blob: cadf6759884409d602477a2ca08647037db3b5b1 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorPriv.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_Base.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXform_A2B.h"
#include "SkColorSpaceXform_Base.h"
#include "SkColorSpaceXformPriv.h"
#include "SkHalf.h"
#include "SkOpts.h"
#include "SkSRGB.h"
static constexpr float sk_linear_from_2dot2[256] = {
0.000000000000000000f, 0.000005077051900662f, 0.000023328004666099f, 0.000056921765712193f,
0.000107187362341244f, 0.000175123977503027f, 0.000261543754548491f, 0.000367136269815943f,
0.000492503787191433f, 0.000638182842167022f, 0.000804658499513058f, 0.000992374304074325f,
0.001201739522438400f, 0.001433134589671860f, 0.001686915316789280f, 0.001963416213396470f,
0.002262953160706430f, 0.002585825596234170f, 0.002932318323938360f, 0.003302703032003640f,
0.003697239578900130f, 0.004116177093282750f, 0.004559754922526020f, 0.005028203456855540f,
0.005521744850239660f, 0.006040593654849810f, 0.006584957382581690f, 0.007155037004573030f,
0.007751027397660610f, 0.008373117745148580f, 0.009021491898012130f, 0.009696328701658230f,
0.010397802292555300f, 0.011126082368383200f, 0.011881334434813700f, 0.012663720031582100f,
0.013473396940142600f, 0.014310519374884100f, 0.015175238159625200f, 0.016067700890886900f,
0.016988052089250000f, 0.017936433339950200f, 0.018912983423721500f, 0.019917838438785700f,
0.020951131914781100f, 0.022012994919336500f, 0.023103556157921400f, 0.024222942067534200f,
0.025371276904734600f, 0.026548682828472900f, 0.027755279978126000f, 0.028991186547107800f,
0.030256518852388700f, 0.031551391400226400f, 0.032875916948383800f, 0.034230206565082000f,
0.035614369684918800f, 0.037028514161960200f, 0.038472746320194600f, 0.039947171001525600f,
0.041451891611462500f, 0.042987010162657100f, 0.044552627316421400f, 0.046148842422351000f,
0.047775753556170600f, 0.049433457555908000f, 0.051122050056493400f, 0.052841625522879000f,
0.054592277281760300f, 0.056374097551979800f, 0.058187177473685400f, 0.060031607136313200f,
0.061907475605455800f, 0.063814870948677200f, 0.065753880260330100f, 0.067724589685424300f,
0.069727084442598800f, 0.071761448846239100f, 0.073827766327784600f, 0.075926119456264800f,
0.078056589958101900f, 0.080219258736215100f, 0.082414205888459200f, 0.084641510725429500f,
0.086901251787660300f, 0.089193506862247800f, 0.091518352998919500f, 0.093875866525577800f,
0.096266123063339700f, 0.098689197541094500f, 0.101145164209600000f, 0.103634096655137000f,
0.106156067812744000f, 0.108711149979039000f, 0.111299414824660000f, 0.113920933406333000f,
0.116575776178572000f, 0.119264013005047000f, 0.121985713169619000f, 0.124740945387051000f,
0.127529777813422000f, 0.130352278056244000f, 0.133208513184300000f, 0.136098549737202000f,
0.139022453734703000f, 0.141980290685736000f, 0.144972125597231000f, 0.147998022982685000f,
0.151058046870511000f, 0.154152260812165000f, 0.157280727890073000f, 0.160443510725344000f,
0.163640671485290000f, 0.166872271890766000f, 0.170138373223312000f, 0.173439036332135000f,
0.176774321640903000f, 0.180144289154390000f, 0.183548998464951000f, 0.186988508758844000f,
0.190462878822409000f, 0.193972167048093000f, 0.197516431440340000f, 0.201095729621346000f,
0.204710118836677000f, 0.208359655960767000f, 0.212044397502288000f, 0.215764399609395000f,
0.219519718074868000f, 0.223310408341127000f, 0.227136525505149000f, 0.230998124323267000f,
0.234895259215880000f, 0.238827984272048000f, 0.242796353254002000f, 0.246800419601550000f,
0.250840236436400000f, 0.254915856566385000f, 0.259027332489606000f, 0.263174716398492000f,
0.267358060183772000f, 0.271577415438375000f, 0.275832833461245000f, 0.280124365261085000f,
0.284452061560024000f, 0.288815972797219000f, 0.293216149132375000f, 0.297652640449211000f,
0.302125496358853000f, 0.306634766203158000f, 0.311180499057984000f, 0.315762743736397000f,
0.320381548791810000f, 0.325036962521076000f, 0.329729032967515000f, 0.334457807923889000f,
0.339223334935327000f, 0.344025661302187000f, 0.348864834082879000f, 0.353740900096629000f,
0.358653905926199000f, 0.363603897920553000f, 0.368590922197487000f, 0.373615024646202000f,
0.378676250929840000f, 0.383774646487975000f, 0.388910256539059000f, 0.394083126082829000f,
0.399293299902674000f, 0.404540822567962000f, 0.409825738436323000f, 0.415148091655907000f,
0.420507926167587000f, 0.425905285707146000f, 0.431340213807410000f, 0.436812753800359000f,
0.442322948819202000f, 0.447870841800410000f, 0.453456475485731000f, 0.459079892424160000f,
0.464741134973889000f, 0.470440245304218000f, 0.476177265397440000f, 0.481952237050698000f,
0.487765201877811000f, 0.493616201311074000f, 0.499505276603030000f, 0.505432468828216000f,
0.511397818884880000f, 0.517401367496673000f, 0.523443155214325000f, 0.529523222417277000f,
0.535641609315311000f, 0.541798355950137000f, 0.547993502196972000f, 0.554227087766085000f,
0.560499152204328000f, 0.566809734896638000f, 0.573158875067523000f, 0.579546611782525000f,
0.585972983949661000f, 0.592438030320847000f, 0.598941789493296000f, 0.605484299910907000f,
0.612065599865624000f, 0.618685727498780000f, 0.625344720802427000f, 0.632042617620641000f,
