blob: 463c32a242d14b8a776b0ddd38ae7c22eb7d4146 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkAlphaType.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathTypes.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkString.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkSurfaceProps.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypes.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/SkFloatBits.h"
#include "include/private/SkTemplates.h"
#include "include/private/gpu/ganesh/GrTypesPriv.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkPathPriv.h"
#include "src/gpu/ganesh/GrColorInfo.h"
#include "src/gpu/ganesh/GrEagerVertexAllocator.h"
#include "src/gpu/ganesh/GrFragmentProcessor.h"
#include "src/gpu/ganesh/GrPaint.h"
#include "src/gpu/ganesh/GrStyle.h"
#include "src/gpu/ganesh/GrUserStencilSettings.h"
#include "src/gpu/ganesh/PathRenderer.h"
#include "src/gpu/ganesh/SurfaceDrawContext.h"
#include "src/gpu/ganesh/effects/GrPorterDuffXferProcessor.h"
#include "src/gpu/ganesh/geometry/GrAATriangulator.h"
#include "src/gpu/ganesh/geometry/GrInnerFanTriangulator.h"
#include "src/gpu/ganesh/geometry/GrStyledShape.h"
#include "src/gpu/ganesh/geometry/GrTriangulator.h"
#include "src/gpu/ganesh/ops/TriangulatingPathRenderer.h"
#include "src/shaders/SkShaderBase.h"
#include "tests/CtsEnforcement.h"
#include "tests/Test.h"
#include "tools/ToolUtils.h"
#include <cmath>
#include <cstddef>
#include <initializer_list>
#include <map>
#include <memory>
#include <utility>
class GrRecordingContext;
class SkShader;
struct GrContextOptions;
#if !defined(SK_ENABLE_OPTIMIZE_SIZE)
/*
* These tests pass by not crashing, hanging or asserting in Debug.
*/
using CreatePathFn = SkPath(*)();
CreatePathFn kNonEdgeAAPaths[] = {
// Tests active edges made inactive by splitting.
// Also tests active edge list forced into an invalid ordering by
// splitting (mopped up in cleanup_active_edges()).
[]() -> SkPath {
SkPath path;
path.moveTo(229.127044677734375f, 67.34100341796875f);
path.lineTo(187.8097381591796875f, -6.7729740142822265625f);
path.lineTo(171.411407470703125f, 50.94266510009765625f);
path.lineTo(245.5253753662109375f, 9.6253643035888671875f);
path.moveTo(208.4683990478515625f, 30.284009933471679688f);
path.lineTo(171.411407470703125f, 50.94266510009765625f);
path.lineTo(187.8097381591796875f, -6.7729740142822265625f);
return path;
},
// Intersections which fall exactly on the current vertex, and require
// a restart of the intersection checking.
[]() -> SkPath {
SkPath path;
path.moveTo(314.483551025390625f, 486.246002197265625f);
path.lineTo(385.41949462890625f, 532.8087158203125f);
path.lineTo(373.232879638671875f, 474.05938720703125f);
path.lineTo(326.670166015625f, 544.995361328125f);
path.moveTo(349.951507568359375f, 509.52734375f);
path.lineTo(373.232879638671875f, 474.05938720703125f);
path.lineTo(385.41949462890625f, 532.8087158203125f);
return path;
},
// Tests active edges which are removed by splitting.
[]() -> SkPath {
SkPath path;
path.moveTo(343.107391357421875f, 613.62176513671875f);
path.lineTo(426.632415771484375f, 628.5740966796875f);
path.lineTo(392.3460693359375f, 579.33544921875f);
path.lineTo(377.39373779296875f, 662.86041259765625f);
path.moveTo(384.869873046875f, 621.097900390625f);
path.lineTo(392.3460693359375f, 579.33544921875f);
path.lineTo(426.632415771484375f, 628.5740966796875f);
return path;
},
// Collinear edges merged in set_top().
// Also, an intersection between left and right enclosing edges which
// falls above the current vertex.
[]() -> SkPath {
SkPath path;
path.moveTo(545.95751953125f, 791.69854736328125f);
path.lineTo(612.05816650390625f, 738.494140625f);
path.lineTo(552.4056396484375f, 732.0460205078125f);
path.lineTo(605.61004638671875f, 798.14666748046875f);
path.moveTo(579.00787353515625f, 765.0963134765625f);
path.lineTo(552.4056396484375f, 732.0460205078125f);
path.lineTo(612.05816650390625f, 738.494140625f);
return path;
},
// Tests active edges which are made inactive by set_top().
[]() -> SkPath {
SkPath path;
path.moveTo(819.2725830078125f, 751.77447509765625f);
path.lineTo(820.70904541015625f, 666.933837890625f);
path.lineTo(777.57049560546875f, 708.63592529296875f);
path.lineTo(862.4111328125f, 710.0723876953125f);
path.moveTo(819.99078369140625f, 709.3541259765625f);
path.lineTo(777.57049560546875f, 708.63592529296875f);
path.lineTo(820.70904541015625f, 666.933837890625f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(823.33209228515625f, 749.052734375f);
path.lineTo(823.494873046875f, 664.20013427734375f);
path.lineTo(780.9871826171875f, 706.5450439453125f);
path.lineTo(865.8397216796875f, 706.70782470703125f);
path.moveTo(823.4134521484375f, 706.6263427734375f);
path.lineTo(780.9871826171875f, 706.5450439453125f);
path.lineTo(823.494873046875f, 664.20013427734375f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(954.862548828125f, 562.8349609375f);
path.lineTo(899.32818603515625f, 498.679443359375f);
path.lineTo(895.017578125f, 558.52435302734375f);
path.lineTo(959.17315673828125f, 502.990081787109375f);
path.moveTo(927.0953369140625f, 530.7572021484375f);
path.lineTo(895.017578125f, 558.52435302734375f);
path.lineTo(899.32818603515625f, 498.679443359375f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(958.5330810546875f, 547.35516357421875f);
path.lineTo(899.93109130859375f, 485.989013671875f);
path.lineTo(898.54901123046875f, 545.97308349609375f);
path.lineTo(959.9151611328125f, 487.37109375f);
path.moveTo(929.2320556640625f, 516.67205810546875f);
path.lineTo(898.54901123046875f, 545.97308349609375f);
path.lineTo(899.93109130859375f, 485.989013671875f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(389.8609619140625f, 369.326873779296875f);
path.lineTo(470.6290283203125f, 395.33697509765625f);
path.lineTo(443.250030517578125f, 341.9478759765625f);
path.lineTo(417.239959716796875f, 422.7159423828125f);
path.moveTo(430.244964599609375f, 382.3319091796875f);
path.lineTo(443.250030517578125f, 341.9478759765625f);
path.lineTo(470.6290283203125f, 395.33697509765625f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(20, 20);
path.lineTo(50, 80);
path.lineTo(20, 80);
path.moveTo(80, 50);
path.lineTo(50, 50);
path.lineTo(20, 50);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo(257.19439697265625f, 320.876617431640625f);
path.lineTo(190.113037109375f, 320.58978271484375f);
path.lineTo(203.64404296875f, 293.8145751953125f);
path.moveTo(203.357177734375f, 360.896026611328125f);
path.lineTo(216.88824462890625f, 334.120819091796875f);
path.lineTo(230.41925048828125f, 307.345611572265625f);
return path;
},
// A degenerate segments case, where both upper and lower segments of
// a split edge must remain active.
[]() -> SkPath {
SkPath path;
path.moveTo(231.9331207275390625f, 306.2012939453125f);
path.lineTo(191.4859161376953125f, 306.04547119140625f);
path.lineTo(231.0659332275390625f, 300.2642822265625f);
path.moveTo(189.946807861328125f, 302.072265625f);
path.lineTo(179.79705810546875f, 294.859771728515625f);
path.lineTo(191.0016021728515625f, 296.165679931640625f);
path.moveTo(150.8942108154296875f, 304.900146484375f);
path.lineTo(179.708892822265625f, 297.849029541015625f);
path.lineTo(190.4742279052734375f, 299.11895751953125f);
return path;
},
// Handle the case where edge.dist(edge.fTop) != 0.0.
[]() -> SkPath {
SkPath path;
path.moveTo( 0.0f, 400.0f);
path.lineTo( 138.0f, 202.0f);
path.lineTo( 0.0f, 202.0f);
path.moveTo( 12.62693023681640625f, 250.57464599609375f);
path.lineTo( 8.13896942138671875f, 254.556884765625f);
path.lineTo(-18.15641021728515625f, 220.40203857421875f);
path.lineTo(-15.986493110656738281f, 219.6513519287109375f);
path.moveTo( 36.931194305419921875f, 282.485504150390625f);
path.lineTo( 15.617521286010742188f, 261.2901611328125f);
path.lineTo( 10.3829498291015625f, 252.565765380859375f);
path.lineTo(-16.165292739868164062f, 222.646026611328125f);
return path;
},
// A degenerate segments case which exercises inactive edges being
// made active by splitting.
