| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "bench/Benchmark.h" |
| #include "bench/ResultsWriter.h" |
| #include "bench/SkSLBench.h" |
| #include "include/core/SkCanvas.h" |
| #include "src/base/SkArenaAlloc.h" |
| #include "src/core/SkRasterPipeline.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/mock/GrMockCaps.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLModuleLoader.h" |
| #include "src/sksl/SkSLParser.h" |
| #include "src/sksl/codegen/SkSLGLSLCodeGenerator.h" |
| #include "src/sksl/codegen/SkSLMetalCodeGenerator.h" |
| #include "src/sksl/codegen/SkSLRasterPipelineBuilder.h" |
| #include "src/sksl/codegen/SkSLRasterPipelineCodeGenerator.h" |
| #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" |
| #include "src/sksl/codegen/SkSLWGSLCodeGenerator.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLProgram.h" |
| |
| #include <regex> |
| |
| #include "src/sksl/generated/sksl_shared.minified.sksl" |
| #include "src/sksl/generated/sksl_compute.minified.sksl" |
| #include "src/sksl/generated/sksl_frag.minified.sksl" |
| #include "src/sksl/generated/sksl_gpu.minified.sksl" |
| #include "src/sksl/generated/sksl_public.minified.sksl" |
| #include "src/sksl/generated/sksl_rt_shader.minified.sksl" |
| #include "src/sksl/generated/sksl_vert.minified.sksl" |
| #include "src/sksl/generated/sksl_graphite_frag.minified.sksl" |
| #include "src/sksl/generated/sksl_graphite_vert.minified.sksl" |
| #include "src/sksl/generated/sksl_graphite_frag_es2.minified.sksl" |
| #include "src/sksl/generated/sksl_graphite_vert_es2.minified.sksl" |
| |
| class SkSLCompilerStartupBench : public Benchmark { |
| protected: |
| const char* onGetName() override { |
| return "sksl_compiler_startup"; |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == Backend::kNonRendering; |
| } |
| |
| void onDraw(int loops, SkCanvas*) override { |
| for (int i = 0; i < loops; i++) { |
| SkSL::Compiler compiler; |
| } |
| } |
| }; |
| |
| DEF_BENCH(return new SkSLCompilerStartupBench();) |
| |
| enum class Output { |
| kNone, |
| kGLSL, |
| kMetal, |
| kSPIRV, |
| kSkRP, |
| kGrMtl, |
| kGrWGSL, |
| }; |
| |
| class SkSLCompileBench : public Benchmark { |
| public: |
| static const char* output_string(Output output) { |
| switch (output) { |
| case Output::kNone: return ""; |
| case Output::kGLSL: return "glsl_"; |
| case Output::kMetal: return "metal_"; |
| case Output::kSPIRV: return "spirv_"; |
| case Output::kGrMtl: return "grmtl_"; |
| case Output::kGrWGSL: return "grwgsl_"; |
| case Output::kSkRP: return "skrp_"; |
| } |
| SkUNREACHABLE; |
| } |
| |
| SkSLCompileBench(std::string name, const char* src, bool optimize, Output output) |
| : fName(std::string("sksl_") + (optimize ? "" : "unoptimized_") + |
| output_string(output) + name) |
| , fSrc(src) |
| , fCaps(GrContextOptions(), GrMockOptions()) |
| , fOutput(output) { |
| fSettings.fOptimize = optimize; |
| // The test programs we compile don't follow Vulkan rules and thus produce invalid SPIR-V. |
| // This is harmless, so long as we don't try to validate them. |
| fSettings.fValidateSPIRV = false; |
| |
| this->fixUpSource(); |
| } |
| |
