blob: 16476f4f01ff73a08f104ac8a776d4c12bf21174 [file] [log] [blame]
//========================================================================
//
// Decrypt.cc
//
// Copyright 1996-2003 Glyph & Cog, LLC
//
//========================================================================
//========================================================================
//
// Modified under the Poppler project - http://poppler.freedesktop.org
//
// All changes made under the Poppler project to this file are licensed
// under GPL version 2 or later
//
// Copyright (C) 2008 Julien Rebetez <julien@fhtagn.net>
// Copyright (C) 2008, 2010, 2016-2019 Albert Astals Cid <aacid@kde.org>
// Copyright (C) 2009 Matthias Franz <matthias@ktug.or.kr>
// Copyright (C) 2009 David Benjamin <davidben@mit.edu>
// Copyright (C) 2012 Fabio D'Urso <fabiodurso@hotmail.it>
// Copyright (C) 2013, 2017 Adrian Johnson <ajohnson@redneon.com>
// Copyright (C) 2016 Alok Anand <alok4nand@gmail.com>
// Copyright (C) 2016 Thomas Freitag <Thomas.Freitag@alfa.de>
// Copyright (C) 2018 Adam Reichold <adam.reichold@t-online.de>
//
// To see a description of the changes please see the Changelog file that
// came with your tarball or type make ChangeLog if you are building from git
//
//========================================================================
#include <config.h>
#include <cstdint>
#include <string.h>
#include "goo/gmem.h"
#include "goo/grandom.h"
#include "Decrypt.h"
#include "Error.h"
static void rc4InitKey(unsigned char *key, int keyLen, unsigned char *state);
static unsigned char rc4DecryptByte(unsigned char *state, unsigned char *x, unsigned char *y, unsigned char c);
static bool aesReadBlock(Stream *str, unsigned char *in, bool addPadding);
static void aesKeyExpansion(DecryptAESState *s, unsigned char *objKey, int objKeyLen, bool decrypt);
static void aesEncryptBlock(DecryptAESState *s, unsigned char *in);
static void aesDecryptBlock(DecryptAESState *s, unsigned char *in, bool last);
static void aes256KeyExpansion(DecryptAES256State *s, unsigned char *objKey, int objKeyLen, bool decrypt);
static void aes256EncryptBlock(DecryptAES256State *s, unsigned char *in);
static void aes256DecryptBlock(DecryptAES256State *s, unsigned char *in, bool last);
static void sha256(unsigned char *msg, int msgLen, unsigned char *hash);
static void sha384(unsigned char *msg, int msgLen, unsigned char *hash);
static void sha512(unsigned char *msg, int msgLen, unsigned char *hash);
static void revision6Hash(const GooString *inputPassword, unsigned char *K, const char *userKey);
static const unsigned char passwordPad[32] = {
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
};
//------------------------------------------------------------------------
// Decrypt
//------------------------------------------------------------------------
bool Decrypt::makeFileKey(int encVersion, int encRevision, int keyLength,
const GooString *ownerKey, const GooString *userKey,
const GooString *ownerEnc, const GooString *userEnc,
int permissions, const GooString *fileID,
const GooString *ownerPassword, const GooString *userPassword,
unsigned char *fileKey, bool encryptMetadata,
bool *ownerPasswordOk) {
DecryptAES256State state;
unsigned char test[127 + 56], test2[32];
GooString *userPassword2;
unsigned char fState[256];
unsigned char tmpKey[16];
unsigned char fx, fy;
int len, i, j;
*ownerPasswordOk = false;
if (encRevision == 5 || encRevision == 6) {
// check the owner password
if (ownerPassword) {
//~ this is supposed to convert the password to UTF-8 using "SASLprep"
len = ownerPassword->getLength();
if (len > 127) {
len = 127;
}
memcpy(test, ownerPassword->c_str(), len);
memcpy(test + len, ownerKey->c_str() + 32, 8);
memcpy(test + len + 8, userKey->c_str(), 48);
sha256(test, len + 56, test);
if (encRevision == 6) {
//test contains the initial SHA-256 hash as input K.
revision6Hash(ownerPassword, test, userKey->c_str());
}
if (!memcmp(test, ownerKey->c_str(), 32)) {
// compute the file key from the owner password
memcpy(test, ownerPassword->c_str(), len);
memcpy(test + len, ownerKey->c_str() + 40, 8);
memcpy(test + len + 8, userKey->c_str(), 48);
sha256(test, len + 56, test);
if (encRevision == 6) {
//test contains the initial SHA-256 hash input K.
revision6Hash(ownerPassword, test, userKey->c_str());
}
aes256KeyExpansion(&state, test, 32, true);
for (i = 0; i < 16; ++i) {
state.cbc[i] = 0;
}
aes256DecryptBlock(&state, (unsigned char *)ownerEnc->c_str(), false);
memcpy(fileKey, state.buf, 16);
aes256DecryptBlock(&state, (unsigned char *)ownerEnc->c_str() + 16,
false);
memcpy(fileKey + 16, state.buf, 16);
*ownerPasswordOk = true;
return true;
}
}
// check the user password
if (userPassword) {
//~ this is supposed to convert the password to UTF-8 using "SASLprep"
len = userPassword->getLength();
if (len > 127) {
len = 127;
}
memcpy(test, userPassword->c_str(), len);
memcpy(test + len, userKey->c_str() + 32, 8);
sha256(test, len + 8, test);
if(encRevision == 6) {
// test contains the initial SHA-256 hash input K.
// user key is not used in checking user password.
revision6Hash(userPassword, test, nullptr);
}
if (!memcmp(test, userKey->c_str(), 32)) {
// compute the file key from the user password
memcpy(test, userPassword->c_str(), len);
memcpy(test + len, userKey->c_str() + 40, 8);
sha256(test, len + 8, test);
if(encRevision == 6) {
//test contains the initial SHA-256 hash input K.
//user key is not used in computing intermediate user key.