[]() -> SkPath {
SkPath path;
path.moveTo(690.62127685546875f, 509.25555419921875f);
path.lineTo(99.336181640625f, 511.71405029296875f);
path.lineTo(708.362548828125f, 512.4349365234375f);
path.lineTo(729.9940185546875f, 516.3114013671875f);
path.lineTo(738.708984375f, 518.76995849609375f);
path.lineTo(678.3463134765625f, 510.0819091796875f);
path.lineTo(681.21795654296875f, 504.81378173828125f);
path.moveTo(758.52764892578125f, 521.55963134765625f);
path.lineTo(719.1549072265625f, 514.50372314453125f);
path.lineTo(689.59063720703125f, 512.0628662109375f);
path.lineTo(679.78216552734375f, 507.447845458984375f);
return path;
},
// Tests vertices which become "orphaned" (ie., no connected edges)
// after simplification.
[]() -> SkPath {
SkPath path;
path.moveTo(217.326019287109375f, 166.4752960205078125f);
path.lineTo(226.279266357421875f, 170.929473876953125f);
path.lineTo(234.3973388671875f, 177.0623626708984375f);
path.lineTo(262.0921630859375f, 188.746124267578125f);
path.moveTo(196.23638916015625f, 174.0722198486328125f);
path.lineTo(416.15277099609375f, 180.138214111328125f);
path.lineTo(192.651947021484375f, 304.0228271484375f);
return path;
},
[]() -> SkPath {
SkPath path;
path.moveTo( 0.0f, 0.0f);
path.lineTo(10000.0f, 0.0f);
path.lineTo( 0.0f, -1.0f);
path.lineTo(10000.0f, 0.000001f);
path.lineTo( 0.0f, -30.0f);
return path;
},
// Reduction of Nebraska-StateSeal.svg. Floating point error causes the
// same edge to be added to more than one poly on the same side.
[]() -> SkPath {
SkPath path;
path.moveTo(170.8199920654296875, 491.86700439453125);
path.lineTo(173.7649993896484375, 489.7340087890625);
path.lineTo(174.1450958251953125, 498.545989990234375);
path.lineTo( 171.998992919921875, 500.88201904296875);
path.moveTo(168.2922515869140625, 498.66265869140625);
path.lineTo(169.8589935302734375, 497.94500732421875);
path.lineTo( 172, 500.88299560546875);
path.moveTo( 169.555267333984375, 490.70111083984375);
path.lineTo(173.7649993896484375, 489.7340087890625);
path.lineTo( 170.82000732421875, 491.86700439453125);
return path;
},
// A shape with a vertex collinear to the right hand edge.
// This messes up find_enclosing_edges.
[]() -> SkPath {
SkPath path;
path.moveTo(80, 20);
path.lineTo(80, 60);
path.lineTo(20, 60);
path.moveTo(80, 50);
path.lineTo(80, 80);
path.lineTo(20, 80);
return path;
},
// Exercises the case where an edge becomes collinear with *two* of its
// adjacent neighbour edges after splitting.
// This is a reduction from
// http://mooooo.ooo/chebyshev-sine-approximation/horner_ulp.svg
[]() -> SkPath {
SkPath path;
path.moveTo( 351.99298095703125, 348.23046875);
path.lineTo( 351.91876220703125, 347.33984375);
path.lineTo( 351.91876220703125, 346.1953125);
path.lineTo( 351.90313720703125, 347.734375);
path.lineTo( 351.90313720703125, 346.1328125);
path.lineTo( 351.87579345703125, 347.93359375);
path.lineTo( 351.87579345703125, 345.484375);
path.lineTo( 351.86407470703125, 347.7890625);
path.lineTo( 351.86407470703125, 346.2109375);
path.lineTo( 351.84844970703125, 347.63763427734375);
path.lineTo( 351.84454345703125, 344.19232177734375);
path.lineTo( 351.78204345703125, 346.9483642578125);
path.lineTo( 351.758636474609375, 347.18310546875);
path.lineTo( 351.75469970703125, 346.75);
path.lineTo( 351.75469970703125, 345.46875);
path.lineTo( 352.5546875, 345.46875);
path.lineTo( 352.55078125, 347.01953125);
path.lineTo( 351.75079345703125, 347.02313232421875);
path.lineTo( 351.74688720703125, 346.15203857421875);
path.lineTo( 351.74688720703125, 347.646148681640625);
path.lineTo( 352.5390625, 346.94140625);
path.lineTo( 351.73907470703125, 346.94268798828125);
path.lineTo( 351.73516845703125, 344.48565673828125);
path.lineTo( 352.484375, 346.73828125);
path.lineTo( 351.68438720703125, 346.7401123046875);
path.lineTo( 352.4765625, 346.546875);
path.lineTo( 351.67657470703125, 346.54937744140625);
path.lineTo( 352.47265625, 346.75390625);
path.lineTo( 351.67266845703125, 346.756622314453125);
path.lineTo( 351.66876220703125, 345.612091064453125);
return path;
},
// A path which contains out-of-range colinear intersections.
[]() -> SkPath {
SkPath path;
path.moveTo( 0, 63.39080047607421875);
path.lineTo(-0.70804601907730102539, 63.14350128173828125);
path.lineTo(-7.8608899287380243391e-17, 64.14080047607421875);
path.moveTo( 0, 64.14080047607421875);
path.lineTo(44.285900115966796875, 64.14080047607421875);
path.lineTo( 0, 62.64080047607421875);
path.moveTo(21.434900283813476562, -0.24732701480388641357);
path.lineTo(-0.70804601907730102539, 63.14350128173828125);
path.lineTo(0.70804601907730102539, 63.6381988525390625);
return path;
},
// A path which results in infs and nans when conics are converted to quads.
[]() -> SkPath {
SkPath path;
path.moveTo(-2.20883e+37f, -1.02892e+37f);
path.conicTo(-2.00958e+38f, -9.36107e+37f, -1.7887e+38f, -8.33215e+37f, 0.707107f);
path.conicTo(-1.56782e+38f, -7.30323e+37f, 2.20883e+37f, 1.02892e+37f, 0.707107f);
path.conicTo(2.00958e+38f, 9.36107e+37f, 1.7887e+38f, 8.33215e+37f, 0.707107f);
path.conicTo(1.56782e+38f, 7.30323e+37f, -2.20883e+37f, -1.02892e+37f, 0.707107f);
return path;
},
// A quad which generates a huge number of points (>2B) when uniformly
// linearized. This should not hang or OOM.
[]() -> SkPath {
SkPath path;
path.moveTo(10, 0);
path.lineTo(0, 0);
path.quadTo(10, 0, 0, 8315084722602508288);
return path;
},
// A path which hangs during simplification. It produces an edge which is
// to the left of its own endpoints, which causes an infinite loop in the
// right-enclosing-edge splitting.
[]() -> SkPath {
SkPath path;
path.moveTo(0.75001740455627441406, 23.051967620849609375);
path.lineTo(5.8471612930297851562, 22.731662750244140625);
path.lineTo(10.749670028686523438, 22.253145217895507812);
path.lineTo(13.115868568420410156, 22.180681228637695312);
path.lineTo(15.418928146362304688, 22.340015411376953125);
path.lineTo( 17.654022216796875, 22.82159423828125);
path.lineTo(19.81632232666015625, 23.715869903564453125);
path.lineTo(40, 0);
path.lineTo(5.5635203441547955577e-15, 0);
path.lineTo(5.5635203441547955577e-15, 47);
path.lineTo(-1.4210854715202003717e-14, 21.713298797607421875);
path.lineTo(0.75001740455627441406, 21.694292068481445312);
path.lineTo(0.75001740455627441406, 23.051967620849609375);
return path;
},
// Reduction from skbug.com/7911 that causes a crash due to splitting a
// zombie edge.
[]() -> SkPath {
SkPath path;
path.moveTo( 0, 1.0927740941146660348e+24);
path.lineTo(2.9333931225865729333e+32, 16476101);
path.lineTo(1.0927731573659435417e+24, 1.0927740941146660348e+24);
path.lineTo(1.0927740941146660348e+24, 3.7616281094287041715e-37);
path.lineTo(1.0927740941146660348e+24, 1.0927740941146660348e+24);
path.lineTo(1.3061803026169399536e-33, 1.0927740941146660348e+24);
path.lineTo(4.7195362919941370727e-16, -8.4247545146051822591e+32);
return path;
},
// From crbug.com/844873. Crashes trying to merge a zombie edge.
[]() -> SkPath {
SkPath path;
path.moveTo( 316.000579833984375, -4338355948977389568);
path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
path.lineTo( 771.21014404296875, -4338355948977389568.0);
path.lineTo( 316.000579833984375, -4338355948977389568.0);
path.moveTo( 354.208984375, -4338355948977389568.0);
path.lineTo( 773.00177001953125, -4338355948977389568.0);
path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
path.lineTo(1.5069369808623501312e+20, 75180972320904708096.0);
path.lineTo( 354.208984375, -4338355948977389568.0);
return path;
},
// From crbug.com/844873. Hangs repeatedly splitting alternate vertices.
[]() -> SkPath {
SkPath path;
path.moveTo(10, -1e+20f);
path.lineTo(11, 25000);
path.lineTo(10, 25000);
path.lineTo(11, 25010);
return path;
},
// Reduction from circular_arcs_stroke_and_fill_round GM which
// repeatedly splits on the opposite edge from case 34 above.
