| /***************************************************************************/ |
| /* */ |
| /* ftbbox.c */ |
| /* */ |
| /* FreeType bbox computation (body). */ |
| /* */ |
| /* Copyright 1996-2001 by */ |
| /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
| /* */ |
| /* This file is part of the FreeType project, and may only be used */ |
| /* modified and distributed under the terms of the FreeType project */ |
| /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ |
| /* this file you indicate that you have read the license and */ |
| /* understand and accept it fully. */ |
| /* */ |
| /***************************************************************************/ |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* This component has a _single_ role: to compute exact outline bounding */ |
| /* boxes. */ |
| /* */ |
| /*************************************************************************/ |
| |
| |
| #include <ft2build.h> |
| #include FT_BBOX_H |
| #include FT_IMAGE_H |
| #include FT_OUTLINE_H |
| #include FT_INTERNAL_CALC_H |
| |
| |
| typedef struct TBBox_Rec_ |
| { |
| FT_Vector last; |
| FT_BBox bbox; |
| |
| } TBBox_Rec; |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* <Function> */ |
| /* BBox_Move_To */ |
| /* */ |
| /* <Description> */ |
| /* This function is used as a `move_to' and `line_to' emitter during */ |
| /* FT_Outline_Decompose(). It simply records the destination point */ |
| /* in `user->last'; no further computations are necessary since we */ |
| /* the cbox as the starting bbox which must be refined. */ |
| /* */ |
| /* <Input> */ |
| /* to :: A pointer to the destination vector. */ |
| /* */ |
| /* <InOut> */ |
| /* user :: A pointer to the current walk context. */ |
| /* */ |
| /* <Return> */ |
| /* Always 0. Needed for the interface only. */ |
| /* */ |
| static int |
| BBox_Move_To( FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| #define CHECK_X( p, bbox ) \ |
| ( p->x < bbox.xMin || p->x > bbox.xMax ) |
| |
| #define CHECK_Y( p, bbox ) \ |
| ( p->y < bbox.yMin || p->y > bbox.yMax ) |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* <Function> */ |
| /* BBox_Conic_Check */ |
| /* */ |
| /* <Description> */ |
| /* Finds the extrema of a 1-dimensional conic Bezier curve and update */ |
| /* a bounding range. This version uses direct computation, as it */ |
| /* doesn't need square roots. */ |
| /* */ |
| /* <Input> */ |
| /* y1 :: The start coordinate. */ |
| /* y2 :: The coordinate of the control point. */ |
| /* y3 :: The end coordinate. */ |
| /* */ |
| /* <InOut> */ |
| /* min :: The address of the current minimum. */ |
| /* max :: The address of the current maximum. */ |
| /* */ |
| static void |
| BBox_Conic_Check( FT_Pos y1, |
| FT_Pos y2, |
| FT_Pos y3, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| if ( y1 <= y3 ) |
| { |
| if ( y2 == y1 ) /* Flat arc */ |
| goto Suite; |
| } |
| else if ( y1 < y3 ) |
| { |
| if ( y2 >= y1 && y2 <= y3 ) /* Ascending arc */ |
| goto Suite; |
| } |
| else |
| { |
| if ( y2 >= y3 && y2 <= y1 ) /* Descending arc */ |
| { |
| y2 = y1; |
| y1 = y3; |
| y3 = y2; |
| goto Suite; |
| } |
| } |
| |
| y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 ); |
| |
| Suite: |
