blob: e22324f2cd9282f12689177c1b24d96d9e44c944 [file] [log] [blame]
/*
* Copyright 2007 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Author: Soren Sandmann <sandmann@redhat.com> */
#include "../../SDL_internal.h"
#include "SDL_stdinc.h"
#include "edid.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#define TRUE 1
#define FALSE 0
static int
get_bit (int in, int bit)
{
return (in & (1 << bit)) >> bit;
}
static int
get_bits (int in, int begin, int end)
{
int mask = (1 << (end - begin + 1)) - 1;
return (in >> begin) & mask;
}
static int
decode_header (const uchar *edid)
{
if (memcmp (edid, "\x00\xff\xff\xff\xff\xff\xff\x00", 8) == 0)
return TRUE;
return FALSE;
}
static int
decode_vendor_and_product_identification (const uchar *edid, MonitorInfo *info)
{
int is_model_year;
/* Manufacturer Code */
info->manufacturer_code[0] = get_bits (edid[0x08], 2, 6);
info->manufacturer_code[1] = get_bits (edid[0x08], 0, 1) << 3;
info->manufacturer_code[1] |= get_bits (edid[0x09], 5, 7);
info->manufacturer_code[2] = get_bits (edid[0x09], 0, 4);
info->manufacturer_code[3] = '\0';
info->manufacturer_code[0] += 'A' - 1;
info->manufacturer_code[1] += 'A' - 1;
info->manufacturer_code[2] += 'A' - 1;
/* Product Code */
info->product_code = edid[0x0b] << 8 | edid[0x0a];
/* Serial Number */
info->serial_number =
edid[0x0c] | edid[0x0d] << 8 | edid[0x0e] << 16 | edid[0x0f] << 24;
/* Week and Year */
is_model_year = FALSE;
switch (edid[0x10])
{
case 0x00:
info->production_week = -1;
break;
case 0xff:
info->production_week = -1;
is_model_year = TRUE;
break;
default:
info->production_week = edid[0x10];
break;
}
if (is_model_year)
{
info->production_year = -1;
info->model_year = 1990 + edid[0x11];
}
else
{
info->production_year = 1990 + edid[0x11];
info->model_year = -1;
}
return TRUE;
}
static int
decode_edid_version (const uchar *edid, MonitorInfo *info)
{
info->major_version = edid[0x12];
info->minor_version = edid[0x13];
return TRUE;
}
static int
decode_display_parameters (const uchar *edid, MonitorInfo *info)
{
/* Digital vs Analog */
info->is_digital = get_bit (edid[0x14], 7);
if (info->is_digital)
{
int bits;
static const int bit_depth[8] =
{
-1, 6, 8, 10, 12, 14, 16, -1
};
static const Interface interfaces[6] =
{
UNDEFINED, DVI, HDMI_A, HDMI_B, MDDI, DISPLAY_PORT
};
bits = get_bits (edid[0x14], 4, 6);
info->ad.digital.bits_per_primary = bit_depth[bits];
bits = get_bits (edid[0x14], 0, 3);
if (bits <= 5)
info->ad.digital.interface = interfaces[bits];
else
info->ad.digital.interface = UNDEFINED;
}
else
{
int bits = get_bits (edid[0x14], 5, 6);
static const double levels[][3] =
{
{ 0.7, 0.3, 1.0 },
{ 0.714, 0.286, 1.0 },
{ 1.0, 0.4, 1.4 },
{ 0.7, 0.0, 0.7 },
};
info->ad.analog.video_signal_level = levels[bits][0];
info->ad.analog.sync_signal_level = levels[bits][1];
info->ad.analog.total_signal_level = levels[bits][2];
info->ad.analog.blank_to_black = get_bit (edid[0x14], 4);
info->ad.analog.separate_hv_sync = get_bit (edid[0x14], 3);
info->ad.analog.composite_sync_on_h = get_bit (edid[0x14], 2);
info->ad.analog.composite_sync_on_green = get_bit (edid[0x14], 1);
info->ad.analog.serration_on_vsync = get_bit (edid[0x14], 0);
}
/* Screen Size / Aspect Ratio */
if (edid[0x15] == 0 && edid[0x16] == 0)
{
info->width_mm = -1;
info->height_mm = -1;
info->aspect_ratio = -1.0;
}
else if (edid[0x16] == 0)
{
info->width_mm = -1;