0.638779455650817000f, 0.645555272444935000f, 0.652370105410821000f, 0.659223991813387000f,
0.666116968775851000f, 0.673049073280942000f, 0.680020342172095000f, 0.687030812154625000f,
0.694080519796882000f, 0.701169501531402000f, 0.708297793656032000f, 0.715465432335048000f,
0.722672453600255000f, 0.729918893352071000f, 0.737204787360605000f, 0.744530171266715000f,
0.751895080583051000f, 0.759299550695091000f, 0.766743616862161000f, 0.774227314218442000f,
0.781750677773962000f, 0.789313742415586000f, 0.796916542907978000f, 0.804559113894567000f,
0.812241489898490000f, 0.819963705323528000f, 0.827725794455034000f, 0.835527791460841000f,
0.843369730392169000f, 0.851251645184515000f, 0.859173569658532000f, 0.867135537520905000f,
0.875137582365205000f, 0.883179737672745000f, 0.891262036813419000f, 0.899384513046529000f,
0.907547199521614000f, 0.915750129279253000f, 0.923993335251873000f, 0.932276850264543000f,
0.940600707035753000f, 0.948964938178195000f, 0.957369576199527000f, 0.965814653503130000f,
0.974300202388861000f, 0.982826255053791000f, 0.991392843592940000f, 1.000000000000000000f,
};
///////////////////////////////////////////////////////////////////////////////////////////////////
static void build_table_linear_from_gamma(float* outTable, float exponent) {
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
*outTable++ = powf(x, exponent);
}
}
// outTable is always 256 entries, inTable may be larger or smaller.
static void build_table_linear_from_gamma(float* outTable, const float* inTable,
int inTableSize) {
if (256 == inTableSize) {
memcpy(outTable, inTable, sizeof(float) * 256);
return;
}
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
*outTable++ = interp_lut(x, inTable, inTableSize);
}
}
static inline float clamp_0_1(float v) {
if (v >= 1.0f) {
return 1.0f;
} else if (v >= 0.0f) {
return v;
} else {
return 0.0f;
}
}
static void build_table_linear_from_gamma(float* outTable, float g, float a, float b, float c,
float d, float e, float f) {
// Y = (aX + b)^g + e for X >= d
// Y = cX + f otherwise
for (float x = 0.0f; x <= 1.0f; x += (1.0f/255.0f)) {
if (x >= d) {
*outTable++ = clamp_0_1(powf(a * x + b, g) + e);
} else {
*outTable++ = clamp_0_1(c * x + f);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Expand range from 0-1 to 0-255, then convert.
static uint8_t clamp_normalized_float_to_byte(float v) {
// The ordering of the logic is a little strange here in order
// to make sure we convert NaNs to 0.
v = v * 255.0f;
if (v >= 254.5f) {
return 255;
} else if (v >= 0.5f) {
return (uint8_t) (v + 0.5f);
} else {
return 0;
}
}
static const int kDstGammaTableSize = SkColorSpaceXform_Base::kDstGammaTableSize;
static void build_table_linear_to_gamma(uint8_t* outTable, float exponent) {
float toGammaExp = 1.0f / exponent;
for (int i = 0; i < kDstGammaTableSize; i++) {
float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1)));
outTable[i] = clamp_normalized_float_to_byte(powf(x, toGammaExp));
}
}
static void build_table_linear_to_gamma(uint8_t* outTable, const float* inTable,
int inTableSize) {
for (int i = 0; i < kDstGammaTableSize; i++) {
float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1)));
float y = inverse_interp_lut(x, inTable, inTableSize);
outTable[i] = clamp_normalized_float_to_byte(y);
}
}
static float inverse_parametric(float x, float g, float a, float b, float c, float d, float e,
float f) {
// We need to take the inverse of the following piecewise function.
// Y = (aX + b)^g + c for X >= d
// Y = eX + f otherwise
// Assume that the gamma function is continuous, or this won't make much sense anyway.
// Plug in |d| to the first equation to calculate the new piecewise interval.
// Then simply use the inverse of the original functions.
float interval = c * d + f;
if (x < interval) {
// X = (Y - F) / C
if (0.0f == c) {
// The gamma curve for this segment is constant, so the inverse is undefined.
// Since this is the lower segment, guess zero.
return 0.0f;
}
return (x - f) / c;
}
// X = ((Y - E)^(1 / G) - B) / A
if (0.0f == a || 0.0f == g) {
// The gamma curve for this segment is constant, so the inverse is undefined.
// Since this is the upper segment, guess one.
return 1.0f;
}
return (powf(x - e, 1.0f / g) - b) / a;
}
static void build_table_linear_to_gamma(uint8_t* outTable, float g, float a,
float b, float c, float d, float e, float f) {
for (int i = 0; i < kDstGammaTableSize; i++) {
float x = ((float) i) * (1.0f / ((float) (kDstGammaTableSize - 1)));
float y = inverse_parametric(x, g, a, b, c, d, e, f);
outTable[i] = clamp_normalized_float_to_byte(y);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
struct GammaFns {
const T* fSRGBTable;
const T* f2Dot2Table;
void (*fBuildFromValue)(T*, float);
void (*fBuildFromTable)(T*, const float*, int);
void (*fBuildFromParam)(T*, float, float, float, float, float, float, float);
};
static const GammaFns<float> kToLinear {
sk_linear_from_srgb,
sk_linear_from_2dot2,
&build_table_linear_from_gamma,
&build_table_linear_from_gamma,
&build_table_linear_from_gamma,
};
static const GammaFns<uint8_t> kFromLinear {
nullptr,
nullptr,
&build_table_linear_to_gamma,
&build_table_linear_to_gamma,
&build_table_linear_to_gamma,
};
// Build tables to transform src gamma to linear.