| protected: |
| const char* onGetName() override { |
| return fName.c_str(); |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| #if !defined(SK_GRAPHITE) |
| if (this->usesGraphite()) { |
| return false; |
| } |
| #endif |
| return backend == Backend::kNonRendering; |
| } |
| |
| bool usesRuntimeShader() const { |
| return fOutput == Output::kSkRP; |
| } |
| |
| bool usesGraphite() const { |
| return fOutput == Output::kGrMtl || fOutput == Output::kGrWGSL; |
| } |
| |
| void fixUpSource() { |
| auto fixup = [this](const char* input, const char* replacement) { |
| fSrc = std::regex_replace(fSrc, std::regex(input), replacement); |
| }; |
| |
| // Runtime shaders have slightly different conventions than fragment shaders. |
| // Perform a handful of fixups to compensate. These are hand-tuned for our current set of |
| // test shaders and will probably need to be updated if we add more. |
| if (this->usesRuntimeShader()) { |
| fixup(R"(void main\(\))", "half4 main(float2 xy)"); |
| fixup(R"(sk_FragColor =)", "return"); |
| fixup(R"(sk_FragCoord)", "_FragCoord"); |
| fixup(R"(sampler2D )", "uniform shader "); |
| fixup(R"((flat |noperspective |)in )", "uniform "); |
| fixup(R"(sample\(([A-Za-z0-9_]+), ([A-Za-z0-9_]+)\))", "$01.eval($02)"); |
| fSrc = "#version 300\nuniform float4 _FragCoord;\n" + fSrc; |
| } |
| } |
| |
| void onDraw(int loops, SkCanvas* canvas) override { |
| SkSL::ProgramKind kind; |
| if (this->usesRuntimeShader()) { |
| kind = SkSL::ProgramKind::kRuntimeShader; |
| } else if (this->usesGraphite()) { |
| kind = SkSL::ProgramKind::kGraphiteFragment; |
| } else { |
| kind = SkSL::ProgramKind::kFragment; |
| } |
| for (int i = 0; i < loops; i++) { |
| std::unique_ptr<SkSL::Program> program = fCompiler.convertProgram(kind, fSrc, |
| fSettings); |
| if (fCompiler.errorCount()) { |
| SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str()); |
| } |
| std::string result; |
| switch (fOutput) { |
| case Output::kNone: |
| break; |
| |
| case Output::kGLSL: |
| SkAssertResult(SkSL::ToGLSL(*program, fCaps.shaderCaps(), &result)); |
| break; |
| |
| case Output::kMetal: |
| case Output::kGrMtl: |
| SkAssertResult(SkSL::ToMetal(*program, fCaps.shaderCaps(), &result)); |
| break; |
| |
| case Output::kSPIRV: |
| SkAssertResult(SkSL::ToSPIRV(*program, fCaps.shaderCaps(), &result)); |
| break; |
| |
| case Output::kGrWGSL: |
| SkAssertResult(SkSL::ToWGSL(*program, fCaps.shaderCaps(), &result)); |
| break; |
| |
| case Output::kSkRP: |
| SkAssertResult(CompileToSkRP(*program)); |
| break; |
| } |
| } |
| } |
| |
| static bool CompileToSkRP(const SkSL::Program& program) { |
| const SkSL::FunctionDeclaration* main = program.getFunction("main"); |
| if (!main) { |
| return false; |
| } |
| |
| // Compile our program. |
| std::unique_ptr<SkSL::RP::Program> rasterProg = SkSL::MakeRasterPipelineProgram( |
| program, *main->definition(), /*debugTrace=*/nullptr, /*writeTraceOps=*/false); |
| if (!rasterProg) { |
| return false; |
| } |
| |
| // We need to supply a valid uniform range, but the uniform values inside don't actually |
| // matter, since we aren't going to run the shader. |