[]() -> SkPath {
SkPath path;
path.moveTo( 16.25, 26.495191574096679688);
path.lineTo(32.420825958251953125, 37.377376556396484375);
path.lineTo(25.176382064819335938, 39.31851959228515625);
path.moveTo( 20, 20);
path.lineTo(28.847436904907226562, 37.940830230712890625);
path.lineTo(25.17638397216796875, 39.31851959228515625);
return path;
},
// Reduction from crbug.com/843135 where an intersection is found
// below the bottom of both intersected edges.
[]() -> SkPath {
SkPath path;
path.moveTo(-2791476679359332352, 2608107002026524672);
path.lineTo( 0, 11.95427703857421875);
path.lineTo(-2781824066779086848, 2599088532777598976);
path.lineTo( -7772.6875, 7274);
return path;
},
// Reduction from crbug.com/843135. Exercises a case where an intersection is missed.
// This causes bad ordering in the active edge list.
[]() -> SkPath {
SkPath path;
path.moveTo(-1.0662557646016024569e+23, 9.9621425197286319718e+22);
path.lineTo( -121806400, 113805032);
path.lineTo( -120098872, 112209680);
path.lineTo( 6.2832999862817380468e-36, 2.9885697364807128906);
return path;
},
// Reduction from crbug.com/851409. Exercises collinear last vertex.
[]() -> SkPath {
SkPath path;
path.moveTo(2072553216, 0);
path.lineTo(2072553216, 1);
path.lineTo(2072553472, -13.5);
path.lineTo(2072553216, 0);
path.lineTo(2072553472, -6.5);
return path;
},
// Another reduction from crbug.com/851409. Exercises two sequential collinear edges.
[]() -> SkPath {
SkPath path;
path.moveTo(2072553216, 0);
path.lineTo(2072553216, 1);
path.lineTo(2072553472, -13);
path.lineTo(2072553216, 0);
path.lineTo(2072553472, -6);
path.lineTo(2072553472, -13);
return path;
},
// Reduction from crbug.com/860655. Cause is three collinear edges discovered during
// sanitize_contours pass, before the vertices have been found coincident.
[]() -> SkPath {
SkPath path;
path.moveTo( 32572426382475264, -3053391034974208);
path.lineTo( 521289856, -48865776);
path.lineTo( 130322464, -12215873);
path.moveTo( 32572426382475264, -3053391034974208);
path.lineTo( 521289856, -48865776);
path.lineTo( 130322464, -12215873);
path.moveTo( 32572426382475264, -3053391034974208);
path.lineTo( 32114477642022912, -3010462031544320);
path.lineTo( 32111784697528320, -3010209702215680);
return path;
},
};
#if SK_GPU_V1
// A simple concave path. Test this with a non-invertible matrix.
static SkPath create_path_17() {
SkPath path;
path.moveTo(20, 20);
path.lineTo(80, 20);
path.lineTo(30, 30);
path.lineTo(20, 80);
return path;
}
// An intersection above the first vertex in the mesh.
// Reduction from http://crbug.com/730687
static SkPath create_path_20() {
SkPath path;
path.moveTo( 2822128.5, 235.026336669921875);
path.lineTo( 2819349.25, 235.3623504638671875);
path.lineTo( -340558688, 23.83478546142578125);
path.lineTo( -340558752, 25.510419845581054688);
path.lineTo( -340558720, 27.18605804443359375);
return path;
}
// An intersection whose result is NaN (due to rounded-to-inf endpoint).
static SkPath create_path_21() {
SkPath path;
path.moveTo(1.7889142061167663539e+38, 39338463358011572224.0);
path.lineTo( 1647.4193115234375, -522.603515625);
path.lineTo( 1677.74560546875, -529.0028076171875);
path.lineTo( 1678.29541015625, -528.7847900390625);
path.lineTo( 1637.5167236328125, -519.79266357421875);
path.lineTo( 1647.4193115234375, -522.603515625);
return path;
}
// An edge collapse event which also collapses a neighbour, requiring
// its event to be removed.
static SkPath create_path_25() {
SkPath path;
path.moveTo( 43.44110107421875, 148.15106201171875);
path.lineTo( 44.64471435546875, 148.16748046875);
path.lineTo( 46.35009765625, 147.403076171875);
path.lineTo( 46.45404052734375, 148.34906005859375);
path.lineTo( 45.0400390625, 148.54205322265625);
path.lineTo( 44.624053955078125, 148.9810791015625);
path.lineTo( 44.59405517578125, 149.16107177734375);
path.lineTo( 44.877044677734375, 149.62005615234375);
path.lineTo(144.373016357421875, 68.8070068359375);
return path;
}
// An edge collapse event causes an edge to become collinear, requiring
// its event to be removed.
static SkPath create_path_26() {
SkPath path;
path.moveTo( 43.44110107421875, 148.15106201171875);
path.lineTo( 44.64471435546875, 148.16748046875);
path.lineTo( 46.35009765625, 147.403076171875);
path.lineTo( 46.45404052734375, 148.34906005859375);
path.lineTo( 45.0400390625, 148.54205322265625);
path.lineTo( 44.624053955078125, 148.9810791015625);
path.lineTo( 44.59405517578125, 149.16107177734375);
path.lineTo( 44.877044677734375, 149.62005615234375);
path.lineTo(144.373016357421875, 68.8070068359375);
return path;
}
// A path which results in non-finite points when stroked and bevelled for AA.
static SkPath create_path_27() {
SkPath path;
path.moveTo(8.5027233009104409507e+37, 1.7503381025241130639e+37);
path.lineTo(7.0923661737711584874e+37, 1.4600074517285415699e+37);
path.lineTo(7.0848733446033294691e+37, 1.4584649744781838604e+37);
path.lineTo(-2.0473916115129349496e+37, -4.2146796450364162012e+36);
path.lineTo(2.0473912312177548811e+37, 4.2146815465123165435e+36);
return path;
}
// AA stroking this path produces intersection failures on bevelling.
// This should skip the point, but not assert.
static SkPath create_path_28() {
SkPath path;
path.moveTo(-7.5952312625177475154e+21, -2.6819185100266674911e+24);
path.lineTo( 1260.3787841796875, 1727.7947998046875);
path.lineTo( 1260.5567626953125, 1728.0386962890625);
path.lineTo(1.1482511310557754163e+21, 4.054538502765980051e+23);
path.lineTo(-7.5952312625177475154e+21, -2.6819185100266674911e+24);
return path;
}
// A path with vertices which become infinite on AA stroking. Should not crash or assert.
static SkPath create_path_31() {
SkPath path;
path.moveTo(2.0257809259190991347e+36, -1244080640);
path.conicTo(2.0257809259190991347e+36, -1244080640,
2.0257809259190991347e+36, 0.10976474732160568237, 0.70710676908493041992);
path.lineTo(-10036566016, -1954718402215936);
path.conicTo(-1.1375507718551896064e+20, -1954721086570496,
10036566016, -1954721086570496, 0.70710676908493041992);
return path;
}
// Reduction from crbug.com/851914.
static SkPath create_path_38() {
SkPath path;
path.moveTo(14.400531768798828125, 17.711114883422851562);
path.lineTo(14.621990203857421875, 171563104293879808);
path.lineTo(14.027951240539550781, 872585759381520384);
path.lineTo( 14.0216827392578125, 872665817571917824);
path.lineTo(7.699314117431640625, -3417320793833472);
path.moveTo(11.606547355651855469, 17.40966796875);
path.lineTo( 7642114886926860288, 21.08358001708984375);
path.lineTo(11.606547355651855469, 21.08358001708984375);
return path;
}
// Reduction from crbug.com/860453. Tests a case where a "missing" intersection
// requires the active edge list to go out-of-order.
static SkPath create_path_41() {
SkPath path;
path.moveTo(72154931603311689728.0, 330.95965576171875);
path.lineTo(24053266013925408768.0, 78.11376953125);
path.lineTo(1.2031099003292404941e+20, 387.168731689453125);
path.lineTo(68859835992355373056.0, 346.55047607421875);
path.lineTo(76451708695451009024.0, 337.780029296875);
path.moveTo(-20815817797613387776.0, 18065700622522384384.0);
path.lineTo(-72144121204987396096.0, 142.855804443359375);
path.lineTo(72144121204987396096.0, 325.184783935546875);
path.lineTo(1.2347242901040791552e+20, 18065700622522384384.0);
return path;
}
// Reduction from crbug.com/866319. Cause is edges that are collinear when tested from
// one side, but non-collinear when tested from the other.
static SkPath create_path_43() {
SkPath path;
path.moveTo( 307316821852160, -28808363114496);
path.lineTo( 307165222928384, -28794154909696);
path.lineTo( 307013691113472, -28779948802048);
path.lineTo( 306862159298560, -28765744791552);
path.lineTo( 306870313025536, -28766508154880);
path.lineTo( 307049695019008, -28783327313920);
path.lineTo( 307408660332544, -28816974020608);
return path;
}
// Reduction from crbug.com/966696
static SkPath create_path_44() {
SkPath path;
path.moveTo(114.4606170654296875, 186.443878173828125);
path.lineTo( 91.5394744873046875, 185.4189453125);
path.lineTo(306.45538330078125, 3203.986083984375);
path.moveTo(16276206965409972224.0, 815.59393310546875);
path.lineTo(-3.541605062372533207e+20, 487.7236328125);
path.lineTo(-3.541605062372533207e+20, 168.204071044921875);
path.lineTo(16276206965409972224.0, 496.07427978515625);
path.moveTo(-3.541605062372533207e+20, 167.00958251953125);
path.lineTo(-3.541605062372533207e+20, 488.32086181640625);
path.lineTo(16276206965409972224.0, 816.78839111328125);
path.lineTo(16276206965409972224.0, 495.47705078125);
return path;
}
// Reduction from crbug.com/966274.