revision6Hash(userPassword, test, nullptr);
}
aes256KeyExpansion(&state, test, 32, true);
for (i = 0; i < 16; ++i) {
state.cbc[i] = 0;
}
aes256DecryptBlock(&state, (unsigned char *)userEnc->c_str(), false);
memcpy(fileKey, state.buf, 16);
aes256DecryptBlock(&state, (unsigned char *)userEnc->c_str() + 16,
false);
memcpy(fileKey + 16, state.buf, 16);
return true;
}
}
return false;
} else {
// try using the supplied owner password to generate the user password
if (ownerPassword) {
len = ownerPassword->getLength();
if (len < 32) {
memcpy(test, ownerPassword->c_str(), len);
memcpy(test + len, passwordPad, 32 - len);
} else {
memcpy(test, ownerPassword->c_str(), 32);
}
md5(test, 32, test);
if (encRevision == 3) {
for (i = 0; i < 50; ++i) {
md5(test, keyLength, test);
}
}
if (encRevision == 2) {
rc4InitKey(test, keyLength, fState);
fx = fy = 0;
for (i = 0; i < 32; ++i) {
test2[i] = rc4DecryptByte(fState, &fx, &fy, ownerKey->getChar(i));
}
} else {
memcpy(test2, ownerKey->c_str(), 32);
for (i = 19; i >= 0; --i) {
for (j = 0; j < keyLength; ++j) {
tmpKey[j] = test[j] ^ i;
}
rc4InitKey(tmpKey, keyLength, fState);
fx = fy = 0;
for (j = 0; j < 32; ++j) {
test2[j] = rc4DecryptByte(fState, &fx, &fy, test2[j]);
}
}
}
userPassword2 = new GooString((char *)test2, 32);
if (makeFileKey2(encVersion, encRevision, keyLength, ownerKey, userKey,
permissions, fileID, userPassword2, fileKey,
encryptMetadata)) {
*ownerPasswordOk = true;
delete userPassword2;
return true;
}
delete userPassword2;
}
// try using the supplied user password
return makeFileKey2(encVersion, encRevision, keyLength, ownerKey, userKey,
permissions, fileID, userPassword, fileKey,
encryptMetadata);
}
}
bool Decrypt::makeFileKey2(int encVersion, int encRevision, int keyLength,
const GooString *ownerKey, const GooString *userKey,
int permissions, const GooString *fileID,
const GooString *userPassword, unsigned char *fileKey,
bool encryptMetadata) {
unsigned char *buf;
unsigned char test[32];
unsigned char fState[256];
unsigned char tmpKey[16];
unsigned char fx, fy;
int len, i, j;
bool ok;
// generate file key
buf = (unsigned char *)gmalloc(72 + fileID->getLength());
if (userPassword) {
len = userPassword->getLength();
if (len < 32) {
memcpy(buf, userPassword->c_str(), len);
memcpy(buf + len, passwordPad, 32 - len);
} else {
memcpy(buf, userPassword->c_str(), 32);
}
} else {
memcpy(buf, passwordPad, 32);
}
memcpy(buf + 32, ownerKey->c_str(), 32);
buf[64] = permissions & 0xff;
buf[65] = (permissions >> 8) & 0xff;
buf[66] = (permissions >> 16) & 0xff;
buf[67] = (permissions >> 24) & 0xff;
memcpy(buf + 68, fileID->c_str(), fileID->getLength());
len = 68 + fileID->getLength();
if (!encryptMetadata) {
buf[len++] = 0xff;
buf[len++] = 0xff;
buf[len++] = 0xff;
buf[len++] = 0xff;
}
md5(buf, len, fileKey);
if (encRevision == 3) {
for (i = 0; i < 50; ++i) {
md5(fileKey, keyLength, fileKey);
}
}
// test user password
if (encRevision == 2) {
rc4InitKey(fileKey, keyLength, fState);
fx = fy = 0;
for (i = 0; i < 32; ++i) {
test[i] = rc4DecryptByte(fState, &fx, &fy, userKey->getChar(i));
}
ok = memcmp(test, passwordPad, 32) == 0;
} else if (encRevision == 3) {
memcpy(test, userKey->c_str(), 32);
for (i = 19; i >= 0; --i) {
for (j = 0; j < keyLength; ++j) {
tmpKey[j] = fileKey[j] ^ i;
}
rc4InitKey(tmpKey, keyLength, fState);
fx = fy = 0;
for (j = 0; j < 32; ++j) {
test[j] = rc4DecryptByte(fState, &fx, &fy, test[j]);
}
}
memcpy(buf, passwordPad, 32);
memcpy(buf + 32, fileID->c_str(), fileID->getLength());
md5(buf, 32 + fileID->getLength(), buf);
ok = memcmp(test, buf, 16) == 0;
} else {
ok = false;
}
gfree(buf);
return ok;
}
//------------------------------------------------------------------------
// BaseCryptStream
//------------------------------------------------------------------------
BaseCryptStream::BaseCryptStream(Stream *strA, const unsigned char *fileKey, CryptAlgorithm algoA,
int keyLength, int objNum, int objGen):
FilterStream(strA)
{
algo = algoA;
// construct object key
for (int i = 0; i < keyLength; ++i) {
objKey[i] = fileKey[i];
}
for (std::size_t i = keyLength; i < sizeof(objKey); ++i) {
objKey[i] = 0;
}
switch (algo) {
case cryptRC4:
if (likely(keyLength < static_cast<int>(sizeof(objKey) - 4))) {
objKey[keyLength] = objNum & 0xff;
objKey[keyLength + 1] = (objNum >> 8) & 0xff;
objKey[keyLength + 2] = (objNum >> 16) & 0xff;
objKey[keyLength + 3] = objGen & 0xff;
objKey[keyLength + 4] = (objGen >> 8) & 0xff;
md5(objKey, keyLength + 5, objKey);
}
if ((objKeyLength = keyLength + 5) > 16) {
objKeyLength = 16;
}
break;
case cryptAES:
objKey[keyLength] = objNum & 0xff;
objKey[keyLength + 1] = (objNum >> 8) & 0xff;
objKey[keyLength + 2] = (objNum >> 16) & 0xff;
objKey[keyLength + 3] = objGen & 0xff;
objKey[keyLength + 4] = (objGen >> 8) & 0xff;
objKey[keyLength + 5] = 0x73; // 's'
objKey[keyLength + 6] = 0x41; // 'A'
objKey[keyLength + 7] = 0x6c; // 'l'
objKey[keyLength + 8] = 0x54; // 'T'
md5(objKey, keyLength + 9, objKey);
if ((objKeyLength = keyLength + 5) > 16) {
objKeyLength = 16;
}
break;
case cryptAES256:
objKeyLength = keyLength;
break;
case cryptNone:
break;
}
charactersRead = 0;
autoDelete = true;
}
BaseCryptStream::~BaseCryptStream() {
if (autoDelete) {
delete str;
}
}
void BaseCryptStream::reset() {
charactersRead = 0;
nextCharBuff = EOF;
str->reset();
}
Goffset BaseCryptStream::getPos() {
return charactersRead;
}
int BaseCryptStream::getChar() {
// Read next character and empty the buffer, so that a new character will be read next time
int c = lookChar();
nextCharBuff = EOF;
if (c != EOF)
charactersRead++;
return c;
}
bool BaseCryptStream::isBinary(bool last) {
return str->isBinary(last);
}
void BaseCryptStream::setAutoDelete(bool val) {
autoDelete = val;
}
//------------------------------------------------------------------------
// EncryptStream
//------------------------------------------------------------------------
EncryptStream::EncryptStream(Stream *strA, const unsigned char *fileKey, CryptAlgorithm algoA,
int keyLength, int objNum, int objGen):
BaseCryptStream(strA, fileKey, algoA, keyLength, objNum, objGen)
{
// Fill the CBC initialization vector for AES and AES-256
switch (algo) {
case cryptAES:
grandom_fill(state.aes.cbc, 16);
break;
case cryptAES256:
grandom_fill(state.aes256.cbc, 16);
break;
default:
break;
}
}
EncryptStream::~EncryptStream() {
}
void EncryptStream::reset() {
BaseCryptStream::reset();
switch (algo) {
case cryptRC4:
state.rc4.x = state.rc4.y = 0;
rc4InitKey(objKey, objKeyLength, state.rc4.state);
break;
case cryptAES:
aesKeyExpansion(&state.aes, objKey, objKeyLength, false);
memcpy(state.aes.buf, state.aes.cbc, 16); // Copy CBC IV to buf
state.aes.bufIdx = 0;
state.aes.paddingReached = false;
break;
case cryptAES256:
aes256KeyExpansion(&state.aes256, objKey, objKeyLength, false);
memcpy(state.aes256.buf, state.aes256.cbc, 16); // Copy CBC IV to buf
state.aes256.bufIdx = 0;
state.aes256.paddingReached = false;
break;
case cryptNone:
break;
}
}
int EncryptStream::lookChar() {
unsigned char in[16];
int c;
if (nextCharBuff != EOF)
return nextCharBuff;
c = EOF; // make gcc happy
switch (algo) {
case cryptRC4:
if ((c = str->getChar()) != EOF) {
// RC4 is XOR-based: the decryption algorithm works for encryption too
c = rc4DecryptByte(state.rc4.state, &state.rc4.x, &state.rc4.y, (unsigned char)c);
}
break;
case cryptAES:
if (state.aes.bufIdx == 16 && !state.aes.paddingReached) {
state.aes.paddingReached = !aesReadBlock(str, in, true);
aesEncryptBlock(&state.aes, in);
}
if (state.aes.bufIdx == 16) {
c = EOF;
} else {
c = state.aes.buf[state.aes.bufIdx++];
}
break;
case cryptAES256:
if (state.aes256.bufIdx == 16 && !state.aes256.paddingReached) {
state.aes256.paddingReached = !aesReadBlock(str, in, true);
aes256EncryptBlock(&state.aes256, in);
}
if (state.aes256.bufIdx == 16) {
c = EOF;
} else {
c = state.aes256.buf[state.aes256.bufIdx++];
}
break;
case cryptNone:
break;
}
return (nextCharBuff = c);
}
//------------------------------------------------------------------------
// DecryptStream
//------------------------------------------------------------------------
DecryptStream::DecryptStream(Stream *strA, const unsigned char *fileKey, CryptAlgorithm algoA,
int keyLength, int objNum, int objGen):
BaseCryptStream(strA, fileKey, algoA, keyLength, objNum, objGen)
{
}
DecryptStream::~DecryptStream() {
}
void DecryptStream::reset() {
int i;
BaseCryptStream::reset();
switch (algo) {
case cryptRC4:
state.rc4.x = state.rc4.y = 0;
rc4InitKey(objKey, objKeyLength, state.rc4.state);
break;
case cryptAES:
aesKeyExpansion(&state.aes, objKey, objKeyLength, true);
for (i = 0; i < 16; ++i) {
state.aes.cbc[i] = str->getChar();
}
state.aes.bufIdx = 16;
break;
case cryptAES256:
aes256KeyExpansion(&state.aes256, objKey, objKeyLength, true);
for (i = 0; i < 16; ++i) {
state.aes256.cbc[i] = str->getChar();
}
state.aes256.bufIdx = 16;
break;
case cryptNone:
break;
}
}
int DecryptStream::lookChar() {
unsigned char in[16];
int c;
if (nextCharBuff != EOF)
return nextCharBuff;
c = EOF; // make gcc happy
switch (algo) {
case cryptRC4:
if ((c = str->getChar()) != EOF) {
c = rc4DecryptByte(state.rc4.state, &state.rc4.x, &state.rc4.y, (unsigned char)c);
}
break;
case cryptAES:
if (state.aes.bufIdx == 16) {
if (aesReadBlock(str, in, false)) {
aesDecryptBlock(&state.aes, in, str->lookChar() == EOF);
}
}
if (state.aes.bufIdx == 16) {
c = EOF;
} else {
c = state.aes.buf[state.aes.bufIdx++];
}
break;
case cryptAES256:
if (state.aes256.bufIdx == 16) {
if (aesReadBlock(str, in, false)) {
aes256DecryptBlock(&state.aes256, in, str->lookChar() == EOF);
}
}
if (state.aes256.bufIdx == 16) {
c = EOF;
} else {
c = state.aes256.buf[state.aes256.bufIdx++];
}
break;
case cryptNone:
break;
}
return (nextCharBuff = c);
}
//------------------------------------------------------------------------
// RC4-compatible decryption
//------------------------------------------------------------------------
static void rc4InitKey(unsigned char *key, int keyLen, unsigned char *state) {
unsigned char index1, index2;
unsigned char t;
int i;
for (i = 0; i < 256; ++i)
state[i] = i;
if (unlikely(keyLen == 0))
return;
index1 = index2 = 0;
for (i = 0; i < 256; ++i) {
index2 = (key[index1] + state[i] + index2) % 256;
t = state[i];
state[i] = state[index2];
state[index2] = t;
index1 = (index1 + 1) % keyLen;
}
}
static unsigned char rc4DecryptByte(unsigned char *state, unsigned char *x, unsigned char *y, unsigned char c) {
unsigned char x1, y1, tx, ty;
x1 = *x = (*x + 1) % 256;
y1 = *y = (state[*x] + *y) % 256;
tx = state[x1];
ty = state[y1];
state[x1] = ty;
state[y1] = tx;
return c ^ state[(tx + ty) % 256];
}
//------------------------------------------------------------------------
// AES decryption
//------------------------------------------------------------------------
// Returns false if EOF was reached, true otherwise
static bool aesReadBlock(Stream *str, unsigned char *in, bool addPadding)
{
int c, i;
for (i = 0; i < 16; ++i) {
if ((c = str->getChar()) != EOF) {
in[i] = (unsigned char)c;
} else {
break;
}
}
if (i == 16) {
return true;
} else {
if (addPadding) {
c = 16 - i;
while (i < 16) {
in[i++] = (unsigned char)c;
}
}
return false;
}
}
static const unsigned char sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const unsigned char invSbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
static const unsigned int rcon[11] = {
0x00000000, // unused
0x01000000,
0x02000000,
0x04000000,
0x08000000,
0x10000000,
0x20000000,
0x40000000,
0x80000000,
0x1b000000,
0x36000000
};
static inline unsigned int subWord(unsigned int x) {
return (sbox[x >> 24] << 24)
| (sbox[(x >> 16) & 0xff] << 16)
| (sbox[(x >> 8) & 0xff] << 8)
| sbox[x & 0xff];
}
static inline unsigned int rotWord(unsigned int x) {
return ((x << 8) & 0xffffffff) | (x >> 24);
}
static inline void subBytes(unsigned char *state) {
int i;
for (i = 0; i < 16; ++i) {
state[i] = sbox[state[i]];
}
}
static inline void invSubBytes(unsigned char *state) {
int i;
for (i = 0; i < 16; ++i) {
state[i] = invSbox[state[i]];
}
}
static inline void shiftRows(unsigned char *state) {
unsigned char t;
t = state[4];
state[4] = state[5];
state[5] = state[6];
state[6] = state[7];
state[7] = t;
t = state[8];
state[8] = state[10];
state[10] = t;
t = state[9];
state[9] = state[11];
state[11] = t;
t = state[15];
state[15] = state[14];
state[14] = state[13];
state[13] = state[12];
state[12] = t;
}
static inline void invShiftRows(unsigned char *state) {
unsigned char t;
t = state[7];
state[7] = state[6];
