blob: d5ed6b712a8db8fd8fd0a409bc7641a25e67e5dc [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCircleBlurFragmentProcessor.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrInvariantOutput.h"
#include "GrTextureProvider.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkFixed.h"
class GrCircleBlurFragmentProcessor::GLSLProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fDataUniform;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) {
const char *dataName;
// The data is formatted as:
// x,y - the center of the circle
// z - inner radius that should map to 0th entry in the texture.
// w - the inverse of the distance over which the texture is stretched.
fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"data",
&dataName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char *fragmentPos = fragBuilder->fragmentPosition();
if (args.fInputColor) {
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
// We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange
// for precision.
fragBuilder->codeAppendf("vec2 vec = vec2( (%s.x - %s.x) * %s.w , (%s.y - %s.y) * %s.w );",
fragmentPos, dataName, dataName,
fragmentPos, dataName, dataName);
fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;",
dataName, dataName);
fragBuilder->codeAppendf("float intensity = ");
fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)");
fragBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor );
}
void GrCircleBlurFragmentProcessor::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>();
const SkRect& circle = cbfp.fCircle;
// The data is formatted as:
// x,y - the center of the circle
// z - inner radius that should map to 0th entry in the texture.
// w - the inverse of the distance over which the profile texture is stretched.
pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.fSolidRadius,
1.f / cbfp.fTextureRadius);
}
///////////////////////////////////////////////////////////////////////////////
GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle,
float textureRadius,
float solidRadius,
GrTexture* blurProfile)
: fCircle(circle)
, fSolidRadius(solidRadius)
, fTextureRadius(textureRadius)
, fBlurProfileAccess(blurProfile, GrTextureParams::kBilerp_FilterMode) {
this->initClassID<GrCircleBlurFragmentProcessor>();
this->addTextureAccess(&fBlurProfileAccess);
this->setWillReadFragmentPosition();
}
GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
return new GLSLProcessor;
}
void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
// The code for this processor is always the same so there is nothing to add to the key.
return;
}
void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
// Computes an unnormalized half kernel (right side). Returns the summation of all the half kernel
// values.
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
const float invSigma = 1.f / sigma;
const float b = -0.5f * invSigma * invSigma;
float tot = 0.0f;
// Compute half kernel values at half pixel steps out from the center.
float t = 0.5f;
for (int i = 0; i < halfKernelSize; ++i) {
float value = expf(t * t * b);
tot += value;
halfKernel[i] = value;
t += 1.f;
}
return tot;
}
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number of
// discrete steps. The half kernel is normalized to sum to 0.5.
static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
int halfKernelSize, float sigma) {
// The half kernel should sum to 0.5 not 1.0.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
float sum = 0.f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[i] /= tot;
sum += halfKernel[i];
summedHalfKernel[i] = sum;
}
}
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
// origin with radius circleR.
void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
int halfKernelSize, const float* summedHalfKernelTable) {
float x = firstX;
for (int i = 0; i < numSteps; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
results[i] = 0;
continue;
}
float y = sqrtf(circleR * circleR - x * x);
// In the column at x we exit the circle at +y and -y
// The summed table entry j is actually reflects an offset of j + 0.5.
y -= 0.5f;
int yInt = SkScalarFloorToInt(y);
SkASSERT(yInt >= -1);
if (y < 0) {
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
} else if (yInt >= halfKernelSize - 1) {
results[i] = 0.5f;
} else {
float yFrac = y - yInt;
results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
yFrac * summedHalfKernelTable[yInt + 1];
}
}
}
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
// This relies on having a half kernel computed for the Gaussian and a table of applications of
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
// halfKernel) passed in as yKernelEvaluations.
static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
const float* yKernelEvaluations) {
float acc = 0;
float x = evalX - halfKernelSize;
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i];
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i + halfKernelSize];
acc += verticalEval * halfKernel[i];
}
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about the
// x axis).
return SkUnitScalarClampToByte(2.f * acc);
}
// This function creates a profile of a blurred circle. It does this by computing a kernel for
// half the Gaussian and a matching summed area table. The summed area table is used to compute
// an array of vertical applications of the half kernel to the circle along the x axis. The table
// of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is the size
// of the profile being computed. Then for each of the n profile entries we walk out k steps in each
// horizontal direction multiplying the corresponding y evaluation by the half kernel entry and
// sum these values to compute the profile entry.
