8 getRexB() const { return isExtIdx() ? 1 : 0; } |
| uint8 getRex(const Reg& base = Reg()) const |
| { |
| uint8 rex = getRexW() | getRexR() | base.getRexW() | base.getRexB(); |
| if (rex || isExt8bit() || base.isExt8bit()) rex |= 0x40; |
| return rex; |
| } |
| Reg8 cvt8() const; |
| Reg16 cvt16() const; |
| Reg32 cvt32() const; |
| #ifdef XBYAK64 |
| Reg64 cvt64() const; |
| #endif |
| }; |
| |
| inline const Reg& Operand::getReg() const |
| { |
| assert(!isMEM()); |
| return static_cast<const Reg&>(*this); |
| } |
| |
| struct Reg8 : public Reg { |
| explicit Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { } |
| }; |
| |
| struct Reg16 : public Reg { |
| explicit Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { } |
| }; |
| |
| struct Mmx : public Reg { |
| explicit Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { } |
| }; |
| |
| struct EvexModifierRounding { |
| enum { |
| T_RN_SAE = 1, |
| T_RD_SAE = 2, |
| T_RU_SAE = 3, |
| T_RZ_SAE = 4, |
| T_SAE = 5 |
| }; |
| explicit EvexModifierRounding(int rounding) : rounding(rounding) {} |
| int rounding; |
| }; |
| struct EvexModifierZero{EvexModifierZero() {}}; |
| |
| struct Xmm : public Mmx { |
| explicit Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { } |
| Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { } |
| Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; } |
| Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; } |
| Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; } |
| }; |
| |
| struct Ymm : public Xmm { |
| explicit Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { } |
| Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; } |
| }; |
| |
| struct Zmm : public Ymm { |
| explicit Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { } |
| Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; } |
| }; |
| |
| #ifdef XBYAK64 |
| struct Tmm : public Reg { |
| explicit Tmm(int idx = 0, Kind kind = Operand::TMM, int bit = 8192) : Reg(idx, kind, bit) { } |
| }; |
| #endif |
| |
| struct Opmask : public Reg { |
| explicit Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {} |
| }; |
| |
| struct BoundsReg : public Reg { |
| explicit BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {} |
| }; |
| |
| template<class T>T operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; } |
| template<class T>T operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; } |
| template<class T>T operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; } |
| |
| struct Fpu : public Reg { |
| explicit Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { } |
| }; |
| |
| struct Reg32e : public Reg { |
| explicit Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {} |
| }; |
| struct Reg32 : public Reg32e { |
| explicit Reg32(int idx = 0) : Reg32e(idx, 32) {} |
| }; |
| #ifdef XBYAK64 |
| struct Reg64 : public Reg32e { |
| explicit Reg64(int idx = 0) : Reg32e(idx, 64) {} |
| }; |
| struct RegRip { |
| sint64 disp_; |
| const Label* label_; |
| bool isAddr_; |
| explicit RegRip(sint64 disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {} |
| friend const RegRip operator+(const RegRip& r, int disp) { |
| return RegRip(r.disp_ + disp, r.label_, r.isAddr_); |
| } |
| friend const RegRip operator-(const RegRip& r, int disp) { |
| return RegRip(r.disp_ - disp, r.label_, r.isAddr_); |
| } |
| friend const RegRip operator+(const RegRip& r, sint64 disp) { |
| return RegRip(r.disp_ + disp, r.label_, r.isAddr_); |
| } |
| friend const RegRip operator-(const RegRip& r, sint64 disp) { |
| return RegRip(r.disp_ - disp, r.label_, r.isAddr_); |
| } |
| friend const RegRip operator+(const RegRip& r, const Label& label) { |
| if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING); |
| return RegRip(r.disp_, &label); |
| } |
| friend const RegRip operator+(const RegRip& r, const void *addr) { |
| if (r.label_ || r.isAddr_) throw Error(ERR_BAD_ADDRESSING); |
| return RegRip(r.disp_ + (sint64)addr, 0, true); |
| } |
| }; |
| #endif |
| |
| inline Reg8 Reg::cvt8() const |
| { |
| Reg r = changeBit(8); return Reg8(r.getIdx(), r.isExt8bit()); |
| } |
| |
| inline Reg16 Reg::cvt16() const |
| { |
| return Reg16(changeBit(16).getIdx()); |
| } |
| |
| inline Reg32 Reg::cvt32() const |
| { |
| return Reg32(changeBit(32).getIdx()); |
| } |
| |
| #ifdef XBYAK64 |
| inline Reg64 Reg::cvt64() const |
| { |
| return Reg64(changeBit(64).getIdx()); |
| } |
| #endif |
| |
| #ifndef XBYAK_DISABLE_SEGMENT |
| // not derived from Reg |
| class Segment { |
| int idx_; |
| public: |
| enum { |
| es, cs, ss, ds, fs, gs |
| }; |
| explicit Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); } |
| int getIdx() const { return idx_; } |
| const char *toString() const |
| { |
| static const char tbl[][3] = { |
| "es", "cs", "ss", "ds", "fs", "gs" |
| }; |
| return tbl[idx_]; |
| } |
| }; |
| #endif |
| |
| class RegExp { |
| public: |
| #ifdef XBYAK64 |
| enum { i32e = 32 | 64 }; |
| #else |
| enum { i32e = 32 }; |
| #endif |
| RegExp(size_t disp = 0) : scale_(0), disp_(disp) { } |
| RegExp(const Reg& r, int scale = 1) |
| : scale_(scale) |
| , disp_(0) |
| { |
| if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM|Reg::TMM)) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| if (scale == 0) return; |
| if (scale != 1 && scale != 2 && scale != 4 && scale != 8) throw Error(ERR_BAD_SCALE); |
| if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index |
| index_ = r; |
| } else { |
| base_ = r; |
| } |
| } |
| bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); } |
| RegExp optimize() const |
| { |
| RegExp exp = *this; |
| // [reg * 2] => [reg + reg] |
| if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) { |
| exp.base_ = index_; |
| exp.scale_ = 1; |
| } |
| return exp; |
| } |
| bool operator==(const RegExp& rhs) const |
| { |
| return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_; |
| } |
| const Reg& getBase() const { return base_; } |
| const Reg& getIndex() const { return index_; } |
| int getScale() const { return scale_; } |
| size_t getDisp() const { return disp_; } |
| void verify() const |
| { |
| if (base_.getBit() >= 128) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| if (index_.getBit() && index_.getBit() <= 64) { |
| if (index_.getIdx() == Operand::ESP) throw Error(ERR_ESP_CANT_BE_INDEX); |
| if (base_.getBit() && base_.getBit() != index_.getBit()) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| } |
| } |
| friend RegExp operator+(const RegExp& a, const RegExp& b); |
| friend RegExp operator-(const RegExp& e, size_t disp); |
| uint8 getRex() const |
| { |
| uint8 rex = index_.getRexX() | base_.getRexB(); |
| return rex ? uint8(rex | 0x40) : 0; |
| } |
| private: |
| /* |
| [base_ + index_ * scale_ + disp_] |