template <typename T>
static void build_gamma_tables(const T* outGammaTables[3], T* gammaTableStorage, int gammaTableSize,
const SkColorSpace_XYZ* space, const GammaFns<T>& fns,
bool gammasAreMatching)
{
switch (space->gammaNamed()) {
case kSRGB_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.fSRGBTable;
break;
case k2Dot2Curve_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = fns.f2Dot2Table;
break;
case kLinear_SkGammaNamed:
outGammaTables[0] = outGammaTables[1] = outGammaTables[2] = nullptr;
break;
default: {
const SkGammas* gammas = space->gammas();
SkASSERT(gammas);
auto build_table = [=](int i) {
if (gammas->isNamed(i)) {
switch (gammas->data(i).fNamed) {
case kSRGB_SkGammaNamed:
(*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize], 2.4f,
(1.0f / 1.055f), (0.055f / 1.055f),
(1.0f / 12.92f), 0.04045f, 0.0f, 0.0f);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
case k2Dot2Curve_SkGammaNamed:
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 2.2f);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
case kLinear_SkGammaNamed:
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize], 1.0f);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
break;
default:
SkASSERT(false);
break;
}
} else if (gammas->isValue(i)) {
(*fns.fBuildFromValue)(&gammaTableStorage[i * gammaTableSize],
gammas->data(i).fValue);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
} else if (gammas->isTable(i)) {
(*fns.fBuildFromTable)(&gammaTableStorage[i * gammaTableSize], gammas->table(i),
gammas->data(i).fTable.fSize);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
} else {
SkASSERT(gammas->isParametric(i));
const SkColorSpaceTransferFn& params = gammas->params(i);
(*fns.fBuildFromParam)(&gammaTableStorage[i * gammaTableSize], params.fG,
params.fA, params.fB, params.fC, params.fD, params.fE,
params.fF);
outGammaTables[i] = &gammaTableStorage[i * gammaTableSize];
}
};
if (gammasAreMatching) {
build_table(0);
outGammaTables[1] = outGammaTables[0];
outGammaTables[2] = outGammaTables[0];
} else {
build_table(0);
build_table(1);
build_table(2);
}
break;
}
}
}
void SkColorSpaceXform_Base::BuildDstGammaTables(const uint8_t* dstGammaTables[3],
uint8_t* dstStorage,
const SkColorSpace_XYZ* space,
bool gammasAreMatching) {
build_gamma_tables(dstGammaTables, dstStorage, kDstGammaTableSize, space, kFromLinear,
gammasAreMatching);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
std::unique_ptr<SkColorSpaceXform> SkColorSpaceXform::New(SkColorSpace* srcSpace,
SkColorSpace* dstSpace) {
if (!srcSpace || !dstSpace) {
// Invalid input
return nullptr;
}
if (SkColorSpace_Base::Type::kA2B == as_CSB(dstSpace)->type()) {
SkCSXformPrintf("A2B destinations not supported\n");
return nullptr;
}
if (SkColorSpace_Base::Type::kA2B == as_CSB(srcSpace)->type()) {
SkColorSpace_A2B* src = static_cast<SkColorSpace_A2B*>(srcSpace);
SkColorSpace_XYZ* dst = static_cast<SkColorSpace_XYZ*>(dstSpace);
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_A2B(src, dst));
}
SkColorSpace_XYZ* srcSpaceXYZ = static_cast<SkColorSpace_XYZ*>(srcSpace);
SkColorSpace_XYZ* dstSpaceXYZ = static_cast<SkColorSpace_XYZ*>(dstSpace);
ColorSpaceMatch csm = kNone_ColorSpaceMatch;
SkMatrix44 srcToDst(SkMatrix44::kUninitialized_Constructor);
if (SkColorSpace::Equals(srcSpace, dstSpace)) {
srcToDst.setIdentity();
csm = kFull_ColorSpaceMatch;
} else {
if (srcSpaceXYZ->toXYZD50Hash() == dstSpaceXYZ->toXYZD50Hash()) {
SkASSERT(*srcSpaceXYZ->toXYZD50() == *dstSpaceXYZ->toXYZD50() && "Hash collision");
srcToDst.setIdentity();
csm = kGamut_ColorSpaceMatch;
} else {
srcToDst.setConcat(*dstSpaceXYZ->fromXYZD50(), *srcSpaceXYZ->toXYZD50());
}
}
switch (csm) {
case kNone_ColorSpaceMatch:
switch (dstSpaceXYZ->gammaNamed()) {
case kSRGB_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kSRGB_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kSRGB_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
case k2Dot2Curve_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, k2Dot2_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, k2Dot2_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
case kLinear_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kLinear_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kLinear_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
default:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kTable_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kTable_DstGamma, kNone_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
}
case kGamut_ColorSpaceMatch:
switch (dstSpaceXYZ->gammaNamed()) {
case kSRGB_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kSRGB_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kSRGB_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
case k2Dot2Curve_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, k2Dot2_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, k2Dot2_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
