blob: 5f9cb7180e95344f62fdb2ced703f6c10acc082f [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "SkImageGenerator.h"
#include "SkPictureData.h"
#include "SkPictureRecord.h"
#include "SkReadBuffer.h"
#include "SkTextBlob.h"
#include "SkTypeface.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#endif
template <typename T> int SafeCount(const T* obj) {
return obj ? obj->count() : 0;
}
SkPictureData::SkPictureData(const SkPictInfo& info)
: fInfo(info) {
this->init();
}
void SkPictureData::initForPlayback() const {
// ensure that the paths bounds are pre-computed
for (int i = 0; i < fPaths.count(); i++) {
fPaths[i].updateBoundsCache();
}
}
SkPictureData::SkPictureData(const SkPictureRecord& record,
const SkPictInfo& info)
: fInfo(info) {
this->init();
fOpData = record.opData();
fContentInfo.set(record.fContentInfo);
fPaints = record.fPaints;
fPaths.reset(record.fPaths.count());
record.fPaths.foreach([this](const SkPath& path, int n) {
// These indices are logically 1-based, but we need to serialize them
// 0-based to keep the deserializing SkPictureData::getPath() working.
fPaths[n-1] = path;
});
this->initForPlayback();
const SkTDArray<const SkPicture* >& pictures = record.getPictureRefs();
fPictureCount = pictures.count();
if (fPictureCount > 0) {
fPictureRefs = new const SkPicture* [fPictureCount];
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i] = pictures[i];
fPictureRefs[i]->ref();
}
}
const SkTDArray<SkDrawable* >& drawables = record.getDrawableRefs();
fDrawableCount = drawables.count();
if (fDrawableCount > 0) {
fDrawableRefs = new SkDrawable* [fDrawableCount];
for (int i = 0; i < fDrawableCount; i++) {
fDrawableRefs[i] = drawables[i];
fDrawableRefs[i]->ref();
}
}
// templatize to consolidate with similar picture logic?
const SkTDArray<const SkTextBlob*>& blobs = record.getTextBlobRefs();
fTextBlobCount = blobs.count();
if (fTextBlobCount > 0) {
fTextBlobRefs = new const SkTextBlob* [fTextBlobCount];
for (int i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i] = SkRef(blobs[i]);
}
}
const SkTDArray<const SkImage*>& imgs = record.getImageRefs();
fImageCount = imgs.count();
if (fImageCount > 0) {
fImageRefs = new const SkImage* [fImageCount];
for (int i = 0; i < fImageCount; ++i) {
fImageRefs[i] = SkRef(imgs[i]);
}
}
}
void SkPictureData::init() {
fPictureRefs = nullptr;
fPictureCount = 0;
fDrawableRefs = nullptr;
fDrawableCount = 0;
fTextBlobRefs = nullptr;
fTextBlobCount = 0;
fImageRefs = nullptr;
fImageCount = 0;
fFactoryPlayback = nullptr;
}
SkPictureData::~SkPictureData() {
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->unref();
}
delete[] fPictureRefs;
for (int i = 0; i < fDrawableCount; i++) {
fDrawableRefs[i]->unref();
}
if (fDrawableCount > 0) {
SkASSERT(fDrawableRefs);
delete[] fDrawableRefs;
}
for (int i = 0; i < fTextBlobCount; i++) {
fTextBlobRefs[i]->unref();
}
delete[] fTextBlobRefs;
for (int i = 0; i < fImageCount; i++) {
fImageRefs[i]->unref();
}
delete[] fImageRefs;
delete fFactoryPlayback;
}
bool SkPictureData::containsBitmaps() const {
if (fBitmapImageCount > 0 || fImageCount > 0) {
return true;
}
for (int i = 0; i < fPictureCount; ++i) {
if (fPictureRefs[i]->willPlayBackBitmaps()) {
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkStream.h"
static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) {
size_t size = 4; // for 'count'
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
size += SkWStream::SizeOfPackedUInt(0);
} else {
size_t len = strlen(name);
size += SkWStream::SizeOfPackedUInt(len);
size += len;
}
}
return size;
}
static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) {
buffer.writeUInt(tag);
buffer.writeUInt(SkToU32(size));
}
static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) {
stream->write32(tag);
stream->write32(SkToU32(size));
}
void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) {
int count = rec.count();
SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count);
SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get();
rec.copyToArray(array);
size_t size = compute_chunk_size(array, count);
// TODO: write_tag_size should really take a size_t