| base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm |
| */ |
| Reg base_; |
| Reg index_; |
| int scale_; |
| size_t disp_; |
| }; |
| |
| inline RegExp operator+(const RegExp& a, const RegExp& b) |
| { |
| if (a.index_.getBit() && b.index_.getBit()) throw Error(ERR_BAD_ADDRESSING); |
| RegExp ret = a; |
| if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; } |
| if (b.base_.getBit()) { |
| if (ret.base_.getBit()) { |
| if (ret.index_.getBit()) throw Error(ERR_BAD_ADDRESSING); |
| // base + base => base + index * 1 |
| ret.index_ = b.base_; |
| // [reg + esp] => [esp + reg] |
| if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_); |
| ret.scale_ = 1; |
| } else { |
| ret.base_ = b.base_; |
| } |
| } |
| ret.disp_ += b.disp_; |
| return ret; |
| } |
| inline RegExp operator*(const Reg& r, int scale) |
| { |
| return RegExp(r, scale); |
| } |
| inline RegExp operator-(const RegExp& e, size_t disp) |
| { |
| RegExp ret = e; |
| ret.disp_ -= disp; |
| return ret; |
| } |
| |
| // 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc) |
| void *const AutoGrow = (void*)1; //-V566 |
| void *const DontSetProtectRWE = (void*)2; //-V566 |
| |
| class CodeArray { |
| enum Type { |
| USER_BUF = 1, // use userPtr(non alignment, non protect) |
| ALLOC_BUF, // use new(alignment, protect) |
| AUTO_GROW // automatically move and grow memory if necessary |
| }; |
| CodeArray(const CodeArray& rhs); |
| void operator=(const CodeArray&); |
| bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; } |
| struct AddrInfo { |
| size_t codeOffset; // position to write |
| size_t jmpAddr; // value to write |
| int jmpSize; // size of jmpAddr |
| inner::LabelMode mode; |
| AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode) |
| : codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {} |
| uint64 getVal(const uint8 *top) const |
| { |
| uint64 disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top); |
| if (jmpSize == 4) disp = inner::VerifyInInt32(disp); |
| return disp; |
| } |
| }; |
| typedef std::list<AddrInfo> AddrInfoList; |
| AddrInfoList addrInfoList_; |
| const Type type_; |
| #ifdef XBYAK_USE_MMAP_ALLOCATOR |
| MmapAllocator defaultAllocator_; |
| #else |
| Allocator defaultAllocator_; |
| #endif |
| Allocator *alloc_; |
| protected: |
| size_t maxSize_; |
| uint8 *top_; |
| size_t size_; |
| bool isCalledCalcJmpAddress_; |
| |
| bool useProtect() const { return alloc_->useProtect(); } |
| /* |
| allocate new memory and copy old data to the new area |
| */ |
| void growMemory() |
| { |
| const size_t newSize = (std::max<size_t>)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2); |
| uint8 *newTop = alloc_->alloc(newSize); |
| if (newTop == 0) throw Error(ERR_CANT_ALLOC); |
| for (size_t i = 0; i < size_; i++) newTop[i] = top_[i]; |
| alloc_->free(top_); |
| top_ = newTop; |
| maxSize_ = newSize; |
| } |
| /* |
| calc jmp address for AutoGrow mode |
| */ |
| void calcJmpAddress() |
| { |
| if (isCalledCalcJmpAddress_) return; |
| for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) { |
| uint64 disp = i->getVal(top_); |
| rewrite(i->codeOffset, disp, i->jmpSize); |
| } |
| isCalledCalcJmpAddress_ = true; |
| } |
| public: |
| enum ProtectMode { |
| PROTECT_RW = 0, // read/write |
| PROTECT_RWE = 1, // read/write/exec |
| PROTECT_RE = 2 // read/exec |
| }; |
| explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0) |
| : type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF) |
| , alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_) |
| , maxSize_(maxSize) |
| , top_(type_ == USER_BUF ? reinterpret_cast<uint8*>(userPtr) : alloc_->alloc((std::max<size_t>)(maxSize, 1))) |
| , size_(0) |
| , isCalledCalcJmpAddress_(false) |
| { |
| if (maxSize_ > 0 && top_ == 0) throw Error(ERR_CANT_ALLOC); |
| if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) { |
| alloc_->free(top_); |
| throw Error(ERR_CANT_PROTECT); |
| } |
| } |
| virtual ~CodeArray() |
| { |
| if (isAllocType()) { |
| if (useProtect()) setProtectModeRW(false); |
| alloc_->free(top_); |
| } |
| } |
| bool setProtectMode(ProtectMode mode, bool throwException = true) |
| { |
| bool isOK = protect(top_, maxSize_, mode); |
| if (isOK) return true; |
| if (throwException) throw Error(ERR_CANT_PROTECT); |
| return false; |
| } |
| bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); } |
| bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); } |
| void resetSize() |
| { |
| size_ = 0; |
| addrInfoList_.clear(); |
| isCalledCalcJmpAddress_ = false; |
| } |
| void db(int code) |
| { |
| if (size_ >= maxSize_) { |
| if (type_ == AUTO_GROW) { |
| growMemory(); |
| } else { |
| throw Error(ERR_CODE_IS_TOO_BIG); |
| } |
| } |
| top_[size_++] = static_cast<uint8>(code); |
| } |
| void db(const uint8 *code, size_t codeSize) |
| { |
| for (size_t i = 0; i < codeSize; i++) db(code[i]); |
| } |
| void db(uint64 code, size_t codeSize) |
| { |
| if (codeSize > 8) throw Error(ERR_BAD_PARAMETER); |
| for (size_t i = 0; i < codeSize; i++) db(static_cast<uint8>(code >> (i * 8))); |
| } |
| void dw(uint32 code) { db(code, 2); } |
| void dd(uint32 code) { db(code, 4); } |
| void dq(uint64 code) { db(code, 8); } |
| const uint8 *getCode() const { return top_; } |
| template<class F> |
| const F getCode() const { return reinterpret_cast<F>(top_); } |
| const uint8 *getCurr() const { return &top_[size_]; } |
| template<class F> |
| const F getCurr() const { return reinterpret_cast<F>(&top_[size_]); } |
| size_t getSize() const { return size_; } |
| void setSize(size_t size) |
| { |
| if (size > maxSize_) throw Error(ERR_OFFSET_IS_TOO_BIG); |
| size_ = size; |
| } |
| void dump() const |
| { |
| const uint8 *p = getCode(); |
| size_t bufSize = getSize(); |
| size_t remain = bufSize; |
| for (int i = 0; i < 4; i++) { |
| size_t disp = 16; |
| if (remain < 16) { |
| disp = remain; |
| } |
| for (size_t j = 0; j < 16; j++) { |
| if (j < disp) { |
| printf("%02X", p[i * 16 + j]); |
| } |
| } |
| putchar('\n'); |
| remain -= disp; |
| if (remain == 0) { |
| break; |
| } |
| } |
| } |
| /* |
| @param offset [in] offset from top |
| @param disp [in] offset from the next of jmp |
| @param size [in] write size(1, 2, 4, 8) |
| */ |
| void rewrite(size_t offset, uint64 disp, size_t size) |
| { |
| assert(offset < maxSize_); |
| if (size != 1 && size != 2 && size != 4 && size != 8) throw Error(ERR_BAD_PARAMETER); |
| uint8 *const data = top_ + offset; |
| for (size_t i = 0; i < size; i++) { |
| data[i] = static_cast<uint8>(disp >> (i * 8)); |
| } |
| } |
| void save(size_t offset, size_t val, int size, inner::LabelMode mode) |
| { |
| addrInfoList_.push_back(AddrInfo(offset, val, size, mode)); |
| } |
| bool isAutoGrow() const { return type_ == AUTO_GROW; } |
| bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; } |
| /** |
| change exec permission of memory |
| @param addr [in] buffer address |
| @param size [in] buffer size |
| @param protectMode [in] mode(RW/RWE/RE) |
| @return true(success), false(failure) |
| */ |
| static inline bool protect(const void *addr, size_t size, int protectMode) |
| { |
| #if defined(_WIN32) |
| const DWORD c_rw = PAGE_READWRITE; |
| const DWORD c_rwe = PAGE_EXECUTE_READWRITE; |
| const DWORD c_re = PAGE_EXECUTE_READ; |
| DWORD mode; |
| #else |
| const int c_rw = PROT_READ | PROT_WRITE; |
| const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC; |
| const int c_re = PROT_READ | PROT_EXEC; |
| int mode; |
| #endif |
| switch (protectMode) { |
| case PROTECT_RW: mode = c_rw; break; |
| case PROTECT_RWE: mode = c_rwe; break; |
| case PROTECT_RE: mode = c_re; break; |
| default: |
| return false; |
| } |
| #if defined(_WIN32) |
| DWORD oldProtect; |
| return VirtualProtect(const_cast<void*>(addr), size, mode, &oldProtect) != 0; |
| #elif defined(__GNUC__) |
| size_t pageSize = sysconf(_SC_PAGESIZE); |
| size_t iaddr = reinterpret_cast<size_t>(addr); |
| size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1)); |
| #ifndef NDEBUG |
| if (pageSize != 4096) fprintf(stderr, "large page(%zd) is used. not tested enough.\n", pageSize); |
| #endif |
| return mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode) == 0; |
| #else |
| return true; |
| #endif |
| } |
| /** |
| get aligned memory pointer |
| @param addr [in] address |
| @param alignedSize [in] power of two |
| @return aligned addr by alingedSize |
| */ |
| static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = 16) |
| { |
| return reinterpret_cast<uint8*>((reinterpret_cast<size_t>(addr) + alignedSize - 1) & ~(alignedSize - static_cast<size_t>(1))); |
| } |
| }; |
| |
| class Address : public Operand { |
| public: |
| enum Mode { |
| M_ModRM, |
| M_64bitDisp, |
| M_rip, |
| M_ripAddr |
| }; |
| Address(uint32 sizeBit, bool broadcast, const RegExp& e) |
| : Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), broadcast_(broadcast) |
| { |
| e_.verify(); |
| } |
| #ifdef XBYAK64 |
| explicit Address(size_t disp) |
| : Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), broadcast_(false){ } |
| Address(uint32 sizeBit, bool broadcast, const RegRip& addr) |
| : Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), broadcast_(broadcast) { } |
| #endif |
| RegExp getRegExp(bool optimize = true) const |
| { |
| return optimize ? e_.optimize() : e_; |
| } |
| Mode getMode() const { return mode_; } |
| bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; } |
| bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax |
| size_t getDisp() const { return e_.getDisp(); } |
| uint8 getRex() const |
| { |
| if (mode_ != M_ModRM) return 0; |
| return getRegExp().getRex(); |
| } |
| bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset |
| bool isBroadcast() const { return broadcast_; } |
| const Label* getLabel() const { return label_; } |
| bool operator==(const Address& rhs) const |
| { |
| return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && broadcast_ == rhs.broadcast_; |
| } |
| bool operator!=(const Address& rhs) const { return !operator==(rhs); } |
| bool isVsib() const { return e_.isVsib(); } |
| private: |
| RegExp e_; |
| const Label* label_; |
| Mode mode_; |
| bool broadcast_; |
| }; |
| |
| inline const Address& Operand::getAddress() const |
| { |
| assert(isMEM()); |
| return static_cast<const Address&>(*this); |
| } |
| |
| inline bool Operand::operator==(const Operand& rhs) const |
| { |
| if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress(); |
| return isEqualIfNotInherited(rhs); |
| } |
| |
| class AddressFrame { |
| void operator=(const AddressFrame&); |
| AddressFrame(const AddressFrame&); |
| public: |
| const uint32 bit_; |
| const bool broadcast_; |
| explicit AddressFrame(uint32 bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { } |
| Address operator[](const RegExp& e) const |
| { |
| return Address(bit_, broadcast_, e); |
| } |
| Address operator[](const void *disp) const |
| { |
| return Address(bit_, broadcast_, RegExp(reinterpret_cast<size_t>(disp))); |
| } |
| #ifdef XBYAK64 |
| Address operator[](uint64 disp) const { return Address(disp); } |
| Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); } |
| #endif |
| }; |
| |
| struct JmpLabel { |
| size_t endOfJmp; /* offset from top to the end address of jmp */ |
| int jmpSize; |
| inner::LabelMode mode; |
| size_t disp; // disp for [rip + disp] |
| explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0) |
| : endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp) |
| { |
| } |
| }; |
| |
| class LabelManager; |
| |
| class Label { |
| mutable LabelManager *mgr; |
| mutable int id; |
| friend class LabelManager; |
| public: |
| Label() : mgr(0), id(0) {} |
| Label(const Label& rhs); |
| Label& operator=(const Label& rhs); |
| ~Label(); |
| void clear() { mgr = 0; id = 0; } |
| int getId() const { return id; } |
| const uint8 *getAddress() const; |
| |
| // backward compatibility |
| static inline std::string toStr(int num) |
| { |
| char buf[16]; |
| #if defined(_MSC_VER) && (_MSC_VER < 1900) |
| _snprintf_s |
| #else |
| snprintf |
| #endif |
| (buf, sizeof(buf), ".%08x", num); |
| return buf; |
| } |
| }; |
| |
| class LabelManager { |
| // for string label |
| struct SlabelVal { |
| size_t offset; |
| SlabelVal(size_t offset) : offset(offset) {} |
| }; |
| typedef XBYAK_STD_UNORDERED_MAP<std::string, SlabelVal> SlabelDefList; |
| typedef XBYAK_STD_UNORDERED_MULTIMAP<std::string, const JmpLabel> SlabelUndefList; |
| struct SlabelState { |
| SlabelDefList defList; |
| SlabelUndefList undefList; |
| }; |
| typedef std::list<SlabelState> StateList; |
| // for Label class |
| struct ClabelVal { |
| ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {} |
| size_t offset; |
| int refCount; |
| }; |
| typedef XBYAK_STD_UNORDERED_MAP<int, ClabelVal> ClabelDefList; |
| typedef XBYAK_STD_UNORDERED_MULTIMAP<int, const JmpLabel> ClabelUndefList; |
| typedef XBYAK_STD_UNORDERED_SET<Label*> LabelPtrList; |
| |
| CodeArray *base_; |
| // global : stateList_.front(), local : stateList_.back() |
| StateList stateList_; |
| mutable int labelId_; |
| ClabelDefList clabelDefList_; |
| ClabelUndefList clabelUndefList_; |
| LabelPtrList labelPtrList_; |
| |
| int getId(const Label& label) const |
| { |
| if (label.id == 0) label.id = labelId_++; |
| return label.id; |
| } |
| template<class DefList, class UndefList, class T> |
| void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset) |
| { |
| // add label |
| typename DefList::value_type item(labelId, addrOffset); |
