blob: 7bd4137d55c9d765404572ae3f7b2d9bcb094be5 [file] [log] [blame]
//========================================================================
//
// Splash.cc
//
//========================================================================
#include <config.h>
#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif
#include <stdlib.h>
#include <string.h>
#include "goo/gmem.h"
#include "SplashErrorCodes.h"
#include "SplashMath.h"
#include "SplashBitmap.h"
#include "SplashState.h"
#include "SplashPath.h"
#include "SplashXPath.h"
#include "SplashXPathScanner.h"
#include "SplashPattern.h"
#include "SplashScreen.h"
#include "SplashClip.h"
#include "SplashFont.h"
#include "SplashGlyphBitmap.h"
#include "Splash.h"
//------------------------------------------------------------------------
// Splash
//------------------------------------------------------------------------
Splash::Splash(SplashBitmap *bitmapA) {
bitmap = bitmapA;
state = new SplashState(bitmap->width, bitmap->height);
debugMode = gFalse;
}
Splash::~Splash() {
while (state->next) {
restoreState();
}
delete state;
}
//------------------------------------------------------------------------
// state read
//------------------------------------------------------------------------
SplashPattern *Splash::getStrokePattern() {
return state->strokePattern;
}
SplashPattern *Splash::getFillPattern() {
return state->fillPattern;
}
SplashScreen *Splash::getScreen() {
return state->screen;
}
SplashCoord Splash::getLineWidth() {
return state->lineWidth;
}
int Splash::getLineCap() {
return state->lineCap;
}
int Splash::getLineJoin() {
return state->lineJoin;
}
SplashCoord Splash::getMiterLimit() {
return state->miterLimit;
}
SplashCoord Splash::getFlatness() {
return state->flatness;
}
SplashCoord *Splash::getLineDash() {
return state->lineDash;
}
int Splash::getLineDashLength() {
return state->lineDashLength;
}
SplashCoord Splash::getLineDashPhase() {
return state->lineDashPhase;
}
SplashClip *Splash::getClip() {
return state->clip;
}
//------------------------------------------------------------------------
// state write
//------------------------------------------------------------------------
void Splash::setStrokePattern(SplashPattern *strokePattern) {
state->setStrokePattern(strokePattern);
}
void Splash::setFillPattern(SplashPattern *fillPattern) {
state->setFillPattern(fillPattern);
}
void Splash::setScreen(SplashScreen *screen) {
state->setScreen(screen);
}
void Splash::setLineWidth(SplashCoord lineWidth) {
state->lineWidth = lineWidth;
}
void Splash::setLineCap(int lineCap) {
state->lineCap = lineCap;
}
void Splash::setLineJoin(int lineJoin) {
state->lineJoin = lineJoin;
}
void Splash::setMiterLimit(SplashCoord miterLimit) {
state->miterLimit = miterLimit;
}
void Splash::setFlatness(SplashCoord flatness) {
if (flatness < 1) {
state->flatness = 1;
} else {
state->flatness = flatness;
}
}
void Splash::setLineDash(SplashCoord *lineDash, int lineDashLength,
SplashCoord lineDashPhase) {
state->setLineDash(lineDash, lineDashLength, lineDashPhase);
}
void Splash::clipResetToRect(SplashCoord x0, SplashCoord y0,
SplashCoord x1, SplashCoord y1) {
state->clip->resetToRect(x0, y0, x1, y1);
}
SplashError Splash::clipToRect(SplashCoord x0, SplashCoord y0,
SplashCoord x1, SplashCoord y1) {
return state->clip->clipToRect(x0, y0, x1, y1);
}
SplashError Splash::clipToPath(SplashPath *path, GBool eo) {
return state->clip->clipToPath(path, state->flatness, eo);
}
//------------------------------------------------------------------------
// state save/restore
//------------------------------------------------------------------------
void Splash::saveState() {
SplashState *newState;
newState = state->copy();
newState->next = state;
state = newState;
}
SplashError Splash::restoreState() {
SplashState *oldState;
if (!state->next) {
return splashErrNoSave;
}
oldState = state;
state = state->next;
delete oldState;
return splashOk;
}
//------------------------------------------------------------------------
// drawing operations
//------------------------------------------------------------------------
void Splash::clear(SplashColor color) {
SplashMono1P *mono1;
SplashMono8 *mono8;
SplashRGB8 *rgb8;
SplashRGB8P *rgb8pline, *rgb8p;
SplashBGR8P *bgr8line, *bgr8;
SplashMono1 data;
int n, i, x, y;
switch (bitmap->mode) {
case splashModeMono1:
n = ((bitmap->width + 7) >> 3) * bitmap->height;
data = color.mono1 ? 0xff : 0x00;
for (i = 0, mono1 = bitmap->data.mono1; i < n; ++i, ++mono1) {
*mono1 = data;
}
break;
case splashModeMono8:
n = bitmap->width * bitmap->height;
for (i = 0, mono8 = bitmap->data.mono8; i < n; ++i, ++mono8) {
*mono8 = color.mono8;
}
break;
case splashModeRGB8:
n = bitmap->width * bitmap->height;
for (i = 0, rgb8 = bitmap->data.rgb8; i < n; ++i, ++rgb8) {
*rgb8 = color.rgb8;
}
break;
case splashModeRGB8Packed:
rgb8pline = bitmap->data.rgb8p;
for (y = 0; y < bitmap->height; ++y) {
rgb8p = rgb8pline;
for (x = 0; x < bitmap->width; ++x) {
rgb8p[0] = splashRGB8R(color.rgb8);
rgb8p[1] = splashRGB8G(color.rgb8);
rgb8p[2] = splashRGB8B(color.rgb8);
rgb8p += 3;
}
rgb8pline += bitmap->rowSize;
}
break;
