blob: 8fed33448325db9f3e695629816328d402914038 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkFont.h"
#include "include/core/SkPaint.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkGradientShader.h"
#include "include/effects/SkImageFilters.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/utils/SkRandom.h"
#include "src/core/SkRuntimeEffectPriv.h"
#include "src/gpu/ganesh/GrCaps.h"
#include "src/gpu/ganesh/GrRecordingContextPriv.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
static constexpr int kBoxSize = 100;
static constexpr int kPadding = 5;
static constexpr int kLabelHeight = 15;
static void next_column(SkCanvas* canvas) {
canvas->translate(kBoxSize + kPadding, 0);
}
static void next_row(SkCanvas* canvas) {
canvas->restore();
canvas->translate(0, kBoxSize + kPadding + kLabelHeight);
canvas->save();
}
static constexpr int columns_to_width(int columns) {
return (kPadding + kBoxSize) * columns + kPadding;
}
static constexpr int rows_to_height(int rows) {
return (kPadding + kLabelHeight + kBoxSize) * rows + kPadding;
}
static void draw_label(SkCanvas* canvas, const char* label) {
SkFont font(ToolUtils::create_portable_typeface());
SkPaint p(SkColors::kBlack);
SkRect bounds;
font.measureText(label, strlen(label), SkTextEncoding::kUTF8, &bounds);
canvas->drawSimpleText(label, strlen(label), SkTextEncoding::kUTF8,
(kBoxSize - bounds.width()) * 0.5f,
(kLabelHeight + bounds.height()) * 0.5f, font, p);
canvas->translate(0, kLabelHeight);
}
static SkBitmap draw_shader(SkCanvas* canvas, sk_sp<SkShader> shader,
bool allowRasterFallback = true) {
SkPaint paint;
paint.setShader(std::move(shader));
SkBitmap bitmap;
SkImageInfo info = SkImageInfo::MakeN32Premul({kBoxSize, kBoxSize});
auto surface = canvas->makeSurface(info);
if (allowRasterFallback && !surface) {
surface = SkSurface::MakeRaster(info);
}
if (surface) {
surface->getCanvas()->clear(SK_ColorWHITE);
surface->getCanvas()->scale(kBoxSize, kBoxSize);
surface->getCanvas()->drawRect({0, 0, 1, 1}, paint);
bitmap.allocPixels(info);
surface->readPixels(bitmap, 0, 0);
canvas->drawImage(bitmap.asImage(), 0, 0);
}
return bitmap;
}
/*
Test cases are inserted into the middle of this shader. The pasted expression is expected to
produce a single float. It can reference:
'x' : float in [xMin, xMax]
'xi' : int in [xMin, xMax]
'p' : float2 in [xMin, xMax] Lerps from (xMax, xMin) to (xMin, xMax)
'pi' : int2 in [xMin, xMax] Lerps from (xMax, xMin) to (xMin, xMax)
(helpful for intrinsics with a mix of scalar/vector params)
'v1' : float2(1)
'v2' : float2(2)
*/
static SkString make_unary_sksl_1d(const char* fn, bool requireES3) {
return SkStringPrintf(
"#version %s\n"
"uniform float xScale; uniform float xBias;"
"uniform float yScale; uniform float yBias;"
"half4 main(float2 p) {"
" const float2 v1 = float2(1);"
" const float2 v2 = float2(2);"
" p = float2(p.x, 1 - p.x) * xScale + xBias;"
" float x = p.x;"
" int2 pi = int2(floor(p));"
" int xi = pi.x;"
" float y = float(%s) * yScale + yBias;"
" return y.xxx1;"
"}",
requireES3 ? "300" : "100", fn);
}
// Draws one row of boxes, then advances the canvas translation vertically
static void plot(SkCanvas* canvas,
const char* fn,
float xMin,
float xMax,
float yMin,
float yMax,
const char* label = nullptr,
bool requireES3 = false) {
canvas->save();
draw_label(canvas, label ? label : fn);
auto [effect, error] = SkRuntimeEffect::MakeForShader(make_unary_sksl_1d(fn, requireES3));
if (!effect) {
SkDebugf("Error: %s\n", error.c_str());
return;
}
SkRuntimeShaderBuilder builder(effect);
builder.uniform("xScale") = xMax - xMin;
builder.uniform("xBias") = xMin;
builder.uniform("yScale") = 1.0f / (yMax - yMin);
builder.uniform("yBias") = -yMin / (yMax - yMin);
SkBitmap bitmap =
draw_shader(canvas, builder.makeShader(), /*allowRasterFallback=*/!requireES3);
if (!bitmap.empty()) {
// Plot.