| std::pair<typename DefList::iterator, bool> ret = defList.insert(item); |
| if (!ret.second) throw Error(ERR_LABEL_IS_REDEFINED); |
| // search undefined label |
| for (;;) { |
| typename UndefList::iterator itr = undefList.find(labelId); |
| if (itr == undefList.end()) break; |
| const JmpLabel *jmp = &itr->second; |
| const size_t offset = jmp->endOfJmp - jmp->jmpSize; |
| size_t disp; |
| if (jmp->mode == inner::LaddTop) { |
| disp = addrOffset; |
| } else if (jmp->mode == inner::Labs) { |
| disp = size_t(base_->getCurr()); |
| } else { |
| disp = addrOffset - jmp->endOfJmp + jmp->disp; |
| #ifdef XBYAK64 |
| if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) throw Error(ERR_OFFSET_IS_TOO_BIG); |
| #endif |
| if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32)disp)) throw Error(ERR_LABEL_IS_TOO_FAR); |
| } |
| if (base_->isAutoGrow()) { |
| base_->save(offset, disp, jmp->jmpSize, jmp->mode); |
| } else { |
| base_->rewrite(offset, disp, jmp->jmpSize); |
| } |
| undefList.erase(itr); |
| } |
| } |
| template<class DefList, class T> |
| bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const |
| { |
| typename DefList::const_iterator i = defList.find(label); |
| if (i == defList.end()) return false; |
| *offset = i->second.offset; |
| return true; |
| } |
| friend class Label; |
| void incRefCount(int id, Label *label) |
| { |
| clabelDefList_[id].refCount++; |
| labelPtrList_.insert(label); |
| } |
| void decRefCount(int id, Label *label) |
| { |
| labelPtrList_.erase(label); |
| ClabelDefList::iterator i = clabelDefList_.find(id); |
| if (i == clabelDefList_.end()) return; |
| if (i->second.refCount == 1) { |
| clabelDefList_.erase(id); |
| } else { |
| --i->second.refCount; |
| } |
| } |
| template<class T> |
| bool hasUndefinedLabel_inner(const T& list) const |
| { |
| #ifndef NDEBUG |
| for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) { |
| std::cerr << "undefined label:" << i->first << std::endl; |
| } |
| #endif |
| return !list.empty(); |
| } |
| // detach all labels linked to LabelManager |
| void resetLabelPtrList() |
| { |
| for (LabelPtrList::iterator i = labelPtrList_.begin(), ie = labelPtrList_.end(); i != ie; ++i) { |
| (*i)->clear(); |
| } |
| labelPtrList_.clear(); |
| } |
| public: |
| LabelManager() |
| { |
| reset(); |
| } |
| ~LabelManager() |
| { |
| resetLabelPtrList(); |
| } |
| void reset() |
| { |
| base_ = 0; |
| labelId_ = 1; |
| stateList_.clear(); |
| stateList_.push_back(SlabelState()); |
| stateList_.push_back(SlabelState()); |
| clabelDefList_.clear(); |
| clabelUndefList_.clear(); |
| resetLabelPtrList(); |
| } |
| void enterLocal() |
| { |
| stateList_.push_back(SlabelState()); |
| } |
| void leaveLocal() |
| { |
| if (stateList_.size() <= 2) throw Error(ERR_UNDER_LOCAL_LABEL); |
| if (hasUndefinedLabel_inner(stateList_.back().undefList)) throw Error(ERR_LABEL_IS_NOT_FOUND); |
| stateList_.pop_back(); |
| } |
| void set(CodeArray *base) { base_ = base; } |
| void defineSlabel(std::string label) |
| { |
| if (label == "@b" || label == "@f") throw Error(ERR_BAD_LABEL_STR); |
| if (label == "@@") { |
| SlabelDefList& defList = stateList_.front().defList; |
| SlabelDefList::iterator i = defList.find("@f"); |
| if (i != defList.end()) { |
| defList.erase(i); |
| label = "@b"; |
| } else { |
| i = defList.find("@b"); |
| if (i != defList.end()) { |
| defList.erase(i); |
| } |
| label = "@f"; |
| } |
| } |
| SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); |
| define_inner(st.defList, st.undefList, label, base_->getSize()); |
| } |
| void defineClabel(Label& label) |
| { |
| define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize()); |
| label.mgr = this; |
| labelPtrList_.insert(&label); |
| } |
| void assign(Label& dst, const Label& src) |
| { |
| ClabelDefList::const_iterator i = clabelDefList_.find(src.id); |
| if (i == clabelDefList_.end()) throw Error(ERR_LABEL_ISNOT_SET_BY_L); |
| define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset); |
| dst.mgr = this; |
| labelPtrList_.insert(&dst); |
| } |
| bool getOffset(size_t *offset, std::string& label) const |
| { |
| const SlabelDefList& defList = stateList_.front().defList; |
| if (label == "@b") { |
| if (defList.find("@f") != defList.end()) { |
| label = "@f"; |
| } else if (defList.find("@b") == defList.end()) { |
| throw Error(ERR_LABEL_IS_NOT_FOUND); |
| } |
| } else if (label == "@f") { |
| if (defList.find("@f") != defList.end()) { |
| label = "@b"; |
| } |
| } |
| const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); |
| return getOffset_inner(st.defList, offset, label); |
| } |
| bool getOffset(size_t *offset, const Label& label) const |
| { |
| return getOffset_inner(clabelDefList_, offset, getId(label)); |
| } |
| void addUndefinedLabel(const std::string& label, const JmpLabel& jmp) |
| { |
| SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front(); |
| st.undefList.insert(SlabelUndefList::value_type(label, jmp)); |
| } |
| void addUndefinedLabel(const Label& label, const JmpLabel& jmp) |
| { |
| clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp)); |
| } |
| bool hasUndefSlabel() const |
| { |
| for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) { |
| if (hasUndefinedLabel_inner(i->undefList)) return true; |
| } |
| return false; |
| } |
| bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); } |
| const uint8 *getCode() const { return base_->getCode(); } |
| bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); } |
| }; |
| |
| inline Label::Label(const Label& rhs) |
| { |
| id = rhs.id; |
| mgr = rhs.mgr; |
| if (mgr) mgr->incRefCount(id, this); |
| } |
| inline Label& Label::operator=(const Label& rhs) |
| { |
| if (id) throw Error(ERR_LABEL_IS_ALREADY_SET_BY_L); |
| id = rhs.id; |
| mgr = rhs.mgr; |
| if (mgr) mgr->incRefCount(id, this); |
| return *this; |
| } |
| inline Label::~Label() |
| { |
| if (id && mgr) mgr->decRefCount(id, this); |
| } |
| inline const uint8* Label::getAddress() const |
| { |
| if (mgr == 0 || !mgr->isReady()) return 0; |
| size_t offset; |
| if (!mgr->getOffset(&offset, *this)) return 0; |
| return mgr->getCode() + offset; |
| } |
| |
| class CodeGenerator : public CodeArray { |
| public: |
| enum LabelType { |
| T_SHORT, |
| T_NEAR, |
| T_AUTO // T_SHORT if possible |
| }; |
| private: |
| CodeGenerator operator=(const CodeGenerator&); // don't call |
| #ifdef XBYAK64 |
| enum { i32e = 32 | 64, BIT = 64 }; |
| static const size_t dummyAddr = (size_t(0x11223344) << 32) | 55667788; |
| typedef Reg64 NativeReg; |
| #else |
| enum { i32e = 32, BIT = 32 }; |
| static const size_t dummyAddr = 0x12345678; |
| typedef Reg32 NativeReg; |
| #endif |
| // (XMM, XMM|MEM) |