| float uniformBuffer[1024]; |
| if (rasterProg->numUniforms() > (int)std::size(uniformBuffer)) { |
| return false; |
| } |
| |
| // Append the program to a raster pipeline. |
| SkSTArenaAlloc<2048> alloc; |
| SkRasterPipeline pipeline(&alloc); |
| rasterProg->appendStages(&pipeline, |
| &alloc, |
| /*callbacks=*/nullptr, |
| /*uniforms=*/SkSpan{uniformBuffer, rasterProg->numUniforms()}); |
| return true; |
| } |
| |
| private: |
| std::string fName; |
| std::string fSrc; |
| GrMockCaps fCaps; |
| SkSL::Compiler fCompiler; |
| SkSL::ProgramSettings fSettings; |
| Output fOutput; |
| |
| using INHERITED = Benchmark; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define COMPILER_BENCH(name, text) \ |
| static constexpr char name ## _SRC[] = text; \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/false, Output::kNone);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kNone);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGLSL);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kMetal);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSPIRV);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kSkRP);) |
| |
| // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. |
| // To get an ES2 compatible shader, nonconstantArrayIndexSupport in GrShaderCaps is forced off. |
| COMPILER_BENCH(large, R"( |
| uniform half4 uthresholds1_7_S1_c0_c0_c0; |
| uniform half4 uthresholds9_13_S1_c0_c0_c0; |
| uniform float4 uscale_S1_c0_c0_c0[4]; |
| uniform float4 ubias_S1_c0_c0_c0[4]; |
| uniform half uinvR1_S1_c0_c0_c1_c0; |
| uniform half ufx_S1_c0_c0_c1_c0; |
| uniform float3x3 umatrix_S1_c0_c0_c1; |
| uniform half4 uleftBorderColor_S1_c0_c0; |
| uniform half4 urightBorderColor_S1_c0_c0; |
| uniform float3x3 umatrix_S1_c1; |
| uniform half urange_S1; |
| sampler2D uTextureSampler_0_S1; |
| flat in half4 vcolor_S0; |
| noperspective in float2 vTransformedCoords_6_S0; |
| half4 UnrolledBinaryColorizer_S1_c0_c0_c0(half4 _input, float2 _coords) |
| { |
| half4 _tmp_0_inColor = _input; |
| float2 _tmp_1_coords = _coords; |
| half t = half(_tmp_1_coords.x); |
| float4 s; |
| float4 b; |
| { |
| if (t < uthresholds1_7_S1_c0_c0_c0.y) |
| { |
| if (t < uthresholds1_7_S1_c0_c0_c0.x) |
| { |
| s = uscale_S1_c0_c0_c0[0]; |
| b = ubias_S1_c0_c0_c0[0]; |
| } |
| else |
| { |
| s = uscale_S1_c0_c0_c0[1]; |
| b = ubias_S1_c0_c0_c0[1]; |
| } |
| } |
| else |
| { |
| if (t < uthresholds1_7_S1_c0_c0_c0.z) |
| { |
| s = uscale_S1_c0_c0_c0[2]; |
| b = ubias_S1_c0_c0_c0[2]; |
| } |
| else |
| { |
| s = uscale_S1_c0_c0_c0[3]; |
| b = ubias_S1_c0_c0_c0[3]; |
| } |
| } |
| } |
| return half4(half4(float(t) * s + b)); |
| } |
| half4 TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(half4 _input) |
| { |
| half4 _tmp_2_inColor = _input; |
| float2 _tmp_3_coords = vTransformedCoords_6_S0; |
| float t = -1.0; |
| half v = 1.0; |
| float x_t = -1.0; |
| if (bool(int(0))) |
| { |
| x_t = dot(_tmp_3_coords, _tmp_3_coords) / _tmp_3_coords.x; |
| } |
| else if (bool(int(0))) |
| { |
| x_t = length(_tmp_3_coords) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); |
| } |
| else |
| { |