SkPaint plotPaint({ 0.0f, 0.5f, 0.0f, 1.0f });
SkPoint pts[kBoxSize];
for (int x = 0; x < kBoxSize; ++x) {
SkColor c = bitmap.getColor(x, 0);
SkScalar y = (1 - (SkColorGetR(c) / 255.0f)) * kBoxSize;
pts[x].set(x + 0.5f, y);
}
plotPaint.setAntiAlias(true);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, kBoxSize, pts, plotPaint);
}
canvas->restore();
next_column(canvas);
}
static void plot_es3(SkCanvas* canvas,
const char* fn,
float xMin,
float xMax,
float yMin,
float yMax,
const char* label = nullptr) {
plot(canvas, fn, xMin, xMax, yMin, yMax, label, /*requireES3=*/true);
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.1
DEF_SIMPLE_GM(runtime_intrinsics_trig,
canvas,
columns_to_width(3),
rows_to_height(5)) {
const float kPI = SK_FloatPI, kTwoPI = 2 * SK_FloatPI, kPIOverTwo = SK_FloatPI / 2;
canvas->translate(kPadding, kPadding);
canvas->save();
plot(canvas, "radians(x)", 0.0f, 360.0f, 0.0f, kTwoPI);
plot(canvas, "degrees(x)", 0.0f, kTwoPI, 0.0f, 360.0f);
next_row(canvas);
plot(canvas, "sin(x)", 0.0f, kTwoPI, -1.0f, 1.0f);
plot(canvas, "cos(x)", 0.0f, kTwoPI, -1.0f, 1.0f);
plot(canvas, "tan(x)", 0.0f, kPI, -10.0f, 10.0f);
next_row(canvas);
plot(canvas, "asin(x)", -1.0f, 1.0f, -kPIOverTwo, kPIOverTwo);
plot(canvas, "acos(x)", -1.0f, 1.0f, 0.0f, kPI);
plot(canvas, "atan(x)", -10.0f, 10.0f, -kPIOverTwo, kPIOverTwo);
next_row(canvas);
plot(canvas, "atan(0.1, x)", -1.0f, 1.0f, 0.0f, kPI);
plot(canvas, "atan(-0.1, x)", -1.0f, 1.0f, -kPI, 0.0f);
next_row(canvas);
plot(canvas, "atan(x, 0.1)", -1.0f, 1.0f, -kPIOverTwo, kPIOverTwo);
plot(canvas, "atan(x, -0.1)", -1.0f, 1.0f, -kPI, kPI);
next_row(canvas);
}
// The OpenGL ES Shading Language, Version 3.00, Section 8.1
DEF_SIMPLE_GPU_GM_CAN_FAIL(runtime_intrinsics_trig_es3,
ctx, canvas, errorMsg,
columns_to_width(3),
rows_to_height(2)) {
if (ctx->priv().caps()->shaderCaps()->supportedSkSLVerion() < SkSL::Version::k300) {
*errorMsg = "SkSL 300 is not supported.";
return skiagm::DrawResult::kSkip;
}
canvas->translate(kPadding, kPadding);
canvas->save();
plot_es3(canvas, "sinh(x)", -2.0f, 2.0f, -4.0f, 4.0f);
plot_es3(canvas, "cosh(x)", -2.0f, 2.0f, 0.0f, 4.0f);
plot_es3(canvas, "tanh(x)", -2.0f, 2.0f, -1.0f, 1.0f);
next_row(canvas);
if (ctx->priv().caps()->shaderCaps()->fInverseHyperbolicSupport) {
plot_es3(canvas, "asinh(x)", -2.0f, 2.0f, -2.0f, 2.0f);
plot_es3(canvas, "acosh(x)", 0.0f, 5.0f, 0.0f, 3.0f);
plot_es3(canvas, "atanh(x)", -1.0f, 1.0f, -4.0f, 4.0f);
}
next_row(canvas);
return skiagm::DrawResult::kOk;
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.2
DEF_SIMPLE_GM(runtime_intrinsics_exponential,
canvas,
columns_to_width(2),
rows_to_height(5)) {
canvas->translate(kPadding, kPadding);
