blob: d83199ddc49fd9597ce2d9f6e7927cabf115a127 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkFlattenable.h"
#include "SkImagePriv.h"
#include "SkMallocPixelRef.h"
#include "SkMask.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPixelRef.h"
#include "SkThread.h"
#include "SkUnPreMultiply.h"
#include "SkUtils.h"
#include "SkValidationUtils.h"
#include "SkPackBits.h"
#include <new>
static bool reset_return_false(SkBitmap* bm) {
bm->reset();
return false;
}
SkBitmap::SkBitmap() {
sk_bzero(this, sizeof(*this));
}
SkBitmap::SkBitmap(const SkBitmap& src) {
SkDEBUGCODE(src.validate();)
sk_bzero(this, sizeof(*this));
*this = src;
SkDEBUGCODE(this->validate();)
}
SkBitmap::~SkBitmap() {
SkDEBUGCODE(this->validate();)
this->freePixels();
}
SkBitmap& SkBitmap::operator=(const SkBitmap& src) {
if (this != &src) {
this->freePixels();
memcpy(this, &src, sizeof(src));
// inc src reference counts
SkSafeRef(src.fPixelRef);
// we reset our locks if we get blown away
fPixelLockCount = 0;
if (fPixelRef) {
// ignore the values from the memcpy
fPixels = NULL;
fColorTable = NULL;
// Note that what to for genID is somewhat arbitrary. We have no
// way to track changes to raw pixels across multiple SkBitmaps.
// Would benefit from an SkRawPixelRef type created by
// setPixels.
// Just leave the memcpy'ed one but they'll get out of sync
// as soon either is modified.
}
}
SkDEBUGCODE(this->validate();)
return *this;
}
void SkBitmap::swap(SkBitmap& other) {
SkTSwap(fColorTable, other.fColorTable);
SkTSwap(fPixelRef, other.fPixelRef);
SkTSwap(fPixelRefOrigin, other.fPixelRefOrigin);
SkTSwap(fPixelLockCount, other.fPixelLockCount);
SkTSwap(fPixels, other.fPixels);
SkTSwap(fInfo, other.fInfo);
SkTSwap(fRowBytes, other.fRowBytes);
SkTSwap(fFlags, other.fFlags);
SkDEBUGCODE(this->validate();)
}
void SkBitmap::reset() {
this->freePixels();
sk_bzero(this, sizeof(*this));
}
void SkBitmap::getBounds(SkRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0,
SkIntToScalar(fInfo.fWidth), SkIntToScalar(fInfo.fHeight));
}
void SkBitmap::getBounds(SkIRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0, fInfo.fWidth, fInfo.fHeight);
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::setInfo(const SkImageInfo& origInfo, size_t rowBytes) {
SkImageInfo info = origInfo;
if (!SkColorTypeValidateAlphaType(info.fColorType, info.fAlphaType,
&info.fAlphaType)) {
return reset_return_false(this);
}
// require that rowBytes fit in 31bits
int64_t mrb = info.minRowBytes64();
if ((int32_t)mrb != mrb) {
return reset_return_false(this);
}
if ((int64_t)rowBytes != (int32_t)rowBytes) {
return reset_return_false(this);
}
if (info.width() < 0 || info.height() < 0) {
return reset_return_false(this);
}
if (kUnknown_SkColorType == info.colorType()) {
rowBytes = 0;
} else if (0 == rowBytes) {
rowBytes = (size_t)mrb;
} else if (!info.validRowBytes(rowBytes)) {
return reset_return_false(this);
}
this->freePixels();
fInfo = info;
fRowBytes = SkToU32(rowBytes);
return true;
}
bool SkBitmap::setAlphaType(SkAlphaType alphaType) {
if (!SkColorTypeValidateAlphaType(fInfo.fColorType, alphaType, &alphaType)) {
return false;
}
if (fInfo.fAlphaType != alphaType) {
fInfo.fAlphaType = alphaType;
if (fPixelRef) {
fPixelRef->changeAlphaType(alphaType);
}
}
return true;
}
void SkBitmap::updatePixelsFromRef() const {
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
SkASSERT(fPixelRef->isLocked());
void* p = fPixelRef->pixels();
if (NULL != p) {
p = (char*)p
+ fPixelRefOrigin.fY * fRowBytes
+ fPixelRefOrigin.fX * fInfo.bytesPerPixel();
}
fPixels = p;
fColorTable = fPixelRef->colorTable();
} else {
SkASSERT(0 == fPixelLockCount);
fPixels = NULL;
fColorTable = NULL;
}
}
}
SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, int dx, int dy) {
#ifdef SK_DEBUG
if (pr) {
if (kUnknown_SkColorType != fInfo.colorType()) {
const SkImageInfo& prInfo = pr->info();
SkASSERT(fInfo.fWidth <= prInfo.fWidth);
SkASSERT(fInfo.fHeight <= prInfo.fHeight);
SkASSERT(fInfo.fColorType == prInfo.fColorType);
switch (prInfo.fAlphaType) {
case kIgnore_SkAlphaType:
SkASSERT(fInfo.fAlphaType == kIgnore_SkAlphaType);
break;
case kOpaque_SkAlphaType:
case kPremul_SkAlphaType:
SkASSERT(fInfo.fAlphaType == kOpaque_SkAlphaType ||
fInfo.fAlphaType == kPremul_SkAlphaType);
break;
case kUnpremul_SkAlphaType:
SkASSERT(fInfo.fAlphaType == kOpaque_SkAlphaType ||
fInfo.fAlphaType == kUnpremul_SkAlphaType);
break;
}
}
}
#endif
if (pr) {
const SkImageInfo& info = pr->info();
fPixelRefOrigin.set(SkPin32(dx, 0, info.fWidth),
