blob: 024ba082903b09f5f0deeb2e2e8ae29dc5c048b3 [file] [log] [blame]
/****************************************************************************
*
* ftraster.c
*
* The FreeType glyph rasterizer (body).
*
* Copyright (C) 1996-2021 by
* David Turner, Robert Wilhelm, and Werner Lemberg.
*
* This file is part of the FreeType project, and may only be used,
* modified, and distributed under the terms of the FreeType project
* license, LICENSE.TXT. By continuing to use, modify, or distribute
* this file you indicate that you have read the license and
* understand and accept it fully.
*
*/
/**************************************************************************
*
* This file can be compiled without the rest of the FreeType engine, by
* defining the STANDALONE_ macro when compiling it. You also need to
* put the files `ftimage.h' and `ftmisc.h' into the $(incdir)
* directory. Typically, you should do something like
*
* - copy `src/raster/ftraster.c' (this file) to your current directory
*
* - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' to your
* current directory
*
* - compile `ftraster' with the STANDALONE_ macro defined, as in
*
* cc -c -DSTANDALONE_ ftraster.c
*
* The renderer can be initialized with a call to
* `ft_standard_raster.raster_new'; a bitmap can be generated
* with a call to `ft_standard_raster.raster_render'.
*
* See the comments and documentation in the file `ftimage.h' for more
* details on how the raster works.
*
*/
/**************************************************************************
*
* This is a rewrite of the FreeType 1.x scan-line converter
*
*/
#ifdef STANDALONE_
/* The size in bytes of the render pool used by the scan-line converter */
/* to do all of its work. */
#define FT_RENDER_POOL_SIZE 16384L
#define FT_CONFIG_STANDARD_LIBRARY_H <stdlib.h>
#include <string.h> /* for memset */
#include "ftmisc.h"
#include "ftimage.h"
#else /* !STANDALONE_ */
#include "ftraster.h"
#include <freetype/internal/ftcalc.h> /* for FT_MulDiv and FT_MulDiv_No_Round */
#include <freetype/ftoutln.h> /* for FT_Outline_Get_CBox */
#endif /* !STANDALONE_ */
/**************************************************************************
*
* A simple technical note on how the raster works
* -----------------------------------------------
*
* Converting an outline into a bitmap is achieved in several steps:
*
* 1 - Decomposing the outline into successive `profiles'. Each
* profile is simply an array of scanline intersections on a given
* dimension. A profile's main attributes are
*
* o its scanline position boundaries, i.e. `Ymin' and `Ymax'
*
* o an array of intersection coordinates for each scanline
* between `Ymin' and `Ymax'
*
* o a direction, indicating whether it was built going `up' or
* `down', as this is very important for filling rules
*
* o its drop-out mode
*
* 2 - Sweeping the target map's scanlines in order to compute segment
* `spans' which are then filled. Additionally, this pass
* performs drop-out control.
*
* The outline data is parsed during step 1 only. The profiles are
* built from the bottom of the render pool, used as a stack. The
* following graphics shows the profile list under construction:
*
* __________________________________________________________ _ _
* | | | | |
* | profile | coordinates for | profile | coordinates for |-->
* | 1 | profile 1 | 2 | profile 2 |-->
* |_________|_________________|_________|_________________|__ _ _
*
* ^ ^
* | |
* start of render pool top
*
* The top of the profile stack is kept in the `top' variable.
*
* As you can see, a profile record is pushed on top of the render
* pool, which is then followed by its coordinates/intersections. If
* a change of direction is detected in the outline, a new profile is
* generated until the end of the outline.
*
* Note that when all profiles have been generated, the function
* Finalize_Profile_Table() is used to record, for each profile, its
* bottom-most scanline as well as the scanline above its upmost
* boundary. These positions are called `y-turns' because they (sort
* of) correspond to local extrema. They are stored in a sorted list
* built from the top of the render pool as a downwards stack:
*
* _ _ _______________________________________
* | |
* <--| sorted list of |
* <--| extrema scanlines |
* _ _ __________________|____________________|
*
* ^ ^
* | |
* maxBuff sizeBuff = end of pool
*
* This list is later used during the sweep phase in order to
* optimize performance (see technical note on the sweep below).
*
* Of course, the raster detects whether the two stacks collide and
* handles the situation properly.
*
*/
/*************************************************************************/
/*************************************************************************/
/** **/
/** CONFIGURATION MACROS **/
/** **/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/** **/
/** OTHER MACROS (do not change) **/
/** **/
/*************************************************************************/
/*************************************************************************/
/**************************************************************************
*
* The macro FT_COMPONENT is used in trace mode. It is an implicit
* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
* messages during execution.
*/
#undef FT_COMPONENT
#define FT_COMPONENT raster
#ifdef STANDALONE_
/* Auxiliary macros for token concatenation. */
#define FT_ERR_XCAT( x, y ) x ## y
#define FT_ERR_CAT( x, y ) FT_ERR_XCAT( x, y )
/* This macro is used to indicate that a function parameter is unused. */
/* Its purpose is simply to reduce compiler warnings. Note also that */
/* simply defining it as `(void)x' doesn't avoid warnings with certain */
/* ANSI compilers (e.g. LCC). */
#define FT_UNUSED( x ) (x) = (x)
/* Disable the tracing mechanism for simplicity -- developers can */
/* activate it easily by redefining these macros. */
#ifndef FT_ERROR
#define FT_ERROR( x ) do { } while ( 0 ) /* nothing */
#endif
#ifndef FT_TRACE
#define FT_TRACE( x ) do { } while ( 0 ) /* nothing */
#define FT_TRACE1( x ) do { } while ( 0 ) /* nothing */
#define FT_TRACE6( x ) do { } while ( 0 ) /* nothing */
#define FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
#endif
#ifndef FT_THROW
#define FT_THROW( e ) FT_ERR_CAT( Raster_Err_, e )
#endif
#define Raster_Err_Ok 0
#define Raster_Err_Invalid_Outline -1
#define Raster_Err_Cannot_Render_Glyph -2
#define Raster_Err_Invalid_Argument -3
#define Raster_Err_Raster_Overflow -4
#define Raster_Err_Raster_Uninitialized -5
#define Raster_Err_Raster_Negative_Height -6
#define ft_memset memset
#define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_, raster_new_, \
raster_reset_, raster_set_mode_, \
raster_render_, raster_done_ ) \
const FT_Raster_Funcs class_ = \
{ \
glyph_format_, \
raster_new_, \
raster_reset_, \
raster_set_mode_, \
raster_render_, \
raster_done_ \
};
#else /* !STANDALONE_ */
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h> /* for FT_TRACE, FT_ERROR, and FT_THROW */
#include "rasterrs.h"
#endif /* !STANDALONE_ */
#ifndef FT_MEM_SET
#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
#endif
#ifndef FT_MEM_ZERO
#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
#endif
#ifndef FT_ZERO
#define FT_ZERO( p ) FT_MEM_ZERO( p, sizeof ( *(p) ) )
#endif
/* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */
/* typically a small value and the result of a*b is known to fit into */
/* 32 bits. */
#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
/* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
/* for clipping computations. It simply uses the FT_MulDiv() function */
/* defined in `ftcalc.h'. */
#define SMulDiv FT_MulDiv
#define SMulDiv_No_Round FT_MulDiv_No_Round
/* The rasterizer is a very general purpose component; please leave */
/* the following redefinitions there (you never know your target */
/* environment). */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef NULL
#define NULL (void*)0
#endif
#ifndef SUCCESS
#define SUCCESS 0
#endif
#ifndef FAILURE
#define FAILURE 1
#endif
#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
/* Setting this constant to more than 32 is a */
/* pure waste of space. */
#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
/*************************************************************************/
/*************************************************************************/
/** **/
/** SIMPLE TYPE DECLARATIONS **/
/** **/
/*************************************************************************/
/*************************************************************************/
typedef int Int;
typedef unsigned int UInt;
typedef short Short;
typedef unsigned short UShort, *PUShort;
typedef long Long, *PLong;
typedef unsigned long ULong;
typedef unsigned char Byte, *PByte;
typedef char Bool;