state[6] = state[5];
state[5] = state[4];
state[4] = t;
t = state[8];
state[8] = state[10];
state[10] = t;
t = state[9];
state[9] = state[11];
state[11] = t;
t = state[12];
state[12] = state[13];
state[13] = state[14];
state[14] = state[15];
state[15] = t;
}
// {02} \cdot s
struct Mul02Table
{
constexpr Mul02Table() : values()
{
for(int s = 0; s < 256; s++) {
values[s] = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul02Table mul02;
// {03} \cdot s
struct Mul03Table
{
constexpr Mul03Table() : values()
{
for(int s=0; s<256; s++) {
const unsigned char s2 = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
values[s] = s ^ s2;
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul03Table mul03;
// {09} \cdot s
struct Mul09Table
{
constexpr Mul09Table() : values()
{
for(int s=0; s<256; s++) {
const unsigned char s2 = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
const unsigned char s4 = (s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1);
const unsigned char s8 = (s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1);
values[s] = s ^ s8;
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul09Table mul09;
// {0b} \cdot s
struct Mul0bTable
{
constexpr Mul0bTable() : values()
{
for(int s=0; s<256; s++) {
const unsigned char s2 = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
const unsigned char s4 = (s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1);
const unsigned char s8 = (s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1);
values[s] = s ^ s2 ^ s8;
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul0bTable mul0b;
// {0d} \cdot s
struct Mul0dTable
{
constexpr Mul0dTable() : values()
{
for(int s=0; s<256; s++) {
const unsigned char s2 = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
const unsigned char s4 = (s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1);
const unsigned char s8 = (s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1);
values[s] = s ^ s4 ^ s8;
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul0dTable mul0d;
// {0e} \cdot s
struct Mul0eTable
{
constexpr Mul0eTable() : values()
{
for(int s=0; s<256; s++) {
const unsigned char s2 = (s & 0x80) ? ((s << 1) ^ 0x1b) : (s << 1);
const unsigned char s4 = (s2 & 0x80) ? ((s2 << 1) ^ 0x1b) : (s2 << 1);
const unsigned char s8 = (s4 & 0x80) ? ((s4 << 1) ^ 0x1b) : (s4 << 1);
values[s] = s2 ^ s4 ^ s8;
}
}
constexpr unsigned char operator()(uint8_t i) const { return values[i]; }
unsigned char values[256];
};
static constexpr Mul0eTable mul0e;
static inline void mixColumns(unsigned char *state) {
int c;
unsigned char s0, s1, s2, s3;
for (c = 0; c < 4; ++c) {
s0 = state[c];
s1 = state[4+c];
s2 = state[8+c];
s3 = state[12+c];
state[c] = mul02(s0) ^ mul03(s1) ^ s2 ^ s3;
state[4+c] = s0 ^ mul02(s1) ^ mul03(s2) ^ s3;
state[8+c] = s0 ^ s1 ^ mul02(s2) ^ mul03(s3);
state[12+c] = mul03(s0) ^ s1 ^ s2 ^ mul02(s3);
}
}
static inline void invMixColumns(unsigned char *state) {
int c;
unsigned char s0, s1, s2, s3;
for (c = 0; c < 4; ++c) {
s0 = state[c];
s1 = state[4+c];
s2 = state[8+c];
s3 = state[12+c];
state[c] = mul0e(s0) ^ mul0b(s1) ^ mul0d(s2) ^ mul09(s3);
state[4+c] = mul09(s0) ^ mul0e(s1) ^ mul0b(s2) ^ mul0d(s3);
state[8+c] = mul0d(s0) ^ mul09(s1) ^ mul0e(s2) ^ mul0b(s3);
state[12+c] = mul0b(s0) ^ mul0d(s1) ^ mul09(s2) ^ mul0e(s3);
}
}
static inline void invMixColumnsW(unsigned int *w) {
int c;
unsigned char s0, s1, s2, s3;
for (c = 0; c < 4; ++c) {
s0 = w[c] >> 24;
s1 = w[c] >> 16;
s2 = w[c] >> 8;
s3 = w[c];
w[c] = ((mul0e(s0) ^ mul0b(s1) ^ mul0d(s2) ^ mul09(s3)) << 24)
| ((mul09(s0) ^ mul0e(s1) ^ mul0b(s2) ^ mul0d(s3)) << 16)
| ((mul0d(s0) ^ mul09(s1) ^ mul0e(s2) ^ mul0b(s3)) << 8)
| (mul0b(s0) ^ mul0d(s1) ^ mul09(s2) ^ mul0e(s3));
}
}
static inline void addRoundKey(unsigned char *state, unsigned int *w) {
int c;
for (c = 0; c < 4; ++c) {
state[c] ^= w[c] >> 24;
state[4+c] ^= w[c] >> 16;
state[8+c] ^= w[c] >> 8;
state[12+c] ^= w[c];
}
}
static void aesKeyExpansion(DecryptAESState *s,
unsigned char *objKey, int /*objKeyLen*/, bool decrypt) {
unsigned int temp;
int i, round;
//~ this assumes objKeyLen == 16
for (i = 0; i < 4; ++i) {
s->w[i] = (objKey[4*i] << 24) + (objKey[4*i+1] << 16) +
(objKey[4*i+2] << 8) + objKey[4*i+3];
}
for (i = 4; i < 44; ++i) {
temp = s->w[i-1];
if (!(i & 3)) {
temp = subWord(rotWord(temp)) ^ rcon[i/4];
}
s->w[i] = s->w[i-4] ^ temp;
}
/* In case of decryption, adjust the key schedule for the equivalent inverse cipher */
if (decrypt) {
for (round = 1; round <= 9; ++round) {
invMixColumnsW(&s->w[round * 4]);
}
}
}
static void aesEncryptBlock(DecryptAESState *s, unsigned char *in) {
int c, round;
// initial state (input is xor'd with previous output because of CBC)
for (c = 0; c < 4; ++c) {
s->state[c] = in[4*c] ^ s->buf[4*c];
s->state[4+c] = in[4*c+1] ^ s->buf[4*c+1];
s->state[8+c] = in[4*c+2] ^ s->buf[4*c+2];
s->state[12+c] = in[4*c+3] ^ s->buf[4*c+3];
}
// round 0
addRoundKey(s->state, &s->w[0]);
// rounds 1-9
for (round = 1; round <= 9; ++round) {
subBytes(s->state);
shiftRows(s->state);
mixColumns(s->state);
addRoundKey(s->state, &s->w[round * 4]);
}
// round 10
subBytes(s->state);
shiftRows(s->state);
addRoundKey(s->state, &s->w[10 * 4]);
for (c = 0; c < 4; ++c) {
s->buf[4*c] = s->state[c];
s->buf[4*c+1] = s->state[4+c];
s->buf[4*c+2] = s->state[8+c];
s->buf[4*c+3] = s->state[12+c];
}
s->bufIdx = 0;
}
static void aesDecryptBlock(DecryptAESState *s, unsigned char *in, bool last) {
int c, round, n, i;
// initial state
for (c = 0; c < 4; ++c) {
s->state[c] = in[4*c];
s->state[4+c] = in[4*c+1];
s->state[8+c] = in[4*c+2];
s->state[12+c] = in[4*c+3];
}
// round 0
addRoundKey(s->state, &s->w[10 * 4]);
// rounds 1-9
for (round = 9; round >= 1; --round) {
invSubBytes(s->state);
invShiftRows(s->state);
invMixColumns(s->state);
addRoundKey(s->state, &s->w[round * 4]);
}
// round 10
invSubBytes(s->state);
invShiftRows(s->state);
addRoundKey(s->state, &s->w[0]);
// CBC
for (c = 0; c < 4; ++c) {
s->buf[4*c] = s->state[c] ^ s->cbc[4*c];
s->buf[4*c+1] = s->state[4+c] ^ s->cbc[4*c+1];
s->buf[4*c+2] = s->state[8+c] ^ s->cbc[4*c+2];
s->buf[4*c+3] = s->state[12+c] ^ s->cbc[4*c+3];
}
// save the input block for the next CBC
for (i = 0; i < 16; ++i) {
s->cbc[i] = in[i];
}
// remove padding
s->bufIdx = 0;
if (last) {