case kLinear_SkGammaNamed:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kLinear_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kLinear_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
default:
if (srcSpaceXYZ->gammaIsLinear()) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kTable_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
} else {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kTable_DstGamma, kGamut_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
}
case kFull_ColorSpaceMatch:
switch (dstSpaceXYZ->gammaNamed()) {
case kSRGB_SkGammaNamed:
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kSRGB_DstGamma, kFull_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
case k2Dot2Curve_SkGammaNamed:
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, k2Dot2_DstGamma, kFull_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
case kLinear_SkGammaNamed:
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kLinear_SrcGamma, kLinear_DstGamma, kFull_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
default:
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kTable_DstGamma, kFull_ColorSpaceMatch>
(srcSpaceXYZ, srcToDst, dstSpaceXYZ));
}
default:
SkASSERT(false);
return nullptr;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#define AI SK_ALWAYS_INLINE
static AI void load_matrix(const float matrix[16],
Sk4f& rXgXbX, Sk4f& rYgYbY, Sk4f& rZgZbZ, Sk4f& rTgTbT) {
rXgXbX = Sk4f::Load(matrix + 0);
rYgYbY = Sk4f::Load(matrix + 4);
rZgZbZ = Sk4f::Load(matrix + 8);
rTgTbT = Sk4f::Load(matrix + 12);
}
enum Order {
kRGBA_Order,
kBGRA_Order,
};
static AI void set_rb_shifts(Order kOrder, int* kRShift, int* kBShift) {
if (kRGBA_Order == kOrder) {
*kRShift = 0;
*kBShift = 16;
} else {
*kRShift = 16;
*kBShift = 0;
}
}
template <Order kOrder>
static AI void load_rgb_from_tables(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = { srcTables[0][(src[0] >> kRShift) & 0xFF],
srcTables[0][(src[1] >> kRShift) & 0xFF],
srcTables[0][(src[2] >> kRShift) & 0xFF],
srcTables[0][(src[3] >> kRShift) & 0xFF], };
g = { srcTables[1][(src[0] >> kGShift) & 0xFF],
srcTables[1][(src[1] >> kGShift) & 0xFF],
srcTables[1][(src[2] >> kGShift) & 0xFF],
srcTables[1][(src[3] >> kGShift) & 0xFF], };
b = { srcTables[2][(src[0] >> kBShift) & 0xFF],
srcTables[2][(src[1] >> kBShift) & 0xFF],
srcTables[2][(src[2] >> kBShift) & 0xFF],
srcTables[2][(src[3] >> kBShift) & 0xFF], };
a = 0.0f; // Don't let the compiler complain that |a| is uninitialized.
}
template <Order kOrder>
static AI void load_rgba_from_tables(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = { srcTables[0][(src[0] >> kRShift) & 0xFF],
srcTables[0][(src[1] >> kRShift) & 0xFF],
srcTables[0][(src[2] >> kRShift) & 0xFF],
srcTables[0][(src[3] >> kRShift) & 0xFF], };
g = { srcTables[1][(src[0] >> kGShift) & 0xFF],
srcTables[1][(src[1] >> kGShift) & 0xFF],
srcTables[1][(src[2] >> kGShift) & 0xFF],
srcTables[1][(src[3] >> kGShift) & 0xFF], };
b = { srcTables[2][(src[0] >> kBShift) & 0xFF],
srcTables[2][(src[1] >> kBShift) & 0xFF],
srcTables[2][(src[2] >> kBShift) & 0xFF],
srcTables[2][(src[3] >> kBShift) & 0xFF], };
a = (1.0f / 255.0f) * SkNx_cast<float>(Sk4u::Load(src) >> 24);
}
template <Order kOrder>
static AI void load_rgb_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF);
g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF);
b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF);
a = 0.0f; // Don't let the compiler complain that |a| is uninitialized.
}
template <Order kOrder>
static AI void load_rgba_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF);
g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF);
b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF);
a = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> 24));
}
template <Order kOrder>
static AI void load_rgb_from_tables_1(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = Sk4f(srcTables[0][(*src >> kRShift) & 0xFF]);
g = Sk4f(srcTables[1][(*src >> kGShift) & 0xFF]);
b = Sk4f(srcTables[2][(*src >> kBShift) & 0xFF]);
a = 0.0f; // Don't let MSAN complain that |a| is uninitialized.
}
template <Order kOrder>
static AI void load_rgba_from_tables_1(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = Sk4f(srcTables[0][(*src >> kRShift) & 0xFF]);
g = Sk4f(srcTables[1][(*src >> kGShift) & 0xFF]);
b = Sk4f(srcTables[2][(*src >> kBShift) & 0xFF]);
a = (1.0f / 255.0f) * Sk4f(*src >> 24);
}
template <Order kOrder>
static AI void load_rgb_linear_1(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = Sk4f((1.0f / 255.0f) * ((*src >> kRShift) & 0xFF));
g = Sk4f((1.0f / 255.0f) * ((*src >> kGShift) & 0xFF));
b = Sk4f((1.0f / 255.0f) * ((*src >> kBShift) & 0xFF));
a = 0.0f; // Don't let MSAN complain that |a| is uninitialized.