SkPin32(dy, 0, info.fHeight));
} else {
// ignore dx,dy if there is no pixelref
fPixelRefOrigin.setZero();
}
if (fPixelRef != pr) {
this->freePixels();
SkASSERT(NULL == fPixelRef);
SkSafeRef(pr);
fPixelRef = pr;
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
return pr;
}
void SkBitmap::lockPixels() const {
if (NULL != fPixelRef && 0 == sk_atomic_inc(&fPixelLockCount)) {
fPixelRef->lockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
void SkBitmap::unlockPixels() const {
SkASSERT(NULL == fPixelRef || fPixelLockCount > 0);
if (NULL != fPixelRef && 1 == sk_atomic_dec(&fPixelLockCount)) {
fPixelRef->unlockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::lockPixelsAreWritable() const {
return (fPixelRef) ? fPixelRef->lockPixelsAreWritable() : false;
}
void SkBitmap::setPixels(void* p, SkColorTable* ctable) {
if (NULL == p) {
this->setPixelRef(NULL);
return;
}
if (kUnknown_SkColorType == fInfo.colorType()) {
this->setPixelRef(NULL);
return;
}
SkPixelRef* pr = SkMallocPixelRef::NewDirect(fInfo, p, fRowBytes, ctable);
if (NULL == pr) {
this->setPixelRef(NULL);
return;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::allocPixels(Allocator* allocator, SkColorTable* ctable) {
HeapAllocator stdalloc;
if (NULL == allocator) {
allocator = &stdalloc;
}
return allocator->allocPixelRef(this, ctable);
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::allocPixels(const SkImageInfo& requestedInfo, size_t rowBytes) {
if (kIndex_8_SkColorType == requestedInfo.colorType()) {
return reset_return_false(this);
}
if (!this->setInfo(requestedInfo, rowBytes)) {
return reset_return_false(this);
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
// setInfo may have computed a valid rowbytes if 0 were passed in
rowBytes = this->rowBytes();
SkMallocPixelRef::PRFactory defaultFactory;
SkPixelRef* pr = defaultFactory.create(correctedInfo, rowBytes, NULL);
if (NULL == pr) {
return reset_return_false(this);
}
this->setPixelRef(pr)->unref();
// TODO: lockPixels could/should return bool or void*/NULL
this->lockPixels();
if (NULL == this->getPixels()) {
return reset_return_false(this);
}
return true;
}
bool SkBitmap::allocPixels(const SkImageInfo& requestedInfo, SkPixelRefFactory* factory,
SkColorTable* ctable) {
if (kIndex_8_SkColorType == requestedInfo.fColorType && NULL == ctable) {
return reset_return_false(this);
}
if (!this->setInfo(requestedInfo)) {
return reset_return_false(this);
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
SkMallocPixelRef::PRFactory defaultFactory;
if (NULL == factory) {
factory = &defaultFactory;
}
SkPixelRef* pr = factory->create(correctedInfo, correctedInfo.minRowBytes(), ctable);
if (NULL == pr) {
return reset_return_false(this);
}
this->setPixelRef(pr)->unref();
// TODO: lockPixels could/should return bool or void*/NULL
this->lockPixels();
if (NULL == this->getPixels()) {
return reset_return_false(this);
}
return true;
}
bool SkBitmap::installPixels(const SkImageInfo& requestedInfo, void* pixels, size_t rb,
SkColorTable* ct, void (*releaseProc)(void* addr, void* context),
void* context) {
if (!this->setInfo(requestedInfo, rb)) {
this->reset();
return false;
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
SkPixelRef* pr = SkMallocPixelRef::NewWithProc(correctedInfo, rb, ct, pixels, releaseProc,
context);
if (!pr) {
this->reset();
return false;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
return true;
}
bool SkBitmap::installMaskPixels(const SkMask& mask) {
if (SkMask::kA8_Format != mask.fFormat) {
this->reset();
return false;
}
return this->installPixels(SkImageInfo::MakeA8(mask.fBounds.width(),
mask.fBounds.height()),
mask.fImage, mask.fRowBytes);
}
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::freePixels() {
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
fPixelRef->unlockPixels();
}
fPixelRef->unref();
fPixelRef = NULL;
fPixelRefOrigin.setZero();
}
fPixelLockCount = 0;
fPixels = NULL;
fColorTable = NULL;
}
uint32_t SkBitmap::getGenerationID() const {
return (fPixelRef) ? fPixelRef->getGenerationID() : 0;
}
void SkBitmap::notifyPixelsChanged() const {
SkASSERT(!this->isImmutable());
if (fPixelRef) {
fPixelRef->notifyPixelsChanged();
}
}
GrTexture* SkBitmap::getTexture() const {
return fPixelRef ? fPixelRef->getTexture() : NULL;
}
///////////////////////////////////////////////////////////////////////////////
/** We explicitly use the same allocator for our pixels that SkMask does,
so that we can freely assign memory allocated by one class to the other.
