blob: e2b9691430ac1757a71cc417a0f7113407a50907 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTLList_DEFINED
#define SkTLList_DEFINED
#include "SkTInternalLList.h"
#include "SkTemplates.h"
template <typename T> class SkTLList;
template <typename T>
inline void* operator new(size_t, SkTLList<T>* list,
typename SkTLList<T>::Placement placement,
const typename SkTLList<T>::Iter& location);
/** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the
the list creates the objects and they are deleted upon removal. This class block-allocates
space for entries based on a param passed to the constructor.
Elements of the list can be constructed in place using the following macros:
SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args)
SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args)
where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded
constructor arguments for type_name. These macros behave like addBefore() and addAfter().
*/
template <typename T>
class SkTLList : SkNoncopyable {
private:
struct Block;
struct Node {
char fObj[sizeof(T)];
SK_DECLARE_INTERNAL_LLIST_INTERFACE(Node);
Block* fBlock; // owning block.
};
typedef SkTInternalLList<Node> NodeList;
public:
class Iter;
/** allocCnt is the number of objects to allocate as a group. In the worst case fragmentation
each object is using the space required for allocCnt unfragmented objects. */
SkTLList(int allocCnt = 1) : fCount(0), fAllocCnt(allocCnt) {
SkASSERT(allocCnt > 0);
this->validate();
}
~SkTLList() {
this->validate();
typename NodeList::Iter iter;
Node* node = iter.init(fList, Iter::kHead_IterStart);
while (NULL != node) {
SkTCast<T*>(node->fObj)->~T();
Block* block = node->fBlock;
node = iter.next();
if (0 == --block->fNodesInUse) {
for (int i = 0; i < fAllocCnt; ++i) {
block->fNodes[i].~Node();
}
sk_free(block);
}
}
}
T* addToHead(const T& t) {
this->validate();
Node* node = this->createNode();
fList.addToHead(node);
SkNEW_PLACEMENT_ARGS(node->fObj, T, (t));
this->validate();
return reinterpret_cast<T*>(node->fObj);
}
T* addToHead() {
this->validate();
Node* node = this->createNode();
fList.addToHead(node);
SkNEW_PLACEMENT(node->fObj, T);
this->validate();
return reinterpret_cast<T*>(node->fObj);
}
T* addToTail(const T& t) {
this->validate();
Node* node = this->createNode();
fList.addToTail(node);
SkNEW_PLACEMENT_ARGS(node->fObj, T, (t));
this->validate();
return reinterpret_cast<T*>(node->fObj);
}
T* addToTail() {
this->validate();
Node* node = this->createNode();
fList.addToTail(node);
SkNEW_PLACEMENT(node->fObj, T);
this->validate();
return reinterpret_cast<T*>(node->fObj);
}
/** Adds a new element to the list before the location indicated by the iterator. If the
iterator refers to a NULL location then the new element is added at the tail */
T* addBefore(const T& t, const Iter& location) {
return SkNEW_PLACEMENT_ARGS(this->internalAddBefore(location), T, (t));
}
/** Adds a new element to the list after the location indicated by the iterator. If the
iterator refers to a NULL location then the new element is added at the head */
T* addAfter(const T& t, const Iter& location) {
return SkNEW_PLACEMENT_ARGS(this->internalAddAfter(location), T, (t));
}
/** Convenience methods for getting an iterator initialized to the head/tail of the list. */
Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); }
Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); }
T* head() { return Iter(*this, Iter::kHead_IterStart).get(); }
T* tail() { return Iter(*this, Iter::kTail_IterStart).get(); }
const T* head() const { return Iter(*this, Iter::kHead_IterStart).get(); }
const T* tail() const { return Iter(*this, Iter::kTail_IterStart).get(); }
void popHead() {
this->validate();
Node* node = fList.head();
if (NULL != node) {
this->removeNode(node);
}
this->validate();
}
void popTail() {
this->validate();
Node* node = fList.head();
if (NULL != node) {
this->removeNode(node);
}
this->validate();
}
void remove(T* t) {
this->validate();
Node* node = reinterpret_cast<Node*>(t);
SkASSERT(reinterpret_cast<T*>(node->fObj) == t);
this->removeNode(node);
this->validate();
}
void reset() {
this->validate();
Iter iter(*this, Iter::kHead_IterStart);
while (iter.get()) {
Iter next = iter;
next.next();
this->remove(iter.get());
iter = next;
}
SkASSERT(0 == fCount);
this->validate();
}
int count() const { return fCount; }
bool isEmpty() const { this->validate(); return 0 == fCount; }
bool operator== (const SkTLList& list) const {
if (this == &list) {
return true;
}
if (fCount != list.fCount) {
return false;
}
for (Iter a(*this, Iter::kHead_IterStart), b(list, Iter::kHead_IterStart);
a.get();
a.next(), b.next()) {
SkASSERT(NULL != b.get()); // already checked that counts match.
if (!(*a.get() == *b.get())) {
return false;
}
}
return true;
}
bool operator!= (const SkTLList& list) const { return !(*this == list); }
/** The iterator becomes invalid if the element it refers to is removed from the list. */
class Iter : private NodeList::Iter {
private:
typedef typename NodeList::Iter INHERITED;
public:
typedef typename INHERITED::IterStart IterStart;
//!< Start the iterator at the head of the list.
static const IterStart kHead_IterStart = INHERITED::kHead_IterStart;
//!< Start the iterator at the tail of the list.