| static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isXMM() && (op2.isXMM() || op2.isMEM()); |
| } |
| // (MMX, MMX|MEM) or (XMM, XMM|MEM) |
| static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2) |
| { |
| return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2); |
| } |
| // (XMM, MMX|MEM) |
| static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isXMM() && (op2.isMMX() || op2.isMEM()); |
| } |
| // (MMX, XMM|MEM) |
| static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isMMX() && (op2.isXMM() || op2.isMEM()); |
| } |
| // (XMM, REG32|MEM) |
| static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM()); |
| } |
| // (REG32, XMM|MEM) |
| static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM()); |
| } |
| // (REG32, REG32|MEM) |
| static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2) |
| { |
| return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM()); |
| } |
| void rex(const Operand& op1, const Operand& op2 = Operand()) |
| { |
| uint8 rex = 0; |
| const Operand *p1 = &op1, *p2 = &op2; |
| if (p1->isMEM()) std::swap(p1, p2); |
| if (p1->isMEM()) throw Error(ERR_BAD_COMBINATION); |
| if (p2->isMEM()) { |
| const Address& addr = p2->getAddress(); |
| if (BIT == 64 && addr.is32bit()) db(0x67); |
| rex = addr.getRex() | p1->getReg().getRex(); |
| } else { |
| // ModRM(reg, base); |
| rex = op2.getReg().getRex(op1.getReg()); |
| } |
| // except movsx(16bit, 32/64bit) |
| if ((op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e))) db(0x66); |
| if (rex) db(rex); |
| } |
| enum AVXtype { |
| // low 3 bit |
| T_N1 = 1, |
| T_N2 = 2, |
| T_N4 = 3, |
| T_N8 = 4, |
| T_N16 = 5, |
| T_N32 = 6, |
| T_NX_MASK = 7, |
| // |
| T_N_VL = 1 << 3, // N * (1, 2, 4) for VL |
| T_DUP = 1 << 4, // N = (8, 32, 64) |
| T_66 = 1 << 5, |
| T_F3 = 1 << 6, |
| T_F2 = 1 << 7, |
| T_0F = 1 << 8, |
| T_0F38 = 1 << 9, |
| T_0F3A = 1 << 10, |
| T_L0 = 1 << 11, |
| T_L1 = 1 << 12, |
| T_W0 = 1 << 13, |
| T_W1 = 1 << 14, |
| T_EW0 = 1 << 15, |
| T_EW1 = 1 << 16, |
| T_YMM = 1 << 17, // support YMM, ZMM |
| T_EVEX = 1 << 18, |
| T_ER_X = 1 << 19, // xmm{er} |
| T_ER_Y = 1 << 20, // ymm{er} |
| T_ER_Z = 1 << 21, // zmm{er} |
| T_SAE_X = 1 << 22, // xmm{sae} |
| T_SAE_Y = 1 << 23, // ymm{sae} |
| T_SAE_Z = 1 << 24, // zmm{sae} |
| T_MUST_EVEX = 1 << 25, // contains T_EVEX |
| T_B32 = 1 << 26, // m32bcst |
| T_B64 = 1 << 27, // m64bcst |
| T_M_K = 1 << 28, // mem{k} |
| T_VSIB = 1 << 29, |
| T_MEM_EVEX = 1 << 30, // use evex if mem |
| T_XXX |
| }; |
| void vex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false) |
| { |
| int w = (type & T_W1) ? 1 : 0; |
| bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM(); |
| bool r = reg.isExtIdx(); |
| bool b = base.isExtIdx(); |
| int idx = v ? v->getIdx() : 0; |
| if ((idx | reg.getIdx() | base.getIdx()) >= 16) throw Error(ERR_BAD_COMBINATION); |
| uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; |
| uint32 vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp; |
| if (!b && !x && !w && (type & T_0F)) { |
| db(0xC5); db((r ? 0 : 0x80) | vvvv); |
| } else { |
| uint32 mmmm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; |
| db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv); |
| } |
| db(code); |
| } |
| void verifySAE(const Reg& r, int type) const |
| { |
| if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return; |
| throw Error(ERR_SAE_IS_INVALID); |
| } |
| void verifyER(const Reg& r, int type) const |
| { |
| if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return; |
| throw Error(ERR_ER_IS_INVALID); |
| } |
| // (a, b, c) contains non zero two or three values then err |
| int verifyDuplicate(int a, int b, int c, int err) |
| { |
| int v = a | b | c; |
| if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) return Error(err); |
| return v; |
| } |
| int evex(const Reg& reg, const Reg& base, const Operand *v, int type, int code, bool x = false, bool b = false, int aaa = 0, uint32 VL = 0, bool Hi16Vidx = false) |
| { |
| if (!(type & (T_EVEX | T_MUST_EVEX))) throw Error(ERR_EVEX_IS_INVALID); |
| int w = (type & T_EW1) ? 1 : 0; |
| uint32 mm = (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; |
| uint32 pp = (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; |
| |
| int idx = v ? v->getIdx() : 0; |
| uint32 vvvv = ~idx; |
| |
| bool R = !reg.isExtIdx(); |
| bool X = x ? false : !base.isExtIdx2(); |
| bool B = !base.isExtIdx(); |
| bool Rp = !reg.isExtIdx2(); |
| int LL; |
| int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET); |
| int disp8N = 1; |
| if (rounding) { |
| if (rounding == EvexModifierRounding::T_SAE) { |
| verifySAE(base, type); LL = 0; |
| } else { |
| verifyER(base, type); LL = rounding - 1; |
| } |
| b = true; |
| } else { |
| if (v) VL = (std::max)(VL, v->getBit()); |
| VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL); |
| LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0; |
| if (b) { |
| disp8N = (type & T_B32) ? 4 : 8; |
| } else if (type & T_DUP) { |
| disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64; |
| } else { |
| if ((type & (T_NX_MASK | T_N_VL)) == 0) { |
| type |= T_N16 | T_N_VL; // default |
| } |
| int low = type & T_NX_MASK; |
| if (low > 0) { |
| disp8N = 1 << (low - 1); |
| if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1); |
| } |
| } |
| } |
| bool Vp = !((v ? v->isExtIdx2() : 0) | Hi16Vidx); |
| bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false); |
| if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET); |
| if (aaa == 0) z = 0; // clear T_z if mask is not set |
| db(0x62); |
| db((R ? 0x80 : 0) | (X ? 0x40 : 0) | (B ? 0x20 : 0) | (Rp ? 0x10 : 0) | (mm & 3)); |
| db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | 4 | (pp & 3)); |
| db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (Vp ? 8 : 0) | (aaa & 7)); |
| db(code); |
| return disp8N; |
| } |
| void setModRM(int mod, int r1, int r2) |
| { |
| db(static_cast<uint8>((mod << 6) | ((r1 & 7) << 3) | (r2 & 7))); |
| } |
| void setSIB(const RegExp& e, int reg, int disp8N = 0) |
| { |
| size_t disp64 = e.getDisp(); |
| #ifdef XBYAK64 |
| size_t high = disp64 >> 32; |
| if (high != 0 && high != 0xFFFFFFFF) throw Error(ERR_OFFSET_IS_TOO_BIG); |
| #endif |
| uint32 disp = static_cast<uint32>(disp64); |
| const Reg& base = e.getBase(); |
| const Reg& index = e.getIndex(); |
| const int baseIdx = base.getIdx(); |
| const int baseBit = base.getBit(); |
| const int indexBit = index.getBit(); |
| enum { |
| mod00 = 0, mod01 = 1, mod10 = 2 |
| }; |
| int mod = mod10; // disp32 |
| if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) { |
| mod = mod00; |
| } else { |
| if (disp8N == 0) { |
| if (inner::IsInDisp8(disp)) { |
| mod = mod01; |
| } |
| } else { |