canvas->save();
plot(canvas, "pow(x, 3)", 0.0f, 8.0f, 0.0f, 500.0f);
plot(canvas, "pow(x, -3)", 0.0f, 4.0f, 0.0f, 10.0f);
next_row(canvas);
plot(canvas, "pow(0.9, x)", -10.0f, 10.0f, 0.0f, 3.0f);
plot(canvas, "pow(1.1, x)", -10.0f, 10.0f, 0.0f, 3.0f);
next_row(canvas);
plot(canvas, "exp(x)", -1.0f, 7.0f, 0.0f, 1000.0f);
plot(canvas, "log(x)", 0.0f, 2.5f, -4.0f, 1.0f);
next_row(canvas);
plot(canvas, "exp2(x)", -1.0f, 7.0f, 0.0f, 130.0f);
plot(canvas, "log2(x)", 0.0f, 4.0f, -4.0f, 2.0f);
next_row(canvas);
plot(canvas, "sqrt(x)", 0.0f, 25.0f, 0.0f, 5.0f);
plot(canvas, "inversesqrt(x)", 0.0f, 25.0f, 0.2f, 4.0f);
next_row(canvas);
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.3
DEF_SIMPLE_GM(runtime_intrinsics_common,
canvas,
columns_to_width(6),
rows_to_height(7)) {
canvas->translate(kPadding, kPadding);
canvas->save();
plot(canvas, "abs(x)", -10.0f, 10.0f, 0.0f, 10.0f);
plot(canvas, "sign(x)", -1.0f, 1.0f, -1.5f, 1.5f);
next_row(canvas);
plot(canvas, "floor(x)", -3.0f, 3.0f, -4.0f, 4.0f);
plot(canvas, "ceil(x)", -3.0f, 3.0f, -4.0f, 4.0f);
plot(canvas, "fract(x)", -3.0f, 3.0f, 0.0f, 1.0f);
plot(canvas, "mod(x, 2)", -4.0f, 4.0f, -2.0f, 2.0f, "mod(scalar)");
plot(canvas, "mod(p, -2).x", -4.0f, 4.0f, -2.0f, 2.0f, "mod(mixed)" );
plot(canvas, "mod(p, v2).x", -4.0f, 4.0f, -2.0f, 2.0f, "mod(vector)");
next_row(canvas);
plot(canvas, "min(x, 1)", 0.0f, 2.0f, 0.0f, 2.0f, "min(scalar)");
plot(canvas, "min(p, 1).x", 0.0f, 2.0f, 0.0f, 2.0f, "min(mixed)" );
plot(canvas, "min(p, v1).x", 0.0f, 2.0f, 0.0f, 2.0f, "min(vector)");
plot(canvas, "max(x, 1)", 0.0f, 2.0f, 0.0f, 2.0f, "max(scalar)");
plot(canvas, "max(p, 1).x", 0.0f, 2.0f, 0.0f, 2.0f, "max(mixed)" );
plot(canvas, "max(p, v1).x", 0.0f, 2.0f, 0.0f, 2.0f, "max(vector)");
next_row(canvas);
plot(canvas, "clamp(x, 1, 2)", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(scalar)");
plot(canvas, "clamp(p, 1, 2).x", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(mixed)" );
plot(canvas, "clamp(p, v1, v2).x", 0.0f, 3.0f, 0.0f, 3.0f, "clamp(vector)");
plot(canvas, "saturate(x)", -1.0f, 2.0f, -0.5f, 1.5f);
next_row(canvas);
plot(canvas, "mix(1, 2, x)", -1.0f, 2.0f, 0.0f, 3.0f, "mix(scalar)");
plot(canvas, "mix(v1, v2, x).x", -1.0f, 2.0f, 0.0f, 3.0f, "mix(mixed)" );
plot(canvas, "mix(v1, v2, p).x", -1.0f, 2.0f, 0.0f, 3.0f, "mix(vector)");
next_row(canvas);
plot(canvas, "step(1, x)", 0.0f, 2.0f, -0.5f, 1.5f, "step(scalar)");
plot(canvas, "step(1, p).x", 0.0f, 2.0f, -0.5f, 1.5f, "step(mixed)" );
plot(canvas, "step(v1, p).x", 0.0f, 2.0f, -0.5f, 1.5f, "step(vector)");
plot(canvas, "smoothstep(1, 2, x)", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(scalar)");