*/
bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst,
SkColorTable* ctable) {
const SkImageInfo info = dst->info();
if (kUnknown_SkColorType == info.colorType()) {
// SkDebugf("unsupported config for info %d\n", dst->config());
return false;
}
SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, dst->rowBytes(), ctable);
if (NULL == pr) {
return false;
}
dst->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
dst->lockPixels();
return true;
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::copyPixelsTo(void* const dst, size_t dstSize,
size_t dstRowBytes, bool preserveDstPad) const {
if (0 == dstRowBytes) {
dstRowBytes = fRowBytes;
}
if (dstRowBytes < fInfo.minRowBytes() ||
dst == NULL || (getPixels() == NULL && pixelRef() == NULL)) {
return false;
}
if (!preserveDstPad && static_cast<uint32_t>(dstRowBytes) == fRowBytes) {
size_t safeSize = this->getSafeSize();
if (safeSize > dstSize || safeSize == 0)
return false;
else {
SkAutoLockPixels lock(*this);
// This implementation will write bytes beyond the end of each row,
// excluding the last row, if the bitmap's stride is greater than
// strictly required by the current config.
memcpy(dst, getPixels(), safeSize);
return true;
}
} else {
// If destination has different stride than us, then copy line by line.
if (fInfo.getSafeSize(dstRowBytes) > dstSize) {
return false;
} else {
// Just copy what we need on each line.
size_t rowBytes = fInfo.minRowBytes();
SkAutoLockPixels lock(*this);
const uint8_t* srcP = reinterpret_cast<const uint8_t*>(getPixels());
uint8_t* dstP = reinterpret_cast<uint8_t*>(dst);
for (int row = 0; row < fInfo.fHeight;
row++, srcP += fRowBytes, dstP += dstRowBytes) {
memcpy(dstP, srcP, rowBytes);
}
return true;
}
}
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::isImmutable() const {
return fPixelRef ? fPixelRef->isImmutable() : false;
}
void SkBitmap::setImmutable() {
if (fPixelRef) {
fPixelRef->setImmutable();
}
}
bool SkBitmap::isVolatile() const {
return (fFlags & kImageIsVolatile_Flag) != 0;
}
void SkBitmap::setIsVolatile(bool isVolatile) {
if (isVolatile) {
fFlags |= kImageIsVolatile_Flag;
} else {
fFlags &= ~kImageIsVolatile_Flag;
}
}
void* SkBitmap::getAddr(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
char* base = (char*)this->getPixels();
if (base) {
base += y * this->rowBytes();
switch (this->colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
base += x << 2;
break;
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType:
base += x << 1;
break;
case kAlpha_8_SkColorType:
case kIndex_8_SkColorType:
base += x;
break;
default:
SkDEBUGFAIL("Can't return addr for config");
base = NULL;
break;
}
}
return base;
}
SkColor SkBitmap::getColor(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
switch (this->colorType()) {
case kAlpha_8_SkColorType: {
uint8_t* addr = this->getAddr8(x, y);
return SkColorSetA(0, addr[0]);
}
case kIndex_8_SkColorType: {
SkPMColor c = this->getIndex8Color(x, y);
return SkUnPreMultiply::PMColorToColor(c);
}
case kRGB_565_SkColorType: {
uint16_t* addr = this->getAddr16(x, y);
return SkPixel16ToColor(addr[0]);
}
case kARGB_4444_SkColorType: {
uint16_t* addr = this->getAddr16(x, y);
SkPMColor c = SkPixel4444ToPixel32(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
uint32_t* addr = this->getAddr32(x, y);
return SkUnPreMultiply::PMColorToColor(addr[0]);
}
default:
SkASSERT(false);
return 0;
}
SkASSERT(false); // Not reached.