| // disp must be casted to signed |
| uint32 t = static_cast<uint32>(static_cast<int>(disp) / disp8N); |
| if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) { |
| disp = t; |
| mod = mod01; |
| } |
| } |
| } |
| const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP; |
| /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */ |
| bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP; |
| #ifdef XBYAK64 |
| if (!baseBit && !indexBit) hasSIB = true; |
| #endif |
| if (hasSIB) { |
| setModRM(mod, reg, Operand::ESP); |
| /* SIB = [2:3:3] = [SS:index:base(=rm)] */ |
| const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP; |
| const int scale = e.getScale(); |
| const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0; |
| setModRM(SS, idx, newBaseIdx); |
| } else { |
| setModRM(mod, reg, newBaseIdx); |
| } |
| if (mod == mod01) { |
| db(disp); |
| } else if (mod == mod10 || (mod == mod00 && !baseBit)) { |
| dd(disp); |
| } |
| } |
| LabelManager labelMgr_; |
| bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; } |
| void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE) |
| { |
| rex(reg2, reg1); |
| db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); |
| setModRM(3, reg1.getIdx(), reg2.getIdx()); |
| } |
| void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0) |
| { |
| if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); |
| rex(addr, reg); |
| db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); |
| opAddr(addr, reg.getIdx(), immSize); |
| } |
| void opLoadSeg(const Address& addr, const Reg& reg, int code0, int code1 = NONE) |
| { |
| if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); |
| if (reg.isBit(8)) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| rex(addr, reg); |
| db(code0); if (code1 != NONE) db(code1); |
| opAddr(addr, reg.getIdx()); |
| } |
| void opMIB(const Address& addr, const Reg& reg, int code0, int code1) |
| { |
| if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); |
| if (addr.getMode() != Address::M_ModRM) throw Error(ERR_INVALID_MIB_ADDRESS); |
| if (BIT == 64 && addr.is32bit()) db(0x67); |
| const RegExp& regExp = addr.getRegExp(false); |
| uint8 rex = regExp.getRex(); |
| if (rex) db(rex); |
| db(code0); db(code1); |
| setSIB(regExp, reg.getIdx()); |
| } |
| void makeJmp(uint32 disp, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) |
| { |
| const int shortJmpSize = 2; |
| const int longHeaderSize = longPref ? 2 : 1; |
| const int longJmpSize = longHeaderSize + 4; |
| if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) { |
| db(shortCode); db(disp - shortJmpSize); |
| } else { |
| if (type == T_SHORT) throw Error(ERR_LABEL_IS_TOO_FAR); |
| if (longPref) db(longPref); |
| db(longCode); dd(disp - longJmpSize); |
| } |
| } |
| bool isNEAR(LabelType type) const { return type == T_NEAR || (type == T_AUTO && isDefaultJmpNEAR_); } |
| template<class T> |
| void opJmp(T& label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) |
| { |
| if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */ |
| size_t offset = 0; |
| if (labelMgr_.getOffset(&offset, label)) { /* label exists */ |
| makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref); |
| } else { |
| int jmpSize = 0; |
| if (isNEAR(type)) { |
| jmpSize = 4; |
| if (longPref) db(longPref); |
| db(longCode); dd(0); |
| } else { |
| jmpSize = 1; |
| db(shortCode); db(0); |
| } |
| JmpLabel jmp(size_, jmpSize, inner::LasIs); |
| labelMgr_.addUndefinedLabel(label, jmp); |
| } |
| } |
| void opJmpAbs(const void *addr, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref = 0) |
| { |
| if (isAutoGrow()) { |
| if (!isNEAR(type)) throw Error(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW); |
| if (size_ + 16 >= maxSize_) growMemory(); |
| if (longPref) db(longPref); |
| db(longCode); |
| dd(0); |
| save(size_ - 4, size_t(addr) - size_, 4, inner::Labs); |
| } else { |
| makeJmp(inner::VerifyInInt32(reinterpret_cast<const uint8*>(addr) - getCurr()), type, shortCode, longCode, longPref); |
| } |
| |
| } |
| // reg is reg field of ModRM |
| // immSize is the size for immediate value |
| // disp8N = 0(normal), disp8N = 1(force disp32), disp8N = {2, 4, 8} ; compressed displacement |
| void opAddr(const Address &addr, int reg, int immSize = 0, int disp8N = 0, bool permitVisb = false) |
| { |
| if (!permitVisb && addr.isVsib()) throw Error(ERR_BAD_VSIB_ADDRESSING); |
| if (addr.getMode() == Address::M_ModRM) { |
| setSIB(addr.getRegExp(), reg, disp8N); |
| } else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) { |
| setModRM(0, reg, 5); |
| if (addr.getLabel()) { // [rip + Label] |
| putL_inner(*addr.getLabel(), true, addr.getDisp() - immSize); |
| } else { |
| size_t disp = addr.getDisp(); |
| if (addr.getMode() == Address::M_ripAddr) { |
| if (isAutoGrow()) throw Error(ERR_INVALID_RIP_IN_AUTO_GROW); |
| disp -= (size_t)getCurr() + 4 + immSize; |
| } |
| dd(inner::VerifyInInt32(disp)); |
| } |
| } |
| } |
| /* preCode is for SSSE3/SSE4 */ |
| void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE) |
| { |
| if (isValid && !isValid(reg, op)) throw Error(ERR_BAD_COMBINATION); |
| if (pref != NONE) db(pref); |
| if (op.isMEM()) { |
| opModM(op.getAddress(), reg.getReg(), 0x0F, preCode, code, (imm8 != NONE) ? 1 : 0); |
| } else { |
| opModR(reg.getReg(), op.getReg(), 0x0F, preCode, code); |
| } |
| if (imm8 != NONE) db(imm8); |
| } |
| void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext) |
| { |
| if (mmx.isXMM()) db(0x66); |
| opModR(Reg32(ext), mmx, 0x0F, code); |
| db(imm8); |
| } |
| void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE) |
| { |
| opGen(mmx, op, code, mmx.isXMM() ? pref : NONE, isXMMorMMX_MEM, imm8, preCode); |
| } |
| void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref) |
| { |
| if (pref != NONE) db(pref); |
| if (op1.isXMM() && op2.isMEM()) { |
| opModM(op2.getAddress(), op1.getReg(), 0x0F, code); |
| } else if (op1.isMEM() && op2.isXMM()) { |
| opModM(op1.getAddress(), op2.getReg(), 0x0F, code | 1); |
| } else { |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| } |
| void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false) |
| { |
| if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */ |
| if (mmx.isXMM()) db(0x66); |
| opModR(op.getReg(), mmx, 0x0F, 0xC5); db(imm); |
| } else { |
| opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, 0x3A); |
| } |
| } |
| void opR_ModM(const Operand& op, int bit, int ext, int code0, int code1 = NONE, int code2 = NONE, bool disableRex = false, int immSize = 0) |
| { |
| int opBit = op.getBit(); |
| if (disableRex && opBit == 64) opBit = 32; |
| if (op.isREG(bit)) { |
| opModR(Reg(ext, Operand::REG, opBit), op.getReg().changeBit(opBit), code0, code1, code2); |