plot(canvas, "smoothstep(1, 2, p).x", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(mixed)" );
plot(canvas, "smoothstep(v1, v2, p).x", 0.5f, 2.5f, -0.5f, 1.5f, "smooth(vector)");
next_row(canvas);
plot(canvas, "floor(p).x", -3.0f, 3.0f, -4.0f, 4.0f);
plot(canvas, "ceil(p).x", -3.0f, 3.0f, -4.0f, 4.0f);
plot(canvas, "floor(p).y", -3.0f, 3.0f, -4.0f, 4.0f);
plot(canvas, "ceil(p).y", -3.0f, 3.0f, -4.0f, 4.0f);
next_row(canvas);
}
// The OpenGL ES Shading Language, Version 3.00, Section 8.1
DEF_SIMPLE_GPU_GM_CAN_FAIL(runtime_intrinsics_common_es3,
ctx, canvas, errorMsg,
columns_to_width(6),
rows_to_height(5)) {
if (ctx->priv().caps()->shaderCaps()->supportedSkSLVerion() < SkSL::Version::k300) {
*errorMsg = "SkSL 300 is not supported.";
return skiagm::DrawResult::kSkip;
}
canvas->translate(kPadding, kPadding);
canvas->save();
plot_es3(canvas, "floatBitsToInt(x)", -2, 2, -2'000'000'000, 2'000'000'000,
"floatBitsToInt(s)");
plot_es3(canvas, "floatBitsToInt(p).x", -2, 2, -2'000'000'000, 2'000'000'000,
"floatBitsToInt(v)");
plot_es3(canvas, "floatBitsToUint(x)", -2, 2, 0, 4'000'000'000,
"floatBitsToUint(s)");
plot_es3(canvas, "floatBitsToUint(p).x", -2, 2, 0, 4'000'000'000,
"floatBitsToUint(v)");
next_row(canvas);
plot_es3(canvas, "intBitsToFloat(xi)", -2'000'000'000, 2'000'000'000, -2, 2,
"intBitsToFloat(s)");
plot_es3(canvas, "intBitsToFloat(pi).x", -2'000'000'000, 2'000'000'000, -2, 2,
"intBitsToFloat(v)");
plot_es3(canvas, "uintBitsToFloat(uint(xi))", 0, 4'000'000'000, -2, 2,
"uintBitsToFloat(s)");
plot_es3(canvas, "uintBitsToFloat(uint2(pi)).x", 0, 4'000'000'000, -2, 2,
"uintBitsToFloat(v)");
next_row(canvas);
plot_es3(canvas, "trunc(x)", -2, 2, -3, 3);
plot_es3(canvas, "trunc(p).x", -2, 2, -3, 3);
plot_es3(canvas, "round(x)", -2, 2, -3, 3);
plot_es3(canvas, "round(p).x", -2, 2, -3, 3);
plot_es3(canvas, "roundEven(x)", -2, 2, -3, 3);
plot_es3(canvas, "roundEven(p).x", -2, 2, -3, 3);
next_row(canvas);
plot_es3(canvas, "min(xi, 1)", -2, 5, -3, 5, "min(int-scalar)");
plot_es3(canvas, "min(pi, 1).x", -2, 5, -3, 5, "min(int-mixed)" );
plot_es3(canvas, "min(pi, int2(1)).x", -2, 5, -3, 5, "min(int-vector)");
plot_es3(canvas, "max(xi, 1)", -2, 5, -3, 5, "max(int-scalar)");
plot_es3(canvas, "max(pi, 1).x", -2, 5, -3, 5, "max(int-mixed)" );
plot_es3(canvas, "max(pi, int2(1)).x", -2, 5, -3, 5, "max(int-vector)");
next_row(canvas);
plot_es3(canvas, "clamp(xi, 1, 3)", -1, 5, -1, 5, "clamp(int-scalar)");
plot_es3(canvas, "clamp(pi, 1, 3).x", -1, 5, -1, 5, "clamp(int-mixed)" );
plot_es3(canvas, "clamp(pi, int2(1), int2(3)).x", -1, 5, -1, 5, "clamp(int-vector)");
plot_es3(canvas, "mix(p.x, p.y, (x>0) )", -1, 2, 0, 3, "mix(scalar, bool)");
plot_es3(canvas, "mix(p.yx, p, (x>0).xx).x", -1, 2, 0, 3, "mix(vector, bool)");
