blob: dd8a5e7e08318487fb253d1fb8f8b5376d82e799 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <cstddef>
#include <cstring>
#include <type_traits>
#include "SkAutoPixmapStorage.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrImageIDTextureAdjuster.h"
#include "GrTexturePriv.h"
#include "effects/GrYUVEffect.h"
#include "SkCanvas.h"
#include "SkBitmapCache.h"
#include "SkGrPriv.h"
#include "SkImage_Gpu.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
SkImage_Gpu::SkImage_Gpu(int w, int h, uint32_t uniqueID, SkAlphaType at, GrTexture* tex,
sk_sp<SkColorSpace> colorSpace, SkBudgeted budgeted)
: INHERITED(w, h, uniqueID)
, fTexture(SkRef(tex))
, fAlphaType(at)
, fBudgeted(budgeted)
, fColorSpace(std::move(colorSpace))
, fAddedRasterVersionToCache(false)
{
SkASSERT(tex->width() == w);
SkASSERT(tex->height() == h);
}
SkImage_Gpu::~SkImage_Gpu() {
if (fAddedRasterVersionToCache.load()) {
SkNotifyBitmapGenIDIsStale(this->uniqueID());
}
}
extern void SkTextureImageApplyBudgetedDecision(SkImage* image) {
if (image->isTextureBacked()) {
((SkImage_Gpu*)image)->applyBudgetDecision();
}
}
SkImageInfo SkImage_Gpu::onImageInfo() const {
SkColorType ct;
if (!GrPixelConfigToColorType(fTexture->config(), &ct)) {
ct = kUnknown_SkColorType;
}
return SkImageInfo::Make(fTexture->width(), fTexture->height(), ct, fAlphaType, fColorSpace);
}
static SkImageInfo make_info(int w, int h, SkAlphaType at, sk_sp<SkColorSpace> colorSpace) {
return SkImageInfo::MakeN32(w, h, at, std::move(colorSpace));
}
bool SkImage_Gpu::getROPixels(SkBitmap* dst, CachingHint chint) const {
if (SkBitmapCache::Find(this->uniqueID(), dst)) {
SkASSERT(dst->getGenerationID() == this->uniqueID());
SkASSERT(dst->isImmutable());
SkASSERT(dst->getPixels());
return true;
}
if (!dst->tryAllocPixels(make_info(this->width(), this->height(), this->alphaType(),
this->fColorSpace))) {
return false;
}
if (!fTexture->readPixels(0, 0, dst->width(), dst->height(), kSkia8888_GrPixelConfig,
dst->getPixels(), dst->rowBytes())) {
return false;
}
dst->pixelRef()->setImmutableWithID(this->uniqueID());
if (kAllow_CachingHint == chint) {
SkBitmapCache::Add(this->uniqueID(), *dst);
fAddedRasterVersionToCache.store(true);
}
return true;
}
GrTexture* SkImage_Gpu::asTextureRef(GrContext* ctx, const GrTextureParams& params,
SkSourceGammaTreatment gammaTreatment) const {
GrTextureAdjuster adjuster(this->peekTexture(), this->alphaType(), this->bounds(), this->uniqueID(),
this->onImageInfo().colorSpace());
return adjuster.refTextureSafeForParams(params, gammaTreatment, nullptr);
}
static void apply_premul(const SkImageInfo& info, void* pixels, size_t rowBytes) {
switch (info.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
break;
default:
return; // nothing to do
}
// SkColor is not necesarily RGBA or BGRA, but it is one of them on little-endian,
// and in either case, the alpha-byte is always in the same place, so we can safely call
// SkPreMultiplyColor()
//
SkColor* row = (SkColor*)pixels;
for (int y = 0; y < info.height(); ++y) {
for (int x = 0; x < info.width(); ++x) {
row[x] = SkPreMultiplyColor(row[x]);
}
}
}
bool SkImage_Gpu::onReadPixels(const SkImageInfo& info, void* pixels, size_t rowBytes,
int srcX, int srcY, CachingHint) const {
GrPixelConfig config = SkImageInfo2GrPixelConfig(info, *fTexture->getContext()->caps());
uint32_t flags = 0;
if (kUnpremul_SkAlphaType == info.alphaType() && kPremul_SkAlphaType == fAlphaType) {
// let the GPU perform this transformation for us
flags = GrContext::kUnpremul_PixelOpsFlag;
}
if (!fTexture->readPixels(srcX, srcY, info.width(), info.height(), config,
pixels, rowBytes, flags)) {
return false;
}
// do we have to manually fix-up the alpha channel?