| float temp = _tmp_3_coords.x * _tmp_3_coords.x - _tmp_3_coords.y * _tmp_3_coords.y; |
| if (temp >= 0.0) |
| { |
| if (bool(int(0)) || !bool(int(1))) |
| { |
| x_t = -sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); |
| } |
| else |
| { |
| x_t = sqrt(temp) - _tmp_3_coords.x * float(uinvR1_S1_c0_c0_c1_c0); |
| } |
| } |
| } |
| if (!bool(int(0))) |
| { |
| if (x_t <= 0.0) |
| { |
| v = -1.0; |
| } |
| } |
| if (bool(int(1))) |
| { |
| if (bool(int(0))) |
| { |
| t = x_t; |
| } |
| else |
| { |
| t = x_t + float(ufx_S1_c0_c0_c1_c0); |
| } |
| } |
| else |
| { |
| if (bool(int(0))) |
| { |
| t = -x_t; |
| } |
| else |
| { |
| t = -x_t + float(ufx_S1_c0_c0_c1_c0); |
| } |
| } |
| if (bool(int(0))) |
| { |
| t = 1.0 - t; |
| } |
| return half4(half4(half(t), v, 0.0, 0.0)); |
| } |
| half4 MatrixEffect_S1_c0_c0_c1(half4 _input) |
| { |
| return TwoPointConicalFocalLayout_S1_c0_c0_c1_c0(_input); |
| } |
| half4 ClampedGradient_S1_c0_c0(half4 _input) |
| { |
| half4 _tmp_4_inColor = _input; |
| half4 t = MatrixEffect_S1_c0_c0_c1(_tmp_4_inColor); |
| half4 outColor; |
| if (!bool(int(0)) && t.y < 0.0) |
| { |
| outColor = half4(0.0); |
| } |
| else if (t.x < 0.0) |
| { |
| outColor = uleftBorderColor_S1_c0_c0; |
| } |
| else if (t.x > 1.0) |
| { |
| outColor = urightBorderColor_S1_c0_c0; |
| } |
| else |
| { |
| outColor = UnrolledBinaryColorizer_S1_c0_c0_c0(_tmp_4_inColor, float2(half2(t.x, 0.0))); |
| } |
| return half4(outColor); |
| } |
| half4 DisableCoverageAsAlpha_S1_c0(half4 _input) |
| { |
| _input = ClampedGradient_S1_c0_c0(_input); |
| half4 _tmp_5_inColor = _input; |
| return half4(_input); |
| } |
| half4 TextureEffect_S1_c1_c0(half4 _input, float2 _coords) |
| { |
| return sample(uTextureSampler_0_S1, _coords).000r; |
| } |
| half4 MatrixEffect_S1_c1(half4 _input, float2 _coords) |
| { |
| return TextureEffect_S1_c1_c0(_input, float3x2(umatrix_S1_c1) * _coords.xy1); |
| } |
| half4 Dither_S1(half4 _input) |
| { |
| half4 _tmp_6_inColor = _input; |
| half4 color = DisableCoverageAsAlpha_S1_c0(_tmp_6_inColor); |
| half value = MatrixEffect_S1_c1(_tmp_6_inColor, sk_FragCoord.xy).w - 0.5; |
| return half4(half4(clamp(color.xyz + value * urange_S1, 0.0, color.w), color.w)); |
| } |
| void main() |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| half4 outputColor_S0; |
| outputColor_S0 = vcolor_S0; |
| const half4 outputCoverage_S0 = half4(1); |
| half4 output_S1; |
| output_S1 = Dither_S1(outputColor_S0); |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_S1 * outputCoverage_S0; |
| } |
| } |
| )"); |
| |
| // This fragment shader is taken from GM_BlurDrawImage. |
| COMPILER_BENCH(medium, R"( |
| uniform float3x3 umatrix_S1_c0; |
| uniform float3x3 umatrix_S2_c0_c0; |
| uniform float4 urect_S2_c0; |
| sampler2D uTextureSampler_0_S1; |
| sampler2D uTextureSampler_0_S2; |
| flat in half4 vcolor_S0; |
| noperspective in float2 vTransformedCoords_3_S0; |
| half4 TextureEffect_S1_c0_c0(half4 _input) |
| { |
| return sample(uTextureSampler_0_S1, vTransformedCoords_3_S0); |
| } |
| half4 MatrixEffect_S1_c0(half4 _input) |
| { |
| return TextureEffect_S1_c0_c0(_input); |
| } |