info->height_mm = -1;
info->aspect_ratio = 100.0 / (edid[0x15] + 99);
}
else if (edid[0x15] == 0)
{
info->width_mm = -1;
info->height_mm = -1;
info->aspect_ratio = 100.0 / (edid[0x16] + 99);
info->aspect_ratio = 1/info->aspect_ratio; /* portrait */
}
else
{
info->width_mm = 10 * edid[0x15];
info->height_mm = 10 * edid[0x16];
}
/* Gamma */
if (edid[0x17] == 0xFF)
info->gamma = -1.0;
else
info->gamma = (edid[0x17] + 100.0) / 100.0;
/* Features */
info->standby = get_bit (edid[0x18], 7);
info->suspend = get_bit (edid[0x18], 6);
info->active_off = get_bit (edid[0x18], 5);
if (info->is_digital)
{
info->ad.digital.rgb444 = TRUE;
if (get_bit (edid[0x18], 3))
info->ad.digital.ycrcb444 = 1;
if (get_bit (edid[0x18], 4))
info->ad.digital.ycrcb422 = 1;
}
else
{
int bits = get_bits (edid[0x18], 3, 4);
ColorType color_type[4] =
{
MONOCHROME, RGB, OTHER_COLOR, UNDEFINED_COLOR
};
info->ad.analog.color_type = color_type[bits];
}
info->srgb_is_standard = get_bit (edid[0x18], 2);
/* In 1.3 this is called "has preferred timing" */
info->preferred_timing_includes_native = get_bit (edid[0x18], 1);
/* FIXME: In 1.3 this indicates whether the monitor accepts GTF */
info->continuous_frequency = get_bit (edid[0x18], 0);
return TRUE;
}
static double
decode_fraction (int high, int low)
{
double result = 0.0;
int i;
high = (high << 2) | low;
for (i = 0; i < 10; ++i)
result += get_bit (high, i) * SDL_pow (2, i - 10);
return result;
}
static int
decode_color_characteristics (const uchar *edid, MonitorInfo *info)
{
info->red_x = decode_fraction (edid[0x1b], get_bits (edid[0x19], 6, 7));
info->red_y = decode_fraction (edid[0x1c], get_bits (edid[0x19], 5, 4));
info->green_x = decode_fraction (edid[0x1d], get_bits (edid[0x19], 2, 3));
info->green_y = decode_fraction (edid[0x1e], get_bits (edid[0x19], 0, 1));
info->blue_x = decode_fraction (edid[0x1f], get_bits (edid[0x1a], 6, 7));
info->blue_y = decode_fraction (edid[0x20], get_bits (edid[0x1a], 4, 5));
info->white_x = decode_fraction (edid[0x21], get_bits (edid[0x1a], 2, 3));
info->white_y = decode_fraction (edid[0x22], get_bits (edid[0x1a], 0, 1));
return TRUE;
}
static int
decode_established_timings (const uchar *edid, MonitorInfo *info)
{
static const Timing established[][8] =
{
{
{ 800, 600, 60 },
{ 800, 600, 56 },
{ 640, 480, 75 },
{ 640, 480, 72 },
{ 640, 480, 67 },
{ 640, 480, 60 },
{ 720, 400, 88 },
{ 720, 400, 70 }
},
{
{ 1280, 1024, 75 },
{ 1024, 768, 75 },
{ 1024, 768, 70 },
{ 1024, 768, 60 },
{ 1024, 768, 87 },
{ 832, 624, 75 },
{ 800, 600, 75 },
{ 800, 600, 72 }
},
{
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 0, 0, 0 },
{ 1152, 870, 75 }
},
};
int i, j, idx;
idx = 0;
for (i = 0; i < 3; ++i)
{
for (j = 0; j < 8; ++j)
{
int byte = edid[0x23 + i];
if (get_bit (byte, j) && established[i][j].frequency != 0)
info->established[idx++] = established[i][j];
}
}
return TRUE;
}
static int
decode_standard_timings (const uchar *edid, MonitorInfo *info)
{
int i;
for (i = 0; i < 8; i++)
{
int first = edid[0x26 + 2 * i];
int second = edid[0x27 + 2 * i];
if (first != 0x01 && second != 0x01)
{
int w = 8 * (first + 31);
int h = 0;
switch (get_bits (second, 6, 7))
{
case 0x00: h = (w / 16) * 10; break;
case 0x01: h = (w / 4) * 3; break;
case 0x02: h = (w / 5) * 4; break;
case 0x03: h = (w / 16) * 9; break;
}
info->standard[i].width = w;
info->standard[i].height = h;
info->standard[i].frequency = get_bits (second, 0, 5) + 60;