case splashModeBGR8Packed:
bgr8line = bitmap->data.bgr8;
for (y = 0; y < bitmap->height; ++y) {
bgr8 = bgr8line;
for (x = 0; x < bitmap->width; ++x) {
bgr8[2] = splashBGR8R(color.bgr8);
bgr8[1] = splashBGR8G(color.bgr8);
bgr8[0] = splashBGR8B(color.bgr8);
bgr8 += 3;
}
bgr8line += bitmap->rowSize;
}
break;
}
}
SplashError Splash::stroke(SplashPath *path) {
SplashXPath *xPath, *xPath2;
if (debugMode) {
printf("stroke [dash:%d] [width:%.2f]:\n",
state->lineDashLength, state->lineWidth);
dumpPath(path);
}
if (path->length == 0) {
return splashErrEmptyPath;
}
xPath = new SplashXPath(path, state->flatness, gFalse);
if (xPath->segs == NULL)
{
delete xPath;
return splashErrEmptyPath;
}
if (state->lineDashLength > 0) {
xPath2 = makeDashedPath(xPath);
delete xPath;
xPath = xPath2;
}
if (state->lineWidth <= 1) {
strokeNarrow(xPath);
} else {
strokeWide(xPath);
}
delete xPath;
return splashOk;
}
void Splash::strokeNarrow(SplashXPath *xPath) {
SplashXPathSeg *seg;
int x0, x1, x2, x3, y0, y1, x, y, t;
SplashCoord dx, dy, dxdy;
SplashClipResult clipRes;
int i;
for (i = 0, seg = xPath->segs; i < xPath->length; ++i, ++seg) {
x0 = splashFloor(seg->x0);
x1 = splashFloor(seg->x1);
y0 = splashFloor(seg->y0);
y1 = splashFloor(seg->y1);
// horizontal segment
if (y0 == y1) {
if (x0 > x1) {
t = x0; x0 = x1; x1 = t;
}
if ((clipRes = state->clip->testSpan(x0, x1, y0))
!= splashClipAllOutside) {
drawSpan(x0, x1, y0, state->strokePattern,
clipRes == splashClipAllInside);
}
// segment with |dx| > |dy|
} else if (splashAbs(seg->dxdy) > 1) {
dx = seg->x1 - seg->x0;
dy = seg->y1 - seg->y0;
dxdy = seg->dxdy;
if (y0 > y1) {
t = y0; y0 = y1; y1 = t;
t = x0; x0 = x1; x1 = t;
dx = -dx;
dy = -dy;
}
if ((clipRes = state->clip->testRect(x0 <= x1 ? x0 : x1, y0,
x0 <= x1 ? x1 : x0, y1))
!= splashClipAllOutside) {
if (dx > 0) {
x2 = x0;
for (y = y0; y < y1; ++y) {
x3 = splashFloor(seg->x0 + (y + 1 - seg->y0) * dxdy);
drawSpan(x2, x3 - 1, y, state->strokePattern,
clipRes == splashClipAllInside);
x2 = x3;
}
drawSpan(x2, x1, y, state->strokePattern,
clipRes == splashClipAllInside);
} else {
x2 = x0;
for (y = y0; y < y1; ++y) {
x3 = splashFloor(seg->x0 + (y + 1 - seg->y0) * dxdy);
drawSpan(x3 + 1, x2, y, state->strokePattern,
clipRes == splashClipAllInside);
x2 = x3;
}
drawSpan(x1, x2, y, state->strokePattern,
clipRes == splashClipAllInside);
}
}
// segment with |dy| > |dx|
} else {
dxdy = seg->dxdy;
if (y0 > y1) {
t = y0; y0 = y1; y1 = t;
}
if ((clipRes = state->clip->testRect(x0 <= x1 ? x0 : x1, y0,
x0 <= x1 ? x1 : x0, y1))
!= splashClipAllOutside) {
for (y = y0; y <= y1; ++y) {
x = splashFloor(seg->x0 + (y - seg->y0) * dxdy);
drawPixel(x, y, state->strokePattern,
clipRes == splashClipAllInside);
}
}
}
}
}
void Splash::strokeWide(SplashXPath *xPath) {
SplashXPathSeg *seg, *seg2;
SplashPath *widePath;
SplashCoord d, dx, dy, wdx, wdy, dxPrev, dyPrev, wdxPrev, wdyPrev;
SplashCoord dotprod, miter;
int i, j;
dx = dy = wdx = wdy = 0; // make gcc happy
dxPrev = dyPrev = wdxPrev = wdyPrev = 0; // make gcc happy
for (i = 0, seg = xPath->segs; i < xPath->length; ++i, ++seg) {
// save the deltas for the previous segment; if this is the first
// segment on a subpath, compute the deltas for the last segment
// on the subpath (which may be used to draw a line join)
if (seg->flags & splashXPathFirst) {
for (j = i + 1, seg2 = &xPath->segs[j]; j < xPath->length; ++j, ++seg2) {
if (seg2->flags & splashXPathLast) {
d = splashDist(seg2->x0, seg2->y0, seg2->x1, seg2->y1);
if (d == 0) {
//~ not clear what the behavior should be for joins with d==0
dxPrev = 0;
dyPrev = 1;
} else {
d = 1 / d;
dxPrev = d * (seg2->x1 - seg2->x0);
dyPrev = d * (seg2->y1 - seg2->y0);
}
wdxPrev = 0.5 * state->lineWidth * dxPrev;
wdyPrev = 0.5 * state->lineWidth * dyPrev;
break;
}
}
} else {
dxPrev = dx;
dyPrev = dy;
wdxPrev = wdx;
wdyPrev = wdy;
}
// compute deltas for this line segment
d = splashDist(seg->x0, seg->y0, seg->x1, seg->y1);
if (d == 0) {
// we need to draw end caps on zero-length lines
//~ not clear what the behavior should be for splashLineCapButt with d==0
dx = 0;
dy = 1;
} else {
d = 1 / d;
dx = d * (seg->x1 - seg->x0);
dy = d * (seg->y1 - seg->y0);
}
wdx = 0.5 * state->lineWidth * dx;
wdy = 0.5 * state->lineWidth * dy;
// initialize the path (which will be filled)
widePath = new SplashPath();
widePath->moveTo(seg->x0 - wdy, seg->y0 + wdx);
// draw the start cap
if (seg->flags & splashXPathEnd0) {
switch (state->lineCap) {
case splashLineCapButt:
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
break;
case splashLineCapRound:
widePath->arcCWTo(seg->x0 + wdy, seg->y0 - wdx, seg->x0, seg->y0);
break;
case splashLineCapProjecting:
widePath->lineTo(seg->x0 - wdx - wdy, seg->y0 + wdx - wdy);
widePath->lineTo(seg->x0 - wdx + wdy, seg->y0 - wdx - wdy);
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
break;
}
} else {
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
}
// draw the left side of the segment
widePath->lineTo(seg->x1 + wdy, seg->y1 - wdx);
// draw the end cap
if (seg->flags & splashXPathEnd1) {
switch (state->lineCap) {
case splashLineCapButt:
widePath->lineTo(seg->x1 - wdy, seg->y1 + wdx);