| half4 DisableCoverageAsAlpha_S1(half4 _input) |
| { |
| _input = MatrixEffect_S1_c0(_input); |
| half4 _tmp_0_inColor = _input; |
| return half4(_input); |
| } |
| half4 TextureEffect_S2_c0_c0_c0(half4 _input, float2 _coords) |
| { |
| return sample(uTextureSampler_0_S2, _coords).000r; |
| } |
| half4 MatrixEffect_S2_c0_c0(half4 _input, float2 _coords) |
| { |
| return TextureEffect_S2_c0_c0_c0(_input, float3x2(umatrix_S2_c0_c0) * _coords.xy1); |
| } |
| half4 RectBlur_S2_c0(half4 _input, float2 _coords) |
| { |
| half4 _tmp_1_inColor = _input; |
| float2 _tmp_2_coords = _coords; |
| half xCoverage; |
| half yCoverage; |
| if (bool(int(1))) |
| { |
| half2 xy = max(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); |
| xCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.x, 0.5))).w; |
| yCoverage = MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(xy.y, 0.5))).w; |
| } |
| else |
| { |
| half4 rect = half4(half2(urect_S2_c0.xy - _tmp_2_coords), half2(_tmp_2_coords - urect_S2_c0.zw)); |
| xCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.x, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.z, 0.5))).w; |
| yCoverage = (1.0 - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.y, 0.5))).w) - MatrixEffect_S2_c0_c0(_tmp_1_inColor, float2(half2(rect.w, 0.5))).w; |
| } |
| return half4((_input * xCoverage) * yCoverage); |
| } |
| half4 DeviceSpace_S2(half4 _input) |
| { |
| return RectBlur_S2_c0(_input, sk_FragCoord.xy); |
| } |
| void main() |
| { |
| // Stage 0, QuadPerEdgeAAGeometryProcessor |
| half4 outputColor_S0; |
| outputColor_S0 = vcolor_S0; |
| const half4 outputCoverage_S0 = half4(1); |
| half4 output_S1; |
| output_S1 = DisableCoverageAsAlpha_S1(outputColor_S0); |
| half4 output_S2; |
| output_S2 = DeviceSpace_S2(outputCoverage_S0); |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = output_S1 * output_S2; |
| } |
| } |
| )"); |
| |
| // This fragment shader is taken from GM_lcdtext. |
| COMPILER_BENCH(small, R"( |
| sampler2D uTextureSampler_0_S0; |
| noperspective in float2 vTextureCoords_S0; |
| flat in float vTexIndex_S0; |
| noperspective in half4 vinColor_S0; |
| void main() |
| { |
| // Stage 0, BitmapText |
| half4 outputColor_S0; |
| outputColor_S0 = vinColor_S0; |
| half4 texColor; |
| { |
| texColor = sample(uTextureSampler_0_S0, vTextureCoords_S0).rrrr; |
| } |
| half4 outputCoverage_S0 = texColor; |
| { |
| // Xfer Processor: Porter Duff |
| sk_FragColor = outputColor_S0 * outputCoverage_S0; |
| } |
| } |
| )"); |
| |
| COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }"); |
| |
| #define GRAPHITE_BENCH(name, text) \ |
| static constexpr char name##_SRC[] = text; \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrMtl);) \ |
| DEF_BENCH(return new SkSLCompileBench(#name, name##_SRC, /*optimize=*/true, Output::kGrWGSL);) |
| |
| // This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside. |
| GRAPHITE_BENCH(graphite_large, R"( |
| layout(location=0) in flat int shadingSsboIndexVar; |
| layout(location=1) in float2 localCoordsVar; |
| layout(location=2) in float4 jacobian; |
| layout(location=3) in float4 edgeDistances; |
| layout(location=4) in float4 xRadii; |