}
}
return TRUE;
}
static void
decode_lf_string (const uchar *s, int n_chars, char *result)
{
int i;
for (i = 0; i < n_chars; ++i)
{
if (s[i] == 0x0a)
{
*result++ = '\0';
break;
}
else if (s[i] == 0x00)
{
/* Convert embedded 0's to spaces */
*result++ = ' ';
}
else
{
*result++ = s[i];
}
}
}
static void
decode_display_descriptor (const uchar *desc,
MonitorInfo *info)
{
switch (desc[0x03])
{
case 0xFC:
decode_lf_string (desc + 5, 13, info->dsc_product_name);
break;
case 0xFF:
decode_lf_string (desc + 5, 13, info->dsc_serial_number);
break;
case 0xFE:
decode_lf_string (desc + 5, 13, info->dsc_string);
break;
case 0xFD:
/* Range Limits */
break;
case 0xFB:
/* Color Point */
break;
case 0xFA:
/* Timing Identifications */
break;
case 0xF9:
/* Color Management */
break;
case 0xF8:
/* Timing Codes */
break;
case 0xF7:
/* Established Timings */
break;
case 0x10:
break;
}
}
static void
decode_detailed_timing (const uchar *timing,
DetailedTiming *detailed)
{
int bits;
StereoType stereo[] =
{
NO_STEREO, NO_STEREO, FIELD_RIGHT, FIELD_LEFT,
TWO_WAY_RIGHT_ON_EVEN, TWO_WAY_LEFT_ON_EVEN,
FOUR_WAY_INTERLEAVED, SIDE_BY_SIDE
};
detailed->pixel_clock = (timing[0x00] | timing[0x01] << 8) * 10000;
detailed->h_addr = timing[0x02] | ((timing[0x04] & 0xf0) << 4);
detailed->h_blank = timing[0x03] | ((timing[0x04] & 0x0f) << 8);
detailed->v_addr = timing[0x05] | ((timing[0x07] & 0xf0) << 4);
detailed->v_blank = timing[0x06] | ((timing[0x07] & 0x0f) << 8);
detailed->h_front_porch = timing[0x08] | get_bits (timing[0x0b], 6, 7) << 8;
detailed->h_sync = timing[0x09] | get_bits (timing[0x0b], 4, 5) << 8;
detailed->v_front_porch =
get_bits (timing[0x0a], 4, 7) | get_bits (timing[0x0b], 2, 3) << 4;
detailed->v_sync =
get_bits (timing[0x0a], 0, 3) | get_bits (timing[0x0b], 0, 1) << 4;
detailed->width_mm = timing[0x0c] | get_bits (timing[0x0e], 4, 7) << 8;
detailed->height_mm = timing[0x0d] | get_bits (timing[0x0e], 0, 3) << 8;
detailed->right_border = timing[0x0f];
detailed->top_border = timing[0x10];
detailed->interlaced = get_bit (timing[0x11], 7);
/* Stereo */
bits = get_bits (timing[0x11], 5, 6) << 1 | get_bit (timing[0x11], 0);
detailed->stereo = stereo[bits];
/* Sync */
bits = timing[0x11];
detailed->digital_sync = get_bit (bits, 4);
if (detailed->digital_sync)
{
detailed->ad.digital.composite = !get_bit (bits, 3);
if (detailed->ad.digital.composite)
{
detailed->ad.digital.serrations = get_bit (bits, 2);
detailed->ad.digital.negative_vsync = FALSE;
}
else
{
detailed->ad.digital.serrations = FALSE;
detailed->ad.digital.negative_vsync = !get_bit (bits, 2);
}
detailed->ad.digital.negative_hsync = !get_bit (bits, 0);
}
else
{
detailed->ad.analog.bipolar = get_bit (bits, 3);
detailed->ad.analog.serrations = get_bit (bits, 2);
detailed->ad.analog.sync_on_green = !get_bit (bits, 1);
}
}
static int
decode_descriptors (const uchar *edid, MonitorInfo *info)
{
int i;
int timing_idx;
timing_idx = 0;
for (i = 0; i < 4; ++i)
{
int index = 0x36 + i * 18;
if (edid[index + 0] == 0x00 && edid[index + 1] == 0x00)
{
decode_display_descriptor (edid + index, info);
}
else
{
decode_detailed_timing (
edid + index, &(info->detailed_timings[timing_idx++]));
}
}
info->n_detailed_timings = timing_idx;
return TRUE;
}
static void
decode_check_sum (const uchar *edid,
MonitorInfo *info)
{
int i;
uchar check = 0;
for (i = 0; i < 128; ++i)
check += edid[i];