typedef union Alignment_
{
Long l;
void* p;
void (*f)(void);
} Alignment, *PAlignment;
typedef struct TPoint_
{
Long x;
Long y;
} TPoint;
/* values for the `flags' bit field */
#define Flow_Up 0x08U
#define Overshoot_Top 0x10U
#define Overshoot_Bottom 0x20U
/* States of each line, arc, and profile */
typedef enum TStates_
{
Unknown_State,
Ascending_State,
Descending_State,
Flat_State
} TStates;
typedef struct TProfile_ TProfile;
typedef TProfile* PProfile;
struct TProfile_
{
FT_F26Dot6 X; /* current coordinate during sweep */
PProfile link; /* link to next profile (various purposes) */
PLong offset; /* start of profile's data in render pool */
UShort flags; /* Bit 0-2: drop-out mode */
/* Bit 3: profile orientation (up/down) */
/* Bit 4: is top profile? */
/* Bit 5: is bottom profile? */
Long height; /* profile's height in scanlines */
Long start; /* profile's starting scanline */
Int countL; /* number of lines to step before this */
/* profile becomes drawable */
PProfile next; /* next profile in same contour, used */
/* during drop-out control */
};
typedef PProfile TProfileList;
typedef PProfile* PProfileList;
/* Simple record used to implement a stack of bands, required */
/* by the sub-banding mechanism */
typedef struct black_TBand_
{
Short y_min; /* band's minimum */
Short y_max; /* band's maximum */
} black_TBand;
#define AlignProfileSize \
( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( Long ) )
#undef RAS_ARG
#undef RAS_ARGS
#undef RAS_VAR
#undef RAS_VARS
#ifdef FT_STATIC_RASTER
#define RAS_ARGS /* void */
#define RAS_ARG void
#define RAS_VARS /* void */
#define RAS_VAR /* void */
#define FT_UNUSED_RASTER do { } while ( 0 )
#else /* !FT_STATIC_RASTER */
#define RAS_ARGS black_PWorker worker,
#define RAS_ARG black_PWorker worker
#define RAS_VARS worker,
#define RAS_VAR worker
#define FT_UNUSED_RASTER FT_UNUSED( worker )
#endif /* !FT_STATIC_RASTER */
typedef struct black_TWorker_ black_TWorker, *black_PWorker;
/* prototypes used for sweep function dispatch */
typedef void
Function_Sweep_Init( RAS_ARGS Short min,
Short max );
typedef void
Function_Sweep_Span( RAS_ARGS Short y,
FT_F26Dot6 x1,
FT_F26Dot6 x2,
PProfile left,
PProfile right );
typedef void
Function_Sweep_Step( RAS_ARG );
/* NOTE: These operations are only valid on 2's complement processors */
#undef FLOOR
#undef CEILING
#undef TRUNC
#undef SCALED
#define FLOOR( x ) ( (x) & -ras.precision )
#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
#define TRUNC( x ) ( (Long)(x) >> ras.precision_bits )
#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
/* scale and shift grid to pixel centers */
#define SCALED( x ) ( (x) * ras.precision_scale - ras.precision_half )
#define IS_BOTTOM_OVERSHOOT( x ) \
(Bool)( CEILING( x ) - x >= ras.precision_half )
#define IS_TOP_OVERSHOOT( x ) \
(Bool)( x - FLOOR( x ) >= ras.precision_half )
/* Smart dropout rounding to find which pixel is closer to span ends. */
/* To mimick Windows, symmetric cases break down indepenently of the */
/* precision. */
#define SMART( p, q ) FLOOR( ( (p) + (q) + ras.precision * 63 / 64 ) >> 1 )
#if FT_RENDER_POOL_SIZE > 2048
#define FT_MAX_BLACK_POOL ( FT_RENDER_POOL_SIZE / sizeof ( Long ) )
#else
#define FT_MAX_BLACK_POOL ( 2048 / sizeof ( Long ) )
#endif
/* The most used variables are positioned at the top of the structure. */
/* Thus, their offset can be coded with less opcodes, resulting in a */
/* smaller executable. */
struct black_TWorker_
{
Int precision_bits; /* precision related variables */
Int precision;
Int precision_half;
Int precision_scale;
Int precision_step;
Int precision_jitter;
PLong buff; /* The profiles buffer */
PLong sizeBuff; /* Render pool size */
PLong maxBuff; /* Profiles buffer size */
PLong top; /* Current cursor in buffer */
FT_Error error;
Int numTurns; /* number of Y-turns in outline */
UShort bWidth; /* target bitmap width */
PByte bOrigin; /* target bitmap bottom-left origin */
PByte bLine; /* target bitmap current line */
Long lastX, lastY;
Long minY, maxY;
UShort num_Profs; /* current number of profiles */
Bool fresh; /* signals a fresh new profile which */
/* `start' field must be completed */
Bool joint; /* signals that the last arc ended */
/* exactly on a scanline. Allows */
/* removal of doublets */
PProfile cProfile; /* current profile */
PProfile fProfile; /* head of linked list of profiles */
PProfile gProfile; /* contour's first profile in case */
/* of impact */
TStates state; /* rendering state */
FT_Bitmap target; /* description of target bit/pixmap */
FT_Outline outline;
/* dispatch variables */
Function_Sweep_Init* Proc_Sweep_Init;
Function_Sweep_Span* Proc_Sweep_Span;
Function_Sweep_Span* Proc_Sweep_Drop;
Function_Sweep_Step* Proc_Sweep_Step;
Byte dropOutControl; /* current drop_out control method */
Bool second_pass; /* indicates whether a horizontal pass */
/* should be performed to control */
/* drop-out accurately when calling */
/* Render_Glyph. */
black_TBand band_stack[16]; /* band stack used for sub-banding */
/* enough for signed short bands */
};
typedef struct black_TRaster_
{
void* memory;
} black_TRaster, *black_PRaster;
#ifdef FT_STATIC_RASTER
static black_TWorker ras;
#else /* !FT_STATIC_RASTER */
#define ras (*worker)
#endif /* !FT_STATIC_RASTER */
/*************************************************************************/
/*************************************************************************/
/** **/
/** PROFILES COMPUTATION **/
/** **/
/*************************************************************************/
/*************************************************************************/
/**************************************************************************
*
* @Function:
* Set_High_Precision
*
* @Description:
* Set precision variables according to param flag.
*
* @Input:
* High ::
* Set to True for high precision (typically for ppem < 24),
* false otherwise.
*/
static void
Set_High_Precision( RAS_ARGS Int High )
{
/*
* `precision_step' is used in `Bezier_Up' to decide when to split a
* given y-monotonous Bezier arc that crosses a scanline before
* approximating it as a straight segment. The default value of 32 (for
* low accuracy) corresponds to
*
* 32 / 64 == 0.5 pixels,
*
* while for the high accuracy case we have
*
* 256 / (1 << 12) = 0.0625 pixels.
*
* `precision_jitter' is an epsilon threshold used in
* `Vertical_Sweep_Span' to deal with small imperfections in the Bezier
* decomposition (after all, we are working with approximations only);
* it avoids switching on additional pixels which would cause artifacts
* otherwise.
*
* The value of `precision_jitter' has been determined heuristically.
*
*/
if ( High )
{
ras.precision_bits = 12;
ras.precision_step = 256;
ras.precision_jitter = 30;
}
else
{
ras.precision_bits = 6;
ras.precision_step = 32;
ras.precision_jitter = 2;
}
FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
ras.precision = 1 << ras.precision_bits;
ras.precision_half = ras.precision >> 1;
ras.precision_scale = ras.precision >> Pixel_Bits;
}
/**************************************************************************
*
* @Function:
* New_Profile
*
* @Description:
* Create a new profile in the render pool.
*
* @Input:
* aState ::
* The state/orientation of the new profile.
*
* overshoot ::
* Whether the profile's unrounded start position
* differs by at least a half pixel.
*
* @Return:
* SUCCESS on success. FAILURE in case of overflow or of incoherent
* profile.
*/
static Bool
New_Profile( RAS_ARGS TStates aState,
Bool overshoot )
{
if ( !ras.fProfile )
{
ras.cProfile = (PProfile)ras.top;
ras.fProfile = ras.cProfile;
ras.top += AlignProfileSize;
}
if ( ras.top >= ras.maxBuff )
{
ras.error = FT_THROW( Raster_Overflow );
return FAILURE;
}
ras.cProfile->start = 0;
ras.cProfile->height = 0;
ras.cProfile->offset = ras.top;
ras.cProfile->link = (PProfile)0;
ras.cProfile->next = (PProfile)0;
ras.cProfile->flags = ras.dropOutControl;
switch ( aState )
{
case Ascending_State:
ras.cProfile->flags |= Flow_Up;
if ( overshoot )
ras.cProfile->flags |= Overshoot_Bottom;
FT_TRACE6(( " new ascending profile = %p\n", (void *)ras.cProfile ));
break;
case Descending_State:
if ( overshoot )
ras.cProfile->flags |= Overshoot_Top;
FT_TRACE6(( " new descending profile = %p\n", (void *)ras.cProfile ));
break;
default:
FT_ERROR(( "New_Profile: invalid profile direction\n" ));
ras.error = FT_THROW( Invalid_Outline );
return FAILURE;
}
if ( !ras.gProfile )
ras.gProfile = ras.cProfile;
ras.state = aState;
ras.fresh = TRUE;
ras.joint = FALSE;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* End_Profile
*
* @Description:
* Finalize the current profile.
*
* @Input:
* overshoot ::
* Whether the profile's unrounded end position differs
* by at least a half pixel.
*
* @Return:
* SUCCESS on success. FAILURE in case of overflow or incoherency.