// src dst
// unpremul premul fix manually
// premul unpremul done by kUnpremul_PixelOpsFlag
// all other combos need to change.
//
// Should this be handled by Ganesh? todo:?
//
if (kPremul_SkAlphaType == info.alphaType() && kUnpremul_SkAlphaType == fAlphaType) {
apply_premul(info, pixels, rowBytes);
}
return true;
}
sk_sp<SkImage> SkImage_Gpu::onMakeSubset(const SkIRect& subset) const {
GrContext* ctx = fTexture->getContext();
GrSurfaceDesc desc = fTexture->desc();
desc.fWidth = subset.width();
desc.fHeight = subset.height();
sk_sp<GrTexture> subTx(ctx->textureProvider()->createTexture(desc, fBudgeted));
if (!subTx) {
return nullptr;
}
ctx->copySurface(subTx.get(), fTexture, subset, SkIPoint::Make(0, 0));
return sk_make_sp<SkImage_Gpu>(desc.fWidth, desc.fHeight, kNeedNewImageUniqueID,
fAlphaType, subTx.get(), fColorSpace, fBudgeted);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkImage> new_wrapped_texture_common(GrContext* ctx, const GrBackendTextureDesc& desc,
SkAlphaType at, sk_sp<SkColorSpace> colorSpace,
GrWrapOwnership ownership,
SkImage::TextureReleaseProc releaseProc,
SkImage::ReleaseContext releaseCtx) {
if (desc.fWidth <= 0 || desc.fHeight <= 0) {
return nullptr;
}
SkAutoTUnref<GrTexture> tex(ctx->textureProvider()->wrapBackendTexture(desc, ownership));
if (!tex) {
return nullptr;
}
if (releaseProc) {
tex->setRelease(releaseProc, releaseCtx);
}
const SkBudgeted budgeted = SkBudgeted::kNo;
return sk_make_sp<SkImage_Gpu>(desc.fWidth, desc.fHeight, kNeedNewImageUniqueID,
at, tex, colorSpace, budgeted);
}
sk_sp<SkImage> SkImage::MakeFromTexture(GrContext* ctx, const GrBackendTextureDesc& desc,
SkAlphaType at, sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP, ReleaseContext releaseC) {
return new_wrapped_texture_common(ctx, desc, at, std::move(cs), kBorrow_GrWrapOwnership,
releaseP, releaseC);
}
sk_sp<SkImage> SkImage::MakeFromAdoptedTexture(GrContext* ctx, const GrBackendTextureDesc& desc,
SkAlphaType at, sk_sp<SkColorSpace> cs) {
return new_wrapped_texture_common(ctx, desc, at, std::move(cs), kAdopt_GrWrapOwnership,
nullptr, nullptr);
}
static sk_sp<SkImage> make_from_yuv_textures_copy(GrContext* ctx, SkYUVColorSpace colorSpace,
bool nv12,
const GrBackendObject yuvTextureHandles[],
const SkISize yuvSizes[],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
const SkBudgeted budgeted = SkBudgeted::kYes;
if (yuvSizes[0].fWidth <= 0 || yuvSizes[0].fHeight <= 0 || yuvSizes[1].fWidth <= 0 ||
yuvSizes[1].fHeight <= 0) {
return nullptr;
}
if (!nv12 && (yuvSizes[2].fWidth <= 0 || yuvSizes[2].fHeight <= 0)) {
return nullptr;
}
const GrPixelConfig kConfig = nv12 ? kRGBA_8888_GrPixelConfig : kAlpha_8_GrPixelConfig;
GrBackendTextureDesc yDesc;
yDesc.fConfig = kConfig;
yDesc.fOrigin = origin;
yDesc.fSampleCnt = 0;
yDesc.fTextureHandle = yuvTextureHandles[0];
yDesc.fWidth = yuvSizes[0].fWidth;
yDesc.fHeight = yuvSizes[0].fHeight;
GrBackendTextureDesc uDesc;
uDesc.fConfig = kConfig;
uDesc.fOrigin = origin;
uDesc.fSampleCnt = 0;
uDesc.fTextureHandle = yuvTextureHandles[1];