| if ( y1 < *min ) *min = y1; |
| if ( y3 > *max ) *max = y3; |
| } |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* <Function> */ |
| /* BBox_Conic_To */ |
| /* */ |
| /* <Description> */ |
| /* This function is used as a `conic_to' emitter during */ |
| /* FT_Raster_Decompose(). It checks a conic Bezier curve with the */ |
| /* current bounding box, and computes its extrema if necessary to */ |
| /* update it. */ |
| /* */ |
| /* <Input> */ |
| /* control :: A pointer to a control point. */ |
| /* to :: A pointer to the destination vector. */ |
| /* */ |
| /* <InOut> */ |
| /* user :: The address of the current walk context. */ |
| /* */ |
| /* <Return> */ |
| /* Always 0. Needed for the interface only. */ |
| /* */ |
| /* <Note> */ |
| /* In the case of a non-monotonous arc, we compute directly the */ |
| /* extremum coordinates, as it is sufficiently fast. */ |
| /* */ |
| static int |
| BBox_Conic_To( FT_Vector* control, |
| FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| /* we don't need to check `to' since it is always an `on' point, thus */ |
| /* within the bbox */ |
| |
| if ( CHECK_X( control, user->bbox ) ) |
| |
| BBox_Conic_Check( user->last.x, |
| control->x, |
| to->x, |
| &user->bbox.xMin, |
| &user->bbox.xMax ); |
| |
| if ( CHECK_Y( control, user->bbox ) ) |
| |
| BBox_Conic_Check( user->last.y, |
| control->y, |
| to->y, |
| &user->bbox.yMin, |
| &user->bbox.yMax ); |
| |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* <Function> */ |
| /* BBox_Cubic_Check */ |
| /* */ |
| /* <Description> */ |
| /* Finds the extrema of a 1-dimensional cubic Bezier curve and */ |
| /* updates a bounding range. This version uses splitting because we */ |
| /* don't want to use square roots and extra accuracies. */ |
| /* */ |
| /* <Input> */ |
| /* p1 :: The start coordinate. */ |
| /* p2 :: The coordinate of the first control point. */ |
| /* p3 :: The coordinate of the second control point. */ |
| /* p4 :: The end coordinate. */ |
| /* */ |
| /* <InOut> */ |
| /* min :: The address of the current minimum. */ |
| /* max :: The address of the current maximum. */ |
| /* */ |
| #if 0 |
| static void |
| BBox_Cubic_Check( FT_Pos p1, |
| FT_Pos p2, |
| FT_Pos p3, |
| FT_Pos p4, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| FT_Pos stack[32*3 + 1], *arc; |
| |
| |
| arc = stack; |
| |
| arc[0] = p1; |
| arc[1] = p2; |
| arc[2] = p3; |
| arc[3] = p4; |
| |
| do |
| { |
| FT_Pos y1 = arc[0]; |
| FT_Pos y2 = arc[1]; |
| FT_Pos y3 = arc[2]; |
| FT_Pos y4 = arc[3]; |
| |
| |
| if ( y1 == y4 ) |
| { |
| if ( y1 == y2 && y1 == y3 ) /* Flat */ |
| goto Test; |
| } |
| else if ( y1 < y4 ) |
| { |
| if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* Ascending */ |
| goto Test; |
| } |
| else |
| { |
| if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* Descending */ |
| { |
| y2 = y1; |
| y1 = y4; |
| y4 = y2; |
| goto Test; |
| } |
| } |
| |
| /* Unknown direction -- split the arc in two */ |
| arc[6] = y4; |
| arc[1] = y1 = ( y1 + y2 ) / 2; |
| arc[5] = y4 = ( y4 + y3 ) / 2; |
| y2 = ( y2 + y3 ) / 2; |
| arc[2] = y1 = ( y1 + y2 ) / 2; |
| arc[4] = y4 = ( y4 + y2 ) / 2; |
| arc[3] = ( y1 + y4 ) / 2; |
| |
| arc += 3; |
| goto Suite; |
| |
| Test: |
| if ( y1 < *min ) *min = y1; |