return 0;
}
bool SkBitmap::ComputeIsOpaque(const SkBitmap& bm) {
SkAutoLockPixels alp(bm);
if (!bm.getPixels()) {
return false;
}
const int height = bm.height();
const int width = bm.width();
switch (bm.colorType()) {
case kAlpha_8_SkColorType: {
unsigned a = 0xFF;
for (int y = 0; y < height; ++y) {
const uint8_t* row = bm.getAddr8(0, y);
for (int x = 0; x < width; ++x) {
a &= row[x];
}
if (0xFF != a) {
return false;
}
}
return true;
} break;
case kIndex_8_SkColorType: {
SkAutoLockColors alc(bm);
const SkPMColor* table = alc.colors();
if (!table) {
return false;
}
SkPMColor c = (SkPMColor)~0;
for (int i = bm.getColorTable()->count() - 1; i >= 0; --i) {
c &= table[i];
}
return 0xFF == SkGetPackedA32(c);
} break;
case kRGB_565_SkColorType:
return true;
break;
case kARGB_4444_SkColorType: {
unsigned c = 0xFFFF;
for (int y = 0; y < height; ++y) {
const SkPMColor16* row = bm.getAddr16(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xF != SkGetPackedA4444(c)) {
return false;
}
}
return true;
} break;
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
SkPMColor c = (SkPMColor)~0;
for (int y = 0; y < height; ++y) {
const SkPMColor* row = bm.getAddr32(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xFF != SkGetPackedA32(c)) {
return false;
}
}
return true;
}
default:
break;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static uint16_t pack_8888_to_4444(unsigned a, unsigned r, unsigned g, unsigned b) {
unsigned pixel = (SkA32To4444(a) << SK_A4444_SHIFT) |
(SkR32To4444(r) << SK_R4444_SHIFT) |
(SkG32To4444(g) << SK_G4444_SHIFT) |
(SkB32To4444(b) << SK_B4444_SHIFT);
return SkToU16(pixel);
}
void SkBitmap::internalErase(const SkIRect& area,
U8CPU a, U8CPU r, U8CPU g, U8CPU b) const {
#ifdef SK_DEBUG
SkDEBUGCODE(this->validate();)
SkASSERT(!area.isEmpty());
{
SkIRect total = { 0, 0, this->width(), this->height() };
SkASSERT(total.contains(area));
}
#endif
switch (fInfo.colorType()) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
return; // can't erase. Should we bzero so the memory is not uninitialized?
default:
break;
}
SkAutoLockPixels alp(*this);
// perform this check after the lock call
if (!this->readyToDraw()) {
return;
}
int height = area.height();
const int width = area.width();
const int rowBytes = fRowBytes;
switch (this->colorType()) {
case kAlpha_8_SkColorType: {
uint8_t* p = this->getAddr8(area.fLeft, area.fTop);
while (--height >= 0) {
memset(p, a, width);
p += rowBytes;
}
break;
}
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType: {
uint16_t* p = this->getAddr16(area.fLeft, area.fTop);;
uint16_t v;
// make rgb premultiplied
if (255 != a) {
r = SkAlphaMul(r, a);
g = SkAlphaMul(g, a);
b = SkAlphaMul(b, a);
}
if (kARGB_4444_SkColorType == this->colorType()) {
v = pack_8888_to_4444(a, r, g, b);
} else {
v = SkPackRGB16(r >> (8 - SK_R16_BITS),
g >> (8 - SK_G16_BITS),
b >> (8 - SK_B16_BITS));
}
while (--height >= 0) {
sk_memset16(p, v, width);
p = (uint16_t*)((char*)p + rowBytes);
}
break;
}
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
uint32_t* p = this->getAddr32(area.fLeft, area.fTop);
if (255 != a && kPremul_SkAlphaType == this->alphaType()) {
r = SkAlphaMul(r, a);
g = SkAlphaMul(g, a);
b = SkAlphaMul(b, a);
}
uint32_t v = kRGBA_8888_SkColorType == this->colorType() ?
SkPackARGB_as_RGBA(a, r, g, b) : SkPackARGB_as_BGRA(a, r, g, b);
while (--height >= 0) {
sk_memset32(p, v, width);
p = (uint32_t*)((char*)p + rowBytes);
}
break;
}
default:
return; // no change, so don't call notifyPixelsChanged()
}
this->notifyPixelsChanged();
}
void SkBitmap::eraseARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b) const {
SkIRect area = { 0, 0, this->width(), this->height() };
if (!area.isEmpty()) {
this->internalErase(area, a, r, g, b);
}
}
void SkBitmap::eraseArea(const SkIRect& rect, SkColor c) const {
SkIRect area = { 0, 0, this->width(), this->height() };
if (area.intersect(rect)) {
this->internalErase(area, SkColorGetA(c), SkColorGetR(c),
SkColorGetG(c), SkColorGetB(c));
}
}
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const {
SkDEBUGCODE(this->validate();)
if (NULL == result || NULL == fPixelRef) {
return false; // no src pixels
}
SkIRect srcRect, r;
srcRect.set(0, 0, this->width(), this->height());
if (!r.intersect(srcRect, subset)) {
return false; // r is empty (i.e. no intersection)
}
if (fPixelRef->getTexture() != NULL) {
// Do a deep copy
SkPixelRef* pixelRef = fPixelRef->deepCopy(this->colorType(), &subset);
if (pixelRef != NULL) {
SkBitmap dst;
dst.setInfo(SkImageInfo::Make(subset.width(), subset.height(),
this->colorType(), this->alphaType()));
dst.setIsVolatile(this->isVolatile());
dst.setPixelRef(pixelRef)->unref();
SkDEBUGCODE(dst.validate());
result->swap(dst);
return true;
}
}
// If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have
// exited above.