uDesc.fWidth = yuvSizes[1].fWidth;
uDesc.fHeight = yuvSizes[1].fHeight;
sk_sp<GrTexture> yTex(
ctx->textureProvider()->wrapBackendTexture(yDesc, kBorrow_GrWrapOwnership));
sk_sp<GrTexture> uTex(
ctx->textureProvider()->wrapBackendTexture(uDesc, kBorrow_GrWrapOwnership));
sk_sp<GrTexture> vTex;
if (nv12) {
vTex = uTex;
} else {
GrBackendTextureDesc vDesc;
vDesc.fConfig = kConfig;
vDesc.fOrigin = origin;
vDesc.fSampleCnt = 0;
vDesc.fTextureHandle = yuvTextureHandles[2];
vDesc.fWidth = yuvSizes[2].fWidth;
vDesc.fHeight = yuvSizes[2].fHeight;
vTex = sk_sp<GrTexture>(
ctx->textureProvider()->wrapBackendTexture(vDesc, kBorrow_GrWrapOwnership));
}
if (!yTex || !uTex || !vTex) {
return nullptr;
}
const int width = yuvSizes[0].fWidth;
const int height = yuvSizes[0].fHeight;
// Needs to be a render target in order to draw to it for the yuv->rgb conversion.
sk_sp<GrDrawContext> drawContext(ctx->makeDrawContext(SkBackingFit::kExact,
width, height,
kRGBA_8888_GrPixelConfig,
std::move(imageColorSpace),
0,
origin));
if (!drawContext) {
return nullptr;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
paint.addColorFragmentProcessor(
GrYUVEffect::MakeYUVToRGB(yTex.get(), uTex.get(), vTex.get(), yuvSizes, colorSpace, nv12));
const SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height));
drawContext->drawRect(GrNoClip(), paint, SkMatrix::I(), rect);
ctx->flushSurfaceWrites(drawContext->accessRenderTarget());
return sk_make_sp<SkImage_Gpu>(width, height, kNeedNewImageUniqueID,
kOpaque_SkAlphaType, drawContext->asTexture().get(),
sk_ref_sp(drawContext->getColorSpace()), budgeted);
}
sk_sp<SkImage> SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace,
const GrBackendObject yuvTextureHandles[3],
const SkISize yuvSizes[3], GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return make_from_yuv_textures_copy(ctx, colorSpace, false, yuvTextureHandles, yuvSizes, origin,
std::move(imageColorSpace));
}
sk_sp<SkImage> SkImage::MakeFromNV12TexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace,
const GrBackendObject yuvTextureHandles[2],
const SkISize yuvSizes[2],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return make_from_yuv_textures_copy(ctx, colorSpace, true, yuvTextureHandles, yuvSizes, origin,
std::move(imageColorSpace));
}
static sk_sp<SkImage> create_image_from_maker(GrTextureMaker* maker, SkAlphaType at, uint32_t id) {
SkAutoTUnref<GrTexture> texture(maker->refTextureForParams(GrTextureParams::ClampNoFilter(),
SkSourceGammaTreatment::kRespect));
if (!texture) {
return nullptr;
}
return sk_make_sp<SkImage_Gpu>(texture->width(), texture->height(), id, at, texture,
sk_ref_sp(maker->getColorSpace()), SkBudgeted::kNo);
}
sk_sp<SkImage> SkImage::makeTextureImage(GrContext *context) const {
if (!context) {
return nullptr;
}
if (GrTexture* peek = as_IB(this)->peekTexture()) {
return peek->getContext() == context ? sk_ref_sp(const_cast<SkImage*>(this)) : nullptr;
}
if (SkImageCacherator* cacher = as_IB(this)->peekCacherator()) {
GrImageTextureMaker maker(context, cacher, this, kDisallow_CachingHint);
