blob: 13218a749ef138e0751ee29b990417a3b8a51bea [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkLazyPtr_DEFINED
#define SkLazyPtr_DEFINED
/** Declare a lazily-chosen static pointer (or array of pointers) of type F.
*
* Example usage:
*
* Foo* GetSingletonFoo() {
* SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton); // Created with SkNEW, destroyed with SkDELETE.
* return singleton.get();
* }
*
* These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the end.
* If not given, we'll use SkNEW and SkDELETE.
* These options are most useful when T doesn't have a public constructor or destructor.
* Create comes first, so you may use a custom Create with a default Destroy, but not vice versa.
*
* Foo* CustomCreate() { return ...; }
* void CustomDestroy(Foo* ptr) { ... }
* Foo* GetSingletonFooWithCustomCleanup() {
* SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy);
* return singleton.get();
* }
*
* If you have a bunch of related static pointers of the same type, you can
* declare an array of lazy pointers together, and we'll pass the index to Create().
*
* Foo* CreateFoo(int i) { return ...; }
* Foo* GetCachedFoo(Foo::Enum enumVal) {
* SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, CreateFoo);
* return cachedFoos[enumVal];
* }
*
*
* You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of
* SkOnce. There is no mutex or extra storage used past the pointer itself.
* In debug mode, each lazy pointer will be cleaned up at process exit so we
* can check that we've not leaked or freed them early.
*
* We may call Create more than once, but all threads will see the same pointer
* returned from get(). Any extra calls to Create will be cleaned up.
*
* These macros must be used in a global or function scope, not as a class member.
*/
#define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \
static Private::SkLazyPtr<T, ##__VA_ARGS__> name
#define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \
static Private::SkLazyPtrArray<T, N, ##__VA_ARGS__> name
// Everything below here is private implementation details. Don't touch, don't even look.
#include "SkDynamicAnnotations.h"
#include "SkThread.h"
#include "SkThreadPriv.h"
// See FIXME below.
class SkFontConfigInterfaceDirect;
namespace Private {
// Set *dst to ptr if *dst is NULL. Returns value of *dst, destroying ptr if not swapped in.
// Issues the same memory barriers as sk_atomic_cas: acquire on failure, release on success.
template <typename P, void (*Destroy)(P)>
static P try_cas(void** dst, P ptr) {
P prev = (P)sk_atomic_cas(dst, NULL, ptr);
if (prev) {
// We need an acquire barrier before returning prev, which sk_atomic_cas provided.
Destroy(ptr);
return prev;
} else {
// We need a release barrier before returning ptr, which sk_atomic_cas provided.
return ptr;
}
}
template <typename T> T* sk_new() { return SkNEW(T); }
template <typename T> void sk_delete(T* ptr) { SkDELETE(ptr); }
// We're basing these implementations here on this article:
// http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/
//
// Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers
// _through_ our atomically set pointer, there is a data dependency between our
// atomic and the guarded data, and so we only need writer-releases /
// reader-consumes memory pairing rather than the more general write-releases /
// reader-acquires convention.
//
// This is nice, because a sk_consume_load is free on all our platforms: x86,
// ARM, MIPS. In contrast, sk_acquire_load issues a memory barrier on non-x86.
// This has no constructor and must be zero-initalized (the macro above does this).
template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delete<T> >
class SkLazyPtr {
public:
T* get() {
// If fPtr has already been filled, we need a consume barrier when loading it.
// If not, we need a release barrier when setting it. try_cas will do that.
T* ptr = (T*)sk_consume_load(&fPtr);
return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create());
}
#ifdef SK_DEVELOPER
// FIXME: We know we leak refs on some classes. For now, let them leak.
void cleanup(SkFontConfigInterfaceDirect*) {}
template <typename U> void cleanup(U* ptr) { Destroy(ptr); }
~SkLazyPtr() {
this->cleanup((T*)fPtr);
fPtr = NULL;
}
#endif
private:
void* fPtr;
};
template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); }
// This has no constructor and must be zero-initalized (the macro above does this).
template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(T*) = sk_delete<T> >
class SkLazyPtrArray {
public:
T* operator[](int i) {
SkASSERT(i >= 0 && i < N);
// If fPtr has already been filled, we need an consume barrier when loading it.
// If not, we need a release barrier when setting it. try_cas will do that.
T* ptr = (T*)sk_consume_load(&fArray[i]);
return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i));
}
#ifdef SK_DEVELOPER
~SkLazyPtrArray() {
for (int i = 0; i < N; i++) {
Destroy((T*)fArray[i]);
fArray[i] = NULL;
}
}
#endif
private:
void* fArray[N];
};
} // namespace Private
#endif//SkLazyPtr_DEFINED