| layout(location=5) in float4 yRadii; |
| layout(location=6) in float2 strokeParams; |
| layout(location=7) in float2 perPixelControl; |
| struct FSUniformData |
| { |
| // 0 - SolidColor uniforms |
| float4 color_0; |
| // 2 - ConicalGradient8 uniforms |
| float4 colors_2[8]; |
| float4 offsets_2[2]; |
| float2 point0_2; |
| float2 point1_2; |
| float radius0_2; |
| float radius1_2; |
| int tilemode_2; |
| int colorSpace_2; |
| int doUnPremul_2; |
| // 3 - ColorSpaceTransform uniforms |
| int flags_3; |
| int srcKind_3; |
| half3x3 gamutTransform_3; |
| int dstKind_3; |
| half4x4 csXformCoeffs_3; |
| // 4 - DitherShader uniforms |
| half range_4; |
| } |
| ; |
| layout (binding=2) buffer FSUniforms |
| { |
| FSUniformData fsUniformData[]; |
| } |
| ; |
| // 4 - DitherShader samplers |
| layout(binding=0) sampler2D sampler_4; |
| // [1] 1: ColorFilterShader |
| half4 ColorFilterShader_1(half4 inColor, half4 destColor, float2 coords) |
| { |
| return sk_color_space_transform(sk_conical_grad_8_shader(coords, fsUniformData[shadingSsboIndexVar].colors_2, fsUniformData[shadingSsboIndexVar].offsets_2, fsUniformData[shadingSsboIndexVar].point0_2, fsUniformData[shadingSsboIndexVar].point1_2, fsUniformData[shadingSsboIndexVar].radius0_2, fsUniformData[shadingSsboIndexVar].radius1_2, fsUniformData[shadingSsboIndexVar].tilemode_2, fsUniformData[shadingSsboIndexVar].colorSpace_2, fsUniformData[shadingSsboIndexVar].doUnPremul_2), fsUniformData[shadingSsboIndexVar].flags_3, fsUniformData[shadingSsboIndexVar].srcKind_3, fsUniformData[shadingSsboIndexVar].gamutTransform_3, fsUniformData[shadingSsboIndexVar].dstKind_3, fsUniformData[shadingSsboIndexVar].csXformCoeffs_3); |
| } |
| void main() |
| { |
| half4 initialColor = half4(0); |
| // [0] SolidColor |
| half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0); |
| // [1] ColorFilterShader |
| half4 outColor_1 = ColorFilterShader_1(outColor_0, half4(1), localCoordsVar); |
| // [4] DitherShader |
| half4 outColor_4 = sk_dither_shader(outColor_1, localCoordsVar, fsUniformData[shadingSsboIndexVar].range_4, sampler_4); |
| // [5] SrcOver |
| half4 outColor_5 = outColor_4; |
| half4 outputCoverage; |
| outputCoverage = analytic_rrect_coverage_fn(sk_FragCoord, jacobian, edgeDistances, xRadii, yRadii, strokeParams, perPixelControl); |
| sk_FragColor = outColor_5 * outputCoverage; |
| } |
| )"); |
| |
| // This fragment shader is taken from GM_lcdtext. |
| GRAPHITE_BENCH(graphite_small, R"( |
| layout(location=0) in flat int shadingSsboIndexVar; |
| layout(location=1) in float2 textureCoords; |
| layout(location=2) in half texIndex; |
| layout(location=3) in half maskFormat; |
| layout (binding=1) uniform StepUniforms |
| { |
| layout(offset=0) float4x4 subRunDeviceMatrix; |
| layout(offset=64) float4x4 deviceToLocal; |
| layout(offset=128) float2 atlasSizeInv; |
| } |
| ; |
| struct FSUniformData |
| { |
| // 0 - SolidColor uniforms |
| float4 color_0; |
| } |
| ; |
| layout (binding=2) buffer FSUniforms |
| { |
| FSUniformData fsUniformData[]; |
| } |
| ; |
| layout(binding=0) sampler2D text_atlas_0; |
| layout(binding=1) sampler2D text_atlas_1; |