static SkPath create_path_45() {
SkPath path;
path.moveTo( 706471854080, 379003666432);
path.lineTo( 706503180288, 379020443648);
path.lineTo( 706595717120, 379070087168);
path.lineTo( 706626060288, 379086372864);
path.lineTo( 706656141312, 379102527488);
path.lineTo( 706774171648, 379165835264);
path.lineTo( 706803073024, 379181334528);
path.lineTo( 706831712256, 379196702720);
path.lineTo( 706860154880, 379211939840);
path.lineTo( 706888335360, 379227078656);
path.lineTo( 706916253696, 379242053632);
path.lineTo( 706956820480, 379263811584);
path.lineTo( 706929098752, 379248934912);
path.lineTo( 706901114880, 379233927168);
path.lineTo( 706872934400, 379218821120);
path.lineTo( 706844491776, 379203551232);
path.lineTo( 706815787008, 379188183040);
path.lineTo( 706786885632, 379172651008);
path.lineTo( 706757722112, 379156987904);
path.lineTo( 706728296448, 379141226496);
path.lineTo( 706698608640, 379125301248);
path.lineTo( 706668724224, 379109244928);
path.lineTo( 706638577664, 379093090304);
path.lineTo( 706608168960, 379076771840);
path.lineTo( 706484174848, 379010252800);
return path;
}
// Reduction from crbug.com/969359. Inf generated by intersections
// causes NaN in subsequent intersections, leading to assert or hang.
static SkPath create_path_46() {
SkPath path;
path.moveTo(1.0321827899075254821e+37, -5.1199920965387697886e+37);
path.lineTo(-1.0321827899075254821e+37, 5.1199920965387697886e+37);
path.lineTo(-1.0425214946728668754e+37, 4.5731834042267216669e+37);
path.moveTo(-9.5077331762291841872e+36, 8.1304868292377430302e+37);
path.lineTo(9.5077331762291841872e+36, -8.1304868292377430302e+37);
path.lineTo(1.0795449417808426232e+37, 1.2246856113744539311e+37);
path.moveTo(-165.8018341064453125, -44.859375);
path.lineTo(-9.558702871563160835e+36, -7.9814405281448285475e+37);
path.lineTo(-9.4147814283168490381e+36, -8.3935116522790983488e+37);
return path;
}
// Reduction from crbug.com/1245359
static SkPath create_path_47() {
SkPath path;
path.setFillType(SkPathFillType::kWinding);
path.moveTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f, 9.73632e+07f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0xe396b530)); // 2.65172e+19f, -5.56014e+21f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x6396b530)); // 2.65172e+19f, 5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); // 1.00908e+08f, 5.56014e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x6396b530)); // -2.65172e+19f, 5.56014e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0xe396b530)); // 1.00908e+08f, -5.56014e+21f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0xe396b530)); // 1.00913e+08f, -5.56014e+21f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cb9b4a5)); // 1.00913e+08f, 9.73632e+07f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f, 9.73632e+07f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb74d74)); // -2.65172e+19f, 9.61033e+07f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cb74d74)); // 1.00913e+08f, 9.61033e+07f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x6396b530)); // 1.00913e+08f, 5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); // 1.00908e+08f, 5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x4cb74d74)); // 1.00908e+08f, 9.61033e+07f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cb74d74)); // 2.65172e+19f, 9.61033e+07f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x6396b530)); // 2.65172e+19f, 5.56014e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x6396b530)); // -2.65172e+19f, 5.56014e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cb9b4a5)); // -2.65172e+19f, 9.73632e+07f
path.close();
path.moveTo(SkBits2Float(0xdfb39e51), SkBits2Float(0xe282c5bd)); // -2.58857e+19f, -1.20616e+21f
path.lineTo(SkBits2Float(0xdf8a47ec), SkBits2Float(0xe3b90de5)); // -1.99284e+19f, -6.8273e+21f
path.lineTo(SkBits2Float(0x5eb8b548), SkBits2Float(0xe391e278)); // 6.65481e+18f, -5.38219e+21f
path.quadTo(SkBits2Float(0x5eaa9855), SkBits2Float(0xe392a246), // 6.14633e+18f, -5.40984e+21f
SkBits2Float(0x5e9c5925), SkBits2Float(0xe39344a0)); // 5.63304e+18f, -5.43323e+21f
path.quadTo(SkBits2Float(0x5e89eefd), SkBits2Float(0xe3941678), // 4.96958e+18f, -5.46347e+21f
SkBits2Float(0x5e6ead5a), SkBits2Float(0xe394b6a4)); // 4.29963e+18f, -5.48656e+21f
path.quadTo(SkBits2Float(0x5e6c0307), SkBits2Float(0xe394c21f), // 4.25161e+18f, -5.48821e+21f
SkBits2Float(0x5e694ef2), SkBits2Float(0xe394cd7f)); // 4.20291e+18f, -5.48985e+21f
path.quadTo(SkBits2Float(0x5e67eeaa), SkBits2Float(0xe394d349), // 4.17812e+18f, -5.49069e+21f
SkBits2Float(0x5e669614), SkBits2Float(0xe394d8e2)); // 4.15387e+18f, -5.49149e+21f
path.quadTo(SkBits2Float(0x5e6534d4), SkBits2Float(0xe394de9e), // 4.12901e+18f, -5.49232e+21f
SkBits2Float(0x5e63d6a7), SkBits2Float(0xe394e43c)); // 4.10437e+18f, -5.49313e+21f
path.quadTo(SkBits2Float(0x5e610d59), SkBits2Float(0xe394efad), // 4.05418e+18f, -5.49478e+21f
SkBits2Float(0x5e5e43cb), SkBits2Float(0xe394fad6)); // 4.00397e+18f, -5.49639e+21f
path.quadTo(SkBits2Float(0x5e5b6ac0), SkBits2Float(0xe395063d), // 3.95267e+18f, -5.49803e+21f
SkBits2Float(0x5e5895ab), SkBits2Float(0xe3951148)); // 3.90164e+18f, -5.49962e+21f
path.quadTo(SkBits2Float(0x5e55b52e), SkBits2Float(0xe3951c7f), // 3.84982e+18f, -5.50124e+21f
SkBits2Float(0x5e52cb8e), SkBits2Float(0xe395278b)); // 3.79735e+18f, -5.50283e+21f
path.quadTo(SkBits2Float(0x5e514f61), SkBits2Float(0xe3952d2d), // 3.7706e+18f, -5.50364e+21f
SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0x5e4fdbc5), SkBits2Float(0xe395329a)); // 3.74445e+18f, -5.50442e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0xe396b530)); // -2.65172e+19f, -5.56014e+21f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0xe396b530)); // 2.65172e+19f, -5.56014e+21f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cc8d35d)); // 2.65172e+19f, 1.0529e+08f
path.lineTo(SkBits2Float(0xdfe2ba48), SkBits2Float(0x63512f2f)); // -3.26749e+19f, 3.85877e+21f
path.lineTo(SkBits2Float(0xdf7f64f6), SkBits2Float(0xe3b9b457)); // -1.84031e+19f, -6.85129e+21f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cc8d35d)); // -2.65172e+19f, 1.0529e+08f
path.lineTo(SkBits2Float(0xdfb80000), SkBits2Float(0x4cbbf2a2)); // -2.65172e+19f, 9.85388e+07f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x4cbbf2a2)); // 1.00913e+08f, 9.85388e+07f
path.lineTo(SkBits2Float(0x4cc079c8), SkBits2Float(0x6396b530)); // 1.00913e+08f, 5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x6396b530)); // 1.00908e+08f, 5.56014e+21f
path.lineTo(SkBits2Float(0x4cc07742), SkBits2Float(0x4cbbf2a2)); // 1.00908e+08f, 9.85388e+07f
path.lineTo(SkBits2Float(0x5fb80000), SkBits2Float(0x4cbbf2a2)); // 2.65172e+19f, 9.85388e+07f
path.lineTo(SkBits2Float(0xdeb8b548), SkBits2Float(0x6391e278)); // -6.65481e+18f, 5.38219e+21f
path.lineTo(SkBits2Float(0x4cc07488), SkBits2Float(0x4ccb2302)); // 1.00902e+08f, 1.06502e+08f
path.lineTo(SkBits2Float(0x5fb39e51), SkBits2Float(0x6282c5bd)); // 2.58857e+19f, 1.20616e+21f
path.lineTo(SkBits2Float(0x5fb39e51), SkBits2Float(0x6282c5bd)); // 2.58857e+19f, 1.20616e+21f
path.lineTo(SkBits2Float(0x5f8bb406), SkBits2Float(0x63b3cfe4)); // 2.01334e+19f, 6.63389e+21f
path.lineTo(SkBits2Float(0xdfdb889b), SkBits2Float(0x6364da0b)); // -3.16381e+19f, 4.22157e+21f
path.lineTo(SkBits2Float(0xdfb39e51), SkBits2Float(0xe282c5bd)); // -2.58857e+19f, -1.20616e+21f
path.close();
return path;
}
static std::unique_ptr<GrFragmentProcessor> create_linear_gradient_processor(
GrRecordingContext* rContext) {
SkPoint pts[2] = { {0, 0}, {1, 1} };
SkColor colors[2] = { SK_ColorGREEN, SK_ColorBLUE };
sk_sp<SkShader> shader = SkGradientShader::MakeLinear(
pts, colors, nullptr, std::size(colors), SkTileMode::kClamp);