}
template <Order kOrder>
static AI void load_rgba_linear_1(const uint32_t* src,
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
const float* const srcTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
r = Sk4f((1.0f / 255.0f) * ((*src >> kRShift) & 0xFF));
g = Sk4f((1.0f / 255.0f) * ((*src >> kGShift) & 0xFF));
b = Sk4f((1.0f / 255.0f) * ((*src >> kBShift) & 0xFF));
a = Sk4f((1.0f / 255.0f) * ((*src >> 24)));
}
static AI void transform_gamut(const Sk4f& r, const Sk4f& g, const Sk4f& b, const Sk4f& a,
const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ,
Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da) {
dr = rXgXbX[0]*r + rYgYbY[0]*g + rZgZbZ[0]*b;
dg = rXgXbX[1]*r + rYgYbY[1]*g + rZgZbZ[1]*b;
db = rXgXbX[2]*r + rYgYbY[2]*g + rZgZbZ[2]*b;
da = a;
}
static AI void transform_gamut_1(const Sk4f& r, const Sk4f& g, const Sk4f& b,
const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ,
Sk4f& rgba) {
rgba = rXgXbX*r + rYgYbY*g + rZgZbZ*b;
}
static AI void translate_gamut(const Sk4f& rTgTbT, Sk4f& dr, Sk4f& dg, Sk4f& db) {
dr = dr + rTgTbT[0];
dg = dg + rTgTbT[1];
db = db + rTgTbT[2];
}
static AI void translate_gamut_1(const Sk4f& rTgTbT, Sk4f& rgba) {
rgba = rgba + rTgTbT;
}
static AI void premultiply(Sk4f& dr, Sk4f& dg, Sk4f& db, const Sk4f& da) {
dr = da * dr;
dg = da * dg;
db = da * db;
}
static AI void premultiply_1(const Sk4f& a, Sk4f& rgba) {
rgba = a * rgba;
}
template <Order kOrder>
static AI void store_srgb(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
const uint8_t* const[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
dr = sk_linear_to_srgb_needs_trunc(dr);
dg = sk_linear_to_srgb_needs_trunc(dg);
db = sk_linear_to_srgb_needs_trunc(db);
dr = sk_clamp_0_255(dr);
dg = sk_clamp_0_255(dg);
db = sk_clamp_0_255(db);
Sk4i da = Sk4i::Load(src) & 0xFF000000;
Sk4i rgba = (SkNx_cast<int>(dr) << kRShift)
| (SkNx_cast<int>(dg) << kGShift)
| (SkNx_cast<int>(db) << kBShift)
| (da );
rgba.store(dst);
}
template <Order kOrder>
static AI void store_srgb_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f&,
const uint8_t* const[3]) {
rgba = sk_clamp_0_255(sk_linear_to_srgb_needs_trunc(rgba));
uint32_t tmp;
SkNx_cast<uint8_t>(SkNx_cast<int32_t>(rgba)).store(&tmp);
tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF);
if (kBGRA_Order == kOrder) {
tmp = SkSwizzle_RB(tmp);
}
*(uint32_t*)dst = tmp;
}
static AI Sk4f linear_to_2dot2(const Sk4f& x) {
// x^(29/64) is a very good approximation of the true value, x^(1/2.2).
auto x2 = x.rsqrt(), // x^(-1/2)
x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32)
x64 = x32.rsqrt(); // x^(+1/64)
// 29 = 32 - 2 - 1
return 255.0f * x2.invert() * x32 * x64.invert();
}
template <Order kOrder>
static AI void store_2dot2(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
const uint8_t* const[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
dr = linear_to_2dot2(dr);
dg = linear_to_2dot2(dg);
db = linear_to_2dot2(db);
dr = sk_clamp_0_255(dr);
dg = sk_clamp_0_255(dg);
db = sk_clamp_0_255(db);
Sk4i da = Sk4i::Load(src) & 0xFF000000;
Sk4i rgba = (Sk4f_round(dr) << kRShift)
| (Sk4f_round(dg) << kGShift)
| (Sk4f_round(db) << kBShift)
| (da );
rgba.store(dst);
}
template <Order kOrder>
static AI void store_2dot2_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f&,
const uint8_t* const[3]) {
rgba = sk_clamp_0_255(linear_to_2dot2(rgba));
uint32_t tmp;
SkNx_cast<uint8_t>(Sk4f_round(rgba)).store(&tmp);
tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF);
if (kBGRA_Order == kOrder) {
tmp = SkSwizzle_RB(tmp);
}
*(uint32_t*)dst = tmp;
}
template <Order kOrder>
static AI void store_linear(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
const uint8_t* const[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
dr = sk_clamp_0_255(255.0f * dr);
dg = sk_clamp_0_255(255.0f * dg);
db = sk_clamp_0_255(255.0f * db);
Sk4i da = Sk4i::Load(src) & 0xFF000000;
Sk4i rgba = (Sk4f_round(dr) << kRShift)
| (Sk4f_round(dg) << kGShift)
| (Sk4f_round(db) << kBShift)
| (da );
rgba.store(dst);
}
template <Order kOrder>
static AI void store_linear_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f&,
const uint8_t* const[3]) {
rgba = sk_clamp_0_255(255.0f * rgba);
uint32_t tmp;
SkNx_cast<uint8_t>(Sk4f_round(rgba)).store(&tmp);
tmp = (*src & 0xFF000000) | (tmp & 0x00FFFFFF);
if (kBGRA_Order == kOrder) {
tmp = SkSwizzle_RB(tmp);
}