| layout(binding=2) sampler2D text_atlas_2; |
| layout(binding=3) sampler2D text_atlas_3; |
| void main() |
| { |
| half4 initialColor = half4(0); |
| // [0] SolidColor |
| half4 outColor_0 = sk_solid_shader(fsUniformData[shadingSsboIndexVar].color_0); |
| // [1] SrcOver |
| half4 outColor_1 = outColor_0; |
| half4 outputCoverage; |
| outputCoverage = bitmap_text_coverage_fn(sample_indexed_atlas(textureCoords, int(texIndex), text_atlas_0, text_atlas_1, text_atlas_2, text_atlas_3), int(maskFormat)); |
| sk_FragColor = outColor_1 * outputCoverage; |
| } |
| )"); |
| |
| #if defined(SK_BUILD_FOR_UNIX) |
| |
| #include <malloc.h> |
| static int64_t heap_bytes_used() { |
| return (int64_t)mallinfo().uordblks; |
| } |
| |
| #elif defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) |
| |
| #include <malloc/malloc.h> |
| static int64_t heap_bytes_used() { |
| malloc_statistics_t stats; |
| malloc_zone_pressure_relief(malloc_default_zone(), 0); |
| malloc_zone_statistics(malloc_default_zone(), &stats); |
| return (int64_t)stats.size_in_use; |
| } |
| |
| #else |
| |
| static int64_t heap_bytes_used() { |
| return -1; |
| } |
| |
| #endif |
| |
| static void bench(NanoJSONResultsWriter* log, const char* name, int bytes) { |
| SkDEBUGCODE(SkDebugf("%s: %d bytes\n", name, bytes);) |
| log->beginObject(name); // test |
| log->beginObject("meta"); // config |
| log->appendS32("bytes", bytes); // sub_result |
| log->endObject(); // config |
| log->endObject(); // test |
| } |
| |
| // These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and |
| // directly add their results to the nanobench log. |
| void RunSkSLModuleBenchmarks(NanoJSONResultsWriter* log) { |
| // Heap used by a default compiler (with no modules loaded) |
| int64_t before = heap_bytes_used(); |
| SkSL::Compiler compiler; |
| int baselineBytes = heap_bytes_used(); |
| if (baselineBytes >= 0) { |
| baselineBytes = (baselineBytes - before); |
| bench(log, "sksl_compiler_baseline", baselineBytes); |
| } |
| |
| // Heap used by a compiler with the two main GPU modules (fragment + vertex) and runtime effects |
| // (shader + color filter + blender) loaded. Ganesh will load all of these in regular usage. |
| before = heap_bytes_used(); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeColorFilter); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeShader); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kPrivateRuntimeBlender); |
| int64_t gpuBytes = heap_bytes_used(); |
| if (gpuBytes >= 0) { |
| gpuBytes = (gpuBytes - before) + baselineBytes; |
| bench(log, "sksl_compiler_gpu", gpuBytes); |
| } |
| |
| #if defined(SK_GRAPHITE) |
| // Heap used by a compiler with the Graphite modules loaded. |
| before = heap_bytes_used(); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteVertex); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kGraphiteFragment); |
| int64_t graphiteBytes = heap_bytes_used(); |
| if (graphiteBytes >= 0) { |
| graphiteBytes = (graphiteBytes - before) + gpuBytes; |
| bench(log, "sksl_compiler_graphite", graphiteBytes); |
| } |
| |
| // Heap used by a compiler with compute-shader support loaded. |