write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size);
SkDEBUGCODE(size_t start = stream->bytesWritten());
stream->write32(count);
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
stream->writePackedUInt(0);
} else {
size_t len = strlen(name);
stream->writePackedUInt(len);
stream->write(name, len);
}
}
SkASSERT(size == (stream->bytesWritten() - start));
}
void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec) {
int count = rec.count();
write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count);
SkAutoSTMalloc<16, SkTypeface*> storage(count);
SkTypeface** array = (SkTypeface**)storage.get();
rec.copyToArray((SkRefCnt**)array);
for (int i = 0; i < count; i++) {
array[i]->serialize(stream);
}
}
void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer) const {
int i, n;
if ((n = fPaints.count()) > 0) {
write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writePaint(fPaints[i]);
}
}
if ((n = fPaths.count()) > 0) {
write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n);
buffer.writeInt(n);
for (int i = 0; i < n; i++) {
buffer.writePath(fPaths[i]);
}
}
if (fTextBlobCount > 0) {
write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobCount);
for (i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i]->flatten(buffer);
}
}
if (fImageCount > 0) {
write_tag_size(buffer, SK_PICT_IMAGE_BUFFER_TAG, fImageCount);
for (i = 0; i < fImageCount; ++i) {
buffer.writeImage(fImageRefs[i]);
}
}
}
void SkPictureData::serialize(SkWStream* stream,
SkPixelSerializer* pixelSerializer,
SkRefCntSet* topLevelTypeFaceSet) const {
// This can happen at pretty much any time, so might as well do it first.
write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size());
stream->write(fOpData->bytes(), fOpData->size());
// We serialize all typefaces into the typeface section of the top-level picture.
SkRefCntSet localTypefaceSet;
SkRefCntSet* typefaceSet = topLevelTypeFaceSet ? topLevelTypeFaceSet : &localTypefaceSet;
// We delay serializing the bulk of our data until after we've serialized
// factories and typefaces by first serializing to an in-memory write buffer.
SkFactorySet factSet; // buffer refs factSet, so factSet must come first.
SkBinaryWriteBuffer buffer(SkBinaryWriteBuffer::kCrossProcess_Flag);
buffer.setFactoryRecorder(&factSet);
buffer.setPixelSerializer(sk_ref_sp(pixelSerializer));
buffer.setTypefaceRecorder(typefaceSet);
this->flattenToBuffer(buffer);
// Dummy serialize our sub-pictures for the side effect of filling
// typefaceSet with typefaces from sub-pictures.
struct DevNull: public SkWStream {
DevNull() : fBytesWritten(0) {}
size_t fBytesWritten;
bool write(const void*, size_t size) override { fBytesWritten += size; return true; }
size_t bytesWritten() const override { return fBytesWritten; }
} devnull;
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(&devnull, pixelSerializer, typefaceSet);
}
// We need to write factories before we write the buffer.
// We need to write typefaces before we write the buffer or any sub-picture.
WriteFactories(stream, factSet);
if (typefaceSet == &localTypefaceSet) {
WriteTypefaces(stream, *typefaceSet);
}
// Write the buffer.
write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten());
buffer.writeToStream(stream);
// Write sub-pictures by calling serialize again.
if (fPictureCount > 0) {
write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(stream, pixelSerializer, typefaceSet);
}
}
stream->write32(SK_PICT_EOF_TAG);
}
void SkPictureData::flatten(SkWriteBuffer& buffer) const {
write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size());
buffer.writeByteArray(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->flatten(buffer);
}
}
if (fDrawableCount > 0) {
write_tag_size(buffer, SK_PICT_DRAWABLE_TAG, fDrawableCount);
for (int i = 0; i < fDrawableCount; i++) {
buffer.writeFlattenable(fDrawableRefs[i]);
}
}
// Write this picture playback's data into a writebuffer
this->flattenToBuffer(buffer);
buffer.write32(SK_PICT_EOF_TAG);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Return the corresponding SkReadBuffer flags, given a set of
* SkPictInfo flags.