*/
static Bool
End_Profile( RAS_ARGS Bool overshoot )
{
Long h;
h = (Long)( ras.top - ras.cProfile->offset );
if ( h < 0 )
{
FT_ERROR(( "End_Profile: negative height encountered\n" ));
ras.error = FT_THROW( Raster_Negative_Height );
return FAILURE;
}
if ( h > 0 )
{
PProfile oldProfile;
FT_TRACE6(( " ending profile %p, start = %ld, height = %ld\n",
(void *)ras.cProfile, ras.cProfile->start, h ));
ras.cProfile->height = h;
if ( overshoot )
{
if ( ras.cProfile->flags & Flow_Up )
ras.cProfile->flags |= Overshoot_Top;
else
ras.cProfile->flags |= Overshoot_Bottom;
}
oldProfile = ras.cProfile;
ras.cProfile = (PProfile)ras.top;
ras.top += AlignProfileSize;
ras.cProfile->height = 0;
ras.cProfile->offset = ras.top;
oldProfile->next = ras.cProfile;
ras.num_Profs++;
}
if ( ras.top >= ras.maxBuff )
{
FT_TRACE1(( "overflow in End_Profile\n" ));
ras.error = FT_THROW( Raster_Overflow );
return FAILURE;
}
ras.joint = FALSE;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Insert_Y_Turn
*
* @Description:
* Insert a salient into the sorted list placed on top of the render
* pool.
*
* @Input:
* New y scanline position.
*
* @Return:
* SUCCESS on success. FAILURE in case of overflow.
*/
static Bool
Insert_Y_Turn( RAS_ARGS Int y )
{
PLong y_turns;
Int n;
n = ras.numTurns - 1;
y_turns = ras.sizeBuff - ras.numTurns;
/* look for first y value that is <= */
while ( n >= 0 && y < y_turns[n] )
n--;
/* if it is <, simply insert it, ignore if == */
if ( n >= 0 && y > y_turns[n] )
do
{
Int y2 = (Int)y_turns[n];
y_turns[n] = y;
y = y2;
} while ( --n >= 0 );
if ( n < 0 )
{
ras.maxBuff--;
if ( ras.maxBuff <= ras.top )
{
ras.error = FT_THROW( Raster_Overflow );
return FAILURE;
}
ras.numTurns++;
ras.sizeBuff[-ras.numTurns] = y;
}
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Finalize_Profile_Table
*
* @Description:
* Adjust all links in the profiles list.
*
* @Return:
* SUCCESS on success. FAILURE in case of overflow.
*/
static Bool
Finalize_Profile_Table( RAS_ARG )
{
UShort n;
PProfile p;
n = ras.num_Profs;
p = ras.fProfile;
if ( n > 1 && p )
{
do
{
Int bottom, top;
if ( n > 1 )
p->link = (PProfile)( p->offset + p->height );
else
p->link = NULL;
if ( p->flags & Flow_Up )
{
bottom = (Int)p->start;
top = (Int)( p->start + p->height - 1 );
}
else
{
bottom = (Int)( p->start - p->height + 1 );
top = (Int)p->start;
p->start = bottom;
p->offset += p->height - 1;
}
if ( Insert_Y_Turn( RAS_VARS bottom ) ||
Insert_Y_Turn( RAS_VARS top + 1 ) )
return FAILURE;
p = p->link;
} while ( --n );
}
else
ras.fProfile = NULL;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Split_Conic
*
* @Description:
* Subdivide one conic Bezier into two joint sub-arcs in the Bezier
* stack.
*
* @Input:
* None (subdivided Bezier is taken from the top of the stack).
*
* @Note:
* This routine is the `beef' of this component. It is _the_ inner
* loop that should be optimized to hell to get the best performance.
*/
static void
Split_Conic( TPoint* base )
{
Long a, b;
base[4].x = base[2].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
base[3].x = b >> 1;
base[2].x = ( a + b ) >> 2;
base[1].x = a >> 1;
base[4].y = base[2].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
base[3].y = b >> 1;
base[2].y = ( a + b ) >> 2;
base[1].y = a >> 1;
/* hand optimized. gcc doesn't seem to be too good at common */
/* expression substitution and instruction scheduling ;-) */
}
/**************************************************************************
*
* @Function:
* Split_Cubic
*
* @Description:
* Subdivide a third-order Bezier arc into two joint sub-arcs in the
* Bezier stack.
*
* @Note:
* This routine is the `beef' of the component. It is one of _the_
* inner loops that should be optimized like hell to get the best
* performance.
*/
static void
Split_Cubic( TPoint* base )
{
Long a, b, c;
base[6].x = base[3].x;
a = base[0].x + base[1].x;
b = base[1].x + base[2].x;
c = base[2].x + base[3].x;
base[5].x = c >> 1;
c += b;
base[4].x = c >> 2;
base[1].x = a >> 1;
a += b;
base[2].x = a >> 2;
base[3].x = ( a + c ) >> 3;
base[6].y = base[3].y;
a = base[0].y + base[1].y;
b = base[1].y + base[2].y;
c = base[2].y + base[3].y;
base[5].y = c >> 1;
c += b;
base[4].y = c >> 2;
base[1].y = a >> 1;
a += b;
base[2].y = a >> 2;
base[3].y = ( a + c ) >> 3;
}
/**************************************************************************
*
* @Function:
* Line_Up
*
* @Description:
* Compute the x-coordinates of an ascending line segment and store
* them in the render pool.
*
* @Input:
* x1 ::
* The x-coordinate of the segment's start point.
*
* y1 ::
* The y-coordinate of the segment's start point.
*
* x2 ::
* The x-coordinate of the segment's end point.
*
* y2 ::
* The y-coordinate of the segment's end point.
*
* miny ::
* A lower vertical clipping bound value.
*
* maxy ::
* An upper vertical clipping bound value.
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow.
*/
static Bool
Line_Up( RAS_ARGS Long x1,
Long y1,
Long x2,
Long y2,
Long miny,
Long maxy )
{
Long Dx, Dy;
Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
Long Ix, Rx, Ax;
PLong top;
Dx = x2 - x1;
Dy = y2 - y1;
if ( Dy <= 0 || y2 < miny || y1 > maxy )
return SUCCESS;
if ( y1 < miny )
{
/* Take care: miny-y1 can be a very large value; we use */
/* a slow MulDiv function to avoid clipping bugs */
x1 += SMulDiv( Dx, miny - y1, Dy );
e1 = (Int)TRUNC( miny );
f1 = 0;
}
else
{
e1 = (Int)TRUNC( y1 );
f1 = (Int)FRAC( y1 );
}
if ( y2 > maxy )
{
/* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
e2 = (Int)TRUNC( maxy );
f2 = 0;
}
else
{
e2 = (Int)TRUNC( y2 );
f2 = (Int)FRAC( y2 );
}
if ( f1 > 0 )
{
if ( e1 == e2 )
return SUCCESS;
else
{
x1 += SMulDiv( Dx, ras.precision - f1, Dy );
e1 += 1;
}
}
else
if ( ras.joint )
{
ras.top--;
ras.joint = FALSE;
}
ras.joint = (char)( f2 == 0 );
if ( ras.fresh )
{
ras.cProfile->start = e1;
ras.fresh = FALSE;
}
size = e2 - e1 + 1;
if ( ras.top + size >= ras.maxBuff )
{
ras.error = FT_THROW( Raster_Overflow );
return FAILURE;
}
if ( Dx > 0 )
{
Ix = SMulDiv_No_Round( ras.precision, Dx, Dy );
Rx = ( ras.precision * Dx ) % Dy;
Dx = 1;
}
else
{
Ix = -SMulDiv_No_Round( ras.precision, -Dx, Dy );
Rx = ( ras.precision * -Dx ) % Dy;
Dx = -1;
}
Ax = -Dy;
top = ras.top;
while ( size > 0 )
{
*top++ = x1;
x1 += Ix;
Ax += Rx;
if ( Ax >= 0 )
{
Ax -= Dy;
x1 += Dx;
}
size--;
}
ras.top = top;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Line_Down
*
* @Description:
* Compute the x-coordinates of an descending line segment and store
* them in the render pool.
*
* @Input:
* x1 ::
* The x-coordinate of the segment's start point.
*
* y1 ::
* The y-coordinate of the segment's start point.
*
* x2 ::
* The x-coordinate of the segment's end point.
*
* y2 ::
* The y-coordinate of the segment's end point.
*
* miny ::
* A lower vertical clipping bound value.
*
* maxy ::
* An upper vertical clipping bound value.
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow.
*/
static Bool
Line_Down( RAS_ARGS Long x1,
Long y1,
Long x2,
Long y2,
Long miny,
Long maxy )
{
Bool result, fresh;
fresh = ras.fresh;
result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
if ( fresh && !ras.fresh )
ras.cProfile->start = -ras.cProfile->start;
return result;
}
/* A function type describing the functions used to split Bezier arcs */
typedef void (*TSplitter)( TPoint* base );
/**************************************************************************
*
* @Function:
* Bezier_Up
*
* @Description:
* Compute the x-coordinates of an ascending Bezier arc and store
* them in the render pool.