n = s->buf[15];
if (n < 1 || n > 16) { // this should never happen
n = 16;
}
for (i = 15; i >= n; --i) {
s->buf[i] = s->buf[i-n];
}
s->bufIdx = n;
}
}
//------------------------------------------------------------------------
// AES-256 decryption
//------------------------------------------------------------------------
static void aes256KeyExpansion(DecryptAES256State *s,
unsigned char *objKey, int objKeyLen, bool decrypt) {
unsigned int temp;
int i, round;
//~ this assumes objKeyLen == 32
for (i = 0; i < 8; ++i) {
s->w[i] = (objKey[4*i] << 24) + (objKey[4*i+1] << 16) +
(objKey[4*i+2] << 8) + objKey[4*i+3];
}
for (i = 8; i < 60; ++i) {
temp = s->w[i-1];
if ((i & 7) == 0) {
temp = subWord(rotWord(temp)) ^ rcon[i/8];
} else if ((i & 7) == 4) {
temp = subWord(temp);
}
s->w[i] = s->w[i-8] ^ temp;
}
/* In case of decryption, adjust the key schedule for the equivalent inverse cipher */
if (decrypt) {
for (round = 1; round <= 13; ++round) {
invMixColumnsW(&s->w[round * 4]);
}
}
}
static void aes256EncryptBlock(DecryptAES256State *s, unsigned char *in) {
int c, round;
// initial state (input is xor'd with previous output because of CBC)
for (c = 0; c < 4; ++c) {
s->state[c] = in[4*c] ^ s->buf[4*c];
s->state[4+c] = in[4*c+1] ^ s->buf[4*c+1];
s->state[8+c] = in[4*c+2] ^ s->buf[4*c+2];
s->state[12+c] = in[4*c+3] ^ s->buf[4*c+3];
}
// round 0
addRoundKey(s->state, &s->w[0]);
// rounds 1-13
for (round = 1; round <= 13; ++round) {
subBytes(s->state);
shiftRows(s->state);
mixColumns(s->state);
addRoundKey(s->state, &s->w[round * 4]);
}
// round 14
subBytes(s->state);
shiftRows(s->state);
addRoundKey(s->state, &s->w[14 * 4]);
for (c = 0; c < 4; ++c) {
s->buf[4*c] = s->state[c];
s->buf[4*c+1] = s->state[4+c];
s->buf[4*c+2] = s->state[8+c];
s->buf[4*c+3] = s->state[12+c];
}
s->bufIdx = 0;
}
static void aes256DecryptBlock(DecryptAES256State *s, unsigned char *in, bool last) {
int c, round, n, i;
// initial state
for (c = 0; c < 4; ++c) {
s->state[c] = in[4*c];
s->state[4+c] = in[4*c+1];
s->state[8+c] = in[4*c+2];
s->state[12+c] = in[4*c+3];
}
// round 0
addRoundKey(s->state, &s->w[14 * 4]);
// rounds 13-1
for (round = 13; round >= 1; --round) {
invSubBytes(s->state);
invShiftRows(s->state);
invMixColumns(s->state);
addRoundKey(s->state, &s->w[round * 4]);
}
// round 14
invSubBytes(s->state);
invShiftRows(s->state);
addRoundKey(s->state, &s->w[0]);
// CBC
for (c = 0; c < 4; ++c) {
s->buf[4*c] = s->state[c] ^ s->cbc[4*c];
s->buf[4*c+1] = s->state[4+c] ^ s->cbc[4*c+1];
s->buf[4*c+2] = s->state[8+c] ^ s->cbc[4*c+2];
s->buf[4*c+3] = s->state[12+c] ^ s->cbc[4*c+3];
}
// save the input block for the next CBC
for (i = 0; i < 16; ++i) {
s->cbc[i] = in[i];
}
// remove padding
s->bufIdx = 0;
if (last) {
n = s->buf[15];
if (n < 1 || n > 16) { // this should never happen
n = 16;
}
for (i = 15; i >= n; --i) {
s->buf[i] = s->buf[i-n];
}
s->bufIdx = n;
if (n > 16)
{
error(errSyntaxError, -1, "Reducing bufIdx from {0:d} to 16 to not crash", n);
s->bufIdx = 16;
}
}
}
//------------------------------------------------------------------------
// MD5 message digest
//------------------------------------------------------------------------
// this works around a bug in older Sun compilers
static inline unsigned long rotateLeft(unsigned long x, int r) {
x &= 0xffffffff;
return ((x << r) | (x >> (32 - r))) & 0xffffffff;
}
static inline unsigned long md5Round1(unsigned long a, unsigned long b, unsigned long c, unsigned long d,
unsigned long Xk, unsigned long s, unsigned long Ti) {
return b + rotateLeft((a + ((b & c) | (~b & d)) + Xk + Ti), s);
}
static inline unsigned long md5Round2(unsigned long a, unsigned long b, unsigned long c, unsigned long d,
unsigned long Xk, unsigned long s, unsigned long Ti) {
return b + rotateLeft((a + ((b & d) | (c & ~d)) + Xk + Ti), s);
}
static inline unsigned long md5Round3(unsigned long a, unsigned long b, unsigned long c, unsigned long d,
unsigned long Xk, unsigned long s, unsigned long Ti) {
return b + rotateLeft((a + (b ^ c ^ d) + Xk + Ti), s);
}
static inline unsigned long md5Round4(unsigned long a, unsigned long b, unsigned long c, unsigned long d,
unsigned long Xk, unsigned long s, unsigned long Ti) {
return b + rotateLeft((a + (c ^ (b | ~d)) + Xk + Ti), s);
}
void md5(const unsigned char *msg, int msgLen, unsigned char *digest) {
unsigned long x[16] = {};
unsigned long a, b, c, d, aa, bb, cc, dd;
int n64;
int i, j, k;
// sanity check
if (msgLen < 0) {
return;
}
// compute number of 64-byte blocks
// (length + pad byte (0x80) + 8 bytes for length)
n64 = (msgLen + 1 + 8 + 63) / 64;
// initialize a, b, c, d
a = 0x67452301;
b = 0xefcdab89;
c = 0x98badcfe;
d = 0x10325476;
// loop through blocks
k = 0;
for (i = 0; i < n64; ++i) {
// grab a 64-byte block
for (j = 0; j < 16 && k < msgLen - 3; ++j, k += 4)
x[j] = (((((msg[k+3] << 8) + msg[k+2]) << 8) + msg[k+1]) << 8) + msg[k];
if (i == n64 - 1) {
if (k == msgLen - 3)
x[j] = 0x80000000 + (((msg[k+2] << 8) + msg[k+1]) << 8) + msg[k];
else if (k == msgLen - 2)
x[j] = 0x800000 + (msg[k+1] << 8) + msg[k];
else if (k == msgLen - 1)
x[j] = 0x8000 + msg[k];
else
x[j] = 0x80;
++j;
while (j < 16)
x[j++] = 0;
x[14] = msgLen << 3;
}
// save a, b, c, d
aa = a;
bb = b;
cc = c;
dd = d;
// round 1
a = md5Round1(a, b, c, d, x[0], 7, 0xd76aa478);
d = md5Round1(d, a, b, c, x[1], 12, 0xe8c7b756);
c = md5Round1(c, d, a, b, x[2], 17, 0x242070db);
b = md5Round1(b, c, d, a, x[3], 22, 0xc1bdceee);
a = md5Round1(a, b, c, d, x[4], 7, 0xf57c0faf);
d = md5Round1(d, a, b, c, x[5], 12, 0x4787c62a);
c = md5Round1(c, d, a, b, x[6], 17, 0xa8304613);
b = md5Round1(b, c, d, a, x[7], 22, 0xfd469501);
a = md5Round1(a, b, c, d, x[8], 7, 0x698098d8);
d = md5Round1(d, a, b, c, x[9], 12, 0x8b44f7af);
c = md5Round1(c, d, a, b, x[10], 17, 0xffff5bb1);
b = md5Round1(b, c, d, a, x[11], 22, 0x895cd7be);
a = md5Round1(a, b, c, d, x[12], 7, 0x6b901122);
d = md5Round1(d, a, b, c, x[13], 12, 0xfd987193);
c = md5Round1(c, d, a, b, x[14], 17, 0xa679438e);
b = md5Round1(b, c, d, a, x[15], 22, 0x49b40821);
// round 2
a = md5Round2(a, b, c, d, x[1], 5, 0xf61e2562);
d = md5Round2(d, a, b, c, x[6], 9, 0xc040b340);
c = md5Round2(c, d, a, b, x[11], 14, 0x265e5a51);
b = md5Round2(b, c, d, a, x[0], 20, 0xe9b6c7aa);
a = md5Round2(a, b, c, d, x[5], 5, 0xd62f105d);