*(uint32_t*)dst = tmp;
}
template <Order kOrder>
static AI void store_f16(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da,
const uint8_t* const[3]) {
Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr),
SkFloatToHalf_finite_ftz(dg),
SkFloatToHalf_finite_ftz(db),
SkFloatToHalf_finite_ftz(da));
}
template <Order kOrder>
static AI void store_f16_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f& a,
const uint8_t* const[3]) {
rgba = Sk4f(rgba[0], rgba[1], rgba[2], a[3]);
SkFloatToHalf_finite_ftz(rgba).store((uint64_t*) dst);
}
template <Order kOrder>
static AI void store_f32(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da,
const uint8_t* const[3]) {
Sk4f::Store4(dst, dr, dg, db, da);
}
template <Order kOrder>
static AI void store_f32_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f& a,
const uint8_t* const[3]) {
rgba = Sk4f(rgba[0], rgba[1], rgba[2], a[3]);
rgba.store((float*) dst);
}
template <Order kOrder>
static AI void store_f16_opaque(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db,
Sk4f&, const uint8_t* const[3]) {
Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr),
SkFloatToHalf_finite_ftz(dg),
SkFloatToHalf_finite_ftz(db),
SK_Half1);
}
template <Order kOrder>
static AI void store_f16_1_opaque(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f&,
const uint8_t* const[3]) {
uint64_t tmp;
SkFloatToHalf_finite_ftz(rgba).store(&tmp);
tmp |= static_cast<uint64_t>(SK_Half1) << 48;
*((uint64_t*) dst) = tmp;
}
template <Order kOrder>
static AI void store_generic(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
const uint8_t* const dstTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
dr = Sk4f::Min(Sk4f::Max(1023.0f * dr, 0.0f), 1023.0f);
dg = Sk4f::Min(Sk4f::Max(1023.0f * dg, 0.0f), 1023.0f);
db = Sk4f::Min(Sk4f::Max(1023.0f * db, 0.0f), 1023.0f);
Sk4i ir = Sk4f_round(dr);
Sk4i ig = Sk4f_round(dg);
Sk4i ib = Sk4f_round(db);
Sk4i da = Sk4i::Load(src) & 0xFF000000;
uint32_t* dst32 = (uint32_t*) dst;
dst32[0] = dstTables[0][ir[0]] << kRShift
| dstTables[1][ig[0]] << kGShift
| dstTables[2][ib[0]] << kBShift
| da[0];
dst32[1] = dstTables[0][ir[1]] << kRShift
| dstTables[1][ig[1]] << kGShift
| dstTables[2][ib[1]] << kBShift
| da[1];
dst32[2] = dstTables[0][ir[2]] << kRShift
| dstTables[1][ig[2]] << kGShift
| dstTables[2][ib[2]] << kBShift
| da[2];
dst32[3] = dstTables[0][ir[3]] << kRShift
| dstTables[1][ig[3]] << kGShift
| dstTables[2][ib[3]] << kBShift
| da[3];
}
template <Order kOrder>
static AI void store_generic_1(void* dst, const uint32_t* src,
Sk4f& rgba, const Sk4f&,
const uint8_t* const dstTables[3]) {
int kRShift, kGShift = 8, kBShift;
set_rb_shifts(kOrder, &kRShift, &kBShift);
rgba = Sk4f::Min(Sk4f::Max(1023.0f * rgba, 0.0f), 1023.0f);
Sk4i indices = Sk4f_round(rgba);
*((uint32_t*) dst) = dstTables[0][indices[0]] << kRShift
| dstTables[1][indices[1]] << kGShift
| dstTables[2][indices[2]] << kBShift
| (*src & 0xFF000000);
}
typedef decltype(load_rgb_from_tables<kRGBA_Order> )* LoadFn;
typedef decltype(load_rgb_from_tables_1<kRGBA_Order>)* Load1Fn;
typedef decltype(store_generic<kRGBA_Order> )* StoreFn;
typedef decltype(store_generic_1<kRGBA_Order> )* Store1Fn;
enum SrcFormat {
kRGBA_8888_Linear_SrcFormat,
kRGBA_8888_Table_SrcFormat,
kBGRA_8888_Linear_SrcFormat,
kBGRA_8888_Table_SrcFormat,
};
enum DstFormat {
kRGBA_8888_Linear_DstFormat,
kRGBA_8888_SRGB_DstFormat,
kRGBA_8888_2Dot2_DstFormat,
kRGBA_8888_Table_DstFormat,
kBGRA_8888_Linear_DstFormat,
kBGRA_8888_SRGB_DstFormat,
kBGRA_8888_2Dot2_DstFormat,
kBGRA_8888_Table_DstFormat,
kF16_Linear_DstFormat,
kF32_Linear_DstFormat,
};
template <SrcFormat kSrc,
DstFormat kDst,
SkAlphaType kAlphaType,
ColorSpaceMatch kCSM>
static void color_xform_RGBA(void* dst, const void* vsrc, int len,
const float* const srcTables[3], const float matrix[16],
const uint8_t* const dstTables[3]) {
LoadFn load;
Load1Fn load_1;
static constexpr bool loadAlpha = (kPremul_SkAlphaType == kAlphaType) ||
(kF16_Linear_DstFormat == kDst) ||
(kF32_Linear_DstFormat == kDst);
switch (kSrc) {
case kRGBA_8888_Linear_SrcFormat:
if (loadAlpha) {
load = load_rgba_linear<kRGBA_Order>;
load_1 = load_rgba_linear_1<kRGBA_Order>;
} else {
load = load_rgb_linear<kRGBA_Order>;
load_1 = load_rgb_linear_1<kRGBA_Order>;
}
break;
case kRGBA_8888_Table_SrcFormat:
if (loadAlpha) {
load = load_rgba_from_tables<kRGBA_Order>;