break;
case splashLineCapRound:
widePath->arcCWTo(seg->x1 - wdy, seg->y1 + wdx, seg->x1, seg->y1);
break;
case splashLineCapProjecting:
widePath->lineTo(seg->x1 + wdx + wdy, seg->y1 - wdx + wdy);
widePath->lineTo(seg->x1 + wdx - wdy, seg->y1 + wdx + wdy);
widePath->lineTo(seg->x1 - wdy, seg->y1 + wdx);
break;
}
} else {
widePath->lineTo(seg->x1 - wdy, seg->y1 + wdx);
}
// draw the right side of the segment
widePath->lineTo(seg->x0 - wdy, seg->y0 + wdx);
// fill the segment
fillWithPattern(widePath, gTrue, state->strokePattern);
delete widePath;
// draw the line join
if (!(seg->flags & splashXPathEnd0)) {
widePath = NULL;
switch (state->lineJoin) {
case splashLineJoinMiter:
dotprod = -(dx * dxPrev + dy * dyPrev);
if (dotprod != 1) {
widePath = new SplashPath();
widePath->moveTo(seg->x0, seg->y0);
miter = 2 / (1 - dotprod);
if (splashSqrt(miter) <= state->miterLimit) {
miter = splashSqrt(miter - 1);
if (dy * dxPrev > dx * dyPrev) {
widePath->lineTo(seg->x0 + wdyPrev, seg->y0 - wdxPrev);
widePath->lineTo(seg->x0 + wdy - miter * wdx,
seg->y0 - wdx - miter * wdy);
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
} else {
widePath->lineTo(seg->x0 - wdyPrev, seg->y0 + wdxPrev);
widePath->lineTo(seg->x0 - wdy - miter * wdx,
seg->y0 + wdx - miter * wdy);
widePath->lineTo(seg->x0 - wdy, seg->y0 + wdx);
}
} else {
if (dy * dxPrev > dx * dyPrev) {
widePath->lineTo(seg->x0 + wdyPrev, seg->y0 - wdxPrev);
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
} else {
widePath->lineTo(seg->x0 - wdyPrev, seg->y0 + wdxPrev);
widePath->lineTo(seg->x0 - wdy, seg->y0 + wdx);
}
}
}
break;
case splashLineJoinRound:
widePath = new SplashPath();
widePath->moveTo(seg->x0 + wdy, seg->y0 - wdx);
widePath->arcCWTo(seg->x0 + wdy, seg->y0 - wdx, seg->x0, seg->y0);
break;
case splashLineJoinBevel:
widePath = new SplashPath();
widePath->moveTo(seg->x0, seg->y0);
if (dy * dxPrev > dx * dyPrev) {
widePath->lineTo(seg->x0 + wdyPrev, seg->y0 - wdxPrev);
widePath->lineTo(seg->x0 + wdy, seg->y0 - wdx);
} else {
widePath->lineTo(seg->x0 - wdyPrev, seg->y0 + wdxPrev);
widePath->lineTo(seg->x0 - wdy, seg->y0 + wdx);
}
break;
}
if (widePath) {
fillWithPattern(widePath, gTrue, state->strokePattern);
delete widePath;
}
}
}
}
SplashXPath *Splash::makeDashedPath(SplashXPath *xPath) {
SplashXPath *dPath;
GBool lineDashStartOn, lineDashOn;
GBool atSegStart, atSegEnd, atDashStart, atDashEnd;
int lineDashStartIdx, lineDashIdx, subpathStart;
SplashCoord lineDashTotal, lineDashStartPhase, lineDashDist;
int segIdx;
SplashXPathSeg *seg;
SplashCoord sx0, sy0, sx1, sy1, ax0, ay0, ax1, ay1, dist;
int i;
dPath = new SplashXPath();
lineDashTotal = 0;
for (i = 0; i < state->lineDashLength; ++i) {
lineDashTotal += state->lineDash[i];
}
lineDashStartPhase = state->lineDashPhase;
i = splashFloor(lineDashStartPhase / lineDashTotal);
lineDashStartPhase -= i * lineDashTotal;
lineDashStartOn = gTrue;
lineDashStartIdx = 0;
while (lineDashStartPhase >= state->lineDash[lineDashStartIdx]) {
lineDashStartOn = !lineDashStartOn;
lineDashStartPhase -= state->lineDash[lineDashStartIdx];
++lineDashStartIdx;
}
segIdx = 0;
seg = xPath->segs;
sx0 = seg->x0;
sy0 = seg->y0;
sx1 = seg->x1;
sy1 = seg->y1;
dist = splashDist(sx0, sy0, sx1, sy1);
lineDashOn = lineDashStartOn;
lineDashIdx = lineDashStartIdx;
lineDashDist = state->lineDash[lineDashIdx] - lineDashStartPhase;
atSegStart = gTrue;
atDashStart = gTrue;
subpathStart = dPath->length;
while (segIdx < xPath->length) {
ax0 = sx0;
ay0 = sy0;
if (dist <= lineDashDist) {
ax1 = sx1;
ay1 = sy1;
lineDashDist -= dist;
dist = 0;
atSegEnd = gTrue;
atDashEnd = lineDashDist == 0 || (seg->flags & splashXPathLast);
} else {
ax1 = sx0 + (lineDashDist / dist) * (sx1 - sx0);
ay1 = sy0 + (lineDashDist / dist) * (sy1 - sy0);
sx0 = ax1;
sy0 = ay1;
dist -= lineDashDist;
lineDashDist = 0;
atSegEnd = gFalse;
atDashEnd = gTrue;
}
if (lineDashOn) {
dPath->addSegment(ax0, ay0, ax1, ay1,
atDashStart, atDashEnd,
atDashStart, atDashEnd);
// end of closed subpath
if (atSegEnd &&
(seg->flags & splashXPathLast) &&
!(seg->flags & splashXPathEnd1)) {
dPath->segs[subpathStart].flags &= ~splashXPathEnd0;
dPath->segs[dPath->length - 1].flags &= ~splashXPathEnd1;
}
}
if (atDashEnd) {
lineDashOn = !lineDashOn;
if (++lineDashIdx == state->lineDashLength) {
lineDashIdx = 0;
}
lineDashDist = state->lineDash[lineDashIdx];
atDashStart = gTrue;
} else {
atDashStart = gFalse;
}
if (atSegEnd) {
if (++segIdx < xPath->length) {
++seg;
sx0 = seg->x0;
sy0 = seg->y0;
sx1 = seg->x1;
sy1 = seg->y1;
dist = splashDist(sx0, sy0, sx1, sy1);
if (seg->flags & splashXPathFirst) {
lineDashOn = lineDashStartOn;
lineDashIdx = lineDashStartIdx;
lineDashDist = state->lineDash[lineDashIdx] - lineDashStartPhase;
atDashStart = gTrue;
subpathStart = dPath->length;
}
}
atSegStart = gTrue;
} else {
atSegStart = gFalse;
}
}
return dPath;
}
SplashError Splash::fill(SplashPath *path, GBool eo) {
if (debugMode) {
printf("fill [eo:%d]:\n", eo);
dumpPath(path);
}
return fillWithPattern(path, eo, state->fillPattern);
}
SplashError Splash::fillWithPattern(SplashPath *path, GBool eo,
SplashPattern *pattern) {
SplashXPath *xPath;