next_row(canvas);
return skiagm::DrawResult::kOk;
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.4
DEF_SIMPLE_GM(runtime_intrinsics_geometric,
canvas,
columns_to_width(4),
rows_to_height(5)) {
canvas->translate(kPadding, kPadding);
canvas->save();
plot(canvas, "length(x)", -1.0f, 1.0f, -0.5f, 1.5f);
plot(canvas, "length(p)", 0.0f, 1.0f, 0.5f, 1.5f);
plot(canvas, "distance(x, 0)", -1.0f, 1.0f, -0.5f, 1.5f);
plot(canvas, "distance(p, v1)", 0.0f, 1.0f, 0.5f, 1.5f);
next_row(canvas);
plot(canvas, "dot(x, 2)", -1.0f, 1.0f, -2.5f, 2.5f);
plot(canvas, "dot(p, p.y1)", -1.0f, 1.0f, -2.5f, 0.5f);
next_row(canvas);
plot(canvas, "cross(p.xy1, p.y1x).x", 0.0f, 1.0f, -1.0f, 1.0f);
plot(canvas, "cross(p.xy1, p.y1x).y", 0.0f, 1.0f, -1.0f, 1.0f);
plot(canvas, "cross(p.xy1, p.y1x).z", 0.0f, 1.0f, -1.0f, 1.0f);
next_row(canvas);
plot(canvas, "normalize(x)", -2.0f, 2.0f, -1.5f, 1.5f);
plot(canvas, "normalize(p).x", 0.0f, 2.0f, 0.0f, 1.0f);
plot(canvas, "normalize(p).y", 0.0f, 2.0f, 0.0f, 1.0f);
plot(canvas, "faceforward(v1, p.x0, v1.x0).x", -1.0f, 1.0f, -1.5f, 1.5f, "faceforward");
next_row(canvas);
plot(canvas, "reflect(p.x1, v1.0x).x", -1.0f, 1.0f, -1.0f, 1.0f, "reflect(horiz)");
plot(canvas, "reflect(p.x1, normalize(v1)).y", -1.0f, 1.0f, -1.0f, 1.0f, "reflect(diag)" );
plot(canvas, "refract(v1.x0, v1.0x, x).x", 0.0f, 1.0f, -1.0f, 1.0f, "refract().x");
plot(canvas, "refract(v1.x0, v1.0x, x).y", 0.0f, 1.0f, -1.0f, 1.0f, "refract().y");
next_row(canvas);
}
#define SKSL_MATRIX_SELECTORS \
"inline float2 sel2(float x) {" \
" return float2(" \
" x < 0.5 ? 1 : 0," \
" x >= 0.5 ? 1 : 0);" \
"}" \
"inline float3 sel3(float x) {" \
" return float3(" \
" x < 0.33 ? 1 : 0," \
" x >= 0.33 && x < 0.66 ? 1 : 0," \
" x >= 0.66 ? 1 : 0);" \
"}" \
"inline float4 sel4(float x) {" \
" return float4(" \
" x < 0.25 ? 1 : 0," \
" x >= 0.25 && x < 0.5 ? 1 : 0," \
" x >= 0.5 && x < 0.75 ? 1 : 0," \
" x >= 0.75 ? 1 : 0);" \
"}"
// Shader for testing matrixCompMult intrinsic
static SkString make_matrix_comp_mult_sksl(int dim) {
return SkStringPrintf(
"uniform float%dx%d m1;" // dim, dim
"uniform float%dx%d m2;" // dim, dim
SKSL_MATRIX_SELECTORS
"half4 main(float2 p) {"
" float%d colSel = sel%d(p.x);" // dim, dim
" float%d rowSel = sel%d(p.y);" // dim, dim
" float%d col = matrixCompMult(m1, m2) * colSel;" // dim
" float v = dot(col, rowSel);"
" return v.xxx1;"
"}", dim, dim, dim, dim, dim, dim, dim, dim, dim);
}
template <int N>
static void plot_matrix_comp_mult(SkCanvas* canvas,
std::array<float, N*N> mtx1,
std::array<float, N*N> mtx2,
const char* label) {
canvas->save();
draw_label(canvas, label);
auto [effect, error] = SkRuntimeEffect::MakeForShader(make_matrix_comp_mult_sksl(N));