info->checksum = check;
}
MonitorInfo *
decode_edid (const uchar *edid)
{
MonitorInfo *info = calloc (1, sizeof (MonitorInfo));
decode_check_sum (edid, info);
if (!decode_header (edid) ||
!decode_vendor_and_product_identification (edid, info) ||
!decode_edid_version (edid, info) ||
!decode_display_parameters (edid, info) ||
!decode_color_characteristics (edid, info) ||
!decode_established_timings (edid, info) ||
!decode_standard_timings (edid, info) ||
!decode_descriptors (edid, info)) {
free(info);
return NULL;
}
return info;
}
static const char *
yesno (int v)
{
return v? "yes" : "no";
}
void
dump_monitor_info (MonitorInfo *info)
{
int i;
printf ("Checksum: %d (%s)\n",
info->checksum, info->checksum? "incorrect" : "correct");
printf ("Manufacturer Code: %s\n", info->manufacturer_code);
printf ("Product Code: 0x%x\n", info->product_code);
printf ("Serial Number: %u\n", info->serial_number);
if (info->production_week != -1)
printf ("Production Week: %d\n", info->production_week);
else
printf ("Production Week: unspecified\n");
if (info->production_year != -1)
printf ("Production Year: %d\n", info->production_year);
else
printf ("Production Year: unspecified\n");
if (info->model_year != -1)
printf ("Model Year: %d\n", info->model_year);
else
printf ("Model Year: unspecified\n");
printf ("EDID revision: %d.%d\n", info->major_version, info->minor_version);
printf ("Display is %s\n", info->is_digital? "digital" : "analog");
if (info->is_digital)
{
const char *interface;
if (info->ad.digital.bits_per_primary != -1)
printf ("Bits Per Primary: %d\n", info->ad.digital.bits_per_primary);
else
printf ("Bits Per Primary: undefined\n");
switch (info->ad.digital.interface)
{
case DVI: interface = "DVI"; break;
case HDMI_A: interface = "HDMI-a"; break;
case HDMI_B: interface = "HDMI-b"; break;
case MDDI: interface = "MDDI"; break;
case DISPLAY_PORT: interface = "DisplayPort"; break;
case UNDEFINED: interface = "undefined"; break;
default: interface = "unknown"; break;
}
printf ("Interface: %s\n", interface);
printf ("RGB 4:4:4: %s\n", yesno (info->ad.digital.rgb444));
printf ("YCrCb 4:4:4: %s\n", yesno (info->ad.digital.ycrcb444));
printf ("YCrCb 4:2:2: %s\n", yesno (info->ad.digital.ycrcb422));
}
else
{
const char *s;
printf ("Video Signal Level: %f\n", info->ad.analog.video_signal_level);
printf ("Sync Signal Level: %f\n", info->ad.analog.sync_signal_level);
printf ("Total Signal Level: %f\n", info->ad.analog.total_signal_level);
printf ("Blank to Black: %s\n",
yesno (info->ad.analog.blank_to_black));
printf ("Separate HV Sync: %s\n",
yesno (info->ad.analog.separate_hv_sync));
printf ("Composite Sync on H: %s\n",
yesno (info->ad.analog.composite_sync_on_h));
printf ("Serration on VSync: %s\n",
yesno (info->ad.analog.serration_on_vsync));
switch (info->ad.analog.color_type)
{
case UNDEFINED_COLOR: s = "undefined"; break;
case MONOCHROME: s = "monochrome"; break;
case RGB: s = "rgb"; break;
case OTHER_COLOR: s = "other color"; break;
default: s = "unknown"; break;
};
printf ("Color: %s\n", s);
}
if (info->width_mm == -1)
printf ("Width: undefined\n");
else
printf ("Width: %d mm\n", info->width_mm);
if (info->height_mm == -1)
printf ("Height: undefined\n");
else
printf ("Height: %d mm\n", info->height_mm);
if (info->aspect_ratio > 0)
printf ("Aspect Ratio: %f\n", info->aspect_ratio);
else
printf ("Aspect Ratio: undefined\n");