*
* @Input:
* degree ::
* The degree of the Bezier arc (either 2 or 3).
*
* splitter ::
* The function to split Bezier arcs.
*
* miny ::
* A lower vertical clipping bound value.
*
* maxy ::
* An upper vertical clipping bound value.
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow.
*/
static Bool
Bezier_Up( RAS_ARGS Int degree,
TPoint* arc,
TSplitter splitter,
Long miny,
Long maxy )
{
Long y1, y2, e, e2, e0;
Short f1;
TPoint* start_arc;
PLong top;
y1 = arc[degree].y;
y2 = arc[0].y;
top = ras.top;
if ( y2 < miny || y1 > maxy )
goto Fin;
e2 = FLOOR( y2 );
if ( e2 > maxy )
e2 = maxy;
e0 = miny;
if ( y1 < miny )
e = miny;
else
{
e = CEILING( y1 );
f1 = (Short)( FRAC( y1 ) );
e0 = e;
if ( f1 == 0 )
{
if ( ras.joint )
{
top--;
ras.joint = FALSE;
}
*top++ = arc[degree].x;
e += ras.precision;
}
}
if ( ras.fresh )
{
ras.cProfile->start = TRUNC( e0 );
ras.fresh = FALSE;
}
if ( e2 < e )
goto Fin;
if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
{
ras.top = top;
ras.error = FT_THROW( Raster_Overflow );
return FAILURE;
}
start_arc = arc;
do
{
ras.joint = FALSE;
y2 = arc[0].y;
if ( y2 > e )
{
y1 = arc[degree].y;
if ( y2 - y1 >= ras.precision_step )
{
splitter( arc );
arc += degree;
}
else
{
*top++ = arc[degree].x + FMulDiv( arc[0].x - arc[degree].x,
e - y1, y2 - y1 );
arc -= degree;
e += ras.precision;
}
}
else
{
if ( y2 == e )
{
ras.joint = TRUE;
*top++ = arc[0].x;
e += ras.precision;
}
arc -= degree;
}
} while ( arc >= start_arc && e <= e2 );
Fin:
ras.top = top;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Bezier_Down
*
* @Description:
* Compute the x-coordinates of an descending Bezier arc and store
* them in the render pool.
*
* @Input:
* degree ::
* The degree of the Bezier arc (either 2 or 3).
*
* splitter ::
* The function to split Bezier arcs.
*
* miny ::
* A lower vertical clipping bound value.
*
* maxy ::
* An upper vertical clipping bound value.
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow.
*/
static Bool
Bezier_Down( RAS_ARGS Int degree,
TPoint* arc,
TSplitter splitter,
Long miny,
Long maxy )
{
Bool result, fresh;
arc[0].y = -arc[0].y;
arc[1].y = -arc[1].y;
arc[2].y = -arc[2].y;
if ( degree > 2 )
arc[3].y = -arc[3].y;
fresh = ras.fresh;
result = Bezier_Up( RAS_VARS degree, arc, splitter, -maxy, -miny );
if ( fresh && !ras.fresh )
ras.cProfile->start = -ras.cProfile->start;
arc[0].y = -arc[0].y;
return result;
}
/**************************************************************************
*
* @Function:
* Line_To
*
* @Description:
* Inject a new line segment and adjust the Profiles list.
*
* @Input:
* x ::
* The x-coordinate of the segment's end point (its start point
* is stored in `lastX').
*
* y ::
* The y-coordinate of the segment's end point (its start point
* is stored in `lastY').
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow or incorrect
* profile.
*/
static Bool
Line_To( RAS_ARGS Long x,
Long y )
{
/* First, detect a change of direction */
switch ( ras.state )
{
case Unknown_State:
if ( y > ras.lastY )
{
if ( New_Profile( RAS_VARS Ascending_State,
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
return FAILURE;
}
else
{
if ( y < ras.lastY )
if ( New_Profile( RAS_VARS Descending_State,
IS_TOP_OVERSHOOT( ras.lastY ) ) )
return FAILURE;
}
break;
case Ascending_State:
if ( y < ras.lastY )
{
if ( End_Profile( RAS_VARS IS_TOP_OVERSHOOT( ras.lastY ) ) ||
New_Profile( RAS_VARS Descending_State,
IS_TOP_OVERSHOOT( ras.lastY ) ) )
return FAILURE;
}
break;
case Descending_State:
if ( y > ras.lastY )
{
if ( End_Profile( RAS_VARS IS_BOTTOM_OVERSHOOT( ras.lastY ) ) ||
New_Profile( RAS_VARS Ascending_State,
IS_BOTTOM_OVERSHOOT( ras.lastY ) ) )
return FAILURE;
}
break;
default:
;
}
/* Then compute the lines */
switch ( ras.state )
{
case Ascending_State:
if ( Line_Up( RAS_VARS ras.lastX, ras.lastY,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending_State:
if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
ras.lastX = x;
ras.lastY = y;
return SUCCESS;
}
/**************************************************************************
*
* @Function:
* Conic_To
*
* @Description:
* Inject a new conic arc and adjust the profile list.
*
* @Input:
* cx ::
* The x-coordinate of the arc's new control point.
*
* cy ::
* The y-coordinate of the arc's new control point.
*
* x ::
* The x-coordinate of the arc's end point (its start point is
* stored in `lastX').
*
* y ::
* The y-coordinate of the arc's end point (its start point is
* stored in `lastY').
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow or incorrect
* profile.
*/
static Bool
Conic_To( RAS_ARGS Long cx,
Long cy,
Long x,
Long y )
{
Long y1, y2, y3, x3, ymin, ymax;
TStates state_bez;
TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */
TPoint* arc; /* current Bezier arc pointer */
arc = arcs;
arc[2].x = ras.lastX;
arc[2].y = ras.lastY;
arc[1].x = cx;
arc[1].y = cy;
arc[0].x = x;
arc[0].y = y;
do
{
y1 = arc[2].y;
y2 = arc[1].y;
y3 = arc[0].y;
x3 = arc[0].x;
/* first, categorize the Bezier arc */
if ( y1 <= y3 )
{
ymin = y1;
ymax = y3;
}
else
{
ymin = y3;
ymax = y1;
}
if ( y2 < ymin || y2 > ymax )
{
/* this arc has no given direction, split it! */
Split_Conic( arc );
arc += 2;
}
else if ( y1 == y3 )
{
/* this arc is flat, ignore it and pop it from the Bezier stack */
arc -= 2;
}
else
{
/* the arc is y-monotonous, either ascending or descending */
/* detect a change of direction */
state_bez = y1 < y3 ? Ascending_State : Descending_State;
if ( ras.state != state_bez )
{
Bool o = ( state_bez == Ascending_State )
? IS_BOTTOM_OVERSHOOT( y1 )
: IS_TOP_OVERSHOOT( y1 );
/* finalize current profile if any */
if ( ras.state != Unknown_State &&
End_Profile( RAS_VARS o ) )
goto Fail;
/* create a new profile */
if ( New_Profile( RAS_VARS state_bez, o ) )
goto Fail;
}
/* now call the appropriate routine */
if ( state_bez == Ascending_State )
{
if ( Bezier_Up( RAS_VARS 2, arc, Split_Conic,
ras.minY, ras.maxY ) )
goto Fail;
}
else
if ( Bezier_Down( RAS_VARS 2, arc, Split_Conic,
ras.minY, ras.maxY ) )
goto Fail;
arc -= 2;
}
} while ( arc >= arcs );
ras.lastX = x3;
ras.lastY = y3;
return SUCCESS;
Fail:
return FAILURE;
}
/**************************************************************************
*
* @Function:
* Cubic_To
*
* @Description:
* Inject a new cubic arc and adjust the profile list.
*
* @Input:
* cx1 ::
* The x-coordinate of the arc's first new control point.
*
* cy1 ::
* The y-coordinate of the arc's first new control point.
*
* cx2 ::
* The x-coordinate of the arc's second new control point.
*
* cy2 ::
* The y-coordinate of the arc's second new control point.
*
* x ::
* The x-coordinate of the arc's end point (its start point is
* stored in `lastX').
*
* y ::
* The y-coordinate of the arc's end point (its start point is
* stored in `lastY').
*
* @Return:
* SUCCESS on success, FAILURE on render pool overflow or incorrect
* profile.