*/
static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) {
static const struct {
uint32_t fSrc;
uint32_t fDst;
} gSD[] = {
{ SkPictInfo::kCrossProcess_Flag, SkReadBuffer::kCrossProcess_Flag },
{ SkPictInfo::kScalarIsFloat_Flag, SkReadBuffer::kScalarIsFloat_Flag },
{ SkPictInfo::kPtrIs64Bit_Flag, SkReadBuffer::kPtrIs64Bit_Flag },
};
uint32_t rbMask = 0;
for (size_t i = 0; i < SK_ARRAY_COUNT(gSD); ++i) {
if (pictInfoFlags & gSD[i].fSrc) {
rbMask |= gSD[i].fDst;
}
}
return rbMask;
}
bool SkPictureData::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
SkImageDeserializer* factory,
SkTypefacePlayback* topLevelTFPlayback) {
/*
* By the time we encounter BUFFER_SIZE_TAG, we need to have already seen
* its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required
* but if they are present, they need to have been seen before the buffer.
*
* We assert that if/when we see either of these, that we have not yet seen
* the buffer tag, because if we have, then its too-late to deal with the
* factories or typefaces.
*/
SkDEBUGCODE(bool haveBuffer = false;)
switch (tag) {
case SK_PICT_READER_TAG:
SkASSERT(nullptr == fOpData);
fOpData = SkData::MakeFromStream(stream, size);
if (!fOpData) {
return false;
}
break;
case SK_PICT_FACTORY_TAG: {
SkASSERT(!haveBuffer);
size = stream->readU32();
fFactoryPlayback = new SkFactoryPlayback(size);
for (size_t i = 0; i < size; i++) {
SkString str;
const size_t len = stream->readPackedUInt();
str.resize(len);
if (stream->read(str.writable_str(), len) != len) {
return false;
}
fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str());
}
} break;
case SK_PICT_TYPEFACE_TAG: {
SkASSERT(!haveBuffer);
const int count = SkToInt(size);
fTFPlayback.setCount(count);
for (int i = 0; i < count; i++) {
sk_sp<SkTypeface> tf(SkTypeface::MakeDeserialize(stream));
if (!tf.get()) { // failed to deserialize
// fTFPlayback asserts it never has a null, so we plop in
// the default here.
tf = SkTypeface::MakeDefault();
}
fTFPlayback.set(i, tf.get());
}
} break;
case SK_PICT_PICTURE_TAG: {
fPictureCount = 0;
fPictureRefs = new const SkPicture* [size];
for (uint32_t i = 0; i < size; i++) {
fPictureRefs[i] = SkPicture::MakeFromStream(stream, factory, topLevelTFPlayback).release();
if (!fPictureRefs[i]) {
return false;
}
fPictureCount++;
}
} break;
case SK_PICT_BUFFER_SIZE_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
/* Should we use SkValidatingReadBuffer instead? */
SkReadBuffer buffer(storage.get(), size);
buffer.setFlags(pictInfoFlagsToReadBufferFlags(fInfo.fFlags));
buffer.setVersion(fInfo.getVersion());
if (!fFactoryPlayback) {
return false;
}
fFactoryPlayback->setupBuffer(buffer);
buffer.setImageDeserializer(factory);
if (fTFPlayback.count() > 0) {
// .skp files <= v43 have typefaces serialized with each sub picture.
fTFPlayback.setupBuffer(buffer);
} else {
// Newer .skp files serialize all typefaces with the top picture.