SplashXPathScanner *scanner;
int xMinI, yMinI, xMaxI, yMaxI, x0, x1, y;
SplashClipResult clipRes, clipRes2;
if (path->length == 0 || path->length == 1) {
return splashErrEmptyPath;
}
xPath = new SplashXPath(path, state->flatness, gTrue);
xPath->sort();
if (xPath->segs == NULL)
{
delete xPath;
return splashErrEmptyPath;
}
scanner = new SplashXPathScanner(xPath, eo);
// get the min and max x and y values
scanner->getBBox(&xMinI, &yMinI, &xMaxI, &yMaxI);
// check clipping
if ((clipRes = state->clip->testRect(xMinI, yMinI, xMaxI, yMaxI))
!= splashClipAllOutside) {
// draw the spans
for (y = yMinI; y <= yMaxI; ++y) {
while (scanner->getNextSpan(y, &x0, &x1)) {
if (clipRes == splashClipAllInside) {
drawSpan(x0, x1, y, pattern, gTrue);
} else {
clipRes2 = state->clip->testSpan(x0, x1, y);
drawSpan(x0, x1, y, pattern, clipRes2 == splashClipAllInside);
}
}
}
}
delete scanner;
delete xPath;
return splashOk;
}
SplashError Splash::xorFill(SplashPath *path, GBool eo) {
SplashXPath *xPath;
SplashXPathScanner *scanner;
int xMinI, yMinI, xMaxI, yMaxI, x0, x1, y;
SplashClipResult clipRes, clipRes2;
if (path->length == 0) {
return splashErrEmptyPath;
}
xPath = new SplashXPath(path, state->flatness, gTrue);
xPath->sort();
scanner = new SplashXPathScanner(xPath, eo);
// get the min and max x and y values
scanner->getBBox(&xMinI, &yMinI, &xMaxI, &yMaxI);
// check clipping
if ((clipRes = state->clip->testRect(xMinI, yMinI, xMaxI, yMaxI))
!= splashClipAllOutside) {
// draw the spans
for (y = yMinI; y <= yMaxI; ++y) {
while (scanner->getNextSpan(y, &x0, &x1)) {
if (clipRes == splashClipAllInside) {
xorSpan(x0, x1, y, state->fillPattern, gTrue);
} else {
clipRes2 = state->clip->testSpan(x0, x1, y);
xorSpan(x0, x1, y, state->fillPattern,
clipRes2 == splashClipAllInside);
}
}
}
}
delete scanner;
delete xPath;
return splashOk;
}
void Splash::drawPixel(int x, int y, SplashColor *color, GBool noClip) {
SplashMono1P *mono1;
SplashRGB8P *rgb8p;
SplashBGR8P *bgr8;
if ( (unsigned) x >= (unsigned) bitmap->getWidth() ||
(unsigned) y >= (unsigned) bitmap->getHeight())
return;
if (noClip || state->clip->test(x, y)) {
switch (bitmap->mode) {
case splashModeMono1:
mono1 = &bitmap->data.mono8[y * bitmap->rowSize + (x >> 3)];
if (color->mono1) {
*mono1 |= 0x80 >> (x & 7);
} else {
*mono1 &= ~(0x80 >> (x & 7));
}
break;
case splashModeMono8:
bitmap->data.mono8[y * bitmap->width + x] = color->mono8;
break;
case splashModeRGB8:
bitmap->data.rgb8[y * bitmap->width + x] = color->rgb8;
break;
case splashModeRGB8Packed:
rgb8p = &bitmap->data.rgb8p[y * bitmap->rowSize + 3 * x];
rgb8p[0] = splashRGB8R(color->rgb8);
rgb8p[1] = splashRGB8G(color->rgb8);
rgb8p[2] = splashRGB8B(color->rgb8);
break;
case splashModeBGR8Packed:
bgr8 = &bitmap->data.bgr8[y * bitmap->rowSize + 3 * x];
bgr8[2] = splashBGR8R(color->bgr8);
bgr8[1] = splashBGR8G(color->bgr8);
bgr8[0] = splashBGR8B(color->bgr8);
break;
}
}
}
void Splash::drawPixel(int x, int y, SplashPattern *pattern, GBool noClip) {
SplashColor color;
SplashMono1P *mono1;
SplashRGB8P *rgb8p;
SplashBGR8P *bgr8;
if ( (unsigned) x >= (unsigned) bitmap->getWidth() ||
(unsigned) y >= (unsigned) bitmap->getHeight())
return;
if (noClip || state->clip->test(x, y)) {
color = pattern->getColor(x, y);
switch (bitmap->mode) {
case splashModeMono1:
mono1 = &bitmap->data.mono8[y * bitmap->rowSize + (x >> 3)];
if (color.mono1) {
*mono1 |= 0x80 >> (x & 7);
} else {
*mono1 &= ~(0x80 >> (x & 7));
}
break;
case splashModeMono8:
bitmap->data.mono8[y * bitmap->width + x] = color.mono8;
break;
case splashModeRGB8:
bitmap->data.rgb8[y * bitmap->width + x] = color.rgb8;
break;
case splashModeRGB8Packed:
rgb8p = &bitmap->data.rgb8p[y * bitmap->rowSize + 3 * x];
rgb8p[0] = splashRGB8R(color.rgb8);
rgb8p[1] = splashRGB8G(color.rgb8);
rgb8p[2] = splashRGB8B(color.rgb8);
break;
case splashModeBGR8Packed:
bgr8 = &bitmap->data.bgr8[y * bitmap->rowSize + 3 * x];
bgr8[2] = splashBGR8R(color.bgr8);
bgr8[1] = splashBGR8G(color.bgr8);
bgr8[0] = splashBGR8B(color.bgr8);
break;
}
}
}
void Splash::drawSpan(int x0, int x1, int y, SplashPattern *pattern,
GBool noClip) {
SplashColor color;
SplashMono1P *mono1;
SplashMono8 *mono8;
SplashRGB8 *rgb8;
SplashRGB8P *rgb8p;
SplashBGR8P *bgr8;
SplashMono1 mask1;
int i, j, n;
if ((unsigned) x0 >= (unsigned) bitmap->getWidth() ||
(unsigned) x1 >= (unsigned) bitmap->getWidth() ||
(unsigned) y >= (unsigned) bitmap->getHeight())
return;
n = x1 - x0 + 1;
switch (bitmap->mode) {
case splashModeMono1:
mono1 = &bitmap->data.mono8[y * bitmap->rowSize + (x0 >> 3)];
i = 0;
if ((j = x0 & 7)) {
mask1 = 0x80 >> j;
for (j = x0 & 7; j < 8 && i < n; ++i, ++j) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
if (color.mono1) {
*mono1 |= mask1;
} else {
*mono1 &= ~mask1;
}
}
mask1 >>= 1;
}
++mono1;
}
while (i < n) {
mask1 = 0x80;
for (j = 0; j < 8 && i < n; ++i, ++j) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
if (color.mono1) {
*mono1 |= mask1;
} else {
*mono1 &= ~mask1;
}
}
mask1 >>= 1;
}
++mono1;
}
break;
case splashModeMono8:
mono8 = &bitmap->data.mono8[y * bitmap->width + x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
*mono8 = color.mono8;
}
++mono8;
}
