| //======================================================================== |
| // |
| // SplashScreen.cc |
| // |
| //======================================================================== |
| |
| //======================================================================== |
| // |
| // Modified under the Poppler project - http://poppler.freedesktop.org |
| // |
| // All changes made under the Poppler project to this file are licensed |
| // under GPL version 2 or later |
| // |
| // Copyright (C) 2009, 2016, 2018, 2020, 2021 Albert Astals Cid <aacid@kde.org> |
| // Copyright (C) 2012 Fabio D'Urso <fabiodurso@hotmail.it> |
| // |
| // To see a description of the changes please see the Changelog file that |
| // came with your tarball or type make ChangeLog if you are building from git |
| // |
| //======================================================================== |
| |
| #include <config.h> |
| |
| #include <cstdlib> |
| #include <cstring> |
| #include <algorithm> |
| #include "goo/gmem.h" |
| #include "goo/grandom.h" |
| #include "goo/GooLikely.h" |
| #include "SplashMath.h" |
| #include "SplashScreen.h" |
| |
| static const SplashScreenParams defaultParams = { |
| splashScreenDispersed, // type |
| 2, // size |
| 2, // dotRadius |
| 1.0, // gamma |
| 0.0, // blackThreshold |
| 1.0 // whiteThreshold |
| }; |
| |
| //------------------------------------------------------------------------ |
| |
| struct SplashScreenPoint |
| { |
| int x, y; |
| int dist; |
| }; |
| |
| struct cmpDistancesFunctor |
| { |
| bool operator()(const SplashScreenPoint p0, const SplashScreenPoint p1) { return p0.dist < p1.dist; } |
| }; |
| |
| //------------------------------------------------------------------------ |
| // SplashScreen |
| //------------------------------------------------------------------------ |
| |
| // If <clustered> is true, this generates a 45 degree screen using a |
| // circular dot spot function. DPI = resolution / ((size / 2) * |
| // sqrt(2)). If <clustered> is false, this generates an optimal |
| // threshold matrix using recursive tesselation. Gamma correction |
| // (gamma = 1 / 1.33) is also computed here. |
| SplashScreen::SplashScreen(const SplashScreenParams *params) |
| { |
| |
| if (!params) { |
| params = &defaultParams; |
| } |
| |
| screenParams = params; |
| mat = nullptr; |
| size = 0; |
| maxVal = 0; |
| minVal = 0; |
| } |
| |
| void SplashScreen::createMatrix() |
| { |
| unsigned char u; |
| int black, white, i; |
| |
| const SplashScreenParams *params = screenParams; |
| |
| // size must be a power of 2, and at least 2 |
| for (size = 2, log2Size = 1; size < params->size; size <<= 1, ++log2Size) { |
| ; |
| } |
| |
| switch (params->type) { |
| |
| case splashScreenDispersed: |
| mat = (unsigned char *)gmallocn(size * size, sizeof(unsigned char)); |
| buildDispersedMatrix(size / 2, size / 2, 1, size / 2, 1); |
| break; |
| |
| case splashScreenClustered: |
| mat = (unsigned char *)gmallocn(size * size, sizeof(unsigned char)); |
| buildClusteredMatrix(); |
| break; |
| |
| case splashScreenStochasticClustered: |
| // size must be at least 2*r |
| while (size < (params->dotRadius << 1)) { |
| size <<= 1; |
| ++log2Size; |
| } |
| mat = (unsigned char *)gmallocn(size * size, sizeof(unsigned char)); |
| buildSCDMatrix(params->dotRadius); |
| break; |
| } |
| |
| sizeM1 = size - 1; |
| |
| // do gamma correction and compute minVal/maxVal |
| minVal = 255; |
| maxVal = 0; |
| black = splashRound((SplashCoord)255.0 * params->blackThreshold); |
| if (black < 1) { |
| black = 1; |
| } |
| int whiteAux = splashRound((SplashCoord)255.0 * params->whiteThreshold); |