SkASSERT(static_cast<unsigned>(r.fLeft) < static_cast<unsigned>(this->width()));
SkASSERT(static_cast<unsigned>(r.fTop) < static_cast<unsigned>(this->height()));
SkBitmap dst;
dst.setInfo(SkImageInfo::Make(r.width(), r.height(), this->colorType(), this->alphaType()),
this->rowBytes());
dst.setIsVolatile(this->isVolatile());
if (fPixelRef) {
SkIPoint origin = fPixelRefOrigin;
origin.fX += r.fLeft;
origin.fY += r.fTop;
// share the pixelref with a custom offset
dst.setPixelRef(fPixelRef, origin);
}
SkDEBUGCODE(dst.validate();)
// we know we're good, so commit to result
result->swap(dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
#include "SkCanvas.h"
#include "SkPaint.h"
bool SkBitmap::canCopyTo(SkColorType dstColorType) const {
const SkColorType srcCT = this->colorType();
if (srcCT == kUnknown_SkColorType) {
return false;
}
bool sameConfigs = (srcCT == dstColorType);
switch (dstColorType) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
break;
case kIndex_8_SkColorType:
if (!sameConfigs) {
return false;
}
break;
case kARGB_4444_SkColorType:
return sameConfigs || kN32_SkColorType == srcCT || kIndex_8_SkColorType == srcCT;
default:
return false;
}
return true;
}
#include "SkConfig8888.h"
bool SkBitmap::readPixels(const SkImageInfo& requestedDstInfo, void* dstPixels, size_t dstRB,
int x, int y) const {
if (kUnknown_SkColorType == requestedDstInfo.colorType()) {
return false;
}
if (NULL == dstPixels || dstRB < requestedDstInfo.minRowBytes()) {
return false;
}
if (0 == requestedDstInfo.width() || 0 == requestedDstInfo.height()) {
return false;
}
SkIRect srcR = SkIRect::MakeXYWH(x, y, requestedDstInfo.width(), requestedDstInfo.height());
if (!srcR.intersect(0, 0, this->width(), this->height())) {
return false;
}
SkImageInfo dstInfo = requestedDstInfo;
// the intersect may have shrunk info's logical size
dstInfo.fWidth = srcR.width();
dstInfo.fHeight = srcR.height();
// if x or y are negative, then we have to adjust pixels
if (x > 0) {
x = 0;
}
if (y > 0) {
y = 0;
}
// here x,y are either 0 or negative
dstPixels = ((char*)dstPixels - y * dstRB - x * dstInfo.bytesPerPixel());
//////////////
SkAutoLockPixels alp(*this);
// since we don't stop creating un-pixeled devices yet, check for no pixels here
if (NULL == this->getPixels()) {
return false;
}
SkImageInfo srcInfo = this->info();
srcInfo.fWidth = dstInfo.width();
srcInfo.fHeight = dstInfo.height();
const void* srcPixels = this->getAddr(srcR.x(), srcR.y());
return SkPixelInfo::CopyPixels(dstInfo, dstPixels, dstRB, srcInfo, srcPixels, this->rowBytes(),
this->getColorTable());
}
bool SkBitmap::copyTo(SkBitmap* dst, SkColorType dstColorType, Allocator* alloc) const {
if (!this->canCopyTo(dstColorType)) {
return false;
}
// if we have a texture, first get those pixels
SkBitmap tmpSrc;
const SkBitmap* src = this;
if (fPixelRef) {
SkIRect subset;
subset.setXYWH(fPixelRefOrigin.fX, fPixelRefOrigin.fY,
fInfo.width(), fInfo.height());
if (fPixelRef->readPixels(&tmpSrc, &subset)) {
if (fPixelRef->info().alphaType() == kUnpremul_SkAlphaType) {
// FIXME: The only meaningful implementation of readPixels
// (GrPixelRef) assumes premultiplied pixels.
return false;
}
SkASSERT(tmpSrc.width() == this->width());
SkASSERT(tmpSrc.height() == this->height());
// did we get lucky and we can just return tmpSrc?
if (tmpSrc.colorType() == dstColorType && NULL == alloc) {
dst->swap(tmpSrc);
// If the result is an exact copy, clone the gen ID.
if (dst->pixelRef() && dst->pixelRef()->info() == fPixelRef->info()) {
dst->pixelRef()->cloneGenID(*fPixelRef);
}
return true;
}
// fall through to the raster case
src = &tmpSrc;
}
}
// we lock this now, since we may need its colortable
SkAutoLockPixels srclock(*src);
if (!src->readyToDraw()) {
return false;
}
// The only way to be readyToDraw is if fPixelRef is non NULL.