| } else if (op.isMEM()) { |
| opModM(op.getAddress(), Reg(ext, Operand::REG, opBit), code0, code1, code2, immSize); |
| } else { |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| } |
| void opShift(const Operand& op, int imm, int ext) |
| { |
| verifyMemHasSize(op); |
| opR_ModM(op, 0, ext, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), NONE, NONE, false, (imm != 1) ? 1 : 0); |
| if (imm != 1) db(imm); |
| } |
| void opShift(const Operand& op, const Reg8& _cl, int ext) |
| { |
| if (_cl.getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION); |
| opR_ModM(op, 0, ext, 0xD2); |
| } |
| void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE, int immSize = 0) |
| { |
| if (condR) { |
| opModR(op1.getReg(), op2.getReg(), code0, code1, code2); |
| } else if (condM) { |
| opModM(op2.getAddress(), op1.getReg(), code0, code1, code2, immSize); |
| } else { |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| } |
| void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *_cl = 0) |
| { |
| if (_cl && _cl->getIdx() != Operand::CL) throw Error(ERR_BAD_COMBINATION); |
| opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (_cl ? 1 : 0), NONE, _cl ? 0 : 1); |
| if (!_cl) db(imm); |
| } |
| // (REG, REG|MEM), (MEM, REG) |
| void opRM_RM(const Operand& op1, const Operand& op2, int code) |
| { |
| if (op1.isREG() && op2.isMEM()) { |
| opModM(op2.getAddress(), op1.getReg(), code | 2); |
| } else { |
| opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code); |
| } |
| } |
| // (REG|MEM, IMM) |
| void opRM_I(const Operand& op, uint32 imm, int code, int ext) |
| { |
| verifyMemHasSize(op); |
| uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32; |
| if (op.isBit(8)) immBit = 8; |
| if (op.getBit() < immBit) throw Error(ERR_IMM_IS_TOO_BIG); |
| if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */ |
| if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al |
| rex(op); |
| db(code | 4 | (immBit == 8 ? 0 : 1)); |
| } else { |
| int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0; |
| opR_ModM(op, 0, ext, 0x80 | tmp, NONE, NONE, false, immBit / 8); |
| } |
| db(imm, immBit / 8); |
| } |
| void opIncDec(const Operand& op, int code, int ext) |
| { |
| verifyMemHasSize(op); |
| #ifndef XBYAK64 |
| if (op.isREG() && !op.isBit(8)) { |
| rex(op); db(code | op.getIdx()); |
| return; |
| } |
| #endif |
| code = 0xFE; |
| if (op.isREG()) { |
| opModR(Reg(ext, Operand::REG, op.getBit()), op.getReg(), code); |
| } else { |
| opModM(op.getAddress(), Reg(ext, Operand::REG, op.getBit()), code); |
| } |
| } |
| void opPushPop(const Operand& op, int code, int ext, int alt) |
| { |
| int bit = op.getBit(); |
| if (bit == 16 || bit == BIT) { |
| if (bit == 16) db(0x66); |
| if (op.isREG()) { |
| if (op.getReg().getIdx() >= 8) db(0x41); |
| db(alt | (op.getIdx() & 7)); |
| return; |
| } |
| if (op.isMEM()) { |
| opModM(op.getAddress(), Reg(ext, Operand::REG, 32), code); |
| return; |
| } |
| } |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| void verifyMemHasSize(const Operand& op) const |
| { |
| if (op.isMEM() && op.getBit() == 0) throw Error(ERR_MEM_SIZE_IS_NOT_SPECIFIED); |
| } |
| /* |
| mov(r, imm) = db(imm, mov_imm(r, imm)) |
| */ |
| int mov_imm(const Reg& reg, size_t imm) |
| { |
| int bit = reg.getBit(); |
| const int idx = reg.getIdx(); |
| int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3); |
| if (bit == 64 && (imm & ~size_t(0xffffffffu)) == 0) { |
| rex(Reg32(idx)); |
| bit = 32; |
| } else { |
| rex(reg); |
| if (bit == 64 && inner::IsInInt32(imm)) { |
| db(0xC7); |
| code = 0xC0; |
| bit = 32; |
| } |
| } |
| db(code | (idx & 7)); |
| return bit / 8; |
| } |
| template<class T> |
| void putL_inner(T& label, bool relative = false, size_t disp = 0) |
| { |
| const int jmpSize = relative ? 4 : (int)sizeof(size_t); |
| if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); |
| size_t offset = 0; |
| if (labelMgr_.getOffset(&offset, label)) { |
| if (relative) { |
| db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize); |
| } else if (isAutoGrow()) { |
| db(uint64(0), jmpSize); |
| save(size_ - jmpSize, offset, jmpSize, inner::LaddTop); |
| } else { |
| db(size_t(top_) + offset, jmpSize); |
| } |
| return; |
| } |
| db(uint64(0), jmpSize); |
| JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp); |
| labelMgr_.addUndefinedLabel(label, jmp); |
| } |
| void opMovxx(const Reg& reg, const Operand& op, uint8 code) |
| { |
| if (op.isBit(32)) throw Error(ERR_BAD_COMBINATION); |
| int w = op.isBit(16); |
| #ifdef XBYAK64 |
| if (op.isHigh8bit()) throw Error(ERR_BAD_COMBINATION); |
| #endif |
| bool cond = reg.isREG() && (reg.getBit() > op.getBit()); |
| opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w); |
| } |
| void opFpuMem(const Address& addr, uint8 m16, uint8 m32, uint8 m64, uint8 ext, uint8 m64ext) |
| { |
| if (addr.is64bitDisp()) throw Error(ERR_CANT_USE_64BIT_DISP); |
| uint8 code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0; |
| if (!code) throw Error(ERR_BAD_MEM_SIZE); |
| if (m64ext && addr.isBit(64)) ext = m64ext; |
| |
| rex(addr, st0); |
| db(code); |
| opAddr(addr, ext); |
| } |
| // use code1 if reg1 == st0 |
| // use code2 if reg1 != st0 && reg2 == st0 |
| void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32 code1, uint32 code2) |
| { |
| uint32 code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0; |
| if (!code) throw Error(ERR_BAD_ST_COMBINATION); |
| db(uint8(code >> 8)); |
| db(uint8(code | (reg1.getIdx() | reg2.getIdx()))); |
| } |
| void opFpu(const Fpu& reg, uint8 code1, uint8 code2) |
| { |
| db(code1); db(code2 | reg.getIdx()); |
| } |
| void opVex(const Reg& r, const Operand *p1, const Operand& op2, int type, int code, int imm8 = NONE) |
| { |
| if (op2.isMEM()) { |
| const Address& addr = op2.getAddress(); |
| const RegExp& regExp = addr.getRegExp(); |
| const Reg& base = regExp.getBase(); |
| const Reg& index = regExp.getIndex(); |
| if (BIT == 64 && addr.is32bit()) db(0x67); |
| int disp8N = 0; |
| bool x = index.isExtIdx(); |
| if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx()) { |
| int aaa = addr.getOpmaskIdx(); |
| if (aaa && !(type & T_M_K)) throw Error(ERR_INVALID_OPMASK_WITH_MEMORY); |
| bool b = false; |
| if (addr.isBroadcast()) { |
| if (!(type & (T_B32 | T_B64))) throw Error(ERR_INVALID_BROADCAST); |
| b = true; |
| } |
| int VL = regExp.isVsib() ? index.getBit() : 0; |
| disp8N = evex(r, base, p1, type, code, x, b, aaa, VL, index.isExtIdx2()); |
| } else { |
| vex(r, base, p1, type, code, x); |
| } |
| opAddr(addr, r.getIdx(), (imm8 != NONE) ? 1 : 0, disp8N, (type & T_VSIB) != 0); |
| } else { |
| const Reg& base = op2.getReg(); |
| if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) { |