load_1 = load_rgba_from_tables_1<kRGBA_Order>;
} else {
load = load_rgb_from_tables<kRGBA_Order>;
load_1 = load_rgb_from_tables_1<kRGBA_Order>;
}
break;
case kBGRA_8888_Linear_SrcFormat:
if (loadAlpha) {
load = load_rgba_linear<kBGRA_Order>;
load_1 = load_rgba_linear_1<kBGRA_Order>;
} else {
load = load_rgb_linear<kBGRA_Order>;
load_1 = load_rgb_linear_1<kBGRA_Order>;
}
break;
case kBGRA_8888_Table_SrcFormat:
if (loadAlpha) {
load = load_rgba_from_tables<kBGRA_Order>;
load_1 = load_rgba_from_tables_1<kBGRA_Order>;
} else {
load = load_rgb_from_tables<kBGRA_Order>;
load_1 = load_rgb_from_tables_1<kBGRA_Order>;
}
break;
}
StoreFn store;
Store1Fn store_1;
size_t sizeOfDstPixel;
switch (kDst) {
case kRGBA_8888_Linear_DstFormat:
store = store_linear<kRGBA_Order>;
store_1 = store_linear_1<kRGBA_Order>;
sizeOfDstPixel = 4;
break;
case kRGBA_8888_SRGB_DstFormat:
store = store_srgb<kRGBA_Order>;
store_1 = store_srgb_1<kRGBA_Order>;
sizeOfDstPixel = 4;
break;
case kRGBA_8888_2Dot2_DstFormat:
store = store_2dot2<kRGBA_Order>;
store_1 = store_2dot2_1<kRGBA_Order>;
sizeOfDstPixel = 4;
break;
case kRGBA_8888_Table_DstFormat:
store = store_generic<kRGBA_Order>;
store_1 = store_generic_1<kRGBA_Order>;
sizeOfDstPixel = 4;
break;
case kBGRA_8888_Linear_DstFormat:
store = store_linear<kBGRA_Order>;
store_1 = store_linear_1<kBGRA_Order>;
sizeOfDstPixel = 4;
break;
case kBGRA_8888_SRGB_DstFormat:
store = store_srgb<kBGRA_Order>;
store_1 = store_srgb_1<kBGRA_Order>;
sizeOfDstPixel = 4;
break;
case kBGRA_8888_2Dot2_DstFormat:
store = store_2dot2<kBGRA_Order>;
store_1 = store_2dot2_1<kBGRA_Order>;
sizeOfDstPixel = 4;
break;
case kBGRA_8888_Table_DstFormat:
store = store_generic<kBGRA_Order>;
store_1 = store_generic_1<kBGRA_Order>;
sizeOfDstPixel = 4;
break;
case kF16_Linear_DstFormat:
store = (kOpaque_SkAlphaType == kAlphaType) ? store_f16_opaque<kRGBA_Order> :
store_f16<kRGBA_Order>;
store_1 = (kOpaque_SkAlphaType == kAlphaType) ? store_f16_1_opaque<kRGBA_Order> :
store_f16_1<kRGBA_Order>;
sizeOfDstPixel = 8;
break;
case kF32_Linear_DstFormat:
store = store_f32<kRGBA_Order>;
store_1 = store_f32_1<kRGBA_Order>;
sizeOfDstPixel = 16;
break;
}
const uint32_t* src = (const uint32_t*) vsrc;
Sk4f rXgXbX, rYgYbY, rZgZbZ, rTgTbT;
load_matrix(matrix, rXgXbX, rYgYbY, rZgZbZ, rTgTbT);
if (len >= 4) {
// Naively this would be a loop of load-transform-store, but we found it faster to
// move the N+1th load ahead of the Nth store. We don't bother doing this for N<4.
Sk4f r, g, b, a;
load(src, r, g, b, a, srcTables);
src += 4;
len -= 4;
Sk4f dr, dg, db, da;
while (len >= 4) {
if (kNone_ColorSpaceMatch == kCSM) {
transform_gamut(r, g, b, a, rXgXbX, rYgYbY, rZgZbZ, dr, dg, db, da);
translate_gamut(rTgTbT, dr, dg, db);
} else {
dr = r;
dg = g;
db = b;
da = a;
}
if (kPremul_SkAlphaType == kAlphaType) {
premultiply(dr, dg, db, da);
}
load(src, r, g, b, a, srcTables);
store(dst, src - 4, dr, dg, db, da, dstTables);
dst = SkTAddOffset<void>(dst, 4 * sizeOfDstPixel);
src += 4;
len -= 4;
}
if (kNone_ColorSpaceMatch == kCSM) {
transform_gamut(r, g, b, a, rXgXbX, rYgYbY, rZgZbZ, dr, dg, db, da);
translate_gamut(rTgTbT, dr, dg, db);
} else {
dr = r;
dg = g;
db = b;
da = a;
}
if (kPremul_SkAlphaType == kAlphaType) {
premultiply(dr, dg, db, da);
}
store(dst, src - 4, dr, dg, db, da, dstTables);
dst = SkTAddOffset<void>(dst, 4 * sizeOfDstPixel);
}
while (len > 0) {
Sk4f r, g, b, a;
load_1(src, r, g, b, a, srcTables);
Sk4f rgba;
if (kNone_ColorSpaceMatch == kCSM) {
transform_gamut_1(r, g, b, rXgXbX, rYgYbY, rZgZbZ, rgba);
translate_gamut_1(rTgTbT, rgba);
} else {
rgba = Sk4f(r[0], g[0], b[0], a[0]);
}
if (kPremul_SkAlphaType == kAlphaType) {
premultiply_1(a, rgba);
}
store_1(dst, src, rgba, a, dstTables);
src += 1;
len -= 1;
dst = SkTAddOffset<void>(dst, sizeOfDstPixel);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static AI int num_tables(SkColorSpace_XYZ* space) {
switch (space->gammaNamed()) {
case kSRGB_SkGammaNamed:
case k2Dot2Curve_SkGammaNamed:
case kLinear_SkGammaNamed:
return 0;
default: {
const SkGammas* gammas = space->gammas();
SkASSERT(gammas);
bool gammasAreMatching = (gammas->type(0) == gammas->type(1)) &&
(gammas->data(0) == gammas->data(1)) &&
(gammas->type(0) == gammas->type(2)) &&
(gammas->data(0) == gammas->data(2));
// It's likely that each component will have the same gamma. In this case,
// we only need to build one table.