SkASSERT(fPixelRef != NULL);
SkImageInfo dstInfo = src->info();
dstInfo.fColorType = dstColorType;
SkBitmap tmpDst;
if (!tmpDst.setInfo(dstInfo)) {
return false;
}
// allocate colortable if srcConfig == kIndex8_Config
SkAutoTUnref<SkColorTable> ctable;
if (dstColorType == kIndex_8_SkColorType) {
// TODO: can we just ref() the src colortable? Is it reentrant-safe?
ctable.reset(SkNEW_ARGS(SkColorTable, (*src->getColorTable())));
}
if (!tmpDst.allocPixels(alloc, ctable)) {
return false;
}
if (!tmpDst.readyToDraw()) {
// allocator/lock failed
return false;
}
// pixelRef must be non NULL or tmpDst.readyToDraw() would have
// returned false.
SkASSERT(tmpDst.pixelRef() != NULL);
if (!src->readPixels(tmpDst.info(), tmpDst.getPixels(), tmpDst.rowBytes(), 0, 0)) {
return false;
}
// (for BitmapHeap) Clone the pixelref genID even though we have a new pixelref.
// The old copyTo impl did this, so we continue it for now.
//
// TODO: should we ignore rowbytes (i.e. getSize)? Then it could just be
// if (src_pixelref->info == dst_pixelref->info)
//
if (src->colorType() == dstColorType && tmpDst.getSize() == src->getSize()) {
SkPixelRef* dstPixelRef = tmpDst.pixelRef();
if (dstPixelRef->info() == fPixelRef->info()) {
dstPixelRef->cloneGenID(*fPixelRef);
}
}
dst->swap(tmpDst);
return true;
}
bool SkBitmap::deepCopyTo(SkBitmap* dst) const {
const SkColorType dstCT = this->colorType();
if (!this->canCopyTo(dstCT)) {
return false;
}
// If we have a PixelRef, and it supports deep copy, use it.
// Currently supported only by texture-backed bitmaps.
if (fPixelRef) {
SkPixelRef* pixelRef = fPixelRef->deepCopy(dstCT, NULL);
if (pixelRef) {
uint32_t rowBytes;
if (this->colorType() == dstCT) {
// Since there is no subset to pass to deepCopy, and deepCopy
// succeeded, the new pixel ref must be identical.
SkASSERT(fPixelRef->info() == pixelRef->info());
pixelRef->cloneGenID(*fPixelRef);
// Use the same rowBytes as the original.
rowBytes = fRowBytes;
} else {
// With the new config, an appropriate fRowBytes will be computed by setInfo.
rowBytes = 0;
}
SkImageInfo info = fInfo;
info.fColorType = dstCT;
if (!dst->setInfo(info, rowBytes)) {
return false;
}
dst->setPixelRef(pixelRef, fPixelRefOrigin)->unref();
return true;
}
}
if (this->getTexture()) {
return false;
} else {
return this->copyTo(dst, dstCT, NULL);
}
}
///////////////////////////////////////////////////////////////////////////////
static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha,
int alphaRowBytes) {
SkASSERT(alpha != NULL);
SkASSERT(alphaRowBytes >= src.width());
SkColorType colorType = src.colorType();
int w = src.width();
int h = src.height();
size_t rb = src.rowBytes();
SkAutoLockPixels alp(src);
if (!src.readyToDraw()) {
// zero out the alpha buffer and return
while (--h >= 0) {
memset(alpha, 0, w);
alpha += alphaRowBytes;
}
return false;
}
if (kAlpha_8_SkColorType == colorType && !src.isOpaque()) {
const uint8_t* s = src.getAddr8(0, 0);
while (--h >= 0) {
memcpy(alpha, s, w);
s += rb;
alpha += alphaRowBytes;
}
} else if (kN32_SkColorType == colorType && !src.isOpaque()) {
const SkPMColor* SK_RESTRICT s = src.getAddr32(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(s[x]);
}
s = (const SkPMColor*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (kARGB_4444_SkColorType == colorType && !src.isOpaque()) {
const SkPMColor16* SK_RESTRICT s = src.getAddr16(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkPacked4444ToA32(s[x]);
}
s = (const SkPMColor16*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (kIndex_8_SkColorType == colorType && !src.isOpaque()) {
SkColorTable* ct = src.getColorTable();
if (ct) {
const SkPMColor* SK_RESTRICT table = ct->lockColors();
const uint8_t* SK_RESTRICT s = src.getAddr8(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(table[s[x]]);
