blob: 9751c4db9141246681d8905bbaf2f5220fb293c2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_sse_DEFINED
#define SkNx_sse_DEFINED
#include "SkCpu.h"
#include <immintrin.h>
// This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent.
// If you do, make sure this is in a static inline function... anywhere else risks violating ODR.
#define SKNX_IS_FAST
template <>
class SkNx<2, float> {
public:
SkNx(const __m128& vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec(_mm_set1_ps(val)) {}
static SkNx Load(const void* ptr) {
return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr));
}
SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {}
void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); }
SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); }
SkNx sqrt() const { return _mm_sqrt_ps (fVec); }
SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); }
SkNx invert() const { return _mm_rcp_ps(fVec); }
float operator[](int k) const {
SkASSERT(0 <= k && k < 2);
union { __m128 v; float fs[4]; } pun = {fVec};
return pun.fs[k&1];
}
bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
__m128 fVec;
};
template <>
class SkNx<4, float> {
public:
SkNx(const __m128& vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec( _mm_set1_ps(val) ) {}
static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); }
SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {}
void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); }
SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); }
SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); }
SkNx floor() const {
if (SkCpu::Supports(SkCpu::SSE41)) {
__m128 r;
#if defined(__GNUC__) || defined(__clang__)
asm("roundps $0x1, %[fVec], %[r]" : [r]"=x"(r) : [fVec]"x"(fVec));
#else
r = _mm_floor_ps(fVec);
#endif
return r;
}
// Emulate _mm_floor_ps() with SSE2:
// - roundtrip through integers via truncation
// - subtract 1 if that's too big (possible for negative values).
// This restricts the domain of our inputs to a maximum somehwere around 2^31.
// Seems plenty big.
__m128 roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(fVec));
__m128 too_big = _mm_cmpgt_ps(roundtrip, fVec);
return _mm_sub_ps(roundtrip, _mm_and_ps(too_big, _mm_set1_ps(1.0f)));
}
SkNx sqrt() const { return _mm_sqrt_ps (fVec); }
SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); }
SkNx invert() const { return _mm_rcp_ps(fVec); }
float operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128 v; float fs[4]; } pun = {fVec};
return pun.fs[k&3];
}
bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); }
SkNx thenElse(const SkNx& t, const SkNx& e) const {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
return _mm_blendv_ps(e.fVec, t.fVec, fVec);
#else
return _mm_or_ps(_mm_and_ps (fVec, t.fVec),
_mm_andnot_ps(fVec, e.fVec));
#endif
}
__m128 fVec;
};
template <>
class SkNx<4, int> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(int val) : fVec(_mm_set1_epi32(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
SkNx(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {}
void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const {
__m128i mul20 = _mm_mul_epu32(fVec, o.fVec),
mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4));
return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)),
_mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0)));
}
SkNx operator | (const SkNx& o) const { return _mm_or_si128(fVec, o.fVec); }
SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); }
SkNx operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); }
int operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128i v; int is[4]; } pun = {fVec};
return pun.is[k&3];
}
__m128i fVec;
};
template <>
class SkNx<4, uint16_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {}
void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); }
SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128i v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&3];
}
__m128i fVec;
};
template <>
class SkNx<8, uint16_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {}
void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); }
SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }
static SkNx Min(const SkNx& a, const SkNx& b) {
// No unsigned _mm_min_epu16, so we'll shift into a space where we can use the
// signed version, _mm_min_epi16, then shift back.
const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine.
const __m128i top_8x = _mm_set1_epi16(top);
return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x),
_mm_sub_epi8(b.fVec, top_8x)));
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return _mm_or_si128(_mm_and_si128 (fVec, t.fVec),
_mm_andnot_si128(fVec, e.fVec));
}
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 8);
union { __m128i v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&7];
}
__m128i fVec;
};
template <>
class SkNx<4, uint8_t> {
public:
SkNx() {}
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d)
: fVec(_mm_setr_epi8(a,b,c,d, 0,0,0,0, 0,0,0,0, 0,0,0,0)) {}
static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); }
void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); }
uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128i v; uint8_t us[16]; } pun = {fVec};
return pun.us[k&3];
}
// TODO as needed
__m128i fVec;
};
template <>
class SkNx<16, uint8_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p)
: fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {}
void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); }
SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); }
static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); }
SkNx operator < (const SkNx& o) const {
// There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare.
auto flip = _mm_set1_epi8(char(0x80));
return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec));
}
uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 16);
union { __m128i v; uint8_t us[16]; } pun = {fVec};
return pun.us[k&15];
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return _mm_or_si128(_mm_and_si128 (fVec, t.fVec),
_mm_andnot_si128(fVec, e.fVec));
}
__m128i fVec;
};
template<> /*static*/ inline Sk4f SkNx_cast<float, int>(const Sk4i& src) {
return _mm_cvtepi32_ps(src.fVec);
}
template <> /*static*/ inline Sk4i SkNx_cast<int, float>(const Sk4f& src) {
return _mm_cvttps_epi32(src.fVec);
}
template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) {
auto _32 = _mm_cvttps_epi32(src.fVec);
// Ideally we'd use _mm_packus_epi32 here. But that's SSE4.1+.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
// With SSSE3, we can just shuffle the low 2 bytes from each lane right into place.
const int _ = ~0;
return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_));
#else
// With SSE2, we have to emulate _mm_packus_epi32 with _mm_packs_epi32:
_32 = _mm_sub_epi32(_32, _mm_set1_epi32((int)0x00008000));
return _mm_add_epi16(_mm_packs_epi32(_32, _32), _mm_set1_epi16((short)0x8000));
#endif
}
template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) {
auto _32 = _mm_cvttps_epi32(src.fVec);
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
const int _ = ~0;
return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_));
#else
auto _16 = _mm_packus_epi16(_32, _32);
return _mm_packus_epi16(_16, _16);
#endif
}
template<> /*static*/ inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
const int _ = ~0;
auto _32 = _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_));
#else
auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()),
_32 = _mm_unpacklo_epi16(_16, _mm_setzero_si128());
#endif
return _mm_cvtepi32_ps(_32);
}
template<> /*static*/ inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) {
auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128());
return _mm_cvtepi32_ps(_32);
}
template<> /*static*/ inline Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) {
Sk8f ab, cd;
SkNx_split(src, &ab, &cd);
Sk4f a,b,c,d;
SkNx_split(ab, &a, &b);
SkNx_split(cd, &c, &d);
return _mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec),
_mm_cvttps_epi32(b.fVec)),
_mm_packus_epi16(_mm_cvttps_epi32(c.fVec),
_mm_cvttps_epi32(d.fVec)));
}
template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) {
return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128());
}
template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) {
return _mm_packus_epi16(src.fVec, src.fVec);
}
#endif//SkNx_sse_DEFINED