GrColorInfo colorInfo(GrColorType::kRGBA_8888, kPremul_SkAlphaType, nullptr);
SkMatrixProvider matrixProvider(SkMatrix::I());
SkSurfaceProps props; // default props for testing
return as_SB(shader)->asFragmentProcessor({rContext, matrixProvider, &colorInfo, props});
}
static void test_path(GrRecordingContext* rContext,
skgpu::v1::SurfaceDrawContext* sdc,
const SkPath& path,
const SkMatrix& matrix = SkMatrix::I(),
GrAAType aaType = GrAAType::kNone,
std::unique_ptr<GrFragmentProcessor> fp = nullptr) {
skgpu::v1::TriangulatingPathRenderer pr;
pr.setMaxVerbCount(100);
GrPaint paint;
paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
if (fp) {
paint.setColorFragmentProcessor(std::move(fp));
}
SkIRect clipConservativeBounds = SkIRect::MakeWH(sdc->width(), sdc->height());
GrStyle style(SkStrokeRec::kFill_InitStyle);
GrStyledShape shape(path, style);
skgpu::v1::PathRenderer::DrawPathArgs args{rContext,
std::move(paint),
&GrUserStencilSettings::kUnused,
sdc,
nullptr,
&clipConservativeBounds,
&matrix,
&shape,
aaType,
false};
pr.drawPath(args);
}
DEF_GANESH_TEST_FOR_ALL_CONTEXTS(TriangulatingPathRendererTests,
reporter,
ctxInfo,
CtsEnforcement::kNever) {
auto ctx = ctxInfo.directContext();
auto sdc = skgpu::v1::SurfaceDrawContext::Make(
ctx, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {800, 800},
SkSurfaceProps(),/*label=*/{}, 1, GrMipmapped::kNo, GrProtected::kNo,
kTopLeft_GrSurfaceOrigin);
if (!sdc) {
return;
}
ctx->flushAndSubmit();
// Adding discard to appease vulkan validation warning about loading uninitialized data on draw
sdc->discard();
for (CreatePathFn createPath : kNonEdgeAAPaths) {
test_path(ctx, sdc.get(), createPath());
}
SkMatrix nonInvertibleMatrix = SkMatrix::Scale(0, 0);
std::unique_ptr<GrFragmentProcessor> fp(create_linear_gradient_processor(ctx));
test_path(ctx, sdc.get(), create_path_17(), nonInvertibleMatrix, GrAAType::kCoverage,
std::move(fp));
test_path(ctx, sdc.get(), create_path_20(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_21(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_25(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_26(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_27(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_28(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_31(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_38(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_41(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_43(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_44(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_45(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_46(), SkMatrix(), GrAAType::kCoverage);
test_path(ctx, sdc.get(), create_path_47(), SkMatrix(), GrAAType::kCoverage);
}
#endif // SK_GPU_V1
namespace {
class SimpleVertexAllocator : public GrEagerVertexAllocator {
public:
void* lock(size_t stride, int eagerCount) override {
SkASSERT(!fPoints);
SkASSERT(stride == sizeof(SkPoint));
fPoints.reset(eagerCount);
return fPoints;
}
void unlock(int actualCount) override {}
SkPoint operator[](int idx) const { return fPoints[idx]; }
SkAutoTMalloc<SkPoint> fPoints;
};
class SimplerVertexAllocator : public GrEagerVertexAllocator {
public:
void* lock(size_t stride, int eagerCount) override {
size_t allocSize = eagerCount * stride;
if (allocSize > fVertexAllocSize) {
fVertexData.reset(allocSize);
}
return fVertexData;
}
void unlock(int) override {}
SkAutoTMalloc<char> fVertexData;
size_t fVertexAllocSize = 0;
};
} // namespace
struct Edge {
Edge reverse() const { return {fP1, fP0}; }
SkPoint fP0, fP1;
};
static bool operator<(const Edge& a, const Edge& b) {
if (a.fP0.fX != b.fP0.fX) {
return a.fP0.fX < b.fP0.fX;
}
if (a.fP0.fY != b.fP0.fY) {
return a.fP0.fY < b.fP0.fY;
}
if (a.fP1.fX != b.fP1.fX) {
return a.fP1.fX < b.fP1.fX;
}
if (a.fP1.fY != b.fP1.fY) {
return a.fP1.fY < b.fP1.fY;
}
return false;
}
using EdgeMap = std::map<Edge, int>;
static void add_edge(EdgeMap& edgeMap, SkPoint p0, SkPoint p1) {
Edge edge{p0, p1};
// First check if this edge already exists in reverse.
auto reverseIter = edgeMap.find(edge.reverse());
if (reverseIter != edgeMap.end()) {
--reverseIter->second;
} else {
++edgeMap[edge];
}
}
static void add_tri_edges(skiatest::Reporter* r, EdgeMap& edgeMap, const SkPoint pts[3]) {
for (int i = 0; i < 3; ++i) {
SkPoint p0=pts[i], p1=pts[(i+1)%3];
// The triangulator shouldn't output degenerate triangles.
REPORTER_ASSERT(r, p0 != p1);
add_edge(edgeMap, p0, p1);
}
}
static EdgeMap simplify(const EdgeMap& edges, SkPathFillType fillType) {
// Prune out the edges whose count went to zero, and reverse the edges whose count is negative.
EdgeMap simplifiedEdges;
for (auto [edge, count] : edges) {
// We should only have one ordering of any given edge.
SkASSERT(edges.find(edge.reverse()) == edges.end());
if (fillType == SkPathFillType::kEvenOdd) {
count = abs(count) & 1;
}
if (count > 0) {
simplifiedEdges[edge] = count;
} else if (count < 0) {
simplifiedEdges[edge.reverse()] = -count;
}
}
return simplifiedEdges;
}
static void verify_simple_inner_polygons(skiatest::Reporter* r, const char* shapeName,
SkPath path) {
for (auto fillType : {SkPathFillType::kWinding}) {
path.setFillType(fillType);
SkArenaAlloc arena(GrTriangulator::kArenaDefaultChunkSize);
GrInnerFanTriangulator::BreadcrumbTriangleList breadcrumbs;
SimpleVertexAllocator vertexAlloc;
int vertexCount;
{
bool isLinear;
GrInnerFanTriangulator triangulator(path, &arena);
vertexCount = triangulator.pathToTriangles(&vertexAlloc, &breadcrumbs, &isLinear);
}
// Count up all the triangulated edges.
EdgeMap trianglePlusBreadcrumbEdges;
for (int i = 0; i < vertexCount; i += 3) {
add_tri_edges(r, trianglePlusBreadcrumbEdges, vertexAlloc.fPoints.data() + i);
}
// Count up all the breadcrumb edges.
int breadcrumbCount = 0;
for (const auto* node = breadcrumbs.head(); node; node = node->fNext) {
add_tri_edges(r, trianglePlusBreadcrumbEdges, node->fPts);
++breadcrumbCount;
}
REPORTER_ASSERT(r, breadcrumbCount == breadcrumbs.count());
// The triangulated + breadcrumb edges should cancel out to the inner polygon edges.
trianglePlusBreadcrumbEdges = simplify(trianglePlusBreadcrumbEdges, path.getFillType());
// Build the inner polygon edges.
EdgeMap innerFanEdges;
SkPoint startPoint{}, lastPoint{};
for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
switch (verb) {
case SkPathVerb::kMove:
if (lastPoint != startPoint) {
add_edge(innerFanEdges, lastPoint, startPoint);
}
lastPoint = startPoint = pts[0];
continue;
case SkPathVerb::kClose:
lastPoint = startPoint;
break;
case SkPathVerb::kLine:
lastPoint = pts[1];
break;
case SkPathVerb::kQuad:
case SkPathVerb::kConic:
lastPoint = pts[2];
break;
case SkPathVerb::kCubic:
lastPoint = pts[3];
break;
}
if (pts[0] != lastPoint) {
add_edge(innerFanEdges, pts[0], lastPoint);
}
}
if (lastPoint != startPoint) {
add_edge(innerFanEdges, lastPoint, startPoint);
}
innerFanEdges = simplify(innerFanEdges, path.getFillType());
// The triangulated + breadcrumb edges should cancel out to the inner polygon edges. First
// verify that every inner polygon edge can be found in the triangulation.
for (auto [edge, count] : innerFanEdges) {
auto it = trianglePlusBreadcrumbEdges.find(edge);
if (it != trianglePlusBreadcrumbEdges.end()) {
it->second -= count;
if (it->second == 0) {
trianglePlusBreadcrumbEdges.erase(it);
}
continue;
}
it = trianglePlusBreadcrumbEdges.find(edge.reverse());
if (it != trianglePlusBreadcrumbEdges.end()) {
it->second += count;
if (it->second == 0) {
trianglePlusBreadcrumbEdges.erase(it);
}
continue;
}
ERRORF(r, "error: %s: edge [%g,%g]:[%g,%g] not found in triangulation.",
shapeName, edge.fP0.fX, edge.fP0.fY, edge.fP1.fX, edge.fP1.fY);
return;
}
// Now verify that there are no spurious edges in the triangulation.