*/
static Bool
Cubic_To( RAS_ARGS Long cx1,
Long cy1,
Long cx2,
Long cy2,
Long x,
Long y )
{
Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
TStates state_bez;
TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */
TPoint* arc; /* current Bezier arc pointer */
arc = arcs;
arc[3].x = ras.lastX;
arc[3].y = ras.lastY;
arc[2].x = cx1;
arc[2].y = cy1;
arc[1].x = cx2;
arc[1].y = cy2;
arc[0].x = x;
arc[0].y = y;
do
{
y1 = arc[3].y;
y2 = arc[2].y;
y3 = arc[1].y;
y4 = arc[0].y;
x4 = arc[0].x;
/* first, categorize the Bezier arc */
if ( y1 <= y4 )
{
ymin1 = y1;
ymax1 = y4;
}
else
{
ymin1 = y4;
ymax1 = y1;
}
if ( y2 <= y3 )
{
ymin2 = y2;
ymax2 = y3;
}
else
{
ymin2 = y3;
ymax2 = y2;
}
if ( ymin2 < ymin1 || ymax2 > ymax1 )
{
/* this arc has no given direction, split it! */
Split_Cubic( arc );
arc += 3;
}
else if ( y1 == y4 )
{
/* this arc is flat, ignore it and pop it from the Bezier stack */
arc -= 3;
}
else
{
state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State;
/* detect a change of direction */
if ( ras.state != state_bez )
{
Bool o = ( state_bez == Ascending_State )
? IS_BOTTOM_OVERSHOOT( y1 )
: IS_TOP_OVERSHOOT( y1 );
/* finalize current profile if any */
if ( ras.state != Unknown_State &&
End_Profile( RAS_VARS o ) )
goto Fail;
if ( New_Profile( RAS_VARS state_bez, o ) )
goto Fail;
}
/* compute intersections */
if ( state_bez == Ascending_State )
{
if ( Bezier_Up( RAS_VARS 3, arc, Split_Cubic,
ras.minY, ras.maxY ) )
goto Fail;
}
else
if ( Bezier_Down( RAS_VARS 3, arc, Split_Cubic,
ras.minY, ras.maxY ) )
goto Fail;
arc -= 3;
}
} while ( arc >= arcs );
ras.lastX = x4;
ras.lastY = y4;
return SUCCESS;
Fail:
return FAILURE;
}
#undef SWAP_
#define SWAP_( x, y ) do \
{ \
Long swap = x; \
\
\
x = y; \
y = swap; \
} while ( 0 )
/**************************************************************************
*
* @Function:
* Decompose_Curve
*
* @Description:
* Scan the outline arrays in order to emit individual segments and
* Beziers by calling Line_To() and Bezier_To(). It handles all
* weird cases, like when the first point is off the curve, or when
* there are simply no `on' points in the contour!
*
* @Input:
* first ::
* The index of the first point in the contour.
*
* last ::
* The index of the last point in the contour.
*
* flipped ::
* If set, flip the direction of the curve.
*
* @Return:
* SUCCESS on success, FAILURE on error.
*/
static Bool
Decompose_Curve( RAS_ARGS UShort first,
UShort last,
Int flipped )
{
FT_Vector v_last;
FT_Vector v_control;
FT_Vector v_start;
FT_Vector* points;
FT_Vector* point;
FT_Vector* limit;
char* tags;
UInt tag; /* current point's state */
points = ras.outline.points;
limit = points + last;
v_start.x = SCALED( points[first].x );
v_start.y = SCALED( points[first].y );
v_last.x = SCALED( points[last].x );
v_last.y = SCALED( points[last].y );
if ( flipped )
{
SWAP_( v_start.x, v_start.y );
SWAP_( v_last.x, v_last.y );
}
v_control = v_start;
point = points + first;
tags = ras.outline.tags + first;
/* set scan mode if necessary */
if ( tags[0] & FT_CURVE_TAG_HAS_SCANMODE )
ras.dropOutControl = (Byte)tags[0] >> 5;
tag = FT_CURVE_TAG( tags[0] );
/* A contour cannot start with a cubic control point! */
if ( tag == FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
/* check first point to determine origin */
if ( tag == FT_CURVE_TAG_CONIC )
{
/* first point is conic control. Yes, this happens. */
if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON )
{
/* start at last point if it is on the curve */
v_start = v_last;
limit--;
}
else
{
/* if both first and last points are conic, */
/* start at their middle and record its position */
/* for closure */
v_start.x = ( v_start.x + v_last.x ) / 2;
v_start.y = ( v_start.y + v_last.y ) / 2;
/* v_last = v_start; */
}
point--;
tags--;
}
ras.lastX = v_start.x;
ras.lastY = v_start.y;
while ( point < limit )
{
point++;
tags++;
tag = FT_CURVE_TAG( tags[0] );
switch ( tag )
{
case FT_CURVE_TAG_ON: /* emit a single line_to */
{
Long x, y;
x = SCALED( point->x );
y = SCALED( point->y );
if ( flipped )
SWAP_( x, y );
if ( Line_To( RAS_VARS x, y ) )
goto Fail;
continue;
}
case FT_CURVE_TAG_CONIC: /* consume conic arcs */
v_control.x = SCALED( point[0].x );
v_control.y = SCALED( point[0].y );
if ( flipped )
SWAP_( v_control.x, v_control.y );
Do_Conic:
if ( point < limit )
{
FT_Vector v_middle;
Long x, y;
point++;
tags++;
tag = FT_CURVE_TAG( tags[0] );
x = SCALED( point[0].x );
y = SCALED( point[0].y );
if ( flipped )
SWAP_( x, y );
if ( tag == FT_CURVE_TAG_ON )
{
if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
goto Fail;
continue;
}
if ( tag != FT_CURVE_TAG_CONIC )
goto Invalid_Outline;
v_middle.x = ( v_control.x + x ) / 2;
v_middle.y = ( v_control.y + y ) / 2;
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
v_middle.x, v_middle.y ) )
goto Fail;
v_control.x = x;
v_control.y = y;
goto Do_Conic;
}
if ( Conic_To( RAS_VARS v_control.x, v_control.y,
v_start.x, v_start.y ) )
goto Fail;
goto Close;
default: /* FT_CURVE_TAG_CUBIC */
{
Long x1, y1, x2, y2, x3, y3;
if ( point + 1 > limit ||
FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
point += 2;
tags += 2;
x1 = SCALED( point[-2].x );
y1 = SCALED( point[-2].y );
x2 = SCALED( point[-1].x );
y2 = SCALED( point[-1].y );
if ( flipped )
{
SWAP_( x1, y1 );
SWAP_( x2, y2 );
}
if ( point <= limit )
{
x3 = SCALED( point[0].x );
y3 = SCALED( point[0].y );
if ( flipped )
SWAP_( x3, y3 );
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
goto Fail;
continue;
}
if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
goto Fail;
goto Close;
}
}
}
/* close the contour with a line segment */
if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
goto Fail;
Close:
return SUCCESS;
Invalid_Outline:
ras.error = FT_THROW( Invalid_Outline );
Fail:
return FAILURE;
}
/**************************************************************************
*
* @Function:
* Convert_Glyph
*
* @Description:
* Convert a glyph into a series of segments and arcs and make a
* profiles list with them.
*
* @Input:
* flipped ::
* If set, flip the direction of curve.
*
* @Return:
* SUCCESS on success, FAILURE if any error was encountered during
* rendering.
*/
static Bool
Convert_Glyph( RAS_ARGS Int flipped )
{
Int i;
UInt start;
ras.fProfile = NULL;
ras.joint = FALSE;
ras.fresh = FALSE;
ras.maxBuff = ras.sizeBuff - AlignProfileSize;
ras.numTurns = 0;
ras.cProfile = (PProfile)ras.top;
ras.cProfile->offset = ras.top;
ras.num_Profs = 0;
start = 0;
for ( i = 0; i < ras.outline.n_contours; i++ )
{
PProfile lastProfile;
Bool o;
ras.state = Unknown_State;
ras.gProfile = NULL;
if ( Decompose_Curve( RAS_VARS (UShort)start,
(UShort)ras.outline.contours[i],
flipped ) )
return FAILURE;
start = (UShort)ras.outline.contours[i] + 1;
/* we must now check whether the extreme arcs join or not */
if ( FRAC( ras.lastY ) == 0 &&
ras.lastY >= ras.minY &&
ras.lastY <= ras.maxY )
if ( ras.gProfile &&
( ras.gProfile->flags & Flow_Up ) ==
( ras.cProfile->flags & Flow_Up ) )
ras.top--;
/* Note that ras.gProfile can be nil if the contour was too small */
/* to be drawn. */
lastProfile = ras.cProfile;
if ( ras.top != ras.cProfile->offset &&
( ras.cProfile->flags & Flow_Up ) )
o = IS_TOP_OVERSHOOT( ras.lastY );
else
o = IS_BOTTOM_OVERSHOOT( ras.lastY );
if ( End_Profile( RAS_VARS o ) )
return FAILURE;
/* close the `next profile in contour' linked list */
if ( ras.gProfile )
lastProfile->next = ras.gProfile;
}
if ( Finalize_Profile_Table( RAS_VAR ) )
return FAILURE;
return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
}
/*************************************************************************/
/*************************************************************************/
/** **/
/** SCAN-LINE SWEEPS AND DRAWING **/
/** **/
/*************************************************************************/
/*************************************************************************/
/**************************************************************************
*
* Init_Linked
*
* Initializes an empty linked list.