d = md5Round2(d, a, b, c, x[10], 9, 0x02441453);
c = md5Round2(c, d, a, b, x[15], 14, 0xd8a1e681);
b = md5Round2(b, c, d, a, x[4], 20, 0xe7d3fbc8);
a = md5Round2(a, b, c, d, x[9], 5, 0x21e1cde6);
d = md5Round2(d, a, b, c, x[14], 9, 0xc33707d6);
c = md5Round2(c, d, a, b, x[3], 14, 0xf4d50d87);
b = md5Round2(b, c, d, a, x[8], 20, 0x455a14ed);
a = md5Round2(a, b, c, d, x[13], 5, 0xa9e3e905);
d = md5Round2(d, a, b, c, x[2], 9, 0xfcefa3f8);
c = md5Round2(c, d, a, b, x[7], 14, 0x676f02d9);
b = md5Round2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
// round 3
a = md5Round3(a, b, c, d, x[5], 4, 0xfffa3942);
d = md5Round3(d, a, b, c, x[8], 11, 0x8771f681);
c = md5Round3(c, d, a, b, x[11], 16, 0x6d9d6122);
b = md5Round3(b, c, d, a, x[14], 23, 0xfde5380c);
a = md5Round3(a, b, c, d, x[1], 4, 0xa4beea44);
d = md5Round3(d, a, b, c, x[4], 11, 0x4bdecfa9);
c = md5Round3(c, d, a, b, x[7], 16, 0xf6bb4b60);
b = md5Round3(b, c, d, a, x[10], 23, 0xbebfbc70);
a = md5Round3(a, b, c, d, x[13], 4, 0x289b7ec6);
d = md5Round3(d, a, b, c, x[0], 11, 0xeaa127fa);
c = md5Round3(c, d, a, b, x[3], 16, 0xd4ef3085);
b = md5Round3(b, c, d, a, x[6], 23, 0x04881d05);
a = md5Round3(a, b, c, d, x[9], 4, 0xd9d4d039);
d = md5Round3(d, a, b, c, x[12], 11, 0xe6db99e5);
c = md5Round3(c, d, a, b, x[15], 16, 0x1fa27cf8);
b = md5Round3(b, c, d, a, x[2], 23, 0xc4ac5665);
// round 4
a = md5Round4(a, b, c, d, x[0], 6, 0xf4292244);
d = md5Round4(d, a, b, c, x[7], 10, 0x432aff97);
c = md5Round4(c, d, a, b, x[14], 15, 0xab9423a7);
b = md5Round4(b, c, d, a, x[5], 21, 0xfc93a039);
a = md5Round4(a, b, c, d, x[12], 6, 0x655b59c3);
d = md5Round4(d, a, b, c, x[3], 10, 0x8f0ccc92);
c = md5Round4(c, d, a, b, x[10], 15, 0xffeff47d);
b = md5Round4(b, c, d, a, x[1], 21, 0x85845dd1);
a = md5Round4(a, b, c, d, x[8], 6, 0x6fa87e4f);
d = md5Round4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
c = md5Round4(c, d, a, b, x[6], 15, 0xa3014314);
b = md5Round4(b, c, d, a, x[13], 21, 0x4e0811a1);
a = md5Round4(a, b, c, d, x[4], 6, 0xf7537e82);
d = md5Round4(d, a, b, c, x[11], 10, 0xbd3af235);
c = md5Round4(c, d, a, b, x[2], 15, 0x2ad7d2bb);
b = md5Round4(b, c, d, a, x[9], 21, 0xeb86d391);
// increment a, b, c, d
a += aa;
b += bb;
c += cc;
d += dd;
}
// break digest into bytes
digest[0] = (unsigned char)(a & 0xff);
digest[1] = (unsigned char)((a >>= 8) & 0xff);
digest[2] = (unsigned char)((a >>= 8) & 0xff);
digest[3] = (unsigned char)((a >>= 8) & 0xff);
digest[4] = (unsigned char)(b & 0xff);
digest[5] = (unsigned char)((b >>= 8) & 0xff);
digest[6] = (unsigned char)((b >>= 8) & 0xff);
digest[7] = (unsigned char)((b >>= 8) & 0xff);
digest[8] = (unsigned char)(c & 0xff);
digest[9] = (unsigned char)((c >>= 8) & 0xff);
digest[10] = (unsigned char)((c >>= 8) & 0xff);
digest[11] = (unsigned char)((c >>= 8) & 0xff);
digest[12] = (unsigned char)(d & 0xff);
digest[13] = (unsigned char)((d >>= 8) & 0xff);
digest[14] = (unsigned char)((d >>= 8) & 0xff);
digest[15] = (unsigned char)((d >>= 8) & 0xff);
}
//------------------------------------------------------------------------
// SHA-256 hash
//------------------------------------------------------------------------
static unsigned int sha256K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static inline unsigned int rotr(unsigned int x, unsigned int n) {
return (x >> n) | (x << (32 - n));
}
static inline unsigned int sha256Ch(unsigned int x, unsigned int y, unsigned int z) {
return (x & y) ^ (~x & z);
}
static inline unsigned int sha256Maj(unsigned int x, unsigned int y, unsigned int z) {
return (x & y) ^ (x & z) ^ (y & z);
}
static inline unsigned int sha256Sigma0(unsigned int x) {
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);
}
static inline unsigned int sha256Sigma1(unsigned int x) {
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);
}
static inline unsigned int sha256sigma0(unsigned int x) {
return rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3);
}
static inline unsigned int sha256sigma1(unsigned int x) {
return rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10);
}
static void sha256HashBlock(unsigned char *blk, unsigned int *H) {
unsigned int W[64];
unsigned int a, b, c, d, e, f, g, h;
unsigned int T1, T2;
unsigned int t;
// 1. prepare the message schedule
for (t = 0; t < 16; ++t) {
W[t] = (blk[t*4] << 24) |
(blk[t*4 + 1] << 16) |
(blk[t*4 + 2] << 8) |
blk[t*4 + 3];
}
for (t = 16; t < 64; ++t) {
W[t] = sha256sigma1(W[t-2]) + W[t-7] + sha256sigma0(W[t-15]) + W[t-16];
}
// 2. initialize the eight working variables
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
// 3.
for (t = 0; t < 64; ++t) {
T1 = h + sha256Sigma1(e) + sha256Ch(e,f,g) + sha256K[t] + W[t];
T2 = sha256Sigma0(a) + sha256Maj(a,b,c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
// 4. compute the intermediate hash value
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
static void sha256(unsigned char *msg, int msgLen, unsigned char *hash) {
unsigned char blk[64];
unsigned int H[8];
int blkLen, i;
H[0] = 0x6a09e667;
H[1] = 0xbb67ae85;
H[2] = 0x3c6ef372;
H[3] = 0xa54ff53a;
H[4] = 0x510e527f;
H[5] = 0x9b05688c;
H[6] = 0x1f83d9ab;
H[7] = 0x5be0cd19;
blkLen = 0;
for (i = 0; i + 64 <= msgLen; i += 64) {
sha256HashBlock(msg + i, H);
}
blkLen = msgLen - i;
if (blkLen > 0) {
memcpy(blk, msg + i, blkLen);
}
// pad the message
blk[blkLen++] = 0x80;
if (blkLen > 56) {
while (blkLen < 64) {
blk[blkLen++] = 0;
}
sha256HashBlock(blk, H);
blkLen = 0;
}
while (blkLen < 56) {
blk[blkLen++] = 0;
}
blk[56] = 0;
blk[57] = 0;
blk[58] = 0;
blk[59] = 0;
blk[60] = (unsigned char)(msgLen >> 21);
blk[61] = (unsigned char)(msgLen >> 13);
blk[62] = (unsigned char)(msgLen >> 5);
blk[63] = (unsigned char)(msgLen << 3);
sha256HashBlock(blk, H);
// copy the output into the buffer (convert words to bytes)
for (i = 0; i < 8; ++i) {
hash[i*4] = (unsigned char)(H[i] >> 24);
hash[i*4 + 1] = (unsigned char)(H[i] >> 16);
hash[i*4 + 2] = (unsigned char)(H[i] >> 8);
hash[i*4 + 3] = (unsigned char)H[i];
}
}
//------------------------------------------------------------------------
// SHA-512 hash (see FIPS 180-4)
//------------------------------------------------------------------------
// SHA 384 and SHA 512 use the same sequence of eighty constant 64 bit words.