| if ( y4 > *max ) *max = y4; |
| arc -= 3; |
| |
| Suite: |
| ; |
| } while ( arc >= stack ); |
| } |
| #else |
| |
| static void |
| test_cubic_extrema( FT_Pos y1, |
| FT_Pos y2, |
| FT_Pos y3, |
| FT_Pos y4, |
| FT_Fixed u, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */ |
| FT_Pos b = y3 - 2*y2 + y1; |
| FT_Pos c = y2 - y1; |
| FT_Pos d = y1; |
| FT_Pos y; |
| FT_Fixed uu; |
| |
| FT_UNUSED ( y4 ); |
| |
| |
| /* The polynom is */ |
| /* */ |
| /* a*x^3 + 3b*x^2 + 3c*x + d . */ |
| /* */ |
| /* However, we also have */ |
| /* */ |
| /* dP/dx(u) = 0 , */ |
| /* */ |
| /* which implies that */ |
| /* */ |
| /* P(u) = b*u^2 + 2c*u + d */ |
| |
| if ( u > 0 && u < 0x10000L ) |
| { |
| uu = FT_MulFix( u, u ); |
| y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu ); |
| |
| if ( y < *min ) *min = y; |
| if ( y > *max ) *max = y; |
| } |
| } |
| |
| |
| static void |
| BBox_Cubic_Check( FT_Pos y1, |
| FT_Pos y2, |
| FT_Pos y3, |
| FT_Pos y4, |
| FT_Pos* min, |
| FT_Pos* max ) |
| { |
| /* always compare first and last points */ |
| if ( y1 < *min ) *min = y1; |
| else if ( y1 > *max ) *max = y1; |
| |
| if ( y4 < *min ) *min = y4; |
| else if ( y4 > *max ) *max = y4; |
| |
| /* now, try to see if there are split points here */ |
| if ( y1 <= y4 ) |
| { |
| /* flat or ascending arc test */ |
| if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 ) |
| return; |
| } |
| else /* y1 > y4 */ |
| { |
| /* descending arc test */ |
| if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 ) |
| return; |
| } |
| |
| /* There are some split points. Find them. */ |
| { |
| FT_Pos a = y4 - 3*y3 + 3*y2 - y1; |
| FT_Pos b = y3 - 2*y2 + y1; |
| FT_Pos c = y2 - y1; |
| FT_Pos d; |
| FT_Fixed t; |
| |
| |
| /* We need to solve "ax^2+2bx+c" here, without floating points! */ |
| /* The trick is to normalize to a different representation in order */ |
| /* to use our 16.16 fixed point routines. */ |
| /* */ |
| /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after the */ |
| /* the normalization. These values must fit into a single 16.16 */ |
| /* value. */ |
| /* */ |
| /* We normalize a, b, and c to "8.16" fixed float values to ensure */ |
| /* that their product is held in a "16.16" value. */ |
| /* */ |
| { |
| FT_ULong t1, t2; |
| int shift = 0; |
| |
| |
| /* Technical explanation of what's happening there. */ |
| /* */ |
| /* The following computation is based on the fact that for */ |
| /* any value "y", if "n" is the position of the most */ |
| /* significant bit of "abs(y)" (starting from 0 for the */ |
| /* least significant bit), then y is in the range */ |
| /* */ |
| /* "-2^n..2^n-1" */ |
| /* */ |
| /* We want to shift "a", "b" and "c" concurrently in order */ |
| /* to ensure that they all fit in 8.16 values, which maps */ |
| /* to the integer range "-2^23..2^23-1". */ |
| /* */ |
| /* Necessarily, we need to shift "a", "b" and "c" so that */ |
| /* the most significant bit of their absolute values is at */ |
| /* _most_ at position 23. */ |
| /* */ |
| /* We begin by computing "t1" as the bitwise "or" of the */ |
| /* absolute values of "a", "b", "c". */ |
| /* */ |
| t1 = (FT_ULong)((a >= 0) ? a : -a ); |
| t2 = (FT_ULong)((b >= 0) ? b : -b ); |
| t1 |= t2; |