*/
static void
Init_Linked( TProfileList* l )
{
*l = NULL;
}
/**************************************************************************
*
* InsNew
*
* Inserts a new profile in a linked list.
*/
static void
InsNew( PProfileList list,
PProfile profile )
{
PProfile *old, current;
Long x;
old = list;
current = *old;
x = profile->X;
while ( current )
{
if ( x < current->X )
break;
old = &current->link;
current = *old;
}
profile->link = current;
*old = profile;
}
/**************************************************************************
*
* DelOld
*
* Removes an old profile from a linked list.
*/
static void
DelOld( PProfileList list,
PProfile profile )
{
PProfile *old, current;
old = list;
current = *old;
while ( current )
{
if ( current == profile )
{
*old = current->link;
return;
}
old = &current->link;
current = *old;
}
/* we should never get there, unless the profile was not part of */
/* the list. */
}
/**************************************************************************
*
* Sort
*
* Sorts a trace list. In 95%, the list is already sorted. We need
* an algorithm which is fast in this case. Bubble sort is enough
* and simple.
*/
static void
Sort( PProfileList list )
{
PProfile *old, current, next;
/* First, set the new X coordinate of each profile */
current = *list;
while ( current )
{
current->X = *current->offset;
current->offset += ( current->flags & Flow_Up ) ? 1 : -1;
current->height--;
current = current->link;
}
/* Then sort them */
old = list;
current = *old;
if ( !current )
return;
next = current->link;
while ( next )
{
if ( current->X <= next->X )
{
old = &current->link;
current = *old;
if ( !current )
return;
}
else
{
*old = next;
current->link = next->link;
next->link = current;
old = list;
current = *old;
}
next = current->link;
}
}
/**************************************************************************
*
* Vertical Sweep Procedure Set
*
* These four routines are used during the vertical black/white sweep
* phase by the generic Draw_Sweep() function.
*
*/
static void
Vertical_Sweep_Init( RAS_ARGS Short min,
Short max )
{
FT_UNUSED( max );
ras.bLine = ras.bOrigin - min * ras.target.pitch;
}
static void
Vertical_Sweep_Span( RAS_ARGS Short y,
FT_F26Dot6 x1,
FT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
Byte* target;
Int dropOutControl = left->flags & 7;
FT_UNUSED( y );
FT_UNUSED( left );
FT_UNUSED( right );
/* in high-precision mode, we need 12 digits after the comma to */
/* represent multiples of 1/(1<<12) = 1/4096 */
FT_TRACE7(( " y=%d x=[% .12f;% .12f]",
y,
x1 / (double)ras.precision,
x2 / (double)ras.precision ));
/* Drop-out control */
e1 = CEILING( x1 );
e2 = FLOOR( x2 );
/* take care of the special case where both the left */
/* and right contour lie exactly on pixel centers */
if ( dropOutControl != 2 &&
x2 - x1 - ras.precision <= ras.precision_jitter &&
e1 != x1 && e2 != x2 )
e2 = e1;
e1 = TRUNC( e1 );
e2 = TRUNC( e2 );
if ( e2 >= 0 && e1 < ras.bWidth )
{
Int c1, c2;
Byte f1, f2;
if ( e1 < 0 )
e1 = 0;
if ( e2 >= ras.bWidth )
e2 = ras.bWidth - 1;
FT_TRACE7(( " -> x=[%ld;%ld]", e1, e2 ));
c1 = (Short)( e1 >> 3 );
c2 = (Short)( e2 >> 3 );
f1 = (Byte) ( 0xFF >> ( e1 & 7 ) );
f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) );
target = ras.bLine + c1;
c2 -= c1;
if ( c2 > 0 )
{
target[0] |= f1;
/* memset() is slower than the following code on many platforms. */
/* This is due to the fact that, in the vast majority of cases, */
/* the span length in bytes is relatively small. */
while ( --c2 > 0 )
*(++target) = 0xFF;
target[1] |= f2;
}
else
*target |= ( f1 & f2 );
}
FT_TRACE7(( "\n" ));
}
static void
Vertical_Sweep_Drop( RAS_ARGS Short y,
FT_F26Dot6 x1,
FT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2, pxl;
Short c1, f1;
FT_TRACE7(( " y=%d x=[% .12f;% .12f]",
y,
x1 / (double)ras.precision,
x2 / (double)ras.precision ));
/* Drop-out control */
/* e2 x2 x1 e1 */
/* */
/* ^ | */
/* | | */
/* +-------------+---------------------+------------+ */
/* | | */
/* | v */
/* */
/* pixel contour contour pixel */
/* center center */
/* drop-out mode scan conversion rules (as defined in OpenType) */
/* --------------------------------------------------------------- */
/* 0 1, 2, 3 */
/* 1 1, 2, 4 */
/* 2 1, 2 */
/* 3 same as mode 2 */
/* 4 1, 2, 5 */
/* 5 1, 2, 6 */
/* 6, 7 same as mode 2 */
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
pxl = e1;
if ( e1 > e2 )
{
Int dropOutControl = left->flags & 7;
if ( e1 == e2 + ras.precision )
{
switch ( dropOutControl )
{
case 0: /* simple drop-outs including stubs */
pxl = e2;
break;
case 4: /* smart drop-outs including stubs */
pxl = SMART( x1, x2 );
break;
case 1: /* simple drop-outs excluding stubs */
case 5: /* smart drop-outs excluding stubs */
/* Drop-out Control Rules #4 and #6 */
/* The specification neither provides an exact definition */
/* of a `stub' nor gives exact rules to exclude them. */
/* */
/* Here the constraints we use to recognize a stub. */
/* */
/* upper stub: */
/* */
/* - P_Left and P_Right are in the same contour */
/* - P_Right is the successor of P_Left in that contour */
/* - y is the top of P_Left and P_Right */
/* */
/* lower stub: */
/* */
/* - P_Left and P_Right are in the same contour */
/* - P_Left is the successor of P_Right in that contour */
/* - y is the bottom of P_Left */
/* */
/* We draw a stub if the following constraints are met. */
/* */
/* - for an upper or lower stub, there is top or bottom */
/* overshoot, respectively */
/* - the covered interval is greater or equal to a half */
/* pixel */
/* upper stub test */
if ( left->next == right &&
left->height <= 0 &&
!( left->flags & Overshoot_Top &&
x2 - x1 >= ras.precision_half ) )
goto Exit;
/* lower stub test */
if ( right->next == left &&
left->start == y &&
!( left->flags & Overshoot_Bottom &&
x2 - x1 >= ras.precision_half ) )
goto Exit;
if ( dropOutControl == 1 )
pxl = e2;
else
pxl = SMART( x1, x2 );
break;
default: /* modes 2, 3, 6, 7 */
goto Exit; /* no drop-out control */
}
/* undocumented but confirmed: If the drop-out would result in a */
/* pixel outside of the bounding box, use the pixel inside of the */
/* bounding box instead */
if ( pxl < 0 )
pxl = e1;
else if ( TRUNC( pxl ) >= ras.bWidth )
pxl = e2;
/* check that the other pixel isn't set */
e1 = ( pxl == e1 ) ? e2 : e1;
e1 = TRUNC( e1 );
c1 = (Short)( e1 >> 3 );
f1 = (Short)( e1 & 7 );
if ( e1 >= 0 && e1 < ras.bWidth &&
ras.bLine[c1] & ( 0x80 >> f1 ) )
goto Exit;
}
else
goto Exit;
}
e1 = TRUNC( pxl );
if ( e1 >= 0 && e1 < ras.bWidth )
{
FT_TRACE7(( " -> x=%ld", e1 ));
c1 = (Short)( e1 >> 3 );
f1 = (Short)( e1 & 7 );
ras.bLine[c1] |= (char)( 0x80 >> f1 );
}
Exit:
FT_TRACE7(( " dropout=%d\n", left->flags & 7 ));
}
static void
Vertical_Sweep_Step( RAS_ARG )
{
ras.bLine -= ras.target.pitch;
}
/************************************************************************
*
* Horizontal Sweep Procedure Set
*
* These four routines are used during the horizontal black/white
* sweep phase by the generic Draw_Sweep() function.