}
s += rb;
alpha += alphaRowBytes;
}
ct->unlockColors();
}
} else { // src is opaque, so just fill alpha[] with 0xFF
memset(alpha, 0xFF, h * alphaRowBytes);
}
return true;
}
#include "SkPaint.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint,
Allocator *allocator, SkIPoint* offset) const {
SkDEBUGCODE(this->validate();)
SkBitmap tmpBitmap;
SkMatrix identity;
SkMask srcM, dstM;
srcM.fBounds.set(0, 0, this->width(), this->height());
srcM.fRowBytes = SkAlign4(this->width());
srcM.fFormat = SkMask::kA8_Format;
SkMaskFilter* filter = paint ? paint->getMaskFilter() : NULL;
// compute our (larger?) dst bounds if we have a filter
if (NULL != filter) {
identity.reset();
srcM.fImage = NULL;
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
dstM.fRowBytes = SkAlign4(dstM.fBounds.width());
} else {
NO_FILTER_CASE:
tmpBitmap.setInfo(SkImageInfo::MakeA8(this->width(), this->height()), srcM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes);
if (offset) {
offset->set(0, 0);
}
tmpBitmap.swap(*dst);
return true;
}
srcM.fImage = SkMask::AllocImage(srcM.computeImageSize());
SkAutoMaskFreeImage srcCleanup(srcM.fImage);
GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes);
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
SkAutoMaskFreeImage dstCleanup(dstM.fImage);
tmpBitmap.setInfo(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()),
dstM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize());
if (offset) {
offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop);
}
SkDEBUGCODE(tmpBitmap.validate();)
tmpBitmap.swap(*dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::WriteRawPixels(SkWriteBuffer* buffer, const SkBitmap& bitmap) {
const SkImageInfo info = bitmap.info();
SkAutoLockPixels alp(bitmap);
if (0 == info.width() || 0 == info.height() || NULL == bitmap.getPixels()) {
buffer->writeUInt(0); // instead of snugRB, signaling no pixels
return;
}
const size_t snugRB = info.width() * info.bytesPerPixel();
const char* src = (const char*)bitmap.getPixels();
const size_t ramRB = bitmap.rowBytes();
buffer->write32(SkToU32(snugRB));
info.flatten(*buffer);
const size_t size = snugRB * info.height();
SkAutoMalloc storage(size);
char* dst = (char*)storage.get();
for (int y = 0; y < info.height(); ++y) {
memcpy(dst, src, snugRB);
dst += snugRB;
src += ramRB;
}
buffer->writeByteArray(storage.get(), size);
SkColorTable* ct = bitmap.getColorTable();
if (kIndex_8_SkColorType == info.colorType() && ct) {
buffer->writeBool(true);
ct->writeToBuffer(*buffer);
} else {
buffer->writeBool(false);
}
}
bool SkBitmap::ReadRawPixels(SkReadBuffer* buffer, SkBitmap* bitmap) {
const size_t snugRB = buffer->readUInt();
if (0 == snugRB) { // no pixels
return false;
}
SkImageInfo info;
info.unflatten(*buffer);
// If there was an error reading "info", don't use it to compute minRowBytes()
if (!buffer->validate(true)) {
return false;
}
const size_t ramRB = info.minRowBytes();
const int height = info.height();
const size_t snugSize = snugRB * height;
const size_t ramSize = ramRB * height;
if (!buffer->validate(snugSize <= ramSize)) {
return false;
}
char* dst = (char*)sk_malloc_throw(ramSize);
buffer->readByteArray(dst, snugSize);
SkAutoDataUnref data(SkData::NewFromMalloc(dst, ramSize));
if (snugSize != ramSize) {
const char* srcRow = dst + snugRB * (height - 1);
char* dstRow = dst + ramRB * (height - 1);
for (int y = height - 1; y >= 1; --y) {
memmove(dstRow, srcRow, snugRB);
srcRow -= snugRB;
dstRow -= ramRB;
}
SkASSERT(srcRow == dstRow); // first row does not need to be moved
}
SkAutoTUnref<SkColorTable> ctable;
if (buffer->readBool()) {
ctable.reset(SkNEW_ARGS(SkColorTable, (*buffer)));
}
SkAutoTUnref<SkPixelRef> pr(SkMallocPixelRef::NewWithData(info, info.minRowBytes(),