//
// NOTE: The triangulator's definition of wind isn't always correct for edges that run
// exactly parallel to the sweep (either vertical or horizontal edges). This doesn't
// actually matter though because T-junction artifacts don't happen on axis-aligned edges.
// Tolerate spurious edges that (1) come in pairs of 2, and (2) are either exactly
// horizontal or exactly vertical exclusively.
bool hasSpuriousHorz=false, hasSpuriousVert=false;
for (auto [edge, count] : trianglePlusBreadcrumbEdges) {
if (count % 2 == 0) {
if (edge.fP0.fX == edge.fP1.fX && !hasSpuriousVert) {
hasSpuriousHorz = true;
continue;
}
if (edge.fP0.fY == edge.fP1.fY && !hasSpuriousHorz) {
hasSpuriousVert = true;
continue;
}
}
ERRORF(r, "error: %s: spurious edge [%g,%g]:[%g,%g] found in triangulation.",
shapeName, edge.fP0.fX, edge.fP0.fY, edge.fP1.fX, edge.fP1.fY);
return;
}
}
}
DEF_TEST(GrInnerFanTriangulator, r) {
verify_simple_inner_polygons(r, "simple triangle", SkPath().lineTo(1,0).lineTo(0,1));
verify_simple_inner_polygons(r, "simple square", SkPath().lineTo(1,0).lineTo(1,1).lineTo(0,1));
verify_simple_inner_polygons(r, "concave polygon", SkPath()
.lineTo(1,0).lineTo(.5f,.5f).lineTo(1,1).lineTo(0,1));
verify_simple_inner_polygons(r, "double wound triangle", SkPath()
.lineTo(1,0).lineTo(0,1).lineTo(0,0).lineTo(1,0).lineTo(0,1));
verify_simple_inner_polygons(r, "self-intersecting bowtie", SkPath()
.lineTo(1,0).lineTo(0,1).lineTo(1,1));
verify_simple_inner_polygons(r, "asymmetrical bowtie", SkPath()
.lineTo(1,0).lineTo(0,1).lineTo(.1f,-.1f));
verify_simple_inner_polygons(r, "bowtie with extremely small section", SkPath()
.lineTo(1,0).lineTo(0,1).lineTo(1e-6f,-1e-6f));
verify_simple_inner_polygons(r, "intersecting squares", SkPath()
.lineTo(1,0).lineTo(1,1).lineTo(0,1)
.moveTo(.5f,.5f).lineTo(1.5f,.5f).lineTo(1.5f,1.5f).lineTo(.5f,1.5f).close());
verify_simple_inner_polygons(r, "6-point \"Star of David\"", SkPath()
.moveTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
.moveTo(cosf(0), sinf(0))
.lineTo(cosf(2*SK_ScalarPI/3), sinf(2*SK_ScalarPI/3))
.lineTo(cosf(-2*SK_ScalarPI/3), sinf(-2*SK_ScalarPI/3)));
verify_simple_inner_polygons(r, "double wound \"Star of David\"", SkPath()
.moveTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
.lineTo(cosf(-SK_ScalarPI/3), sinf(-SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI/3), sinf(SK_ScalarPI/3))
.lineTo(cosf(SK_ScalarPI), sinf(SK_ScalarPI))
.moveTo(cosf(0), sinf(0))
.lineTo(cosf(2*SK_ScalarPI/3), sinf(2*SK_ScalarPI/3))
.lineTo(cosf(-2*SK_ScalarPI/3), sinf(-2*SK_ScalarPI/3)));
verify_simple_inner_polygons(r, "5-point star", ToolUtils::make_star(SkRect::MakeWH(100, 200)));
verify_simple_inner_polygons(r, "\"pointy\" intersecting triangles", SkPath()
.moveTo(0,-100).lineTo(-1e-6f,100).lineTo(1e-6f,100)
.moveTo(-100,0).lineTo(100,1e-6f).lineTo(100,-1e-6f));
verify_simple_inner_polygons(r, "overlapping rects with vertical collinear edges", SkPath()
.moveTo(0,0).lineTo(0,2).lineTo(1,2).lineTo(1,0)
.moveTo(0,1).lineTo(0,3).lineTo(1,3).lineTo(1,1));
verify_simple_inner_polygons(r, "overlapping rects with horizontal collinear edges", SkPath()
.lineTo(2,0).lineTo(2,1).lineTo(0,1)
.moveTo(1,0).lineTo(3,0).lineTo(3,1).lineTo(1,1).close());
for (int i = 0; i < (int)std::size(kNonEdgeAAPaths); ++i) {
verify_simple_inner_polygons(r, SkStringPrintf("kNonEdgeAAPaths[%i]", i).c_str(),
kNonEdgeAAPaths[i]());
}
SkRandom rand;
for (int i = 0; i < 50; ++i) {
auto randomPath = SkPath().moveTo(rand.nextF(), rand.nextF());
for (int j = 0; j < i; ++j) {
randomPath.lineTo(rand.nextF(), rand.nextF());
}
verify_simple_inner_polygons(r, SkStringPrintf("random_path_%i", i).c_str(), randomPath);
}
}
static void test_crbug_1262444(skiatest::Reporter* r) {
SkPath path;
path.setFillType(SkPathFillType::kWinding);
path.moveTo(SkBits2Float(0x3fe0633f), SkBits2Float(0x3d04a60d)); // 1.75303f, 0.0323849f
path.cubicTo(SkBits2Float(0x3fe27540), SkBits2Float(0x3dff593f), SkBits2Float(0x3fe45241),
SkBits2Float(0x3e5e2fbb), SkBits2Float(0x3fe55b41), SkBits2Float(
0x3e9e596d)); // 1.7692f, 0.124682f, 1.78376f, 0.216979f, 1.79185f, 0.309276f
path.cubicTo(SkBits2Float(0x3fe5fa41), SkBits2Float(0x3eb3e79c), SkBits2Float(0x3fe62f41),
SkBits2Float(0x3ec975cb), SkBits2Float(0x3fe69941), SkBits2Float(
0x3edfd837)); // 1.7967f, 0.351376f, 1.79832f, 0.393477f, 1.80155f, 0.437196f
path.cubicTo(SkBits2Float(0x3fe70341), SkBits2Float(0x3f064e87), SkBits2Float(0x3fe6ce41),
SkBits2Float(0x3f1cb0f2), SkBits2Float(0x3fe59041), SkBits2Float(
0x3f33135e)); // 1.80479f, 0.524636f, 1.80317f, 0.612075f, 1.79346f, 0.699514f
path.cubicTo(SkBits2Float(0x3fe48740), SkBits2Float(0x3f468ef5), SkBits2Float(0x3fe2df40),
SkBits2Float(0x3f59a06d), SkBits2Float(0x3fe02e3f), SkBits2Float(
0x3f6cb1e6)); // 1.78538f, 0.775619f, 1.77244f, 0.850104f, 1.75141f, 0.92459f
path.cubicTo(SkBits2Float(0x3fde863f), SkBits2Float(0x3f78b759), SkBits2Float(0x3fdc743e),
SkBits2Float(0x3f822957), SkBits2Float(0x3fd9c33e), SkBits2Float(
0x3f87f701)); // 1.73847f, 0.971548f, 1.7223f, 1.01689f, 1.70127f, 1.06223f
path.cubicTo(SkBits2Float(0x3fd98e3e), SkBits2Float(0x3f88611f), SkBits2Float(0x3fd9593e),
SkBits2Float(0x3f88cb3e), SkBits2Float(0x3fd9243d), SkBits2Float(
0x3f896a6b)); // 1.69965f, 1.06546f, 1.69804f, 1.0687f, 1.69642f, 1.07356f
path.cubicTo(SkBits2Float(0x3fd63e3c), SkBits2Float(0x3f8fa234), SkBits2Float(0x3fd2ee3b),
SkBits2Float(0x3f95d9fd), SkBits2Float(0x3fd2ee3b), SkBits2Float(
0x3f9ce602)); // 1.67377f, 1.12214f, 1.6479f, 1.17071f, 1.6479f, 1.22577f
path.cubicTo(SkBits2Float(0x3fd3233b), SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3583b),
SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c), SkBits2Float(
0x3f9c7be4)); // 1.64951f, 1.22415f, 1.65113f, 1.22415f, 1.65437f, 1.22253f
path.cubicTo(SkBits2Float(0x3fd3c23c), SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c),