| if (whiteAux > 255) { |
| white = 255; |
| } else { |
| white = whiteAux; |
| } |
| for (i = 0; i < size * size; ++i) { |
| u = splashRound((SplashCoord)255.0 * splashPow((SplashCoord)mat[i] / 255.0, params->gamma)); |
| if (u < black) { |
| u = (unsigned char)black; |
| } else if (u >= white) { |
| u = (unsigned char)white; |
| } |
| mat[i] = u; |
| if (u < minVal) { |
| minVal = u; |
| } else if (u > maxVal) { |
| maxVal = u; |
| } |
| } |
| } |
| |
| void SplashScreen::buildDispersedMatrix(int i, int j, int val, int delta, int offset) |
| { |
| if (delta == 0) { |
| // map values in [1, size^2] --> [1, 255] |
| mat[(i << log2Size) + j] = 1 + (254 * (val - 1)) / (size * size - 1); |
| } else { |
| buildDispersedMatrix(i, j, val, delta / 2, 4 * offset); |
| buildDispersedMatrix((i + delta) % size, (j + delta) % size, val + offset, delta / 2, 4 * offset); |
| buildDispersedMatrix((i + delta) % size, j, val + 2 * offset, delta / 2, 4 * offset); |
| buildDispersedMatrix((i + 2 * delta) % size, (j + delta) % size, val + 3 * offset, delta / 2, 4 * offset); |
| } |
| } |
| |
| void SplashScreen::buildClusteredMatrix() |
| { |
| SplashCoord *dist; |
| SplashCoord u, v, d; |
| unsigned char val; |
| int size2, x, y, x1, y1, i; |
| |
| size2 = size >> 1; |
| |
| // initialize the threshold matrix |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size; ++x) { |
| mat[(y << log2Size) + x] = 0; |
| } |
| } |
| |
| // build the distance matrix |
| dist = (SplashCoord *)gmallocn(size * size2, sizeof(SplashCoord)); |
| for (y = 0; y < size2; ++y) { |
| for (x = 0; x < size2; ++x) { |
| if (x + y < size2 - 1) { |
| u = (SplashCoord)x + 0.5 - 0; |
| v = (SplashCoord)y + 0.5 - 0; |
| } else { |
| u = (SplashCoord)x + 0.5 - (SplashCoord)size2; |
| v = (SplashCoord)y + 0.5 - (SplashCoord)size2; |
| } |
| dist[y * size2 + x] = u * u + v * v; |
| } |
| } |
| for (y = 0; y < size2; ++y) { |
| for (x = 0; x < size2; ++x) { |
| if (x < y) { |
| u = (SplashCoord)x + 0.5 - 0; |
| v = (SplashCoord)y + 0.5 - (SplashCoord)size2; |
| } else { |
| u = (SplashCoord)x + 0.5 - (SplashCoord)size2; |
| v = (SplashCoord)y + 0.5 - 0; |
| } |
| dist[(size2 + y) * size2 + x] = u * u + v * v; |
| } |
| } |
| |
| // build the threshold matrix |
| x1 = y1 = 0; // make gcc happy |
| for (i = 0; i < size * size2; ++i) { |
| d = -1; |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size2; ++x) { |
| if (mat[(y << log2Size) + x] == 0 && dist[y * size2 + x] > d) { |
| x1 = x; |
| y1 = y; |
| d = dist[y1 * size2 + x1]; |
| } |
| } |
| } |
| // map values in [0, 2*size*size2-1] --> [1, 255] |
| val = 1 + (254 * (2 * i)) / (2 * size * size2 - 1); |
| mat[(y1 << log2Size) + x1] = val; |
| val = 1 + (254 * (2 * i + 1)) / (2 * size * size2 - 1); |
| if (y1 < size2) { |
| mat[((y1 + size2) << log2Size) + x1 + size2] = val; |
| } else { |
| mat[((y1 - size2) << log2Size) + x1 + size2] = val; |
| } |
| } |
| |
| gfree(dist); |
| } |
| |
| // Compute the distance between two points on a toroid. |
| int SplashScreen::distance(int x0, int y0, int x1, int y1) |
| { |
| int dx0, dx1, dx, dy0, dy1, dy; |
| |
| dx0 = abs(x0 - x1); |
| dx1 = size - dx0; |
| dx = dx0 < dx1 ? dx0 : dx1; |
| dy0 = abs(y0 - y1); |
| dy1 = size - dy0; |
| dy = dy0 < dy1 ? dy0 : dy1; |
| return dx * dx + dy * dy; |
| } |
| |
| // Algorithm taken from: |
| // Victor Ostromoukhov and Roger D. Hersch, "Stochastic Clustered-Dot |
| // Dithering" in Color Imaging: Device-Independent Color, Color |
| // Hardcopy, and Graphic Arts IV, SPIE Vol. 3648, pp. 496-505, 1999. |
| void SplashScreen::buildSCDMatrix(int r) |
| { |
| SplashScreenPoint *dots, *pts; |