static const IterStart kTail_IterStart = INHERITED::kTail_IterStart;
Iter() {}
Iter(const SkTLList& list, IterStart start = kHead_IterStart) {
INHERITED::init(list.fList, start);
}
T* init(const SkTLList& list, IterStart start = kHead_IterStart) {
return this->nodeToObj(INHERITED::init(list.fList, start));
}
T* get() { return this->nodeToObj(INHERITED::get()); }
T* next() { return this->nodeToObj(INHERITED::next()); }
T* prev() { return this->nodeToObj(INHERITED::prev()); }
Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; }
private:
friend class SkTLList;
Node* getNode() { return INHERITED::get(); }
T* nodeToObj(Node* node) {
if (NULL != node) {
return reinterpret_cast<T*>(node->fObj);
} else {
return NULL;
}
}
};
// For use with operator new
enum Placement {
kBefore_Placement,
kAfter_Placement,
};
private:
struct Block {
int fNodesInUse;
Node fNodes[1];
};
size_t blockSize() const { return sizeof(Block) + sizeof(Node) * (fAllocCnt-1); }
Node* createNode() {
Node* node = fFreeList.head();
if (NULL != node) {
fFreeList.remove(node);
++node->fBlock->fNodesInUse;
} else {
Block* block = reinterpret_cast<Block*>(sk_malloc_flags(this->blockSize(), 0));
node = &block->fNodes[0];
SkNEW_PLACEMENT(node, Node);
node->fBlock = block;
block->fNodesInUse = 1;
for (int i = 1; i < fAllocCnt; ++i) {
SkNEW_PLACEMENT(block->fNodes + i, Node);
fFreeList.addToHead(block->fNodes + i);
block->fNodes[i].fBlock = block;
}
}
++fCount;
return node;
}
void removeNode(Node* node) {
SkASSERT(NULL != node);
fList.remove(node);
SkTCast<T*>(node->fObj)->~T();
if (0 == --node->fBlock->fNodesInUse) {
Block* block = node->fBlock;
for (int i = 0; i < fAllocCnt; ++i) {
if (block->fNodes + i != node) {
fFreeList.remove(block->fNodes + i);
}
block->fNodes[i].~Node();
}
sk_free(block);
} else {
fFreeList.addToHead(node);
}
--fCount;
this->validate();
}
void validate() const {
#ifdef SK_DEBUG
SkASSERT((0 == fCount) == fList.isEmpty());
SkASSERT((0 != fCount) || fFreeList.isEmpty());
fList.validate();
fFreeList.validate();
typename NodeList::Iter iter;
Node* freeNode = iter.init(fFreeList, Iter::kHead_IterStart);
while (freeNode) {
SkASSERT(fFreeList.isInList(freeNode));
Block* block = freeNode->fBlock;
SkASSERT(block->fNodesInUse > 0 && block->fNodesInUse < fAllocCnt);
int activeCnt = 0;
int freeCnt = 0;
for (int i = 0; i < fAllocCnt; ++i) {
bool free = fFreeList.isInList(block->fNodes + i);
bool active = fList.isInList(block->fNodes + i);
SkASSERT(free != active);
activeCnt += active;
freeCnt += free;
}
SkASSERT(activeCnt == block->fNodesInUse);
freeNode = iter.next();
}
int count = 0;
Node* activeNode = iter.init(fList, Iter::kHead_IterStart);
while (activeNode) {
++count;
SkASSERT(fList.isInList(activeNode));
Block* block = activeNode->fBlock;
SkASSERT(block->fNodesInUse > 0 && block->fNodesInUse <= fAllocCnt);
int activeCnt = 0;
int freeCnt = 0;
for (int i = 0; i < fAllocCnt; ++i) {
bool free = fFreeList.isInList(block->fNodes + i);
bool active = fList.isInList(block->fNodes + i);
SkASSERT(free != active);
activeCnt += active;
freeCnt += free;
}
SkASSERT(activeCnt == block->fNodesInUse);
activeNode = iter.next();
}
SkASSERT(count == fCount);
#endif
}
// Support in-place initializing of objects inserted into the list via operator new.
friend void* operator new<T>(size_t,
SkTLList* list,
Placement placement,
const Iter& location);
// Helpers that insert the node and returns a pointer to where the new object should be init'ed.
void* internalAddBefore(Iter location) {
this->validate();
Node* node = this->createNode();
fList.addBefore(node, location.getNode());
this->validate();
return node->fObj;
}
void* internalAddAfter(Iter location) {
this->validate();
Node* node = this->createNode();
fList.addAfter(node, location.getNode());
this->validate();
return node->fObj;
}
NodeList fList;
NodeList fFreeList;
int fCount;
int fAllocCnt;
};
// Use the below macros rather than calling this directly
template <typename T>
void *operator new(size_t, SkTLList<T>* list,
typename SkTLList<T>::Placement placement,
const typename SkTLList<T>::Iter& location) {
SkASSERT(NULL != list);
if (SkTLList<T>::kBefore_Placement == placement) {
return list->internalAddBefore(location);
} else {
return list->internalAddAfter(location);
}
}
// Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete
// to match the op new silences warnings about missing op delete when a constructor throws an
// exception.
template <typename T>
void operator delete(void*,
SkTLList<T>*,
typename SkTLList<T>::Placement,
const typename SkTLList<T>::Iter&) {
SK_CRASH();
}
#define SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args) \
(new ((list), SkTLList< type_name >::kBefore_Placement, (location)) type_name args)
#define SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args) \
(new ((list), SkTLList< type_name >::kAfter_Placement, (location)) type_name args)
#define SkNEW_INSERT_AT_LLIST_HEAD(list, type_name, args) \
SkNEW_INSERT_IN_LLIST_BEFORE((list), (list)->headIter(), type_name, args)
#define SkNEW_INSERT_AT_LLIST_TAIL(list, type_name, args) \
SkNEW_INSERT_IN_LLIST_AFTER((list), (list)->tailIter(), type_name, args)
#endif