return create_image_from_maker(&maker, this->alphaType(), this->uniqueID());
}
if (const SkBitmap* bmp = as_IB(this)->onPeekBitmap()) {
GrBitmapTextureMaker maker(context, *bmp);
return create_image_from_maker(&maker, this->alphaType(), this->uniqueID());
}
return nullptr;
}
sk_sp<SkImage> SkImage::makeNonTextureImage() const {
if (!this->isTextureBacked()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
SkImageInfo info = as_IB(this)->onImageInfo();
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
auto data = SkData::MakeUninitialized(size);
if (!data) {
return nullptr;
}
SkPixmap pm(info, data->writable_data(), rowBytes);
if (!this->readPixels(pm, 0, 0, kDisallow_CachingHint)) {
return nullptr;
}
return MakeRasterData(info, data, rowBytes);
}
sk_sp<SkImage> SkImage::MakeTextureFromPixmap(GrContext* ctx, const SkPixmap& pixmap,
SkBudgeted budgeted) {
if (!ctx) {
return nullptr;
}
SkAutoTUnref<GrTexture> texture(GrUploadPixmapToTexture(ctx, pixmap, budgeted));
if (!texture) {
return nullptr;
}
return sk_make_sp<SkImage_Gpu>(texture->width(), texture->height(), kNeedNewImageUniqueID,
pixmap.alphaType(), texture,
sk_ref_sp(pixmap.info().colorSpace()), budgeted);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace {
struct MipMapLevelData {
void* fPixelData;
size_t fRowBytes;
};
struct DeferredTextureImage {
uint32_t fContextUniqueID;
// Right now, the gamma treatment is only considered when generating mipmaps
SkSourceGammaTreatment fGammaTreatment;
// We don't store a SkImageInfo because it contains a ref-counted SkColorSpace.
int fWidth;
int fHeight;
SkColorType fColorType;
SkAlphaType fAlphaType;
void* fColorSpace;
size_t fColorSpaceSize;
int fColorTableCnt;
uint32_t* fColorTableData;
int fMipMapLevelCount;
// The fMipMapLevelData array may contain more than 1 element.
// It contains fMipMapLevelCount elements.
// That means this struct's size is not known at compile-time.
MipMapLevelData fMipMapLevelData[1];
};
} // anonymous namespace
static bool should_use_mip_maps(const SkImage::DeferredTextureImageUsageParams & param) {
// There is a bug in the mipmap pre-generation logic in use in getDeferredTextureImageData.
// This can cause runaway memory leaks, so we are disabling this path until we can
// investigate further. crbug.com/669775
return false;
}
namespace {
class DTIBufferFiller
{
public:
explicit DTIBufferFiller(char* bufferAsCharPtr)
: bufferAsCharPtr_(bufferAsCharPtr) {}
void fillMember(const void* source, size_t memberOffset, size_t size) {
memcpy(bufferAsCharPtr_ + memberOffset, source, size);
}
private:
char* bufferAsCharPtr_;
};
}
#define FILL_MEMBER(bufferFiller, member, source) \
bufferFiller.fillMember(source, \
offsetof(DeferredTextureImage, member), \
sizeof(DeferredTextureImage::member));
size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy& proxy,
const DeferredTextureImageUsageParams params[],
int paramCnt, void* buffer,
SkSourceGammaTreatment gammaTreatment) const {
// Extract relevant min/max values from the params array.