break;
case splashModeRGB8:
rgb8 = &bitmap->data.rgb8[y * bitmap->width + x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
*rgb8 = color.rgb8;
}
++rgb8;
}
break;
case splashModeRGB8Packed:
rgb8p = &bitmap->data.rgb8p[y * bitmap->rowSize + 3 * x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
rgb8p[0] = splashRGB8R(color.rgb8);
rgb8p[1] = splashRGB8G(color.rgb8);
rgb8p[2] = splashRGB8B(color.rgb8);
}
rgb8p += 3;
}
break;
case splashModeBGR8Packed:
bgr8 = &bitmap->data.bgr8[y * bitmap->rowSize + 3 * x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
bgr8[2] = splashBGR8R(color.bgr8);
bgr8[1] = splashBGR8G(color.bgr8);
bgr8[0] = splashBGR8B(color.bgr8);
}
bgr8 += 3;
}
break;
}
}
void Splash::xorSpan(int x0, int x1, int y, SplashPattern *pattern,
GBool noClip) {
SplashColor color;
SplashMono1P *mono1;
SplashMono8 *mono8;
SplashRGB8 *rgb8;
SplashRGB8P *rgb8p;
SplashBGR8P *bgr8;
SplashMono1 mask1;
int i, j, n;
if ((unsigned) x0 >= (unsigned) bitmap->getWidth() ||
(unsigned) x1 >= (unsigned) bitmap->getWidth() ||
(unsigned) y >= (unsigned) bitmap->getHeight())
return;
n = x1 - x0 + 1;
switch (bitmap->mode) {
case splashModeMono1:
mono1 = &bitmap->data.mono8[y * bitmap->rowSize + (x0 >> 3)];
i = 0;
if ((j = x0 & 7)) {
mask1 = 0x80 >> j;
for (j = x0 & 7; j < 8 && i < n; ++i, ++j) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
if (color.mono1) {
*mono1 ^= mask1;
}
}
mask1 >>= 1;
}
++mono1;
}
while (i < n) {
mask1 = 0x80;
for (j = 0; j < 8 && i < n; ++i, ++j) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
if (color.mono1) {
*mono1 ^= mask1;
}
}
mask1 >>= 1;
}
++mono1;
}
break;
case splashModeMono8:
mono8 = &bitmap->data.mono8[y * bitmap->width + x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
*mono8 ^= color.mono8;
}
++mono8;
}
break;
case splashModeRGB8:
rgb8 = &bitmap->data.rgb8[y * bitmap->width + x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
*rgb8 ^= color.rgb8;
}
++rgb8;
}
break;
case splashModeRGB8Packed:
rgb8p = &bitmap->data.rgb8p[y * bitmap->rowSize + 3 * x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
rgb8p[0] ^= splashRGB8R(color.rgb8);
rgb8p[1] ^= splashRGB8G(color.rgb8);
rgb8p[2] ^= splashRGB8B(color.rgb8);
}
rgb8p += 3;
}
break;
case splashModeBGR8Packed:
bgr8 = &bitmap->data.bgr8[y * bitmap->rowSize + 3 * x0];
for (i = 0; i < n; ++i) {
if (noClip || state->clip->test(x0 + i, y)) {
color = pattern->getColor(x0 + i, y);
bgr8[2] ^= splashBGR8R(color.bgr8);
bgr8[1] ^= splashBGR8G(color.bgr8);
bgr8[0] ^= splashBGR8B(color.bgr8);
}
bgr8 += 3;
}
break;
}
}
void Splash::getPixel(int x, int y, SplashColor *pixel) {
SplashRGB8P *rgb8p;
SplashBGR8P *bgr8;
if (y < 0 || y >= bitmap->height || x < 0 || x >= bitmap->width) {
return;
}
switch (bitmap->mode) {
case splashModeMono1:
pixel->mono1 = (bitmap->data.mono1[y * bitmap->rowSize + (x >> 3)]
>> (7 - (x & 7))) & 1;
break;
case splashModeMono8:
pixel->mono8 = bitmap->data.mono8[y * bitmap->width + x];
break;
case splashModeRGB8:
pixel->rgb8 = bitmap->data.rgb8[y * bitmap->width + x];
break;
case splashModeRGB8Packed:
rgb8p = &bitmap->data.rgb8p[y * bitmap->rowSize + 3 * x];
pixel->rgb8 = splashMakeRGB8(rgb8p[0], rgb8p[1], rgb8p[2]);
break;
case splashModeBGR8Packed:
bgr8 = &bitmap->data.bgr8[y * bitmap->rowSize + 3 * x];
pixel->bgr8 = splashMakeBGR8(bgr8[2], bgr8[1], bgr8[0]);
break;
}
}
SplashError Splash::fillChar(SplashCoord x, SplashCoord y,
int c, SplashFont *font) {
SplashGlyphBitmap glyph;
int x0, y0, xFrac, yFrac;
SplashError err;
if (debugMode) {
printf("fillChar: x=%.2f y=%.2f c=%3d=0x%02x='%c'\n",
x, y, c, c, c);
}
x0 = splashFloor(x);
xFrac = splashFloor((x - x0) * splashFontFraction);
y0 = splashFloor(y);
yFrac = splashFloor((y - y0) * splashFontFraction);
if (!font->getGlyph(c, xFrac, yFrac, &glyph)) {
return splashErrNoGlyph;
}
err = fillGlyph(x, y, &glyph);
if (glyph.freeData) {
gfree(glyph.data);
}
return err;
}
SplashError Splash::fillGlyph(SplashCoord x, SplashCoord y,
SplashGlyphBitmap *glyph) {
int alpha, ialpha;
Guchar *p;
SplashColor fg;
SplashMono1P *mono1Ptr;
SplashMono8 *mono8Ptr;
SplashRGB8 *rgb8Ptr;
SplashRGB8P *rgb8pPtr;
SplashBGR8P *bgr8Ptr;
SplashMono8 bgMono8;
int bgR, bgG, bgB;
SplashClipResult clipRes;
GBool noClip;
int x0, y0, x1, y1, xx, xx1, yy;
x0 = splashFloor(x);
y0 = splashFloor(y);
if ((clipRes = state->clip->testRect(x0 - glyph->x,
y0 - glyph->y,
x0 - glyph->x + glyph->w - 1,
y0 - glyph->y + glyph->h - 1))
!= splashClipAllOutside) {
noClip = clipRes == splashClipAllInside;
//~ optimize this
if (glyph->aa) {
p = glyph->data;
for (yy = 0, y1 = y0 - glyph->y; yy < glyph->h; ++yy, ++y1) {
for (xx = 0, x1 = x0 - glyph->x; xx < glyph->w; ++xx, ++x1) {
alpha = *p++;
if (alpha > 0) {
if (noClip || state->clip->test(x1, y1)) {
ialpha = 255 - alpha;
fg = state->fillPattern->getColor(x1, y1);
switch (bitmap->mode) {
case splashModeMono1:
if (alpha >= 0x80) {
mono1Ptr = &bitmap->data.mono1[y1 * bitmap->rowSize +
(x1 >> 3)];
if (fg.mono1) {
*mono1Ptr |= 0x80 >> (x1 & 7);
} else {
*mono1Ptr &= ~(0x80 >> (x1 & 7));
}
}
break;
case splashModeMono8:
mono8Ptr = &bitmap->data.mono8[y1 * bitmap->width + x1];
bgMono8 = *mono8Ptr;