| before = heap_bytes_used(); |
| compiler.moduleForProgramKind(SkSL::ProgramKind::kCompute); |
| int64_t computeBytes = heap_bytes_used(); |
| if (computeBytes >= 0) { |
| computeBytes = (computeBytes - before) + baselineBytes; |
| bench(log, "sksl_compiler_compute", computeBytes); |
| } |
| #endif |
| |
| // Report the minified module sizes. |
| int compilerGPUBinarySize = std::size(SKSL_MINIFIED_sksl_shared) + |
| std::size(SKSL_MINIFIED_sksl_gpu) + |
| std::size(SKSL_MINIFIED_sksl_vert) + |
| std::size(SKSL_MINIFIED_sksl_frag) + |
| std::size(SKSL_MINIFIED_sksl_public) + |
| std::size(SKSL_MINIFIED_sksl_rt_shader); |
| bench(log, "sksl_binary_size_gpu", compilerGPUBinarySize); |
| |
| int compilerGraphiteBinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag) + |
| std::size(SKSL_MINIFIED_sksl_graphite_vert); |
| bench(log, "sksl_binary_size_graphite", compilerGraphiteBinarySize); |
| |
| int compilerGraphiteES2BinarySize = std::size(SKSL_MINIFIED_sksl_graphite_frag_es2) + |
| std::size(SKSL_MINIFIED_sksl_graphite_vert_es2); |
| bench(log, "sksl_binary_size_graphite_es2", compilerGraphiteES2BinarySize); |
| |
| int compilerComputeBinarySize = std::size(SKSL_MINIFIED_sksl_compute); |
| bench(log, "sksl_binary_size_compute", compilerComputeBinarySize); |
| } |
| |
| class SkSLModuleLoaderBench : public Benchmark { |
| public: |
| SkSLModuleLoaderBench(const char* name, std::vector<SkSL::ProgramKind> moduleList) |
| : fName(name), fModuleList(std::move(moduleList)) {} |
| |
| const char* onGetName() override { |
| return fName; |
| } |
| |
| bool isSuitableFor(Backend backend) override { |
| return backend == Backend::kNonRendering; |
| } |
| |
| bool shouldLoop() const override { |
| return false; |
| } |
| |
| void onPreDraw(SkCanvas*) override { |
| SkSL::ModuleLoader::Get().unloadModules(); |
| } |
| |
| void onDraw(int loops, SkCanvas*) override { |
| SkASSERT(loops == 1); |
| SkSL::Compiler compiler; |
| for (SkSL::ProgramKind kind : fModuleList) { |
| compiler.moduleForProgramKind(kind); |
| } |
| } |
| |
| const char* fName; |
| std::vector<SkSL::ProgramKind> fModuleList; |
| }; |
| |
| DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_ganesh", |
| { |
| SkSL::ProgramKind::kVertex, |
| SkSL::ProgramKind::kFragment, |
| SkSL::ProgramKind::kRuntimeColorFilter, |
| SkSL::ProgramKind::kRuntimeShader, |
| SkSL::ProgramKind::kRuntimeBlender, |
| SkSL::ProgramKind::kPrivateRuntimeColorFilter, |
| SkSL::ProgramKind::kPrivateRuntimeShader, |
| SkSL::ProgramKind::kPrivateRuntimeBlender, |
| SkSL::ProgramKind::kCompute, |
| });) |
| |
| DEF_BENCH(return new SkSLModuleLoaderBench("sksl_module_loader_graphite", |
| { |
| SkSL::ProgramKind::kVertex, |
| SkSL::ProgramKind::kFragment, |
| SkSL::ProgramKind::kRuntimeColorFilter, |
| SkSL::ProgramKind::kRuntimeShader, |
| SkSL::ProgramKind::kRuntimeBlender, |
| SkSL::ProgramKind::kPrivateRuntimeColorFilter, |
| SkSL::ProgramKind::kPrivateRuntimeShader, |
| SkSL::ProgramKind::kPrivateRuntimeBlender, |
| SkSL::ProgramKind::kCompute, |
| SkSL::ProgramKind::kGraphiteVertex, |
| SkSL::ProgramKind::kGraphiteFragment, |
| });) |