ctable.get(), data.get()));
bitmap->setInfo(pr->info());
bitmap->setPixelRef(pr, 0, 0);
return true;
}
enum {
SERIALIZE_PIXELTYPE_NONE,
SERIALIZE_PIXELTYPE_REF_DATA
};
void SkBitmap::legacyUnflatten(SkReadBuffer& buffer) {
#ifdef SK_SUPPORT_LEGACY_PIXELREF_UNFLATTENABLE
this->reset();
SkImageInfo info;
info.unflatten(buffer);
size_t rowBytes = buffer.readInt();
if (!buffer.validate((info.width() >= 0) && (info.height() >= 0) &&
SkColorTypeIsValid(info.fColorType) &&
SkAlphaTypeIsValid(info.fAlphaType) &&
SkColorTypeValidateAlphaType(info.fColorType, info.fAlphaType) &&
info.validRowBytes(rowBytes))) {
return;
}
bool configIsValid = this->setInfo(info, rowBytes);
buffer.validate(configIsValid);
int reftype = buffer.readInt();
if (buffer.validate((SERIALIZE_PIXELTYPE_REF_DATA == reftype) ||
(SERIALIZE_PIXELTYPE_NONE == reftype))) {
switch (reftype) {
case SERIALIZE_PIXELTYPE_REF_DATA: {
SkIPoint origin;
origin.fX = buffer.readInt();
origin.fY = buffer.readInt();
size_t offset = origin.fY * rowBytes + origin.fX * info.bytesPerPixel();
SkPixelRef* pr = buffer.readFlattenable<SkPixelRef>();
if (!buffer.validate((NULL == pr) ||
(pr->getAllocatedSizeInBytes() >= (offset + this->getSafeSize())))) {
origin.setZero();
}
SkSafeUnref(this->setPixelRef(pr, origin));
break;
}
case SERIALIZE_PIXELTYPE_NONE:
break;
default:
SkDEBUGFAIL("unrecognized pixeltype in serialized data");
sk_throw();
}
}
#else
sk_throw();
#endif
}
///////////////////////////////////////////////////////////////////////////////
SkBitmap::RLEPixels::RLEPixels(int width, int height) {
fHeight = height;
fYPtrs = (uint8_t**)sk_calloc_throw(height * sizeof(uint8_t*));
}
SkBitmap::RLEPixels::~RLEPixels() {
sk_free(fYPtrs);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkBitmap::validate() const {
fInfo.validate();
// ImageInfo may not require this, but Bitmap ensures that opaque-only
// colorTypes report opaque for their alphatype
if (kRGB_565_SkColorType == fInfo.colorType()) {
SkASSERT(kOpaque_SkAlphaType == fInfo.alphaType());
}
SkASSERT(fInfo.validRowBytes(fRowBytes));
uint8_t allFlags = kImageIsVolatile_Flag;
#ifdef SK_BUILD_FOR_ANDROID
allFlags |= kHasHardwareMipMap_Flag;
#endif
SkASSERT((~allFlags & fFlags) == 0);
SkASSERT(fPixelLockCount >= 0);
if (fPixels) {
SkASSERT(fPixelRef);
SkASSERT(fPixelLockCount > 0);
SkASSERT(fPixelRef->isLocked());
SkASSERT(fPixelRef->rowBytes() == fRowBytes);
SkASSERT(fPixelRefOrigin.fX >= 0);
SkASSERT(fPixelRefOrigin.fY >= 0);
SkASSERT(fPixelRef->info().width() >= (int)this->width() + fPixelRefOrigin.fX);
SkASSERT(fPixelRef->info().fHeight >= (int)this->height() + fPixelRefOrigin.fY);
SkASSERT(fPixelRef->rowBytes() >= fInfo.minRowBytes());
} else {
SkASSERT(NULL == fColorTable);
}
}
#endif
#ifndef SK_IGNORE_TO_STRING
void SkBitmap::toString(SkString* str) const {
static const char* gColorTypeNames[kLastEnum_SkColorType + 1] = {
"UNKNOWN", "A8", "565", "4444", "RGBA", "BGRA", "INDEX8",
};
str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(),
gColorTypeNames[this->colorType()]);
str->append(" (");
if (this->isOpaque()) {
str->append("opaque");
} else {
str->append("transparent");
}
if (this->isImmutable()) {
str->append(", immutable");
} else {
str->append(", not-immutable");
}
str->append(")");
SkPixelRef* pr = this->pixelRef();
if (NULL == pr) {
// show null or the explicit pixel address (rare)
str->appendf(" pixels:%p", this->getPixels());
} else {
const char* uri = pr->getURI();
if (NULL != uri) {
str->appendf(" uri:\"%s\"", uri);
} else {
str->appendf(" pixelref:%p", pr);
}
}
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkImageInfo::validate() const {
SkASSERT(fWidth >= 0);
SkASSERT(fHeight >= 0);
SkASSERT(SkColorTypeIsValid(fColorType));
SkASSERT(SkAlphaTypeIsValid(fAlphaType));
}
#endif