SkBits2Float(0x3f9cb0f3), SkBits2Float(0x3fd3c23c), SkBits2Float(
0x3f9ce602)); // 1.65437f, 1.22415f, 1.65437f, 1.22415f, 1.65437f, 1.22577f
path.cubicTo(SkBits2Float(0x3fd5353c), SkBits2Float(0x3f9c46d4), SkBits2Float(0x3fd6dd3d),
SkBits2Float(0x3f9bdcb6), SkBits2Float(0x3fd7b13d), SkBits2Float(
0x3f9ad36a)); // 1.66569f, 1.22091f, 1.67863f, 1.21767f, 1.6851f, 1.20958f
path.cubicTo(SkBits2Float(0x3fda623e), SkBits2Float(0x3f96ae3a), SkBits2Float(0x3fdca93f),
SkBits2Float(0x3f921eeb), SkBits2Float(0x3fdf253f), SkBits2Float(
0x3f8dc4ab)); // 1.70612f, 1.17719f, 1.72391f, 1.14157f, 1.74332f, 1.10756f
path.cubicTo(SkBits2Float(0x3fe0983f), SkBits2Float(0x3f8b12e5), SkBits2Float(0x3fe1d640),
SkBits2Float(0x3f87f700), SkBits2Float(0x3fe3b340), SkBits2Float(
0x3f857a4a)); // 1.75465f, 1.08651f, 1.76435f, 1.06223f, 1.77891f, 1.04279f
path.cubicTo(SkBits2Float(0x3fe48740), SkBits2Float(0x3f8470fe), SkBits2Float(0x3fe62f40),
SkBits2Float(0x3f8470fe), SkBits2Float(0x3fe7d741), SkBits2Float(
0x3f843bef)); // 1.78538f, 1.0347f, 1.79832f, 1.0347f, 1.81126f, 1.03308f
path.cubicTo(SkBits2Float(0x3fe2aa40), SkBits2Float(0x3f943182), SkBits2Float(0x3fda623d),
SkBits2Float(0x3fa2498e), SkBits2Float(0x3fceff3a), SkBits2Float(
0x3fae4f01)); // 1.77082f, 1.15776f, 1.70612f, 1.26787f, 1.61716f, 1.36179f
path.cubicTo(SkBits2Float(0x3fce6039), SkBits2Float(0x3faf233e), SkBits2Float(0x3fcd2239),
SkBits2Float(0x3faf584d), SkBits2Float(0x3fcc1939), SkBits2Float(
0x3fafc26b)); // 1.61231f, 1.36826f, 1.60261f, 1.36988f, 1.59452f, 1.37312f
path.cubicTo(SkBits2Float(0x3fcc1939), SkBits2Float(0x3faff77a), SkBits2Float(0x3fcc1939),
SkBits2Float(0x3faff77a), SkBits2Float(0x3fcc4e39), SkBits2Float(
0x3fb02c89)); // 1.59452f, 1.37474f, 1.59452f, 1.37474f, 1.59614f, 1.37636f
path.cubicTo(SkBits2Float(0x3fcc1939), SkBits2Float(0x3fb02c89), SkBits2Float(0x3fcc1939),
SkBits2Float(0x3fb02c89), SkBits2Float(0x3fcbe439), SkBits2Float(
0x3fb02c89)); // 1.59452f, 1.37636f, 1.59452f, 1.37636f, 1.5929f, 1.37636f
path.cubicTo(SkBits2Float(0x3fcbe439), SkBits2Float(0x3fb20a12), SkBits2Float(0x3fcb4539),
SkBits2Float(0x3fb37d7d), SkBits2Float(0x3fc99d39), SkBits2Float(
0x3fb3b28c)); // 1.5929f, 1.39093f, 1.58805f, 1.40227f, 1.57511f, 1.40389f
path.cubicTo(SkBits2Float(0x3fc93339), SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc8c938),
SkBits2Float(0x3fb41caa), SkBits2Float(0x3fc7f538), SkBits2Float(
0x3fb41caa)); // 1.57188f, 1.40551f, 1.56864f, 1.40712f, 1.56217f, 1.40712f
path.cubicTo(SkBits2Float(0x3fc7f538), SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc7f538),
SkBits2Float(0x3fb3e79b), SkBits2Float(0x3fc7f538), SkBits2Float(
0x3fb3b28c)); // 1.56217f, 1.40551f, 1.56217f, 1.40551f, 1.56217f, 1.40389f
path.lineTo(SkBits2Float(0x3fc7c038), SkBits2Float(0x3fb3b28c)); // 1.56055f, 1.40389f
path.cubicTo(SkBits2Float(0x3fc7c038), SkBits2Float(0x3fb4f0e7), SkBits2Float(0x3fc7f538),
SkBits2Float(0x3fb66452), SkBits2Float(0x3fc78b38), SkBits2Float(
0x3fb76d9e)); // 1.56055f, 1.4136f, 1.56217f, 1.42494f, 1.55894f, 1.43303f
path.cubicTo(SkBits2Float(0x3fc3d137), SkBits2Float(0x3fbe4495), SkBits2Float(0x3fbf4336),
SkBits2Float(0x3fc4123e), SkBits2Float(0x3fb80434), SkBits2Float(
0x3fc76331)); // 1.52982f, 1.48647f, 1.49424f, 1.53181f, 1.43763f, 1.55771f
path.cubicTo(SkBits2Float(0x3fb47f33), SkBits2Float(0x3fc90bac), SkBits2Float(0x3fb19932),
SkBits2Float(0x3fcb5353), SkBits2Float(0x3faf1d31), SkBits2Float(
0x3fce6f37)); // 1.41013f, 1.57067f, 1.38749f, 1.58848f, 1.36808f, 1.61277f
path.cubicTo(SkBits2Float(0x3fa4592e), SkBits2Float(0x3fdb13d7), SkBits2Float(0x3f974e2a),
SkBits2Float(0x3fe53bc1), SkBits2Float(0x3f896f25), SkBits2Float(
0x3fee5a5f)); // 1.28397f, 1.71154f, 1.18207f, 1.79089f, 1.0737f, 1.86213f
path.cubicTo(SkBits2Float(0x3f6b883f), SkBits2Float(0x3ffb691f), SkBits2Float(0x3f42f434),
SkBits2Float(0x400367b2), SkBits2Float(0x3f184e28), SkBits2Float(
0x4008611f)); // 0.920048f, 1.96415f, 0.761539f, 2.0532f, 0.594943f, 2.13093f
path.cubicTo(SkBits2Float(0x3f184e28), SkBits2Float(0x4008611f), SkBits2Float(0x3f17e428),
SkBits2Float(0x4008611f), SkBits2Float(0x3f17e428), SkBits2Float(
0x40087ba7)); // 0.594943f, 2.13093f, 0.593325f, 2.13093f, 0.593325f, 2.13255f
path.cubicTo(SkBits2Float(0x3effc044), SkBits2Float(0x400b47f5), SkBits2Float(0x3ed08c36),
SkBits2Float(0x400e2eca), SkBits2Float(0x3e9edc28), SkBits2Float(
0x401090f9)); // 0.499514f, 2.17627f, 0.40732f, 2.22161f, 0.310273f, 2.25885f
path.cubicTo(SkBits2Float(0x3e5a5832), SkBits2Float(0x4012f328), SkBits2Float(0x3de40030),
SkBits2Float(0x4014811a), SkBits2Float(0x3c1a7f9e), SkBits2Float(
0x40158a66)); // 0.213227f, 2.29609f, 0.111328f, 2.32038f, 0.00942984f, 2.33657f
path.lineTo(SkBits2Float(0x3c1a7f9e), SkBits2Float(0x401bf73d)); // 0.00942984f, 2.43697f
path.cubicTo(SkBits2Float(0x3dc98028), SkBits2Float(0x401b580f), SkBits2Float(0x3e3fd82e),
SkBits2Float(0x401a694b), SkBits2Float(0x3e8ca424), SkBits2Float(
0x40191068)); // 0.098389f, 2.42725f, 0.187348f, 2.41268f, 0.27469f, 2.39163f
path.cubicTo(SkBits2Float(0x3e94ec27), SkBits2Float(0x4018db59), SkBits2Float(0x3e9d3429),
SkBits2Float(0x40188bc2), SkBits2Float(0x3ea4a82b), SkBits2Float(
0x401856b3)); // 0.290864f, 2.38839f, 0.307039f, 2.38353f, 0.321596f, 2.38029f
path.cubicTo(SkBits2Float(0x3eae982e), SkBits2Float(0x4018071c), SkBits2Float(0x3eb95c31),
SkBits2Float(0x40179cfe), SkBits2Float(0x3ec34c34), SkBits2Float(
0x40174d67)); // 0.341005f, 2.37543f, 0.362031f, 2.36896f, 0.381441f, 2.3641f
path.cubicTo(SkBits2Float(0x3ec9ec36), SkBits2Float(0x40171858), SkBits2Float(0x3ed08c38),
SkBits2Float(0x4016c8c1), SkBits2Float(0x3ed8003a), SkBits2Float(
0x401693b2)); // 0.39438f, 2.36086f, 0.40732f, 2.356f, 0.421877f, 2.35276f
path.cubicTo(SkBits2Float(0x3eda7c3a), SkBits2Float(0x4016792a), SkBits2Float(0x3eddcc3c),