static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
const int numSteps = profileTextureWidth;
uint8_t* weights = new uint8_t[numSteps];
// The full kernel is 6 sigmas wide.
int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
// round up to next multiple of 2 and then divide by 2
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
int numYSteps = numSteps + 2 * halfKernelSize;
SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
float* halfKernel = bulkAlloc.get();
float* summedKernel = bulkAlloc.get() + halfKernelSize;
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
float firstX = -halfKernelSize + 0.5f;
apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
for (int i = 0; i < numSteps - 1; ++i) {
float evalX = i + 0.5f;
weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
}
// Ensure the tail of the Gaussian goes to zero.
weights[numSteps - 1] = 0;
return weights;
}
static uint8_t* create_half_plane_profile(int profileWidth) {
SkASSERT(!(profileWidth & 0x1));
// The full kernel is 6 sigmas wide.
float sigma = profileWidth / 6.f;
int halfKernelSize = profileWidth / 2;
SkAutoTArray<float> halfKernel(halfKernelSize);
uint8_t* profile = new uint8_t[profileWidth];
// The half kernel should sum to 0.5.
const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
float sum = 0.f;
// Populate the profile from the right edge to the middle.
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[halfKernelSize - i - 1] /= tot;
sum += halfKernel[halfKernelSize - i - 1];
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
}
// Populate the profile from the middle to the left edge (by flipping the half kernel and
// continuing the summation).
for (int i = 0; i < halfKernelSize; ++i) {
sum += halfKernel[i];
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
}
// Ensure tail goes to 0.
profile[profileWidth - 1] = 0;
return profile;
}
static GrTexture* create_profile_texture(GrTextureProvider* textureProvider, const SkRect& circle,
float sigma, float* solidRadius, float* textureRadius) {
float circleR = circle.width() / 2.0f;
// Profile textures are cached by the ratio of sigma to circle radius and by the size of the
// profile texture (binned by powers of 2).
SkScalar sigmaToCircleRRatio = sigma / circleR;
// When sigma is really small this becomes a equivalent to convolving a Gaussian with a half-
// plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the Guassian
// and the profile texture is a just a Gaussian evaluation. However, we haven't yet implemented
// this latter optimization.
sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
SkFixed sigmaToCircleRRatioFixed;
static const SkScalar kHalfPlaneThreshold = 0.1f;
bool useHalfPlaneApprox = false;
if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
useHalfPlaneApprox = true;
sigmaToCircleRRatioFixed = 0;
*solidRadius = circleR - 3 * sigma;
*textureRadius = 6 * sigma;
} else {
// Convert to fixed point for the key.
sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
// We shave off some bits to reduce the number of unique entries. We could probably shave
// off more than we do.
sigmaToCircleRRatioFixed &= ~0xff;
sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
sigma = circleR * sigmaToCircleRRatio;
*solidRadius = 0;
*textureRadius = circleR + 3 * sigma;
}
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = sigmaToCircleRRatioFixed;
builder.finish();
GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key);
if (!blurProfile) {
static constexpr int kProfileTextureWidth = 512;
GrSurfaceDesc texDesc;
texDesc.fWidth = kProfileTextureWidth;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> profile(nullptr);
if (useHalfPlaneApprox) {
profile.reset(create_half_plane_profile(kProfileTextureWidth));
} else {
// Rescale params to the size of the texture we're creating.
SkScalar scale = kProfileTextureWidth / *textureRadius;
profile.reset(create_circle_profile(sigma * scale, circleR * scale,
kProfileTextureWidth));
}
blurProfile = textureProvider->createTexture(texDesc, SkBudgeted::kYes, profile.get(), 0);
if (blurProfile) {
textureProvider->assignUniqueKeyToTexture(key, blurProfile);
}
}
return blurProfile;
}
//////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(GrTextureProvider*textureProvider,
const SkRect& circle, float sigma) {
float solidRadius;
float textureRadius;
sk_sp<GrTexture> profile(create_profile_texture(textureProvider, circle, sigma,
&solidRadius, &textureRadius));
if (!profile) {
return nullptr;
}
return sk_sp<GrFragmentProcessor>(
new GrCircleBlurFragmentProcessor(circle, textureRadius, solidRadius, profile.get()));
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) {
SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
SkRect circle = SkRect::MakeWH(wh, wh);
return GrCircleBlurFragmentProcessor::Make(d->fContext->textureProvider(), circle, sigma);
}
#endif