if (!effect) {
SkDebugf("Error: %s\n", error.c_str());
return;
}
SkRuntimeShaderBuilder builder(effect);
builder.uniform("m1") = mtx1;
builder.uniform("m2") = mtx2;
draw_shader(canvas, builder.makeShader());
canvas->restore();
next_column(canvas);
}
// Shader for testing inverse() intrinsic
static SkString make_matrix_inverse_sksl(int dim) {
return SkStringPrintf(
"uniform float scale; uniform float bias;"
"uniform float%dx%d m;" // dim, dim
SKSL_MATRIX_SELECTORS
"half4 main(float2 p) {"
" float%d colSel = sel%d(p.x);" // dim, dim
" float%d rowSel = sel%d(p.y);" // dim, dim
" float%d col = inverse(m) * colSel;" // dim
" float v = dot(col, rowSel) * scale + bias;"
" return v.xxx1;"
"}", dim, dim, dim, dim, dim, dim, dim);
}
template <int N>
static void plot_matrix_inverse(SkCanvas* canvas, std::array<float, N*N> mtx, const char* label) {
canvas->save();
draw_label(canvas, label);
auto [effect, error] = SkRuntimeEffect::MakeForShader(make_matrix_inverse_sksl(N));
if (!effect) {
SkDebugf("Error: %s\n", error.c_str());
return;
}
SkRuntimeShaderBuilder builder(effect);
builder.uniform("scale") = 0.5f;
builder.uniform("bias") = 0.5f;
builder.uniform("m") = mtx;
draw_shader(canvas, builder.makeShader());
canvas->restore();
next_column(canvas);
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.5
DEF_SIMPLE_GM(runtime_intrinsics_matrix,
canvas,
columns_to_width(3),
rows_to_height(2)) {
canvas->translate(kPadding, kPadding);
canvas->save();
// Random pairs of matrices where the elements of matrixCompMult(m1, m2) lie in [0, 1]
plot_matrix_comp_mult<2>(canvas,
{1.00f, 0.0f, 2.0f, 0.5f},
{0.75f, 2.0f, 0.2f, 1.2f},
"compMult(2x2)");
plot_matrix_comp_mult<3>(canvas,
{1.00f, 0.0f, 2.0f, 0.5f, -1.0f, -2.0f, -0.5f, 4.00f, 0.25f},
{0.75f, 2.0f, 0.2f, 1.2f, -0.8f, -0.1f, -1.8f, 0.25f, 2.00f},
"compMult(3x3)");
plot_matrix_comp_mult<4>(canvas,
{1.00f, 0.0f, 2.0f, 0.5f, -1.0f, -2.0f, -0.5f, 4.00f, 0.25f, 0.05f,
10.00f, -0.66f, -1.0f, -0.5f, 0.5f, 0.66f},
{0.75f, 2.0f, 0.2f, 1.2f, -0.8f, -0.1f, -1.8f, 0.25f, 2.00f, 2.00f,
0.03f, -1.00f, -1.0f, -0.5f, 1.7f, 0.66f},
"compMult(4x4)");
next_row(canvas);
// Random, invertible matrices where the elements of inverse(m) lie in [-1, 1]
plot_matrix_inverse<2>(canvas,
{ 1.20f, 0.68f,
-0.27f, -1.55f},
"inverse(2x2)");
plot_matrix_inverse<3>(canvas,
{-1.13f, -2.96f, -0.14f,
1.45f, -1.88f, -1.02f,
-2.54f, -2.58f, -1.17f},
"inverse(3x3)");
plot_matrix_inverse<4>(canvas,
{-1.51f, -3.95f, -0.19f, 1.93f,
-2.51f, -1.35f, -3.39f, -3.45f,
-1.56f, 1.61f, -0.22f, -1.08f,
-2.81f, -2.14f, -0.09f, 3.00f},
"inverse(4x4)");
next_row(canvas);
}
/*
Specialized shader for testing relational operators.