*
*/
static void
Horizontal_Sweep_Init( RAS_ARGS Short min,
Short max )
{
/* nothing, really */
FT_UNUSED_RASTER;
FT_UNUSED( min );
FT_UNUSED( max );
}
static void
Horizontal_Sweep_Span( RAS_ARGS Short y,
FT_F26Dot6 x1,
FT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2;
FT_UNUSED( left );
FT_UNUSED( right );
FT_TRACE7(( " x=%d y=[% .12f;% .12f]",
y,
x1 / (double)ras.precision,
x2 / (double)ras.precision ));
/* We should not need this procedure but the vertical sweep */
/* mishandles horizontal lines through pixel centers. So we */
/* have to check perfectly aligned span edges here. */
/* */
/* XXX: Can we handle horizontal lines better and drop this? */
e1 = CEILING( x1 );
if ( x1 == e1 )
{
e1 = TRUNC( e1 );
if ( e1 >= 0 && (ULong)e1 < ras.target.rows )
{
Byte f1;
PByte bits;
bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch;
f1 = (Byte)( 0x80 >> ( y & 7 ) );
FT_TRACE7(( bits[0] & f1 ? " redundant"
: " -> y=%ld edge", e1 ));
bits[0] |= f1;
}
}
e2 = FLOOR ( x2 );
if ( x2 == e2 )
{
e2 = TRUNC( e2 );
if ( e2 >= 0 && (ULong)e2 < ras.target.rows )
{
Byte f1;
PByte bits;
bits = ras.bOrigin + ( y >> 3 ) - e2 * ras.target.pitch;
f1 = (Byte)( 0x80 >> ( y & 7 ) );
FT_TRACE7(( bits[0] & f1 ? " redundant"
: " -> y=%ld edge", e2 ));
bits[0] |= f1;
}
}
FT_TRACE7(( "\n" ));
}
static void
Horizontal_Sweep_Drop( RAS_ARGS Short y,
FT_F26Dot6 x1,
FT_F26Dot6 x2,
PProfile left,
PProfile right )
{
Long e1, e2, pxl;
PByte bits;
Byte f1;
FT_TRACE7(( " x=%d y=[% .12f;% .12f]",
y,
x1 / (double)ras.precision,
x2 / (double)ras.precision ));
/* During the horizontal sweep, we only take care of drop-outs */
/* e1 + <-- pixel center */
/* | */
/* x1 ---+--> <-- contour */
/* | */
/* | */
/* x2 <--+--- <-- contour */
/* | */
/* | */
/* e2 + <-- pixel center */
e1 = CEILING( x1 );
e2 = FLOOR ( x2 );
pxl = e1;
if ( e1 > e2 )
{
Int dropOutControl = left->flags & 7;
if ( e1 == e2 + ras.precision )
{
switch ( dropOutControl )
{
case 0: /* simple drop-outs including stubs */
pxl = e2;
break;
case 4: /* smart drop-outs including stubs */
pxl = SMART( x1, x2 );
break;
case 1: /* simple drop-outs excluding stubs */
case 5: /* smart drop-outs excluding stubs */
/* see Vertical_Sweep_Drop for details */
/* rightmost stub test */
if ( left->next == right &&
left->height <= 0 &&
!( left->flags & Overshoot_Top &&
x2 - x1 >= ras.precision_half ) )
goto Exit;
/* leftmost stub test */
if ( right->next == left &&
left->start == y &&
!( left->flags & Overshoot_Bottom &&
x2 - x1 >= ras.precision_half ) )
goto Exit;
if ( dropOutControl == 1 )
pxl = e2;
else
pxl = SMART( x1, x2 );
break;
default: /* modes 2, 3, 6, 7 */
goto Exit; /* no drop-out control */
}
/* undocumented but confirmed: If the drop-out would result in a */
/* pixel outside of the bounding box, use the pixel inside of the */
/* bounding box instead */
if ( pxl < 0 )
pxl = e1;
else if ( (ULong)( TRUNC( pxl ) ) >= ras.target.rows )
pxl = e2;
/* check that the other pixel isn't set */
e1 = ( pxl == e1 ) ? e2 : e1;
e1 = TRUNC( e1 );
bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch;
f1 = (Byte)( 0x80 >> ( y & 7 ) );
if ( e1 >= 0 &&
(ULong)e1 < ras.target.rows &&
*bits & f1 )
goto Exit;
}
else
goto Exit;
}
e1 = TRUNC( pxl );
if ( e1 >= 0 && (ULong)e1 < ras.target.rows )
{
FT_TRACE7(( " -> y=%ld", e1 ));
bits = ras.bOrigin + ( y >> 3 ) - e1 * ras.target.pitch;
f1 = (Byte)( 0x80 >> ( y & 7 ) );
bits[0] |= f1;
}
Exit:
FT_TRACE7(( " dropout=%d\n", left->flags & 7 ));
}
static void
Horizontal_Sweep_Step( RAS_ARG )
{
/* Nothing, really */
FT_UNUSED_RASTER;
}
/**************************************************************************
*
* Generic Sweep Drawing routine
*
*/
static Bool
Draw_Sweep( RAS_ARG )
{
Short y, y_change, y_height;
PProfile P, Q, P_Left, P_Right;
Short min_Y, max_Y, top, bottom, dropouts;
Long x1, x2, xs, e1, e2;
TProfileList waiting;
TProfileList draw_left, draw_right;
/* initialize empty linked lists */
Init_Linked( &waiting );
Init_Linked( &draw_left );
Init_Linked( &draw_right );
/* first, compute min and max Y */
P = ras.fProfile;
max_Y = (Short)TRUNC( ras.minY );
min_Y = (Short)TRUNC( ras.maxY );
while ( P )
{
Q = P->link;
bottom = (Short)P->start;
top = (Short)( P->start + P->height - 1 );
if ( min_Y > bottom )
min_Y = bottom;
if ( max_Y < top )
max_Y = top;
P->X = 0;
InsNew( &waiting, P );
P = Q;
}
/* check the Y-turns */
if ( ras.numTurns == 0 )
{
ras.error = FT_THROW( Invalid_Outline );
return FAILURE;
}
/* now initialize the sweep */
ras.Proc_Sweep_Init( RAS_VARS min_Y, max_Y );
/* then compute the distance of each profile from min_Y */
P = waiting;
while ( P )
{
P->countL = P->start - min_Y;
P = P->link;
}
/* let's go */
y = min_Y;
y_height = 0;
if ( ras.numTurns > 0 &&
ras.sizeBuff[-ras.numTurns] == min_Y )
ras.numTurns--;
while ( ras.numTurns > 0 )
{
/* check waiting list for new activations */
P = waiting;
while ( P )
{
Q = P->link;
P->countL -= y_height;
if ( P->countL == 0 )
{
DelOld( &waiting, P );
if ( P->flags & Flow_Up )
InsNew( &draw_left, P );
else
InsNew( &draw_right, P );
}
P = Q;
}
/* sort the drawing lists */
Sort( &draw_left );
Sort( &draw_right );
y_change = (Short)ras.sizeBuff[-ras.numTurns--];
y_height = (Short)( y_change - y );
while ( y < y_change )
{
/* let's trace */
dropouts = 0;
P_Left = draw_left;
P_Right = draw_right;
while ( P_Left && P_Right )
{
x1 = P_Left ->X;
x2 = P_Right->X;
if ( x1 > x2 )
{
xs = x1;
x1 = x2;
x2 = xs;
}
e1 = FLOOR( x1 );
e2 = CEILING( x2 );
if ( x2 - x1 <= ras.precision &&
e1 != x1 && e2 != x2 )
{
if ( e1 > e2 || e2 == e1 + ras.precision )
{
Int dropOutControl = P_Left->flags & 7;
if ( dropOutControl != 2 )
{
/* a drop-out was detected */
P_Left ->X = x1;
P_Right->X = x2;
/* mark profile for drop-out processing */
P_Left->countL = 1;
dropouts++;
}
goto Skip_To_Next;
}
}
ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
Skip_To_Next:
P_Left = P_Left->link;
P_Right = P_Right->link;
}
/* handle drop-outs _after_ the span drawing -- */
/* drop-out processing has been moved out of the loop */
/* for performance tuning */
if ( dropouts > 0 )
goto Scan_DropOuts;
Next_Line:
ras.Proc_Sweep_Step( RAS_VAR );
y++;
if ( y < y_change )
{
Sort( &draw_left );
Sort( &draw_right );
}
}
/* now finalize the profiles that need it */
P = draw_left;
while ( P )
{
Q = P->link;
if ( P->height == 0 )
DelOld( &draw_left, P );
P = Q;
}
P = draw_right;
while ( P )
{
Q = P->link;
if ( P->height == 0 )
DelOld( &draw_right, P );
P = Q;
}
}
/* for gray-scaling, flush the bitmap scanline cache */
while ( y <= max_Y )
{
ras.Proc_Sweep_Step( RAS_VAR );
y++;
}
return SUCCESS;
Scan_DropOuts:
P_Left = draw_left;
P_Right = draw_right;
while ( P_Left && P_Right )
{
if ( P_Left->countL )
{
P_Left->countL = 0;
#if 0
dropouts--; /* -- this is useful when debugging only */
#endif
ras.Proc_Sweep_Drop( RAS_VARS y,
P_Left->X,
P_Right->X,
P_Left,
P_Right );
}
P_Left = P_Left->link;
P_Right = P_Right->link;
}
goto Next_Line;
}
#ifdef STANDALONE_
/**************************************************************************
*
* The following functions should only compile in stand-alone mode,
* i.e., when building this component without the rest of FreeType.