static const uint64_t shaK[80] = {
0x428a2f98d728ae22ull, 0x7137449123ef65cdull, 0xb5c0fbcfec4d3b2full, 0xe9b5dba58189dbbcull, 0x3956c25bf348b538ull,
0x59f111f1b605d019ull, 0x923f82a4af194f9bull, 0xab1c5ed5da6d8118ull, 0xd807aa98a3030242ull, 0x12835b0145706fbeull,
0x243185be4ee4b28cull, 0x550c7dc3d5ffb4e2ull, 0x72be5d74f27b896full, 0x80deb1fe3b1696b1ull, 0x9bdc06a725c71235ull,
0xc19bf174cf692694ull, 0xe49b69c19ef14ad2ull, 0xefbe4786384f25e3ull, 0x0fc19dc68b8cd5b5ull, 0x240ca1cc77ac9c65ull,
0x2de92c6f592b0275ull, 0x4a7484aa6ea6e483ull, 0x5cb0a9dcbd41fbd4ull, 0x76f988da831153b5ull, 0x983e5152ee66dfabull,
0xa831c66d2db43210ull, 0xb00327c898fb213full, 0xbf597fc7beef0ee4ull, 0xc6e00bf33da88fc2ull, 0xd5a79147930aa725ull,
0x06ca6351e003826full, 0x142929670a0e6e70ull, 0x27b70a8546d22ffcull, 0x2e1b21385c26c926ull, 0x4d2c6dfc5ac42aedull,
0x53380d139d95b3dfull, 0x650a73548baf63deull, 0x766a0abb3c77b2a8ull, 0x81c2c92e47edaee6ull, 0x92722c851482353bull,
0xa2bfe8a14cf10364ull, 0xa81a664bbc423001ull, 0xc24b8b70d0f89791ull, 0xc76c51a30654be30ull, 0xd192e819d6ef5218ull,
0xd69906245565a910ull, 0xf40e35855771202aull, 0x106aa07032bbd1b8ull, 0x19a4c116b8d2d0c8ull, 0x1e376c085141ab53ull,
0x2748774cdf8eeb99ull, 0x34b0bcb5e19b48a8ull, 0x391c0cb3c5c95a63ull, 0x4ed8aa4ae3418acbull, 0x5b9cca4f7763e373ull,
0x682e6ff3d6b2b8a3ull, 0x748f82ee5defb2fcull, 0x78a5636f43172f60ull, 0x84c87814a1f0ab72ull, 0x8cc702081a6439ecull,
0x90befffa23631e28ull, 0xa4506cebde82bde9ull, 0xbef9a3f7b2c67915ull, 0xc67178f2e372532bull, 0xca273eceea26619cull,
0xd186b8c721c0c207ull, 0xeada7dd6cde0eb1eull, 0xf57d4f7fee6ed178ull, 0x06f067aa72176fbaull, 0x0a637dc5a2c898a6ull,
0x113f9804bef90daeull, 0x1b710b35131c471bull, 0x28db77f523047d84ull, 0x32caab7b40c72493ull, 0x3c9ebe0a15c9bebcull,
0x431d67c49c100d4cull, 0x4cc5d4becb3e42b6ull, 0x597f299cfc657e2aull, 0x5fcb6fab3ad6faecull, 0x6c44198c4a475817ull
};
static inline uint64_t rotr(uint64_t x, uint64_t n) {
return (x >> n) | (x << (64 - n));
}
static inline uint64_t sha512Ch(uint64_t x, uint64_t y, uint64_t z) {
return (x & y) ^ (~x & z);
}
static inline uint64_t sha512Maj(uint64_t x, uint64_t y, uint64_t z) {
return (x & y) ^ (x & z) ^ (y & z);
}
static inline uint64_t sha512Sigma0(uint64_t x) {
return rotr(x, 28) ^ rotr(x, 34) ^ rotr(x, 39);
}
static inline uint64_t sha512Sigma1(uint64_t x) {
return rotr(x, 14) ^ rotr(x, 18) ^ rotr(x, 41);
}
static inline uint64_t sha512sigma0(uint64_t x) {
return rotr(x, 1) ^ rotr(x, 8) ^ (x >> 7);
}
static inline uint64_t sha512sigma1(uint64_t x) {
return rotr(x, 19) ^ rotr(x, 61) ^ (x >> 6);
}
static void sha512HashBlock(unsigned char *blk, uint64_t *H) {
uint64_t W[80];
uint64_t a, b, c, d, e, f, g, h;
uint64_t T1, T2;
unsigned int t;
// 1. prepare the message schedule
for (t = 0; t < 16; ++t) {
W[t] = (((uint64_t)blk[t*8] << 56) |
((uint64_t)blk[t*8 + 1] << 48) |
((uint64_t)blk[t*8 + 2] << 40) |
((uint64_t)blk[t*8 + 3] << 32) |
((uint64_t)blk[t*8 + 4] << 24) |
((uint64_t)blk[t*8 + 5] << 16) |
((uint64_t)blk[t*8 + 6] << 8 ) |
((uint64_t)blk[t*8 + 7]));
}
for (t = 16; t < 80; ++t) {
W[t] = sha512sigma1(W[t-2]) + W[t-7] + sha512sigma0(W[t-15]) + W[t-16];
}
// 2. initialize the eight working variables
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
// 3.
for (t = 0; t < 80; ++t) {
T1 = h + sha512Sigma1(e) + sha512Ch(e,f,g) + shaK[t] + W[t];
T2 = sha512Sigma0(a) + sha512Maj(a,b,c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
// 4. compute the intermediate hash value
H[0] += a;
H[1] += b;
H[2] += c;
H[3] += d;
H[4] += e;
H[5] += f;
H[6] += g;
H[7] += h;
}
static void sha512(unsigned char *msg, int msgLen, unsigned char *hash) {
unsigned char blk[128];
uint64_t H[8];
int blkLen = 0, i;
// setting the initial hash value.