| t2 = (FT_ULong)((c >= 0) ? c : -c ); |
| t1 |= t2; |
| |
| /* Now, the most significant bit of "t1" is sure to be the */ |
| /* msb of one of "a", "b", "c", depending on which one is */ |
| /* expressed in the greatest integer range. */ |
| /* */ |
| /* We now compute the "shift", by shifting "t1" as many */ |
| /* times as necessary to move its msb to position 23. */ |
| /* */ |
| /* This corresponds to a value of t1 that is in the range */ |
| /* 0x40_0000..0x7F_FFFF. */ |
| /* */ |
| /* Finally, we shift "a", "b" and "c" by the same amount. */ |
| /* This ensures that all values are now in the range */ |
| /* -2^23..2^23, i.e. that they are now expressed as 8.16 */ |
| /* fixed float numbers. */ |
| /* */ |
| /* This also means that we are using 24 bits of precision */ |
| /* to compute the zeros, independently of the range of */ |
| /* the original polynom coefficients. */ |
| /* */ |
| /* This should ensure reasonably accurate values for the */ |
| /* zeros. Note that the latter are only expressed with */ |
| /* 16 bits when computing the extrema (the zeros need to */ |
| /* be in 0..1 exclusive to be considered part of the arc). */ |
| /* */ |
| if ( t1 == 0 ) /* all coefficients are 0! */ |
| return; |
| |
| if ( t1 > 0x7FFFFFUL ) |
| { |
| do |
| { |
| shift++; |
| t1 >>= 1; |
| } while ( t1 > 0x7FFFFFUL ); |
| |
| /* losing some bits of precision, but we use 24 of them */ |
| /* for the computation anyway. */ |
| a >>= shift; |
| b >>= shift; |
| c >>= shift; |
| } |
| else if ( t1 < 0x400000UL ) |
| { |
| do |
| { |
| shift++; |
| t1 <<= 1; |
| } while ( t1 < 0x400000UL ); |
| |
| a <<= shift; |
| b <<= shift; |
| c <<= shift; |
| } |
| } |
| |
| /* handle a == 0 */ |
| if ( a == 0 ) |
| { |
| if ( b != 0 ) |
| { |
| t = - FT_DivFix( c, b ) / 2; |
| test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
| } |
| } |
| else |
| { |
| /* solve the equation now */ |
| d = FT_MulFix( b, b ) - FT_MulFix( a, c ); |
| if ( d < 0 ) |
| return; |
| |
| if ( d == 0 ) |
| { |
| /* there is a single split point at -b/a */ |
| t = - FT_DivFix( b, a ); |
| test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
| } |
| else |
| { |
| /* there are two solutions; we need to filter them though */ |
| d = FT_SqrtFixed( (FT_Int32)d ); |
| t = - FT_DivFix( b - d, a ); |
| test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
| |
| t = - FT_DivFix( b + d, a ); |
| test_cubic_extrema( y1, y2, y3, y4, t, min, max ); |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| |
| /*************************************************************************/ |
| /* */ |
| /* <Function> */ |
| /* BBox_Cubic_To */ |
| /* */ |
| /* <Description> */ |
| /* This function is used as a `cubic_to' emitter during */ |
| /* FT_Raster_Decompose(). It checks a cubic Bezier curve with the */ |
| /* current bounding box, and computes its extrema if necessary to */ |
| /* update it. */ |
| /* */ |
| /* <Input> */ |
| /* control1 :: A pointer to the first control point. */ |
| /* control2 :: A pointer to the second control point. */ |
| /* to :: A pointer to the destination vector. */ |
| /* */ |
| /* <InOut> */ |
| /* user :: The address of the current walk context. */ |
| /* */ |
| /* <Return> */ |