// note: floor(x / 255) = x >> 8 (for 16-bit x)
*mono8Ptr = (alpha * fg.mono8 + ialpha * bgMono8) >> 8;
break;
case splashModeRGB8:
rgb8Ptr = &bitmap->data.rgb8[y1 * bitmap->width + x1];
bgR = splashRGB8R(*rgb8Ptr);
bgG = splashRGB8G(*rgb8Ptr);
bgB = splashRGB8B(*rgb8Ptr);
*rgb8Ptr = splashMakeRGB8((alpha * splashRGB8R(fg.rgb8) +
ialpha * bgR) >> 8,
(alpha * splashRGB8G(fg.rgb8) +
ialpha * bgG) >> 8,
(alpha * splashRGB8B(fg.rgb8) +
ialpha * bgB) >> 8);
break;
case splashModeRGB8Packed:
rgb8pPtr = &bitmap->data.rgb8p[y1 * bitmap->rowSize + 3 * x1];
rgb8pPtr[0] =
(alpha * splashRGB8R(fg.rgb8) + ialpha * rgb8pPtr[0]) >> 8;
rgb8pPtr[1] =
(alpha * splashRGB8G(fg.rgb8) + ialpha * rgb8pPtr[1]) >> 8;
rgb8pPtr[2] =
(alpha * splashRGB8B(fg.rgb8) + ialpha * rgb8pPtr[2]) >> 8;
break;
case splashModeBGR8Packed:
bgr8Ptr = &bitmap->data.bgr8[y1 * bitmap->rowSize + 3 * x1];
bgr8Ptr[2] =
(alpha * splashBGR8R(fg.bgr8) + ialpha * bgr8Ptr[2]) >> 8;
bgr8Ptr[1] =
(alpha * splashBGR8G(fg.bgr8) + ialpha * bgr8Ptr[1]) >> 8;
bgr8Ptr[0] =
(alpha * splashBGR8B(fg.bgr8) + ialpha * bgr8Ptr[0]) >> 8;
break;
}
}
}
}
}
} else {
p = glyph->data;
for (yy = 0, y1 = y0 - glyph->y; yy < glyph->h; ++yy, ++y1) {
for (xx = 0, x1 = x0 - glyph->x; xx < glyph->w; xx += 8) {
alpha = *p++;
for (xx1 = 0; xx1 < 8 && xx + xx1 < glyph->w; ++xx1, ++x1) {
if (alpha & 0x80) {
if (noClip || state->clip->test(x1, y1)) {
fg = state->fillPattern->getColor(x1, y1);
switch (bitmap->mode) {
case splashModeMono1:
mono1Ptr = &bitmap->data.mono1[y1 * bitmap->rowSize +
(x1 >> 3)];
if (fg.mono1) {
*mono1Ptr |= 0x80 >> (x1 & 7);
} else {
*mono1Ptr &= ~(0x80 >> (x1 & 7));
}
break;
case splashModeMono8:
bitmap->data.mono8[y1 * bitmap->width + x1] = fg.mono8;
break;
case splashModeRGB8:
bitmap->data.rgb8[y1 * bitmap->width + x1] = fg.rgb8;
break;
case splashModeRGB8Packed:
rgb8pPtr = &bitmap->data.rgb8p[y1 * bitmap->rowSize + 3 * x1];
rgb8pPtr[0] = splashRGB8R(fg.rgb8);
rgb8pPtr[1] = splashRGB8G(fg.rgb8);
rgb8pPtr[2] = splashRGB8B(fg.rgb8);
break;
case splashModeBGR8Packed:
bgr8Ptr = &bitmap->data.bgr8[y1 * bitmap->rowSize + 3 * x1];
bgr8Ptr[2] = splashBGR8R(fg.bgr8);
bgr8Ptr[1] = splashBGR8G(fg.bgr8);
bgr8Ptr[0] = splashBGR8B(fg.bgr8);
break;
}
}
}
alpha <<= 1;
}
}
}
}
}
return splashOk;
}
SplashError Splash::fillImageMask(SplashImageMaskSource src, void *srcData,
int w, int h, SplashCoord *mat) {
GBool rot;
SplashCoord xScale, yScale, xShear, yShear;
int tx, ty, scaledWidth, scaledHeight, xSign, ySign;
int ulx, uly, llx, lly, urx, ury, lrx, lry;
int ulx1, uly1, llx1, lly1, urx1, ury1, lrx1, lry1;
int xMin, xMax, yMin, yMax;
SplashClipResult clipRes, clipRes2;
int yp, yq, yt, yStep, lastYStep;
int xp, xq, xt, xStep, xSrc;
int k1, spanXMin, spanXMax, spanY;
SplashMono1 *pixBuf;
SplashMono1 *p;
int pixAcc;
SplashCoord alpha;
SplashColor fg, bg, pix;
int x, y, x1, y1, x2, y2;
int n, m, i, j;
if (debugMode) {
printf("fillImageMask: w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
w, h, mat[0], mat[1], mat[2], mat[3], mat[4], mat[5]);
}
// check for singular matrix
if (splashAbs(mat[0] * mat[3] - mat[1] * mat[2]) < 0.000001) {
return splashErrSingularMatrix;
}
// compute scale, shear, rotation, translation parameters
rot = splashAbs(mat[1]) > splashAbs(mat[0]);
if (rot) {
xScale = -mat[1];
yScale = mat[2] - (mat[0] * mat[3]) / mat[1];
xShear = -mat[3] / yScale;
yShear = -mat[0] / mat[1];
} else {
xScale = mat[0];
yScale = mat[3] - (mat[1] * mat[2]) / mat[0];
xShear = mat[2] / yScale;
yShear = mat[1] / mat[0];
}
tx = splashRound(mat[4]);
ty = splashRound(mat[5]);
scaledWidth = abs(splashRound(mat[4] + xScale) - tx) + 1;
scaledHeight = abs(splashRound(mat[5] + yScale) - ty) + 1;
xSign = (xScale < 0) ? -1 : 1;
ySign = (yScale < 0) ? -1 : 1;
// clipping
ulx1 = 0;
uly1 = 0;
urx1 = xSign * (scaledWidth - 1);
ury1 = splashRound(yShear * urx1);
llx1 = splashRound(xShear * ySign * (scaledHeight - 1));
lly1 = ySign * (scaledHeight - 1) + splashRound(yShear * llx1);
lrx1 = xSign * (scaledWidth - 1) +
splashRound(xShear * ySign * (scaledHeight - 1));
lry1 = ySign * (scaledHeight - 1) + splashRound(yShear * lrx1);
if (rot) {
ulx = tx + uly1; uly = ty - ulx1;
urx = tx + ury1; ury = ty - urx1;
llx = tx + lly1; lly = ty - llx1;
lrx = tx + lry1; lry = ty - lrx1;
} else {
ulx = tx + ulx1; uly = ty + uly1;
urx = tx + urx1; ury = ty + ury1;
llx = tx + llx1; lly = ty + lly1;
lrx = tx + lrx1; lry = ty + lry1;
}
xMin = (ulx < urx) ? (ulx < llx) ? (ulx < lrx) ? ulx : lrx
: (llx < lrx) ? llx : lrx
: (urx < llx) ? (urx < lrx) ? urx : lrx
: (llx < lrx) ? llx : lrx;
xMax = (ulx > urx) ? (ulx > llx) ? (ulx > lrx) ? ulx : lrx
: (llx > lrx) ? llx : lrx
: (urx > llx) ? (urx > lrx) ? urx : lrx
: (llx > lrx) ? llx : lrx;
yMin = (uly < ury) ? (uly < lly) ? (uly < lry) ? uly : lry
: (lly < lry) ? lly : lry
: (ury < lly) ? (ury < lry) ? ury : lry
: (lly < lry) ? lly : lry;
yMax = (uly > ury) ? (uly > lly) ? (uly > lry) ? uly : lry
: (lly > lry) ? lly : lry
: (ury > lly) ? (ury > lry) ? ury : lry
: (lly > lry) ? lly : lry;
clipRes = state->clip->testRect(xMin, yMin, xMax, yMax);
// compute Bresenham parameters for x and y scaling