*/
static SkString make_bvec_sksl(const char* type, const char* fn) {
// We use negative floats, to ensure that the integer variants are working with the correct
// interpretation of the data.
return SkStringPrintf(
"uniform %s2 v1;"
"half4 main(float2 p) {"
" p.x = p.x < 0.33 ? -3.0 : (p.x < 0.66 ? -2.0 : -1.0);"
" p.y = p.y < 0.33 ? -3.0 : (p.y < 0.66 ? -2.0 : -1.0);"
" bool2 cmp = %s;"
" return half4(cmp.x ? 1.0 : 0.0, cmp.y ? 1.0 : 0.0, 0, 1);"
"}",
type, fn);
}
template <typename T = float>
static void plot_bvec(SkCanvas* canvas, const char* fn, const char* label) {
canvas->save();
draw_label(canvas, label);
const char* type = std::is_integral<T>::value ? "int" : "float";
auto [effect, error] = SkRuntimeEffect::MakeForShader(make_bvec_sksl(type, fn));
if (!effect) {
SkDebugf("Error: %s\n", error.c_str());
return;
}
T uniformData[2] = { -2, -2 };
sk_sp<SkData> uniforms = SkData::MakeWithCopy(uniformData, sizeof(uniformData));
draw_shader(canvas, effect->makeShader(uniforms, /*children=*/{}));
canvas->restore();
next_column(canvas);
}
// The OpenGL ES Shading Language, Version 1.00, Section 8.6
DEF_SIMPLE_GM(runtime_intrinsics_relational,
canvas,
columns_to_width(4),
rows_to_height(6)) {
canvas->translate(kPadding, kPadding);
canvas->save();
plot_bvec<float>(canvas, "lessThan(p, v1)", "lessThan");
plot_bvec<int> (canvas, "lessThan(int2(p), v1)", "lessThan(int)");
plot_bvec<float>(canvas, "lessThanEqual(p, v1)", "lessThanEqual");
plot_bvec<int> (canvas, "lessThanEqual(int2(p), v1)", "lessThanEqual(int)");
next_row(canvas);
plot_bvec<float>(canvas, "greaterThan(p, v1)", "greaterThan");
plot_bvec<int> (canvas, "greaterThan(int2(p), v1)", "greaterThan(int)");
plot_bvec<float>(canvas, "greaterThanEqual(p, v1)", "greaterThanEqual");
plot_bvec<int> (canvas, "greaterThanEqual(int2(p), v1)", "greaterThanEqual(int)");
next_row(canvas);
plot_bvec<float>(canvas, "equal(p, v1)", "equal");
plot_bvec<int> (canvas, "equal(int2(p), v1)", "equal(int)");
plot_bvec<float>(canvas, "notEqual(p, v1)", "notEqual");
plot_bvec<int> (canvas, "notEqual(int2(p), v1)", "notEqual(int)");
next_row(canvas);
plot_bvec(canvas, "equal( lessThanEqual(p, v1), greaterThanEqual(p, v1))", "equal(bvec)");
plot_bvec(canvas, "notEqual(lessThanEqual(p, v1), greaterThanEqual(p, v1))", "notequal(bvec)");
next_row(canvas);
plot_bvec(canvas, "not(notEqual(p, v1))", "not(notEqual)");
plot_bvec(canvas, "not(equal(p, v1))", "not(equal)");
next_row(canvas);
plot_bvec(canvas, "bool2(any(equal(p, v1)))", "any(equal)");
plot_bvec(canvas, "bool2(all(equal(p, v1)))", "all(equal)");
next_row(canvas);
}