H[0] = 0x6a09e667f3bcc908ull;
H[1] = 0xbb67ae8584caa73bull;
H[2] = 0x3c6ef372fe94f82bull;
H[3] = 0xa54ff53a5f1d36f1ull;
H[4] = 0x510e527fade682d1ull;
H[5] = 0x9b05688c2b3e6c1full;
H[6] = 0x1f83d9abfb41bd6bull;
H[7] = 0x5be0cd19137e2179ull;
for (i = 0; i + 128 <= msgLen; i += 128) {
sha512HashBlock(msg + i, H);
}
blkLen = msgLen - i;
if (blkLen > 0) {
memcpy(blk, msg + i, blkLen);
}
// pad the message
blk[blkLen++] = 0x80;
if (blkLen > 112) {
while (blkLen < 128) {
blk[blkLen++] = 0;
}
sha512HashBlock(blk, H);
blkLen = 0;
}
while (blkLen < 112) {
blk[blkLen++] = 0;
}
blk[112] = 0;
blk[113] = 0;
blk[114] = 0;
blk[115] = 0;
blk[116] = 0;
blk[117] = 0;
blk[118] = 0;
blk[119] = 0;
blk[120] = 0;
blk[121] = 0;
blk[122] = 0;
blk[123] = 0;
blk[124] = (unsigned char)(msgLen >> 21);
blk[125] = (unsigned char)(msgLen >> 13);
blk[126] = (unsigned char)(msgLen >> 5);
blk[127] = (unsigned char)(msgLen << 3);
sha512HashBlock(blk, H);
// copy the output into the buffer (convert words to bytes)
for (i = 0; i < 8; ++i) {
hash[i*8] = (unsigned char)(H[i] >> 56);
hash[i*8 + 1] = (unsigned char)(H[i] >> 48);
hash[i*8 + 2] = (unsigned char)(H[i] >> 40);
hash[i*8 + 3] = (unsigned char)(H[i] >> 32);
hash[i*8 + 4] = (unsigned char)(H[i] >> 24);
hash[i*8 + 5] = (unsigned char)(H[i] >> 16);
hash[i*8 + 6] = (unsigned char)(H[i] >> 8);
hash[i*8 + 7] = (unsigned char)H[i];
}
}
//------------------------------------------------------------------------
// SHA-384 (see FIPS 180-4)
//------------------------------------------------------------------------
//The algorithm is defined in the exact same manner as SHA 512 with 2 exceptions
//1.Initial hash value is different.
//2.A 384 bit message digest is obtained by truncating the final hash value.
static void sha384(unsigned char *msg, int msgLen, unsigned char *hash) {
unsigned char blk[128];
uint64_t H[8];
int blkLen, i;
//setting initial hash values
H[0] = 0xcbbb9d5dc1059ed8ull;
H[1] = 0x629a292a367cd507ull;
H[2] = 0x9159015a3070dd17ull;
H[3] = 0x152fecd8f70e5939ull;
H[4] = 0x67332667ffc00b31ull;
H[5] = 0x8eb44a8768581511ull;
H[6] = 0xdb0c2e0d64f98fa7ull;
H[7] = 0x47b5481dbefa4fa4ull;
//SHA 384 will use the same sha512HashBlock function.
blkLen = 0;
for (i = 0; i + 128 <= msgLen; i += 128) {
sha512HashBlock(msg + i, H);
}
blkLen = msgLen - i;
if (blkLen > 0) {
memcpy(blk, msg + i, blkLen);
}
// pad the message
blk[blkLen++] = 0x80;
if (blkLen > 112) {
while (blkLen < 128) {
blk[blkLen++] = 0;
}
sha512HashBlock(blk, H);
blkLen = 0;
}
while (blkLen < 112) {
blk[blkLen++] = 0;
}
blk[112] = 0;
blk[113] = 0;
blk[114] = 0;
blk[115] = 0;
blk[116] = 0;
blk[117] = 0;
blk[118] = 0;
blk[119] = 0;
blk[120] = 0;
blk[121] = 0;
blk[122] = 0;
blk[123] = 0;
blk[124] = (unsigned char)(msgLen >> 21);
blk[125] = (unsigned char)(msgLen >> 13);
blk[126] = (unsigned char)(msgLen >> 5);
blk[127] = (unsigned char)(msgLen << 3);
sha512HashBlock(blk, H);
// copy the output into the buffer (convert words to bytes)
// hash is truncated to 384 bits.
for (i = 0; i < 6; ++i) {
hash[i*8] = (unsigned char)(H[i] >> 56);
hash[i*8 + 1] = (unsigned char)(H[i] >> 48);
hash[i*8 + 2] = (unsigned char)(H[i] >> 40);
hash[i*8 + 3] = (unsigned char)(H[i] >> 32);
hash[i*8 + 4] = (unsigned char)(H[i] >> 24);
hash[i*8 + 5] = (unsigned char)(H[i] >> 16);
hash[i*8 + 6] = (unsigned char)(H[i] >> 8);
hash[i*8 + 7] = (unsigned char)H[i];
}
}
//------------------------------------------------------------------------
// Section 7.6.3.3 (Encryption Key algorithm) of ISO/DIS 32000-2
// Algorithm 2.B:Computing a hash (for revision 6).
//------------------------------------------------------------------------
static void revision6Hash(const GooString *inputPassword, unsigned char *K, const char *userKey) {
unsigned char K1[64*(127+64+48)];
unsigned char E[64*(127+64+48)];
DecryptAESState state;
unsigned char aesKey[16];
unsigned char BE16byteNumber[16];
int inputPasswordLength = inputPassword->getLength();
int KLength = 32;
int userKeyLength = 0;
if (userKey) {
userKeyLength = 48;
}
int sequenceLength;
int totalLength;
int rounds = 0;
while(rounds < 64 || rounds < E[totalLength-1] + 32 ) {
sequenceLength = inputPasswordLength + KLength + userKeyLength;
totalLength = 64 * sequenceLength;
//a.make the string K1
memcpy(K1, inputPassword->c_str(), inputPasswordLength);
memcpy(K1 + inputPasswordLength, K , KLength);
memcpy(K1 + inputPasswordLength + KLength, userKey, userKeyLength);
for(int i = 1; i < 64 ; ++i) {
memcpy(K1 + (i * sequenceLength),K1,sequenceLength);
}
//b.Encrypt K1
memcpy(aesKey,K,16);
memcpy(state.cbc,K + 16,16);
memcpy(state.buf, state.cbc, 16); // Copy CBC IV to buf
state.bufIdx = 0;
state.paddingReached = false;
aesKeyExpansion(&state,aesKey,16,false);
for(int i = 0; i < (4 * sequenceLength); i++) {
aesEncryptBlock(&state,K1 + (16 * i));
memcpy(E +(16 * i),state.buf,16);
}
memcpy(BE16byteNumber,E,16);
//c.Taking the first 16 Bytes of E as unsigned big-endian integer,
//compute the remainder,modulo 3.
uint64_t N1 = 0,N2 = 0,N3 = 0;
// N1 contains first 8 bytes of BE16byteNumber
N1 = ((uint64_t)BE16byteNumber[0] << 56 | (uint64_t)BE16byteNumber[1] << 48
|(uint64_t)BE16byteNumber[2] << 40 | (uint64_t)BE16byteNumber[3] << 32
|(uint64_t)BE16byteNumber[4] << 24 | (uint64_t)BE16byteNumber[5] << 16
|(uint64_t)BE16byteNumber[6] << 8 | (uint64_t)BE16byteNumber[7] );
uint64_t rem = N1 % 3 ;
// N2 contains 0s in higher 4 bytes and 9th to 12 th bytes of BE16byteNumber in lower 4 bytes.
N2 = ((uint64_t)BE16byteNumber[8] << 24 | (uint64_t)BE16byteNumber[9] << 16
|(uint64_t)BE16byteNumber[10] << 8 | (uint64_t)BE16byteNumber[11] );
rem = ((rem << 32 ) | N2) % 3 ;
// N3 contains 0s in higher 4 bytes and 13th to 16th bytes of BE16byteNumber in lower 4 bytes.
N3 = ((uint64_t)BE16byteNumber[12] << 24 | (uint64_t)BE16byteNumber[13] << 16
|(uint64_t)BE16byteNumber[14] << 8 | (uint64_t)BE16byteNumber[15] );
rem = ((rem << 32 ) | N3) % 3 ;
//d.If remainder is 0 perform SHA-256
if(rem == 0) {
KLength = 32;
sha256(E, totalLength, K);
}
// remainder is 1 perform SHA-384
else if(rem == 1) {
KLength = 48;
sha384(E, totalLength, K);
}
// remainder is 2 perform SHA-512
else if(rem == 2) {
KLength = 64;
sha512(E, totalLength, K);
}
rounds++;
}
// the first 32 bytes of the final K are the output of the function.
}