| evex(r, base, p1, type, code); |
| } else { |
| vex(r, base, p1, type, code); |
| } |
| setModRM(3, r.getIdx(), base.getIdx()); |
| } |
| if (imm8 != NONE) db(imm8); |
| } |
| // (r, r, r/m) if isR_R_RM |
| // (r, r/m, r) |
| void opGpr(const Reg32e& r, const Operand& op1, const Operand& op2, int type, uint8 code, bool isR_R_RM, int imm8 = NONE) |
| { |
| const Operand *p1 = &op1; |
| const Operand *p2 = &op2; |
| if (!isR_R_RM) std::swap(p1, p2); |
| const unsigned int bit = r.getBit(); |
| if (p1->getBit() != bit || (p2->isREG() && p2->getBit() != bit)) throw Error(ERR_BAD_COMBINATION); |
| type |= (bit == 64) ? T_W1 : T_W0; |
| opVex(r, p1, *p2, type, code, imm8); |
| } |
| void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, int type, int code0, int imm8 = NONE) |
| { |
| const Xmm *x2 = static_cast<const Xmm*>(&op1); |
| const Operand *op = &op2; |
| if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1) |
| x2 = &x1; |
| op = &op1; |
| } |
| // (x1, x2, op) |
| if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) throw Error(ERR_BAD_COMBINATION); |
| opVex(x1, x2, *op, type, code0, imm8); |
| } |
| void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, int type, int code0, int imm8 = NONE) |
| { |
| if (!op3.isMEM() && (x2.getKind() != op3.getKind())) throw Error(ERR_BAD_COMBINATION); |
| opVex(k, &x2, op3, type, code0, imm8); |
| } |
| // (x, x/m), (y, x/m256), (z, y/m) |
| void checkCvt1(const Operand& x, const Operand& op) const |
| { |
| if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) throw Error(ERR_BAD_COMBINATION); |
| } |
| // (x, x/m), (x, y/m256), (y, z/m) |
| void checkCvt2(const Xmm& x, const Operand& op) const |
| { |
| if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) throw Error(ERR_BAD_COMBINATION); |
| } |
| void opCvt2(const Xmm& x, const Operand& op, int type, int code) |
| { |
| checkCvt2(x, op); |
| Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM; |
| opVex(x.copyAndSetKind(kind), &xm0, op, type, code); |
| } |
| void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, int type, int type64, int type32, uint8 code) |
| { |
| if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| Xmm x(op.getIdx()); |
| const Operand *p = op.isREG() ? &x : &op; |
| opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code); |
| } |
| const Xmm& cvtIdx0(const Operand& x) const |
| { |
| return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0; |
| } |
| // support (x, x/m, imm), (y, y/m, imm) |
| void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, int type, int code, int imm8 = NONE) |
| { |
| opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8); |
| } |
| // QQQ:need to refactor |
| void opSp1(const Reg& reg, const Operand& op, uint8 pref, uint8 code0, uint8 code1) |
| { |
| if (reg.isBit(8)) throw Error(ERR_BAD_SIZE_OF_REGISTER); |
| bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM()); |
| if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) throw Error(ERR_BAD_COMBINATION); |
| if (is16bit) db(0x66); |
| db(pref); opModRM(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, code0, code1); |
| } |
| void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, int type, uint8 code, int mode) |
| { |
| const RegExp& regExp = addr.getRegExp(); |
| if (!regExp.isVsib(128 | 256)) throw Error(ERR_BAD_VSIB_ADDRESSING); |
| const int y_vx_y = 0; |
| const int y_vy_y = 1; |
| // const int x_vy_x = 2; |
| const bool isAddrYMM = regExp.getIndex().getBit() == 256; |
| if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) { |
| bool isOK = false; |
| if (mode == y_vx_y) { |
| isOK = x1.isYMM() && !isAddrYMM && x2.isYMM(); |
| } else if (mode == y_vy_y) { |
| isOK = x1.isYMM() && isAddrYMM && x2.isYMM(); |
| } else { // x_vy_x |
| isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM(); |
| } |
| if (!isOK) throw Error(ERR_BAD_VSIB_ADDRESSING); |
| } |
| opAVX_X_X_XM(isAddrYMM ? Ymm(x1.getIdx()) : x1, isAddrYMM ? Ymm(x2.getIdx()) : x2, addr, type, code); |
| } |
| enum { |
| xx_yy_zz = 0, |
| xx_yx_zy = 1, |
| xx_xy_yz = 2 |
| }; |
| void checkGather2(const Xmm& x1, const Reg& x2, int mode) const |
| { |
| if (x1.isXMM() && x2.isXMM()) return; |
| switch (mode) { |
| case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return; |
| break; |
| case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return; |
| break; |
| case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return; |
| break; |
| } |
| throw Error(ERR_BAD_VSIB_ADDRESSING); |
| } |
| void opGather2(const Xmm& x, const Address& addr, int type, uint8 code, int mode) |
| { |
| if (x.hasZero()) throw Error(ERR_INVALID_ZERO); |
| checkGather2(x, addr.getRegExp().getIndex(), mode); |
| opVex(x, 0, addr, type, code); |
| } |
| /* |
| xx_xy_yz ; mode = true |
| xx_xy_xz ; mode = false |
| */ |
| void opVmov(const Operand& op, const Xmm& x, int type, uint8 code, bool mode) |
| { |
| if (mode) { |
| if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM()))) throw Error(ERR_BAD_COMBINATION); |
| } else { |
| if (!op.isMEM() && !op.isXMM()) throw Error(ERR_BAD_COMBINATION); |
| } |
| opVex(x, 0, op, type, code); |
| } |
| void opGatherFetch(const Address& addr, const Xmm& x, int type, uint8 code, Operand::Kind kind) |
| { |
| if (addr.hasZero()) throw Error(ERR_INVALID_ZERO); |
| if (addr.getRegExp().getIndex().getKind() != kind) throw Error(ERR_BAD_VSIB_ADDRESSING); |
| opVex(x, 0, addr, type, code); |
| } |
| void opInOut(const Reg& a, const Reg& d, uint8 code) |
| { |
| if (a.getIdx() == Operand::AL && d.getIdx() == Operand::DX && d.getBit() == 16) { |
| switch (a.getBit()) { |
| case 8: db(code); return; |
| case 16: db(0x66); db(code + 1); return; |
| case 32: db(code + 1); return; |
| } |
| } |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| void opInOut(const Reg& a, uint8 code, uint8 v) |
| { |
| if (a.getIdx() == Operand::AL) { |
| switch (a.getBit()) { |
| case 8: db(code); db(v); return; |
| case 16: db(0x66); db(code + 1); db(v); return; |
| case 32: db(code + 1); db(v); return; |
| } |
| } |
| throw Error(ERR_BAD_COMBINATION); |
| } |
| #ifdef XBYAK64 |
| void opAMX(const Tmm& t1, const Address& addr, int type, int code0) |
| { |
| // addressing without index such as ptr[r8] |
| if (addr.getRegExp().getIndex().getBit() == 0) throw Error(ERR_NOT_SUPPORTED); |
| opVex(t1, &tmm0, addr, type, code0); |
| } |
| #endif |
| public: |
| unsigned int getVersion() const { return VERSION; } |
| using CodeArray::db; |
| const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7; |
| const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; |
| const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7; |
| const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, |