topLevelTFPlayback->setupBuffer(buffer);
}
while (!buffer.eof() && buffer.isValid()) {
tag = buffer.readUInt();
size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false;
}
}
if (!buffer.isValid()) {
return false;
}
SkDEBUGCODE(haveBuffer = true;)
} break;
}
return true; // success
}
static const SkImage* create_image_from_buffer(SkReadBuffer& buffer) {
return buffer.readImage().release();
}
static const SkImage* create_bitmap_image_from_buffer(SkReadBuffer& buffer) {
return buffer.readBitmapAsImage().release();
}
// Need a shallow wrapper to return const SkPicture* to match the other factories,
// as SkPicture::CreateFromBuffer() returns SkPicture*
static const SkPicture* create_picture_from_buffer(SkReadBuffer& buffer) {
return SkPicture::MakeFromBuffer(buffer).release();
}
static const SkDrawable* create_drawable_from_buffer(SkReadBuffer& buffer) {
return (SkDrawable*) buffer.readFlattenable(SkFlattenable::kSkDrawable_Type);
}
template <typename T>
bool new_array_from_buffer(SkReadBuffer& buffer, uint32_t inCount,
const T*** array, int* outCount, const T* (*factory)(SkReadBuffer&)) {
if (!buffer.validate((0 == *outCount) && (nullptr == *array))) {
return false;
}
if (0 == inCount) {
return true;
}
*outCount = inCount;
*array = new const T* [*outCount];
bool success = true;
int i = 0;
for (; i < *outCount; i++) {
(*array)[i] = factory(buffer);
if (nullptr == (*array)[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the blobs that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
(*array)[j]->unref();
}
// Delete the array
delete[] * array;
*array = nullptr;
*outCount = 0;
return false;
}
return true;
}
bool SkPictureData::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_BITMAP_BUFFER_TAG:
if (!new_array_from_buffer(buffer, size, &fBitmapImageRefs, &fBitmapImageCount,
create_bitmap_image_from_buffer)) {
return false;
}
break;
case SK_PICT_PAINT_BUFFER_TAG: {
const int count = SkToInt(size);
fPaints.reset(count);
for (int i = 0; i < count; ++i) {
buffer.readPaint(&fPaints[i]);
}
} break;
case SK_PICT_PATH_BUFFER_TAG:
if (size > 0) {
const int count = buffer.readInt();
fPaths.reset(count);
for (int i = 0; i < count; i++) {
buffer.readPath(&fPaths[i]);
}
} break;
case SK_PICT_TEXTBLOB_BUFFER_TAG:
if (!new_array_from_buffer(buffer, size, &fTextBlobRefs, &fTextBlobCount,
SkTextBlob::CreateFromBuffer)) {
return false;
}
break;
case SK_PICT_IMAGE_BUFFER_TAG:
if (!new_array_from_buffer(buffer, size, &fImageRefs, &fImageCount,
create_image_from_buffer)) {
return false;
}
break;
case SK_PICT_READER_TAG: {
auto data(SkData::MakeUninitialized(size));
if (!buffer.readByteArray(data->writable_data(), size) ||
!buffer.validate(nullptr == fOpData)) {
return false;
}
SkASSERT(nullptr == fOpData);
fOpData = std::move(data);
} break;
case SK_PICT_PICTURE_TAG:
if (!new_array_from_buffer(buffer, size, &fPictureRefs, &fPictureCount,
create_picture_from_buffer)) {
return false;
}
break;
case SK_PICT_DRAWABLE_TAG:
if (!new_array_from_buffer(buffer, size, (const SkDrawable***)&fDrawableRefs,
&fDrawableCount, create_drawable_from_buffer)) {
return false;
}
break;
default:
// The tag was invalid.
return false;
}
return true; // success
}
SkPictureData* SkPictureData::CreateFromStream(SkStream* stream,
const SkPictInfo& info,
SkImageDeserializer* factory,
SkTypefacePlayback* topLevelTFPlayback) {
std::unique_ptr<SkPictureData> data(new SkPictureData(info));
if (!topLevelTFPlayback) {
topLevelTFPlayback = &data->fTFPlayback;
}
if (!data->parseStream(stream, factory, topLevelTFPlayback)) {
return nullptr;
}
return data.release();
}
SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer,
const SkPictInfo& info) {
std::unique_ptr<SkPictureData> data(new SkPictureData(info));
buffer.setVersion(info.getVersion());
if (!data->parseBuffer(buffer)) {
return nullptr;
}
return data.release();
}
bool SkPictureData::parseStream(SkStream* stream,
SkImageDeserializer* factory,
SkTypefacePlayback* topLevelTFPlayback) {
for (;;) {
uint32_t tag = stream->readU32();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = stream->readU32();
if (!this->parseStreamTag(stream, tag, size, factory, topLevelTFPlayback)) {
return false; // we're invalid
}
}
return true;
}
bool SkPictureData::parseBuffer(SkReadBuffer& buffer) {
for (;;) {
uint32_t tag = buffer.readUInt();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false; // we're invalid
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
int sampleCount) const {
return fContentInfo.suitableForGpuRasterization(context, reason, sampleCount);
}
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
GrPixelConfig config, SkScalar dpi) const {
if (context != nullptr) {
return this->suitableForGpuRasterization(context, reason,
context->getRecommendedSampleCount(config, dpi));
} else {
return this->suitableForGpuRasterization(nullptr, reason);
}
}
bool SkPictureData::suitableForLayerOptimization() const {
return fContentInfo.numLayers() > 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////