int lowestPreScaleMipLevel = params[0].fPreScaleMipLevel;
SkFilterQuality highestFilterQuality = params[0].fQuality;
bool useMipMaps = should_use_mip_maps(params[0]);
for (int i = 1; i < paramCnt; ++i) {
if (lowestPreScaleMipLevel > params[i].fPreScaleMipLevel)
lowestPreScaleMipLevel = params[i].fPreScaleMipLevel;
if (highestFilterQuality < params[i].fQuality)
highestFilterQuality = params[i].fQuality;
useMipMaps |= should_use_mip_maps(params[i]);
}
const bool fillMode = SkToBool(buffer);
if (fillMode && !SkIsAlign8(reinterpret_cast<intptr_t>(buffer))) {
return 0;
}
// Calculate scaling parameters.
bool isScaled = lowestPreScaleMipLevel != 0;
SkISize scaledSize;
if (isScaled) {
// SkMipMap::ComputeLevelSize takes an index into an SkMipMap. SkMipMaps don't contain the
// base level, so to get an SkMipMap index we must subtract one from the GL MipMap level.
scaledSize = SkMipMap::ComputeLevelSize(this->width(), this->height(),
lowestPreScaleMipLevel - 1);
} else {
scaledSize = SkISize::Make(this->width(), this->height());
}
// We never want to scale at higher than SW medium quality, as SW medium matches GPU high.
SkFilterQuality scaleFilterQuality = highestFilterQuality;
if (scaleFilterQuality > kMedium_SkFilterQuality) {
scaleFilterQuality = kMedium_SkFilterQuality;
}
const int maxTextureSize = proxy.fCaps->maxTextureSize();
if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) {
return 0;
}
SkAutoPixmapStorage pixmap;
SkImageInfo info;
size_t pixelSize = 0;
size_t ctSize = 0;
int ctCount = 0;
if (!isScaled && this->peekPixels(&pixmap)) {
info = pixmap.info();
pixelSize = SkAlign8(pixmap.getSafeSize());
if (pixmap.ctable()) {
ctCount = pixmap.ctable()->count();
ctSize = SkAlign8(pixmap.ctable()->count() * 4);
}
} else {
// Here we're just using presence of data to know whether there is a codec behind the image.
// In the future we will access the cacherator and get the exact data that we want to (e.g.
// yuv planes) upload.
sk_sp<SkData> data(this->refEncoded());
if (!data && !this->peekPixels(nullptr)) {
return 0;
}
info = SkImageInfo::MakeN32(scaledSize.width(), scaledSize.height(), this->alphaType());
pixelSize = SkAlign8(SkAutoPixmapStorage::AllocSize(info, nullptr));
if (fillMode) {
pixmap.alloc(info);
if (isScaled) {
if (!this->scalePixels(pixmap, scaleFilterQuality,
SkImage::kDisallow_CachingHint)) {
return 0;
}
} else {
if (!this->readPixels(pixmap, 0, 0, SkImage::kDisallow_CachingHint)) {
return 0;
}
}
SkASSERT(!pixmap.ctable());
}
}
SkAlphaType at = this->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
int mipMapLevelCount = 1;
if (useMipMaps) {
// SkMipMap only deals with the mipmap levels it generates, which does
// not include the base level.
// That means it generates and holds levels 1-x instead of 0-x.
// So the total mipmap level count is 1 more than what
// SkMipMap::ComputeLevelCount returns.
mipMapLevelCount = SkMipMap::ComputeLevelCount(scaledSize.width(), scaledSize.height()) + 1;
// We already initialized pixelSize to the size of the base level.
// SkMipMap will generate the extra mipmap levels. Their sizes need to
// be added to the total.
// Index 0 here does not refer to the base mipmap level -- it is
// SkMipMap's first generated mipmap level (level 1).
