blob: 2d5a4d3799ac5376b99aa6361de1b3eaa3d08957 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ccpr/GrCCPathProcessor.h"
#include "src/gpu/GrOnFlushResourceProvider.h"
#include "src/gpu/GrOpsRenderPass.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/ccpr/GrCCPerFlushResources.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
// Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge
// from the path's bounding box and one edge from its 45-degree bounding box. The selectors
// below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding
// box. The octagon vertex is the point that lies between these two corners, found by intersecting
// their edges.
static constexpr float kOctoEdgeNorms[8*4] = {
// bbox // bbox45
0,0, 0,0,
0,0, 1,0,
1,0, 1,0,
1,0, 1,1,
1,1, 1,1,
1,1, 0,1,
0,1, 0,1,
0,1, 0,0,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey);
sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey);
return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms),
kOctoEdgeNorms, gVertexBufferKey);
}
static constexpr uint16_t kRestartStrip = 0xffff;
static constexpr uint16_t kOctoIndicesAsStrips[] = {
3, 4, 2, 0, 1, kRestartStrip, // First half.
7, 0, 6, 4, 5 // Second half.
};
static constexpr uint16_t kOctoIndicesAsTris[] = {
// First half.
3, 4, 2,
4, 0, 2,
2, 0, 1,
// Second half.
7, 0, 6,
0, 4, 6,
6, 4, 5,
};
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[];
constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib;
sk_sp<const GrGpuBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
if (onFlushRP->caps()->usePrimitiveRestart()) {
return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex,
sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips,
gIndexBufferKey);
} else {
return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex,
sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris,
gIndexBufferKey);
}
}
GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture,
const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin,
const SkMatrix& viewMatrixIfUsingLocalCoords)
: INHERITED(kGrCCPathProcessor_ClassID)
, fCoverageMode(coverageMode)
, fAtlasAccess(GrSamplerState::Filter::kNearest, atlasTexture->backendFormat(), swizzle)
, fAtlasDimensions(atlasTexture->dimensions())
, fAtlasOrigin(atlasOrigin) {
// TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin?
this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs));
SkASSERT(this->instanceStride() == sizeof(Instance));
this->setVertexAttributes(&kCornersAttrib, 1);
this->setTextureSamplerCnt(1);
if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) {
fLocalMatrix.setIdentity();
}
}
class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor {
public:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
static void GenKey(const GrCCPathProcessor& cc, GrProcessorKeyBuilder* b) {
b->add32(AddMatrixKeys((uint32_t) cc.fCoverageMode, SkMatrix::I(), cc.fLocalMatrix));
}
private:
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& primProc) override {
const auto& proc = primProc.cast<GrCCPathProcessor>();
pdman.set2f(fAtlasAdjustUniform,
1.0f / proc.fAtlasDimensions.fWidth,
1.0f / proc.fAtlasDimensions.fHeight);
this->setTransform(pdman, fLocalMatrixUni, proc.fLocalMatrix, &fLocalMatrix);
}
GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform;
GrGLSLUniformHandler::UniformHandle fLocalMatrixUni;
SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix();
using INHERITED = GrGLSLGeometryProcessor;
};
void GrCCPathProcessor::getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const {
GrCCPathProcessor::Impl::GenKey(*this, b);
}
GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new Impl();
}
void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline,
const GrSurfaceProxy& atlasProxy,
const GrCCPerFlushResources& resources, int baseInstance,
int endInstance, const SkRect& bounds) const {
const GrCaps& caps = flushState->caps();
GrPrimitiveType primitiveType = caps.usePrimitiveRestart()
? GrPrimitiveType::kTriangleStrip
: GrPrimitiveType::kTriangles;
int numIndicesPerInstance = caps.usePrimitiveRestart()
? SK_ARRAY_COUNT(kOctoIndicesAsStrips)
: SK_ARRAY_COUNT(kOctoIndicesAsTris);
auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart());
GrProgramInfo programInfo(flushState->writeView(), &pipeline, &GrUserStencilSettings::kUnused,
this, primitiveType, 0, flushState->renderPassBarriers(),
flushState->colorLoadOp());
flushState->bindPipelineAndScissorClip(programInfo, bounds);
flushState->bindTextures(*this, atlasProxy, pipeline);
flushState->bindBuffers(resources.indexBuffer(), resources.instanceBuffer(),
resources.vertexBuffer(), enablePrimitiveRestart);
flushState->drawIndexedInstanced(numIndicesPerInstance, 0, endInstance - baseInstance,
baseInstance, 0);
}
void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>();
GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode);
const char* atlasAdjust;
fAtlasAdjustUniform = uniHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust", &atlasAdjust);
varyingHandler->emitAttributes(proc);
GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType);
varyingHandler->addVarying("texcoord", &texcoord);
GrGLSLVarying color(kHalf4_GrSLType);
varyingHandler->addPassThroughAttribute(
kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat);
// The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to
// find an octagon that circumscribes the (bloated) path.
GrGLSLVertexBuilder* v = args.fVertBuilder;
// Are we clockwise? (Positive wind => nonzero fill rule.)
// Or counter-clockwise? (negative wind => even/odd fill rule.)
v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);");
// Find our reference corner from the device-space bounding box.
v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);");
// Find our reference corner from the 45-degree bounding box.
v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);");
// Transform back to device space.
v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;");
// Find the normals to each edge, then intersect them to find our octagon vertex.
v->codeAppendf("float2x2 N = float2x2("
"corners.z + corners.w - 1, corners.w - corners.z, "
"corners.xy*2 - 1);");
v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;");
v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));");
v->codeAppendf("float2 octocoord = K * inverse(N);");
// Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive
// bloatdir means we should take the "ceil" and negative means to take the "floor".)
//
// NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also
// diagonals in the octagon that cross through pixel centers, we need to outset by another
// quarter px to ensure those pixels get rasterized.
v->codeAppendf("float2 bloatdir = (0 != N[0].x) "
"? float2(N[0].x, N[1].y)"
": float2(N[1].x, N[0].y);");
v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;");
v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);");
// Convert to atlas coordinates in order to do our texture lookup.
if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) {
v->codeAppendf("%s.xy = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
} else {
SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin);
v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
texcoord.vsOut(), atlasAdjust, atlasAdjust);
}
if (isCoverageCount) {
v->codeAppendf("%s.z = wind * .5;", texcoord.vsOut());
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord");
this->writeLocalCoord(v, args.fUniformHandler, gpArgs, gpArgs->fPositionVar, proc.fLocalMatrix,
&fLocalMatrixUni);
// Fragment shader.
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
// Look up coverage in the atlas.
f->codeAppendf("half coverage = ");
f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy", texcoord.fsIn()).c_str());
f->codeAppendf(".a;");
if (isCoverageCount) {
f->codeAppendf("coverage = abs(coverage);");
// Scale coverage count by .5. Make it negative for even-odd paths and positive for
// winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)).
f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);", texcoord.fsIn());
// For negative values, this finishes the even-odd sawtooth function. Since positive
// (winding) values were clamped at "coverage/2 = .5", this only undoes the previous
// multiply by .5.
f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);");
}
f->codeAppendf("%s = half4(coverage);", args.fOutputCoverage);
}