| /* Always 0. Needed for the interface only. */ |
| /* */ |
| /* <Note> */ |
| /* In the case of a non-monotonous arc, we don't compute directly */ |
| /* extremum coordinates, we subdivise instead. */ |
| /* */ |
| static int |
| BBox_Cubic_To( FT_Vector* control1, |
| FT_Vector* control2, |
| FT_Vector* to, |
| TBBox_Rec* user ) |
| { |
| /* we don't need to check `to' since it is always an `on' point, thus */ |
| /* within the bbox */ |
| |
| if ( CHECK_X( control1, user->bbox ) || |
| CHECK_X( control2, user->bbox ) ) |
| |
| BBox_Cubic_Check( user->last.x, |
| control1->x, |
| control2->x, |
| to->x, |
| &user->bbox.xMin, |
| &user->bbox.xMax ); |
| |
| if ( CHECK_Y( control1, user->bbox ) || |
| CHECK_Y( control2, user->bbox ) ) |
| |
| BBox_Cubic_Check( user->last.y, |
| control1->y, |
| control2->y, |
| to->y, |
| &user->bbox.yMin, |
| &user->bbox.yMax ); |
| |
| user->last = *to; |
| |
| return 0; |
| } |
| |
| |
| /* documentation is in ftbbox.h */ |
| |
| FT_EXPORT_DEF( FT_Error ) |
| FT_Outline_Get_BBox( FT_Outline* outline, |
| FT_BBox *abbox ) |
| { |
| FT_BBox cbox; |
| FT_BBox bbox; |
| FT_Vector* vec; |
| FT_UShort n; |
| |
| |
| if ( !abbox ) |
| return FT_Err_Invalid_Argument; |
| |
| if ( !outline ) |
| return FT_Err_Invalid_Outline; |
| |
| /* if outline is empty, return (0,0,0,0) */ |
| if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
| { |
| abbox->xMin = abbox->xMax = 0; |
| abbox->yMin = abbox->yMax = 0; |
| return 0; |
| } |
| |
| /* We compute the control box as well as the bounding box of */ |
| /* all `on' points in the outline. Then, if the two boxes */ |
| /* coincide, we exit immediately. */ |
| |
| vec = outline->points; |
| bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x; |
| bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y; |
| vec++; |
| |
| for ( n = 1; n < outline->n_points; n++ ) |
| { |
| FT_Pos x = vec->x; |
| FT_Pos y = vec->y; |
| |
| |
| /* update control box */ |
| if ( x < cbox.xMin ) cbox.xMin = x; |
| if ( x > cbox.xMax ) cbox.xMax = x; |
| |
| if ( y < cbox.yMin ) cbox.yMin = y; |
| if ( y > cbox.yMax ) cbox.yMax = y; |
| |
| if ( FT_CURVE_TAG( outline->tags[n] ) == FT_Curve_Tag_On ) |
| { |
| /* update bbox for `on' points only */ |
| if ( x < bbox.xMin ) bbox.xMin = x; |
| if ( x > bbox.xMax ) bbox.xMax = x; |
| |
| if ( y < bbox.yMin ) bbox.yMin = y; |
| if ( y > bbox.yMax ) bbox.yMax = y; |
| } |
| |
| vec++; |
| } |
| |
| /* test two boxes for equality */ |
| if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax || |
| cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax ) |
| { |
| /* the two boxes are different, now walk over the outline to */ |
| /* get the Bezier arc extrema. */ |
| |
| static const FT_Outline_Funcs interface = |
| { |
| (FT_Outline_MoveTo_Func) BBox_Move_To, |
| (FT_Outline_LineTo_Func) BBox_Move_To, |
| (FT_Outline_ConicTo_Func)BBox_Conic_To, |
| (FT_Outline_CubicTo_Func)BBox_Cubic_To, |
| 0, 0 |
| }; |
| |
| FT_Error error; |
| TBBox_Rec user; |
| |
| |
| user.bbox = bbox; |
| |
| error = FT_Outline_Decompose( outline, &interface, &user ); |
| if ( error ) |
| return error; |
| |
| *abbox = user.bbox; |
| } |
| else |
| *abbox = bbox; |
| |
| return FT_Err_Ok; |
| } |
| |
| |
| /* END */ |