yp = h / scaledHeight;
yq = h % scaledHeight;
xp = w / scaledWidth;
xq = w % scaledWidth;
// allocate pixel buffer
pixBuf = (SplashMono1 *)gmalloc((yp + 1) * w * sizeof(SplashMono1));
// init y scale Bresenham
yt = 0;
lastYStep = 1;
for (y = 0; y < scaledHeight; ++y) {
// y scale Bresenham
yStep = yp;
yt += yq;
if (yt >= scaledHeight) {
yt -= scaledHeight;
++yStep;
}
// read row(s) from image
n = (yp > 0) ? yStep : lastYStep;
if (n > 0) {
p = pixBuf;
for (i = 0; i < n; ++i) {
for (j = 0; j < w; ++j) {
(*src)(srcData, p++);
}
}
}
lastYStep = yStep;
// loop-invariant constants
k1 = splashRound(xShear * ySign * y);
// clipping test
if (clipRes != splashClipAllInside &&
!rot &&
splashRound(yShear * k1) ==
splashRound(yShear * (xSign * (scaledWidth - 1) + k1))) {
if (xSign > 0) {
spanXMin = tx + k1;
spanXMax = spanXMin + (scaledWidth - 1);
} else {
spanXMax = tx + k1;
spanXMin = spanXMax - (scaledWidth - 1);
}
spanY = ty + ySign * y + splashRound(xShear * ySign * y);
clipRes2 = state->clip->testSpan(spanXMin, spanXMax, spanY);
if (clipRes2 == splashClipAllOutside) {
continue;
}
} else {
clipRes2 = clipRes;
}
// init x scale Bresenham
xt = 0;
xSrc = 0;
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// x shear
x1 = xSign * x + k1;
// y shear
y1 = ySign * y + splashRound(yShear * x1);
// rotation
if (rot) {
x2 = y1;
y2 = -x1;
} else {
x2 = x1;
y2 = y1;
}
// compute the alpha value for (x,y) after the x and y scaling
// operations
n = yStep > 0 ? yStep : 1;
m = xStep > 0 ? xStep : 1;
p = pixBuf + xSrc;
pixAcc = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
pixAcc += *p++;
}
p += w - m;
}
// blend fill color with background
if (pixAcc != 0) {
fg = state->fillPattern->getColor(tx + x2, ty + y2);
if (pixAcc == n * m) {
pix = fg;
} else {
getPixel(tx + x2, ty + y2, &bg);
alpha = (SplashCoord)pixAcc / (SplashCoord)(n * m);
switch (bitmap->mode) {
case splashModeMono1:
pix.mono1 = splashRound(alpha * fg.mono1 +
(1 - alpha) * bg.mono1);
break;
case splashModeMono8:
pix.mono8 = splashRound(alpha * fg.mono8 +
(1 - alpha) * bg.mono8);
break;
case splashModeRGB8:
case splashModeRGB8Packed:
pix.rgb8 = splashMakeRGB8(
splashRound(alpha * splashRGB8R(fg.rgb8) +
(1 - alpha) * splashRGB8R(bg.rgb8)),
splashRound(alpha * splashRGB8G(fg.rgb8) +
(1 - alpha) * splashRGB8G(bg.rgb8)),
splashRound(alpha * splashRGB8B(fg.rgb8) +
(1 - alpha) * splashRGB8B(bg.rgb8)));
break;
case splashModeBGR8Packed:
pix.bgr8 = splashMakeBGR8(
splashRound(alpha * splashBGR8R(fg.bgr8) +
(1 - alpha) * splashBGR8R(bg.bgr8)),
splashRound(alpha * splashBGR8G(fg.bgr8) +
(1 - alpha) * splashBGR8G(bg.bgr8)),
splashRound(alpha * splashBGR8B(fg.bgr8) +
(1 - alpha) * splashBGR8B(bg.bgr8)));
break;
}
}
drawPixel(tx + x2, ty + y2, &pix, clipRes2 == splashClipAllInside);
}
// x scale Bresenham
xSrc += xStep;
}
}
// free memory
gfree(pixBuf);
return splashOk;
}
SplashError Splash::drawImage(SplashImageSource src, void *srcData,
SplashColorMode srcMode,
int w, int h, SplashCoord *mat) {
GBool ok, rot, halftone;
SplashCoord xScale, yScale, xShear, yShear;
int tx, ty, scaledWidth, scaledHeight, xSign, ySign;
int ulx, uly, llx, lly, urx, ury, lrx, lry;
int ulx1, uly1, llx1, lly1, urx1, ury1, lrx1, lry1;
int xMin, xMax, yMin, yMax;
SplashClipResult clipRes, clipRes2;
int yp, yq, yt, yStep, lastYStep;
int xp, xq, xt, xStep, xSrc;
int k1, spanXMin, spanXMax, spanY;
SplashColor *pixBuf, *p;
Guchar *alphaBuf, *q;
SplashColor pix;
SplashCoord pixAcc[splashMaxColorComps];
int alphaAcc;
SplashCoord pixMul, alphaMul, alpha;
int x, y, x1, y1, x2, y2;
int n, m, i, j;
if (debugMode) {
printf("drawImage: srcMode=%d w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
srcMode, w, h, mat[0], mat[1], mat[2], mat[3], mat[4], mat[5]);
}
// check color modes
ok = gFalse; // make gcc happy
switch (bitmap->mode) {
case splashModeMono1:
ok = srcMode == splashModeMono1 || srcMode == splashModeMono8;
break;
case splashModeMono8:
ok = srcMode == splashModeMono8;
break;
case splashModeRGB8:
ok = srcMode == splashModeRGB8;
break;
case splashModeRGB8Packed:
ok = srcMode == splashModeRGB8Packed;
break;
case splashModeBGR8Packed:
ok = srcMode == splashModeBGR8Packed;
break;
}
if (!ok) {
return splashErrModeMismatch;
}
halftone = bitmap->mode == splashModeMono1 && srcMode == splashModeMono8;
// check for singular matrix
if (splashAbs(mat[0] * mat[3] - mat[1] * mat[2]) < 0.000001) {
return splashErrSingularMatrix;
}
// compute scale, shear, rotation, translation parameters
rot = splashAbs(mat[1]) > splashAbs(mat[0]);
if (rot) {
xScale = -mat[1];
yScale = mat[2] - (mat[0] * mat[3]) / mat[1];
xShear = -mat[3] / yScale;
yShear = -mat[0] / mat[1];
} else {
xScale = mat[0];
yScale = mat[3] - (mat[1] * mat[2]) / mat[0];
xShear = mat[2] / yScale;
yShear = mat[1] / mat[0];
}
tx = splashRound(mat[4]);
ty = splashRound(mat[5]);
scaledWidth = abs(splashRound(mat[4] + xScale) - tx) + 1;
scaledHeight = abs(splashRound(mat[5] + yScale) - ty) + 1;
xSign = (xScale < 0) ? -1 : 1;
ySign = (yScale < 0) ? -1 : 1;
// clipping
ulx1 = 0;
uly1 = 0;
urx1 = xSign * (scaledWidth - 1);
ury1 = splashRound(yShear * urx1);
llx1 = splashRound(xShear * ySign * (scaledHeight - 1));