*
*/
/**************************************************************************
*
* @Function:
* FT_Outline_Get_CBox
*
* @Description:
* Return an outline's `control box'. The control box encloses all
* the outline's points, including Bézier control points. Though it
* coincides with the exact bounding box for most glyphs, it can be
* slightly larger in some situations (like when rotating an outline
* that contains Bézier outside arcs).
*
* Computing the control box is very fast, while getting the bounding
* box can take much more time as it needs to walk over all segments
* and arcs in the outline. To get the latter, you can use the
* `ftbbox' component, which is dedicated to this single task.
*
* @Input:
* outline ::
* A pointer to the source outline descriptor.
*
* @Output:
* acbox ::
* The outline's control box.
*
* @Note:
* See @FT_Glyph_Get_CBox for a discussion of tricky fonts.
*/
static void
FT_Outline_Get_CBox( const FT_Outline* outline,
FT_BBox *acbox )
{
Long xMin, yMin, xMax, yMax;
if ( outline && acbox )
{
if ( outline->n_points == 0 )
{
xMin = 0;
yMin = 0;
xMax = 0;
yMax = 0;
}
else
{
FT_Vector* vec = outline->points;
FT_Vector* limit = vec + outline->n_points;
xMin = xMax = vec->x;
yMin = yMax = vec->y;
vec++;
for ( ; vec < limit; vec++ )
{
Long x, y;
x = vec->x;
if ( x < xMin ) xMin = x;
if ( x > xMax ) xMax = x;
y = vec->y;
if ( y < yMin ) yMin = y;
if ( y > yMax ) yMax = y;
}
}
acbox->xMin = xMin;
acbox->xMax = xMax;
acbox->yMin = yMin;
acbox->yMax = yMax;
}
}
#endif /* STANDALONE_ */
/**************************************************************************
*
* @Function:
* Render_Single_Pass
*
* @Description:
* Perform one sweep with sub-banding.
*
* @Input:
* flipped ::
* If set, flip the direction of the outline.
*
* @Return:
* Renderer error code.
*/
static int
Render_Single_Pass( RAS_ARGS Bool flipped )
{
Short i, j, k;
Int band_top = 0;
do
{
ras.maxY = (Long)ras.band_stack[band_top].y_max * ras.precision;
ras.minY = (Long)ras.band_stack[band_top].y_min * ras.precision;
ras.top = ras.buff;
ras.error = Raster_Err_Ok;
if ( Convert_Glyph( RAS_VARS flipped ) )
{
if ( ras.error != Raster_Err_Raster_Overflow )
return ras.error;
/* sub-banding */
i = ras.band_stack[band_top].y_min;
j = ras.band_stack[band_top].y_max;
if ( i == j )
return ras.error; /* still Raster_Overflow */
k = (Short)( ( i + j ) / 2 );
ras.band_stack[band_top].y_max = k;
ras.band_stack[band_top + 1].y_min = (Short)( k + 1 );
ras.band_stack[band_top + 1].y_max = j;
band_top++;
}
else
{
if ( ras.fProfile )
if ( Draw_Sweep( RAS_VAR ) )
return ras.error;
band_top--;
}
} while ( band_top >= 0 );
return Raster_Err_Ok;
}
/**************************************************************************
*
* @Function:
* Render_Glyph
*
* @Description:
* Render a glyph in a bitmap. Sub-banding if needed.
*
* @Return:
* FreeType error code. 0 means success.
*/
static FT_Error
Render_Glyph( RAS_ARG )
{
FT_Error error;
Set_High_Precision( RAS_VARS ras.outline.flags &
FT_OUTLINE_HIGH_PRECISION );
if ( ras.outline.flags & FT_OUTLINE_IGNORE_DROPOUTS )
ras.dropOutControl = 2;
else
{
if ( ras.outline.flags & FT_OUTLINE_SMART_DROPOUTS )
ras.dropOutControl = 4;
else
ras.dropOutControl = 0;
if ( !( ras.outline.flags & FT_OUTLINE_INCLUDE_STUBS ) )
ras.dropOutControl += 1;
}
ras.second_pass = (Bool)( !( ras.outline.flags &
FT_OUTLINE_SINGLE_PASS ) );
/* Vertical Sweep */
FT_TRACE7(( "Vertical pass (ftraster)\n" ));
ras.Proc_Sweep_Init = Vertical_Sweep_Init;
ras.Proc_Sweep_Span = Vertical_Sweep_Span;
ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
ras.Proc_Sweep_Step = Vertical_Sweep_Step;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = (Short)( ras.target.rows - 1 );
ras.bWidth = (UShort)ras.target.width;
ras.bOrigin = (Byte*)ras.target.buffer;
if ( ras.target.pitch > 0 )
ras.bOrigin += (Long)( ras.target.rows - 1 ) * ras.target.pitch;
if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
return error;
/* Horizontal Sweep */
if ( ras.second_pass && ras.dropOutControl != 2 )
{
FT_TRACE7(( "Horizontal pass (ftraster)\n" ));
ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = (Short)( ras.target.width - 1 );
if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
return error;
}
return Raster_Err_Ok;
}
static void
ft_black_init( black_PRaster raster )
{
FT_UNUSED( raster );
}
/**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
/**** a static object. *****/
#ifdef STANDALONE_
static int
ft_black_new( void* memory,
FT_Raster *araster )
{
static black_TRaster the_raster;
FT_UNUSED( memory );
*araster = (FT_Raster)&the_raster;
FT_ZERO( &the_raster );
ft_black_init( &the_raster );
return 0;
}
static void
ft_black_done( FT_Raster raster )
{
/* nothing */
FT_UNUSED( raster );
}
#else /* !STANDALONE_ */
static int
ft_black_new( FT_Memory memory,
black_PRaster *araster )
{
FT_Error error;
black_PRaster raster = NULL;
*araster = 0;
if ( !FT_NEW( raster ) )
{
raster->memory = memory;
ft_black_init( raster );
*araster = raster;
}
return error;
}
static void
ft_black_done( black_PRaster raster )
{
FT_Memory memory = (FT_Memory)raster->memory;
FT_FREE( raster );
}
#endif /* !STANDALONE_ */
static void
ft_black_reset( FT_Raster raster,
PByte pool_base,
ULong pool_size )
{
FT_UNUSED( raster );
FT_UNUSED( pool_base );
FT_UNUSED( pool_size );
}
static int
ft_black_set_mode( FT_Raster raster,
ULong mode,
void* args )
{
FT_UNUSED( raster );
FT_UNUSED( mode );
FT_UNUSED( args );
return 0;
}
static int
ft_black_render( FT_Raster raster,
const FT_Raster_Params* params )
{
const FT_Outline* outline = (const FT_Outline*)params->source;
const FT_Bitmap* target_map = params->target;
#ifndef FT_STATIC_RASTER
black_TWorker worker[1];
#endif
Long buffer[FT_MAX_BLACK_POOL];
if ( !raster )
return FT_THROW( Raster_Uninitialized );
if ( !outline )
return FT_THROW( Invalid_Outline );
/* return immediately if the outline is empty */
if ( outline->n_points == 0 || outline->n_contours <= 0 )
return Raster_Err_Ok;
if ( !outline->contours || !outline->points )
return FT_THROW( Invalid_Outline );
if ( outline->n_points !=
outline->contours[outline->n_contours - 1] + 1 )
return FT_THROW( Invalid_Outline );
/* this version of the raster does not support direct rendering, sorry */
if ( params->flags & FT_RASTER_FLAG_DIRECT ||
params->flags & FT_RASTER_FLAG_AA )
return FT_THROW( Cannot_Render_Glyph );
if ( !target_map )
return FT_THROW( Invalid_Argument );
/* nothing to do */
if ( !target_map->width || !target_map->rows )
return Raster_Err_Ok;
if ( !target_map->buffer )
return FT_THROW( Invalid_Argument );
ras.outline = *outline;
ras.target = *target_map;
ras.buff = buffer;
ras.sizeBuff = (&buffer)[1]; /* Points to right after buffer. */
return Render_Glyph( RAS_VAR );
}
FT_DEFINE_RASTER_FUNCS(
ft_standard_raster,
FT_GLYPH_FORMAT_OUTLINE,
(FT_Raster_New_Func) ft_black_new, /* raster_new */
(FT_Raster_Reset_Func) ft_black_reset, /* raster_reset */
(FT_Raster_Set_Mode_Func)ft_black_set_mode, /* raster_set_mode */
(FT_Raster_Render_Func) ft_black_render, /* raster_render */
(FT_Raster_Done_Func) ft_black_done /* raster_done */
)
/* END */