| int dotsLen, dotsSize; |
| char *tmpl; |
| char *grid; |
| int *region, *dist; |
| int x, y, xx, yy, x0, x1, y0, y1, i, j, d, iMin, dMin, n; |
| |
| // generate the random space-filling curve |
| pts = (SplashScreenPoint *)gmallocn(size * size, sizeof(SplashScreenPoint)); |
| i = 0; |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size; ++x) { |
| pts[i].x = x; |
| pts[i].y = y; |
| ++i; |
| } |
| } |
| for (i = 0; i < size * size; ++i) { |
| j = i + (int)((double)(size * size - i) * grandom_double()); |
| x = pts[i].x; |
| y = pts[i].y; |
| pts[i].x = pts[j].x; |
| pts[i].y = pts[j].y; |
| pts[j].x = x; |
| pts[j].y = y; |
| } |
| |
| // construct the circle template |
| tmpl = (char *)gmallocn((r + 1) * (r + 1), sizeof(char)); |
| for (y = 0; y <= r; ++y) { |
| for (x = 0; x <= r; ++x) { |
| tmpl[y * (r + 1) + x] = (x * y <= r * r) ? 1 : 0; |
| } |
| } |
| |
| // mark all grid cells as free |
| grid = (char *)gmallocn(size * size, sizeof(char)); |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size; ++x) { |
| grid[(y << log2Size) + x] = 0; |
| } |
| } |
| |
| // walk the space-filling curve, adding dots |
| dotsLen = 0; |
| dotsSize = 32; |
| dots = (SplashScreenPoint *)gmallocn(dotsSize, sizeof(SplashScreenPoint)); |
| for (i = 0; i < size * size; ++i) { |
| x = pts[i].x; |
| y = pts[i].y; |
| if (!grid[(y << log2Size) + x]) { |
| if (dotsLen == dotsSize) { |
| dotsSize *= 2; |
| dots = (SplashScreenPoint *)greallocn(dots, dotsSize, sizeof(SplashScreenPoint)); |
| } |
| dots[dotsLen++] = pts[i]; |
| for (yy = 0; yy <= r; ++yy) { |
| y0 = (y + yy) % size; |
| y1 = (y - yy + size) % size; |
| for (xx = 0; xx <= r; ++xx) { |
| if (tmpl[yy * (r + 1) + xx]) { |
| x0 = (x + xx) % size; |
| x1 = (x - xx + size) % size; |
| grid[(y0 << log2Size) + x0] = 1; |
| grid[(y0 << log2Size) + x1] = 1; |
| grid[(y1 << log2Size) + x0] = 1; |
| grid[(y1 << log2Size) + x1] = 1; |
| } |
| } |
| } |
| } |
| } |
| |
| gfree(tmpl); |
| gfree(grid); |
| |
| // assign each cell to a dot, compute distance to center of dot |
| region = (int *)gmallocn(size * size, sizeof(int)); |
| dist = (int *)gmallocn(size * size, sizeof(int)); |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size; ++x) { |
| iMin = 0; |
| dMin = distance(dots[0].x, dots[0].y, x, y); |
| for (i = 1; i < dotsLen; ++i) { |
| d = distance(dots[i].x, dots[i].y, x, y); |
| if (d < dMin) { |
| iMin = i; |
| dMin = d; |
| } |
| } |
| region[(y << log2Size) + x] = iMin; |
| dist[(y << log2Size) + x] = dMin; |
| } |
| } |
| |
| // compute threshold values |
| for (i = 0; i < dotsLen; ++i) { |
| n = 0; |
| for (y = 0; y < size; ++y) { |
| for (x = 0; x < size; ++x) { |
| if (region[(y << log2Size) + x] == i) { |
| pts[n].x = x; |
| pts[n].y = y; |
| pts[n].dist = distance(dots[i].x, dots[i].y, x, y); |
| ++n; |
| } |
| } |
| } |
| std::sort(pts, pts + n, cmpDistancesFunctor()); |
| for (j = 0; j < n; ++j) { |
| // map values in [0 .. n-1] --> [255 .. 1] |
| mat[(pts[j].y << log2Size) + pts[j].x] = 255 - (254 * j) / (n - 1); |
| } |
| } |
| |
| gfree(pts); |
| gfree(region); |
| gfree(dist); |
| |
| gfree(dots); |
| } |
| |
| SplashScreen::SplashScreen(const SplashScreen *screen) |
| { |
| screenParams = screen->screenParams; |
| size = screen->size; |
| sizeM1 = screen->sizeM1; |
| log2Size = screen->log2Size; |
| mat = (unsigned char *)gmallocn(size * size, sizeof(unsigned char)); |
| if (likely(mat != nullptr)) { |
| memcpy(mat, screen->mat, size * size * sizeof(unsigned char)); |
| } |
| minVal = screen->minVal; |
| maxVal = screen->maxVal; |
| } |
| |
| SplashScreen::~SplashScreen() |
| { |
| gfree(mat); |
| } |