for (int currentMipMapLevelIndex = mipMapLevelCount - 2; currentMipMapLevelIndex >= 0;
currentMipMapLevelIndex--) {
SkISize mipSize = SkMipMap::ComputeLevelSize(scaledSize.width(), scaledSize.height(),
currentMipMapLevelIndex);
SkImageInfo mipInfo = SkImageInfo::MakeN32(mipSize.fWidth, mipSize.fHeight, at);
pixelSize += SkAlign8(SkAutoPixmapStorage::AllocSize(mipInfo, nullptr));
}
}
size_t size = 0;
size_t dtiSize = SkAlign8(sizeof(DeferredTextureImage));
size += dtiSize;
size += (mipMapLevelCount - 1) * sizeof(MipMapLevelData);
// We subtract 1 because DeferredTextureImage already includes the base
// level in its size
size_t pixelOffset = size;
size += pixelSize;
size_t ctOffset = size;
size += ctSize;
size_t colorSpaceOffset = 0;
size_t colorSpaceSize = 0;
if (info.colorSpace()) {
colorSpaceOffset = size;
colorSpaceSize = info.colorSpace()->writeToMemory(nullptr);
size += colorSpaceSize;
}
if (!fillMode) {
return size;
}
char* bufferAsCharPtr = reinterpret_cast<char*>(buffer);
char* pixelsAsCharPtr = bufferAsCharPtr + pixelOffset;
void* pixels = pixelsAsCharPtr;
void* ct = nullptr;
if (ctSize) {
ct = bufferAsCharPtr + ctOffset;
}
memcpy(reinterpret_cast<void*>(SkAlign8(reinterpret_cast<uintptr_t>(pixelsAsCharPtr))),
pixmap.addr(), pixmap.getSafeSize());
if (ctSize) {
memcpy(ct, pixmap.ctable()->readColors(), ctSize);
}
SkASSERT(info == pixmap.info());
size_t rowBytes = pixmap.rowBytes();
static_assert(std::is_standard_layout<DeferredTextureImage>::value,
"offsetof, which we use below, requires the type have standard layout");
auto dtiBufferFiller = DTIBufferFiller{bufferAsCharPtr};
FILL_MEMBER(dtiBufferFiller, fGammaTreatment, &gammaTreatment);
FILL_MEMBER(dtiBufferFiller, fContextUniqueID, &proxy.fContextUniqueID);
int width = info.width();
FILL_MEMBER(dtiBufferFiller, fWidth, &width);
int height = info.height();
FILL_MEMBER(dtiBufferFiller, fHeight, &height);
SkColorType colorType = info.colorType();
FILL_MEMBER(dtiBufferFiller, fColorType, &colorType);
SkAlphaType alphaType = info.alphaType();
FILL_MEMBER(dtiBufferFiller, fAlphaType, &alphaType);
FILL_MEMBER(dtiBufferFiller, fColorTableCnt, &ctCount);
FILL_MEMBER(dtiBufferFiller, fColorTableData, &ct);
FILL_MEMBER(dtiBufferFiller, fMipMapLevelCount, &mipMapLevelCount);
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fPixelData),
&pixels, sizeof(pixels));
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fRowBytes),
&rowBytes, sizeof(rowBytes));
if (colorSpaceSize) {
void* colorSpace = bufferAsCharPtr + colorSpaceOffset;
FILL_MEMBER(dtiBufferFiller, fColorSpace, &colorSpace);
FILL_MEMBER(dtiBufferFiller, fColorSpaceSize, &colorSpaceSize);
info.colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset);
} else {
memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpace),
0, sizeof(DeferredTextureImage::fColorSpace));
memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpaceSize),
0, sizeof(DeferredTextureImage::fColorSpaceSize));
}
// Fill in the mipmap levels if they exist
char* mipLevelPtr = pixelsAsCharPtr + SkAlign8(pixmap.getSafeSize());
if (useMipMaps) {
static_assert(std::is_standard_layout<MipMapLevelData>::value,
"offsetof, which we use below, requires the type have a standard layout");
SkAutoTDelete<SkMipMap> mipmaps(SkMipMap::Build(pixmap, gammaTreatment, nullptr));
// SkMipMap holds only the mipmap levels it generates.
// A programmer can use the data they provided to SkMipMap::Build as level 0.