return gammasAreMatching ? 1 : 3;
}
}
}
template <SrcGamma kSrc, DstGamma kDst, ColorSpaceMatch kCSM>
SkColorSpaceXform_XYZ<kSrc, kDst, kCSM>
::SkColorSpaceXform_XYZ(SkColorSpace_XYZ* srcSpace, const SkMatrix44& srcToDst,
SkColorSpace_XYZ* dstSpace)
{
srcToDst.asColMajorf(fSrcToDst);
const int numSrcTables = num_tables(srcSpace);
const size_t srcEntries = numSrcTables * 256;
const bool srcGammasAreMatching = (1 >= numSrcTables);
fSrcStorage.reset(srcEntries);
build_gamma_tables(fSrcGammaTables, fSrcStorage.get(), 256, srcSpace, kToLinear,
srcGammasAreMatching);
const int numDstTables = num_tables(dstSpace);
dstSpace->toDstGammaTables(fDstGammaTables, &fDstStorage, numDstTables);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
template <SrcFormat kSrc, DstFormat kDst, ColorSpaceMatch kCSM>
static AI bool apply_set_alpha(void* dst, const void* src, int len, SkAlphaType alphaType,
const float* const srcTables[3], const float matrix[16],
const uint8_t* const dstTables[3]) {
switch (alphaType) {
case kOpaque_SkAlphaType:
color_xform_RGBA<kSrc, kDst, kOpaque_SkAlphaType, kCSM>
(dst, src, len, srcTables, matrix, dstTables);
return true;
case kPremul_SkAlphaType:
color_xform_RGBA<kSrc, kDst, kPremul_SkAlphaType, kCSM>
(dst, src, len, srcTables, matrix, dstTables);
return true;
case kUnpremul_SkAlphaType:
color_xform_RGBA<kSrc, kDst, kUnpremul_SkAlphaType, kCSM>
(dst, src, len, srcTables, matrix, dstTables);
return true;
default:
return false;
}
}
template <SrcGamma kSrc, DstFormat kDst, ColorSpaceMatch kCSM>
static AI bool apply_set_src(void* dst, const void* src, int len, SkAlphaType alphaType,
const float* const srcTables[3], const float matrix[16],
const uint8_t* const dstTables[3],
SkColorSpaceXform::ColorFormat srcColorFormat) {
switch (srcColorFormat) {
case SkColorSpaceXform::kRGBA_8888_ColorFormat:
switch (kSrc) {
case kLinear_SrcGamma:
return apply_set_alpha<kRGBA_8888_Linear_SrcFormat, kDst, kCSM>
(dst, src, len, alphaType, nullptr, matrix, dstTables);
case kTable_SrcGamma:
return apply_set_alpha<kRGBA_8888_Table_SrcFormat, kDst, kCSM>
(dst, src, len, alphaType, srcTables, matrix, dstTables);
}
case SkColorSpaceXform::kBGRA_8888_ColorFormat:
switch (kSrc) {
case kLinear_SrcGamma:
return apply_set_alpha<kBGRA_8888_Linear_SrcFormat, kDst, kCSM>
(dst, src, len, alphaType, nullptr, matrix, dstTables);
case kTable_SrcGamma:
return apply_set_alpha<kBGRA_8888_Table_SrcFormat, kDst, kCSM>
(dst, src, len, alphaType, srcTables, matrix, dstTables);
}
default:
return false;
}
}
#undef AI
template <SrcGamma kSrc, DstGamma kDst, ColorSpaceMatch kCSM>
bool SkColorSpaceXform_XYZ<kSrc, kDst, kCSM>
::onApply(ColorFormat dstColorFormat, void* dst, ColorFormat srcColorFormat, const void* src,
int len, SkAlphaType alphaType) const
{
if (kFull_ColorSpaceMatch == kCSM) {
switch (alphaType) {
case kPremul_SkAlphaType:
// We can't skip the xform since we need to perform a premultiply in the
// linear space.
break;
default:
switch (dstColorFormat) {
case kRGBA_8888_ColorFormat:
memcpy(dst, src, len * sizeof(uint32_t));
return true;
case kBGRA_8888_ColorFormat:
SkOpts::RGBA_to_BGRA((uint32_t*) dst, src, len);
return true;
case kRGBA_F16_ColorFormat:
case kRGBA_F32_ColorFormat:
// There's still work to do to xform to linear floats.
break;
default:
return false;
}
}
}
switch (dstColorFormat) {
case kRGBA_8888_ColorFormat:
switch (kDst) {
case kLinear_DstGamma:
return apply_set_src<kSrc, kRGBA_8888_Linear_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case kSRGB_DstGamma:
return apply_set_src<kSrc, kRGBA_8888_SRGB_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case k2Dot2_DstGamma:
return apply_set_src<kSrc, kRGBA_8888_2Dot2_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case kTable_DstGamma:
return apply_set_src<kSrc, kRGBA_8888_Table_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, fDstGammaTables,
srcColorFormat);
}
case kBGRA_8888_ColorFormat:
switch (kDst) {
case kLinear_DstGamma:
return apply_set_src<kSrc, kBGRA_8888_Linear_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case kSRGB_DstGamma:
return apply_set_src<kSrc, kBGRA_8888_SRGB_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case k2Dot2_DstGamma:
return apply_set_src<kSrc, kBGRA_8888_2Dot2_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
case kTable_DstGamma:
return apply_set_src<kSrc, kBGRA_8888_Table_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, fDstGammaTables,
srcColorFormat);
}
case kRGBA_F16_ColorFormat:
switch (kDst) {
case kLinear_DstGamma:
return apply_set_src<kSrc, kF16_Linear_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
default:
return false;
}
case kRGBA_F32_ColorFormat:
switch (kDst) {
case kLinear_DstGamma:
return apply_set_src<kSrc, kF32_Linear_DstFormat, kCSM>
(dst, src, len, alphaType, fSrcGammaTables, fSrcToDst, nullptr,
srcColorFormat);
default:
return false;
}
default:
return false;
}
}
bool SkColorSpaceXform::apply(ColorFormat dstColorFormat, void* dst, ColorFormat srcColorFormat,
const void* src, int len, SkAlphaType alphaType) const {
return ((SkColorSpaceXform_Base*) this)->onApply(dstColorFormat, dst, srcColorFormat, src, len,
alphaType);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
std::unique_ptr<SkColorSpaceXform> SlowIdentityXform(SkColorSpace_XYZ* space) {
return std::unique_ptr<SkColorSpaceXform>(new SkColorSpaceXform_XYZ
<kTable_SrcGamma, kTable_DstGamma, kNone_ColorSpaceMatch>
(space, SkMatrix::I(), space));
}