if (info->gamma >= 0)
printf ("Gamma: %f\n", info->gamma);
else
printf ("Gamma: undefined\n");
printf ("Standby: %s\n", yesno (info->standby));
printf ("Suspend: %s\n", yesno (info->suspend));
printf ("Active Off: %s\n", yesno (info->active_off));
printf ("SRGB is Standard: %s\n", yesno (info->srgb_is_standard));
printf ("Preferred Timing Includes Native: %s\n",
yesno (info->preferred_timing_includes_native));
printf ("Continuous Frequency: %s\n", yesno (info->continuous_frequency));
printf ("Red X: %f\n", info->red_x);
printf ("Red Y: %f\n", info->red_y);
printf ("Green X: %f\n", info->green_x);
printf ("Green Y: %f\n", info->green_y);
printf ("Blue X: %f\n", info->blue_x);
printf ("Blue Y: %f\n", info->blue_y);
printf ("White X: %f\n", info->white_x);
printf ("White Y: %f\n", info->white_y);
printf ("Established Timings:\n");
for (i = 0; i < 24; ++i)
{
Timing *timing = &(info->established[i]);
if (timing->frequency == 0)
break;
printf (" %d x %d @ %d Hz\n",
timing->width, timing->height, timing->frequency);
}
printf ("Standard Timings:\n");
for (i = 0; i < 8; ++i)
{
Timing *timing = &(info->standard[i]);
if (timing->frequency == 0)
break;
printf (" %d x %d @ %d Hz\n",
timing->width, timing->height, timing->frequency);
}
for (i = 0; i < info->n_detailed_timings; ++i)
{
DetailedTiming *timing = &(info->detailed_timings[i]);
const char *s;
printf ("Timing%s: \n",
(i == 0 && info->preferred_timing_includes_native)?
" (Preferred)" : "");
printf (" Pixel Clock: %d\n", timing->pixel_clock);
printf (" H Addressable: %d\n", timing->h_addr);
printf (" H Blank: %d\n", timing->h_blank);
printf (" H Front Porch: %d\n", timing->h_front_porch);
printf (" H Sync: %d\n", timing->h_sync);
printf (" V Addressable: %d\n", timing->v_addr);
printf (" V Blank: %d\n", timing->v_blank);
printf (" V Front Porch: %d\n", timing->v_front_porch);
printf (" V Sync: %d\n", timing->v_sync);
printf (" Width: %d mm\n", timing->width_mm);
printf (" Height: %d mm\n", timing->height_mm);
printf (" Right Border: %d\n", timing->right_border);
printf (" Top Border: %d\n", timing->top_border);
switch (timing->stereo)
{
default:
case NO_STEREO: s = "No Stereo"; break;
case FIELD_RIGHT: s = "Field Sequential, Right on Sync"; break;
case FIELD_LEFT: s = "Field Sequential, Left on Sync"; break;
case TWO_WAY_RIGHT_ON_EVEN: s = "Two-way, Right on Even"; break;
case TWO_WAY_LEFT_ON_EVEN: s = "Two-way, Left on Even"; break;
case FOUR_WAY_INTERLEAVED: s = "Four-way Interleaved"; break;
case SIDE_BY_SIDE: s = "Side-by-Side"; break;
}
printf (" Stereo: %s\n", s);
if (timing->digital_sync)
{
printf (" Digital Sync:\n");
printf (" composite: %s\n", yesno (timing->ad.digital.composite));
printf (" serrations: %s\n", yesno (timing->ad.digital.serrations));
printf (" negative vsync: %s\n",
yesno (timing->ad.digital.negative_vsync));
printf (" negative hsync: %s\n",
yesno (timing->ad.digital.negative_hsync));
}
else
{
printf (" Analog Sync:\n");
printf (" bipolar: %s\n", yesno (timing->ad.analog.bipolar));
printf (" serrations: %s\n", yesno (timing->ad.analog.serrations));
printf (" sync on green: %s\n", yesno (
timing->ad.analog.sync_on_green));
}
}
printf ("Detailed Product information:\n");
printf (" Product Name: %s\n", info->dsc_product_name);
printf (" Serial Number: %s\n", info->dsc_serial_number);
printf (" Unspecified String: %s\n", info->dsc_string);
}