// So the SkMipMap provides levels 1-x but it stores them in its own
// range 0-(x-1).
for (int generatedMipLevelIndex = 0; generatedMipLevelIndex < mipMapLevelCount - 1;
generatedMipLevelIndex++) {
SkISize mipSize = SkMipMap::ComputeLevelSize(scaledSize.width(), scaledSize.height(),
generatedMipLevelIndex);
SkImageInfo mipInfo = SkImageInfo::MakeN32(mipSize.fWidth, mipSize.fHeight, at);
SkMipMap::Level mipLevel;
mipmaps->getLevel(generatedMipLevelIndex, &mipLevel);
// Make sure the mipmap data is after the start of the buffer
SkASSERT(mipLevelPtr > bufferAsCharPtr);
// Make sure the mipmap data starts before the end of the buffer
SkASSERT(mipLevelPtr < bufferAsCharPtr + pixelOffset + pixelSize);
// Make sure the mipmap data ends before the end of the buffer
SkASSERT(mipLevelPtr + mipLevel.fPixmap.getSafeSize() <=
bufferAsCharPtr + pixelOffset + pixelSize);
// getSafeSize includes rowbyte padding except for the last row,
// right?
memcpy(mipLevelPtr, mipLevel.fPixmap.addr(), mipLevel.fPixmap.getSafeSize());
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) +
sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) +
offsetof(MipMapLevelData, fPixelData), &mipLevelPtr, sizeof(void*));
size_t rowBytes = mipLevel.fPixmap.rowBytes();
memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) +
sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) +
offsetof(MipMapLevelData, fRowBytes), &rowBytes, sizeof(rowBytes));
mipLevelPtr += SkAlign8(mipLevel.fPixmap.getSafeSize());
}
}
return size;
}
sk_sp<SkImage> SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void* data,
SkBudgeted budgeted) {
if (!data) {
return nullptr;
}
const DeferredTextureImage* dti = reinterpret_cast<const DeferredTextureImage*>(data);
if (!context || context->uniqueID() != dti->fContextUniqueID) {
return nullptr;
}
SkAutoTUnref<SkColorTable> colorTable;
if (dti->fColorTableCnt) {
SkASSERT(dti->fColorTableData);
colorTable.reset(new SkColorTable(dti->fColorTableData, dti->fColorTableCnt));
}
int mipLevelCount = dti->fMipMapLevelCount;
SkASSERT(mipLevelCount >= 1);
sk_sp<SkColorSpace> colorSpace;
if (dti->fColorSpaceSize) {
colorSpace = SkColorSpace::Deserialize(dti->fColorSpace, dti->fColorSpaceSize);
}
SkImageInfo info = SkImageInfo::Make(dti->fWidth, dti->fHeight,
dti->fColorType, dti->fAlphaType, colorSpace);
if (mipLevelCount == 1) {
SkPixmap pixmap;
pixmap.reset(info, dti->fMipMapLevelData[0].fPixelData,
dti->fMipMapLevelData[0].fRowBytes, colorTable.get());
return SkImage::MakeTextureFromPixmap(context, pixmap, budgeted);
} else {
SkAutoTDeleteArray<GrMipLevel> texels(new GrMipLevel[mipLevelCount]);
for (int i = 0; i < mipLevelCount; i++) {
texels[i].fPixels = dti->fMipMapLevelData[i].fPixelData;
texels[i].fRowBytes = dti->fMipMapLevelData[i].fRowBytes;
}
return SkImage::MakeTextureFromMipMap(context, info, texels.get(),
mipLevelCount, SkBudgeted::kYes,
dti->fGammaTreatment);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::MakeTextureFromMipMap(GrContext* ctx, const SkImageInfo& info,
const GrMipLevel* texels, int mipLevelCount,
SkBudgeted budgeted,
SkSourceGammaTreatment gammaTreatment) {
if (!ctx) {
return nullptr;
}
SkAutoTUnref<GrTexture> texture(GrUploadMipMapToTexture(ctx, info, texels, mipLevelCount));
if (!texture) {
return nullptr;
}
texture->texturePriv().setGammaTreatment(gammaTreatment);
return sk_make_sp<SkImage_Gpu>(texture->width(), texture->height(), kNeedNewImageUniqueID,
info.alphaType(), texture, sk_ref_sp(info.colorSpace()),
budgeted);
}