SkBits2Float(0x40165ea3), SkBits2Float(0x3ee0483c), SkBits2Float(
0x4016441b)); // 0.426729f, 2.35115f, 0.433199f, 2.34953f, 0.438051f, 2.34791f
path.cubicTo(SkBits2Float(0x3ee2c43d), SkBits2Float(0x40162993), SkBits2Float(0x3ee5403e),
SkBits2Float(0x40160f0c), SkBits2Float(0x3ee8903f), SkBits2Float(
0x4015f484)); // 0.442903f, 2.34629f, 0.447756f, 2.34467f, 0.454226f, 2.34305f
path.cubicTo(SkBits2Float(0x3f1c082a), SkBits2Float(0x4012be17), SkBits2Float(0x3f422036),
SkBits2Float(0x400e63d8), SkBits2Float(0x3f66fa40), SkBits2Float(
0x40096a6a)); // 0.6095f, 2.29285f, 0.758304f, 2.22484f, 0.902256f, 2.14712f
path.cubicTo(SkBits2Float(0x3f6a4a41), SkBits2Float(0x4009004c), SkBits2Float(0x3f6d3042),
SkBits2Float(0x4008962d), SkBits2Float(0x3f708043), SkBits2Float(
0x40081187)); // 0.915196f, 2.14064f, 0.926518f, 2.13417f, 0.939457f, 2.12607f
path.cubicTo(SkBits2Float(0x3f7efe47), SkBits2Float(0x4005feef), SkBits2Float(0x3f868925),
SkBits2Float(0x4003b748), SkBits2Float(0x3f8d5e28), SkBits2Float(
0x40015519)); // 0.996067f, 2.09368f, 1.05106f, 2.05806f, 1.10444f, 2.02082f
path.cubicTo(SkBits2Float(0x3f97b82b), SkBits2Float(0x3ffb691d), SkBits2Float(0x3fa1a82e),
SkBits2Float(0x3ff388da), SkBits2Float(0x3fab9830), SkBits2Float(
0x3feb7389)); // 1.18531f, 1.96415f, 1.26294f, 1.90261f, 1.34058f, 1.83946f
path.cubicTo(SkBits2Float(0x3fb20332), SkBits2Float(0x3fe6450c), SkBits2Float(0x3fb80434),
SkBits2Float(0x3fe0e181), SkBits2Float(0x3fbd6635), SkBits2Float(
0x3fda3f99)); // 1.39072f, 1.79898f, 1.43763f, 1.75688f, 1.47968f, 1.70507f
path.cubicTo(SkBits2Float(0x3fbf4336), SkBits2Float(0x3fd7f7f2), SkBits2Float(0x3fc12037),
SkBits2Float(0x3fd5b04b), SkBits2Float(0x3fc2fd36), SkBits2Float(
0x3fd33394)); // 1.49424f, 1.68725f, 1.5088f, 1.66944f, 1.52335f, 1.65001f
path.cubicTo(SkBits2Float(0x3fc5e337), SkBits2Float(0x3fcf7881), SkBits2Float(0x3fc8c938),
SkBits2Float(0x3fcbbd70), SkBits2Float(0x3fcbaf38), SkBits2Float(
0x3fc8025d)); // 1.546f, 1.62086f, 1.56864f, 1.59172f, 1.59128f, 1.56257f
path.cubicTo(SkBits2Float(0x3fceff39), SkBits2Float(0x3fc3a81e), SkBits2Float(0x3fd2843b),
SkBits2Float(0x3fbf18cf), SkBits2Float(0x3fd5d43b), SkBits2Float(
0x3fbabe8f)); // 1.61716f, 1.52857f, 1.64466f, 1.49294f, 1.67054f, 1.45894f
path.cubicTo(SkBits2Float(0x3fd8503c), SkBits2Float(0x3fb7a2ab), SkBits2Float(0x3fda973d),
SkBits2Float(0x3fb486c7), SkBits2Float(0x3fdca93e), SkBits2Float(
0x3fb135d3)); // 1.68995f, 1.43465f, 1.70774f, 1.41036f, 1.72391f, 1.38446f
path.cubicTo(SkBits2Float(0x3fe5c541), SkBits2Float(0x3fa2b3aa), SkBits2Float(0x3feb5c42),
SkBits2Float(0x3f92be16), SkBits2Float(0x3ff15d44), SkBits2Float(
0x3f82c882)); // 1.79508f, 1.27111f, 1.83875f, 1.14643f, 1.88566f, 1.02174f
path.cubicTo(SkBits2Float(0x3ff1fc44), SkBits2Float(0x3f812008), SkBits2Float(0x3ff23144),
SkBits2Float(0x3f7e1adf), SkBits2Float(0x3ff29b44), SkBits2Float(
0x3f7a5fcc)); // 1.89051f, 1.00879f, 1.89213f, 0.992598f, 1.89536f, 0.978024f
path.cubicTo(SkBits2Float(0x3ff47845), SkBits2Float(0x3f5fd830), SkBits2Float(0x3ff65545),
SkBits2Float(0x3f455094), SkBits2Float(0x3ff6bf45), SkBits2Float(
0x3f2a5ed9)); // 1.90992f, 0.874393f, 1.92448f, 0.770761f, 1.92771f, 0.66551f
path.cubicTo(SkBits2Float(0x3ff33a44), SkBits2Float(0x3f0d5a87), SkBits2Float(0x3ff08943),
SkBits2Float(0x3edf03ee), SkBits2Float(0x3fee7743), SkBits2Float(
0x3ea352cf)); // 1.90022f, 0.552163f, 1.87919f, 0.435577f, 1.86301f, 0.318991f
path.cubicTo(SkBits2Float(0x3feccf42), SkBits2Float(0x3e5c872d), SkBits2Float(0x3feb9142),
SkBits2Float(0x3de4d179), SkBits2Float(0x3feaf242), SkBits2Float(
0x3c04a4ae)); // 1.85008f, 0.215359f, 1.84037f, 0.111728f, 1.83552f, 0.0080959f
path.lineTo(SkBits2Float(0x3fe02e3f), SkBits2Float(0x3c04a4ae)); // 1.75141f, 0.0080959f
path.cubicTo(SkBits2Float(0x3fdff93f), SkBits2Float(0x3c6ec47e), SkBits2Float(0x3fe02e3f),
SkBits2Float(0x3cb9b545), SkBits2Float(0x3fe0633f), SkBits2Float(
0x3d04a60d)); // 1.74979f, 0.0145732f, 1.75141f, 0.0226694f, 1.75303f, 0.0323849f
path.close();
path.moveTo(SkBits2Float(0x3fe97f42), SkBits2Float(0x3f7b9e2e)); // 1.8242f, 0.982882f
path.cubicTo(SkBits2Float(0x3fe91542), SkBits2Float(0x3f7eef21), SkBits2Float(0x3fe87642),
SkBits2Float(0x3f81551a), SkBits2Float(0x3fe7d741), SkBits2Float(
0x3f82fd94)); // 1.82096f, 0.995836f, 1.81611f, 1.01041f, 1.81126f, 1.02336f
path.cubicTo(SkBits2Float(0x3fe6ce41), SkBits2Float(0x3f81bf39), SkBits2Float(0x3fe66441),
SkBits2Float(0x3f8080dd), SkBits2Float(0x3fe66441), SkBits2Float(
0x3f7e1ae4)); // 1.80317f, 1.01365f, 1.79993f, 1.00393f, 1.79993f, 0.992598f
path.cubicTo(SkBits2Float(0x3fe66441), SkBits2Float(0x3f7c726a), SkBits2Float(0x3fe69941),
SkBits2Float(0x3f7b340e), SkBits2Float(0x3fe6ce41), SkBits2Float(
0x3f798b95)); // 1.79993f, 0.986121f, 1.80155f, 0.981263f, 1.80317f, 0.974786f
path.cubicTo(SkBits2Float(0x3fe70341), SkBits2Float(0x3f78b758), SkBits2Float(0x3fe76d41),
SkBits2Float(0x3f770edf), SkBits2Float(0x3fe7d741), SkBits2Float(
0x3f770edf)); // 1.80479f, 0.971548f, 1.80802f, 0.965071f, 1.81126f, 0.965071f
path.cubicTo(SkBits2Float(0x3fe84141), SkBits2Float(0x3f770edf), SkBits2Float(0x3fe8ab42),
SkBits2Float(0x3f770edf), SkBits2Float(0x3fe8e041), SkBits2Float(
0x3f7778fd)); // 1.81449f, 0.965071f, 1.81773f, 0.965071f, 1.81934f, 0.96669f
path.cubicTo(SkBits2Float(0x3fe97f42), SkBits2Float(0x3f77e31b), SkBits2Float(0x3fe9e942),
SkBits2Float(0x3f798b95), SkBits2Float(0x3fe97f42), SkBits2Float(
0x3f7b9e2e)); // 1.8242f, 0.968309f, 1.82743f, 0.974786f, 1.8242f, 0.982882f
path.close();
float kTol = 0.25f;
SkRect clipBounds = SkRect::MakeLTRB(0, 0, 14, 14);
SimplerVertexAllocator alloc;
int vertexCount = GrAATriangulator::PathToAATriangles(path, kTol, clipBounds, &alloc);
REPORTER_ASSERT(r, vertexCount == 0);
}
DEF_TEST(TriangulatorBugs, r) {
test_crbug_1262444(r);
}
#endif // SK_ENABLE_OPTIMIZE_SIZE