lly1 = ySign * (scaledHeight - 1) + splashRound(yShear * llx1);
lrx1 = xSign * (scaledWidth - 1) +
splashRound(xShear * ySign * (scaledHeight - 1));
lry1 = ySign * (scaledHeight - 1) + splashRound(yShear * lrx1);
if (rot) {
ulx = tx + uly1; uly = ty - ulx1;
urx = tx + ury1; ury = ty - urx1;
llx = tx + lly1; lly = ty - llx1;
lrx = tx + lry1; lry = ty - lrx1;
} else {
ulx = tx + ulx1; uly = ty + uly1;
urx = tx + urx1; ury = ty + ury1;
llx = tx + llx1; lly = ty + lly1;
lrx = tx + lrx1; lry = ty + lry1;
}
xMin = (ulx < urx) ? (ulx < llx) ? (ulx < lrx) ? ulx : lrx
: (llx < lrx) ? llx : lrx
: (urx < llx) ? (urx < lrx) ? urx : lrx
: (llx < lrx) ? llx : lrx;
xMax = (ulx > urx) ? (ulx > llx) ? (ulx > lrx) ? ulx : lrx
: (llx > lrx) ? llx : lrx
: (urx > llx) ? (urx > lrx) ? urx : lrx
: (llx > lrx) ? llx : lrx;
yMin = (uly < ury) ? (uly < lly) ? (uly < lry) ? uly : lry
: (lly < lry) ? lly : lry
: (ury < lly) ? (ury < lry) ? ury : lry
: (lly < lry) ? lly : lry;
yMax = (uly > ury) ? (uly > lly) ? (uly > lry) ? uly : lry
: (lly > lry) ? lly : lry
: (ury > lly) ? (ury > lry) ? ury : lry
: (lly > lry) ? lly : lry;
if ((clipRes = state->clip->testRect(xMin, yMin, xMax, yMax))
== splashClipAllOutside) {
return splashOk;
}
// compute Bresenham parameters for x and y scaling
yp = h / scaledHeight;
yq = h % scaledHeight;
xp = w / scaledWidth;
xq = w % scaledWidth;
// allocate pixel buffer
pixBuf = (SplashColor *)gmalloc((yp + 1) * w * sizeof(SplashColor));
alphaBuf = (Guchar *)gmalloc((yp + 1) * w * sizeof(Guchar));
// init y scale Bresenham
yt = 0;
lastYStep = 1;
for (y = 0; y < scaledHeight; ++y) {
// y scale Bresenham
yStep = yp;
yt += yq;
if (yt >= scaledHeight) {
yt -= scaledHeight;
++yStep;
}
// read row(s) from image
n = (yp > 0) ? yStep : lastYStep;
if (n > 0) {
p = pixBuf;
q = alphaBuf;
for (i = 0; i < n; ++i) {
for (j = 0; j < w; ++j) {
(*src)(srcData, p++, q++);
}
}
}
lastYStep = yStep;
// loop-invariant constants
k1 = splashRound(xShear * ySign * y);
// clipping test
if (clipRes != splashClipAllInside &&
!rot &&
splashRound(yShear * k1) ==
splashRound(yShear * (xSign * (scaledWidth - 1) + k1))) {
if (xSign > 0) {
spanXMin = tx + k1;
spanXMax = spanXMin + (scaledWidth - 1);
} else {
spanXMax = tx + k1;
spanXMin = spanXMax - (scaledWidth - 1);
}
spanY = ty + ySign * y + splashRound(xShear * ySign * y);
clipRes2 = state->clip->testSpan(spanXMin, spanXMax, spanY);
if (clipRes2 == splashClipAllOutside) {
continue;
}
} else {
clipRes2 = clipRes;
}
// init x scale Bresenham
xt = 0;
xSrc = 0;
for (x = 0; x < scaledWidth; ++x) {
// x scale Bresenham
xStep = xp;
xt += xq;
if (xt >= scaledWidth) {
xt -= scaledWidth;
++xStep;
}
// x shear
x1 = xSign * x + k1;
// y shear
y1 = ySign * y + splashRound(yShear * x1);
// rotation
if (rot) {
x2 = y1;
y2 = -x1;
} else {
x2 = x1;
y2 = y1;
}
// compute the filtered pixel at (x,y) after the x and y scaling
// operations
n = yStep > 0 ? yStep : 1;
m = xStep > 0 ? xStep : 1;
p = pixBuf + xSrc;
q = alphaBuf + xSrc;
for (i = 0; i < splashMaxColorComps; ++i) {
pixAcc[i] = 0;
}
alphaAcc = 0;
for (i = 0; i < n; ++i) {
for (j = 0; j < m; ++j) {
switch (srcMode) {
case splashModeMono1:
pixAcc[0] += p->mono1;
break;
case splashModeMono8:
pixAcc[0] += p->mono8;
break;
case splashModeRGB8:
case splashModeRGB8Packed:
pixAcc[0] += splashRGB8R(p->rgb8);
pixAcc[1] += splashRGB8G(p->rgb8);
pixAcc[2] += splashRGB8B(p->rgb8);
break;
case splashModeBGR8Packed:
pixAcc[0] += splashBGR8R(p->bgr8);
pixAcc[1] += splashBGR8G(p->bgr8);
pixAcc[2] += splashBGR8B(p->bgr8);
break;
}
++p;
alphaAcc += *q++;
}
p += w - m;
q += w - m;
}
alphaMul = 1 / (SplashCoord)(n * m);
if (halftone) {
pixMul = (SplashCoord)alphaMul / 256.0;
} else {
pixMul = alphaMul;
}
alpha = (SplashCoord)alphaAcc * alphaMul;
//~ this should blend if 0 < alpha < 1
if (alpha > 0.75) {
// mono8 -> mono1 conversion, with halftoning
if (halftone) {
pix.mono1 = state->screen->test(tx + x2, ty + y2,
pixAcc[0] * pixMul);
// no conversion, no halftoning
} else {
switch (bitmap->mode) {
case splashModeMono1:
pix.mono1 = splashRound(pixAcc[0] * pixMul);
break;
case splashModeMono8:
pix.mono8 = splashRound(pixAcc[0] * pixMul);
break;
case splashModeRGB8:
case splashModeRGB8Packed:
pix.rgb8 = splashMakeRGB8(splashRound(pixAcc[0] * pixMul),
splashRound(pixAcc[1] * pixMul),
splashRound(pixAcc[2] * pixMul));
break;
case splashModeBGR8Packed:
pix.bgr8 = splashMakeBGR8(splashRound(pixAcc[0] * pixMul),
splashRound(pixAcc[1] * pixMul),
splashRound(pixAcc[2] * pixMul));
break;
}
}
// set pixel
drawPixel(tx + x2, ty + y2, &pix, clipRes2 == splashClipAllInside);
}
// x scale Bresenham
xSrc += xStep;
}
}
gfree(pixBuf);
gfree(alphaBuf);
return splashOk;
}
void Splash::dumpPath(SplashPath *path) {
int i;
for (i = 0; i < path->length; ++i) {
printf(" %3d: x=%8.2f y=%8.2f%s%s%s%s%s\n",
i, path->pts[i].x, path->pts[i].y,
(path->flags[i] & splashPathFirst) ? " first" : "",
(path->flags[i] & splashPathLast) ? " last" : "",
(path->flags[i] & splashPathClosed) ? " closed" : "",
(path->flags[i] & splashPathCurve) ? " curve" : "",
(path->flags[i] & splashPathArcCW) ? " arcCW" : "");
}
}