blob: 20d11f101bee0037cec54bff30e8cd2ef0727bd8 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTableColorFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"
#include "SkWriteBuffer.h"
class SkTable_ColorFilter : public SkColorFilter {
public:
SkTable_ColorFilter(const uint8_t tableA[], const uint8_t tableR[],
const uint8_t tableG[], const uint8_t tableB[]) {
fBitmap = nullptr;
fFlags = 0;
uint8_t* dst = fStorage;
if (tableA) {
memcpy(dst, tableA, 256);
dst += 256;
fFlags |= kA_Flag;
}
if (tableR) {
memcpy(dst, tableR, 256);
dst += 256;
fFlags |= kR_Flag;
}
if (tableG) {
memcpy(dst, tableG, 256);
dst += 256;
fFlags |= kG_Flag;
}
if (tableB) {
memcpy(dst, tableB, 256);
fFlags |= kB_Flag;
}
}
virtual ~SkTable_ColorFilter() { delete fBitmap; }
bool asComponentTable(SkBitmap* table) const override;
sk_sp<SkColorFilter> makeComposed(sk_sp<SkColorFilter> inner) const override;
#if SK_SUPPORT_GPU
sk_sp<GrFragmentProcessor> asFragmentProcessor(GrContext*) const override;
#endif
void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override;
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkTable_ColorFilter)
enum {
kA_Flag = 1 << 0,
kR_Flag = 1 << 1,
kG_Flag = 1 << 2,
kB_Flag = 1 << 3,
};
protected:
void flatten(SkWriteBuffer&) const override;
private:
mutable const SkBitmap* fBitmap; // lazily allocated
uint8_t fStorage[256 * 4];
unsigned fFlags;
friend class SkTableColorFilter;
typedef SkColorFilter INHERITED;
};
static const uint8_t gIdentityTable[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F,
0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF,
0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7,
0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF,
0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7,
0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF,
0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7,
0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
void SkTable_ColorFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
const uint8_t* table = fStorage;
const uint8_t* tableA = gIdentityTable;
const uint8_t* tableR = gIdentityTable;
const uint8_t* tableG = gIdentityTable;
const uint8_t* tableB = gIdentityTable;
if (fFlags & kA_Flag) {
tableA = table; table += 256;
}
if (fFlags & kR_Flag) {
tableR = table; table += 256;
}
if (fFlags & kG_Flag) {
tableG = table; table += 256;
}
if (fFlags & kB_Flag) {
tableB = table;
}
const SkUnPreMultiply::Scale* scaleTable = SkUnPreMultiply::GetScaleTable();
for (int i = 0; i < count; ++i) {
SkPMColor c = src[i];
unsigned a, r, g, b;
if (0 == c) {
a = r = g = b = 0;
} else {
a = SkGetPackedA32(c);
r = SkGetPackedR32(c);
g = SkGetPackedG32(c);
b = SkGetPackedB32(c);
if (a < 255) {
SkUnPreMultiply::Scale scale = scaleTable[a];
r = SkUnPreMultiply::ApplyScale(scale, r);
g = SkUnPreMultiply::ApplyScale(scale, g);
b = SkUnPreMultiply::ApplyScale(scale, b);
}
}
dst[i] = SkPremultiplyARGBInline(tableA[a], tableR[r],
tableG[g], tableB[b]);
}
}
#ifndef SK_IGNORE_TO_STRING
void SkTable_ColorFilter::toString(SkString* str) const {
const uint8_t* table = fStorage;
const uint8_t* tableA = gIdentityTable;
const uint8_t* tableR = gIdentityTable;
const uint8_t* tableG = gIdentityTable;
const uint8_t* tableB = gIdentityTable;
if (fFlags & kA_Flag) {
tableA = table; table += 256;
}
if (fFlags & kR_Flag) {
tableR = table; table += 256;
}
if (fFlags & kG_Flag) {
tableG = table; table += 256;
}
if (fFlags & kB_Flag) {
tableB = table;
}
str->append("SkTable_ColorFilter (");
for (int i = 0; i < 256; ++i) {
str->appendf("%d: %d,%d,%d,%d\n",
i, tableR[i], tableG[i], tableB[i], tableA[i]);
}
str->append(")");
}
#endif
static const uint8_t gCountNibBits[] = {
0, 1, 1, 2,
1, 2, 2, 3,
1, 2, 2, 3,
2, 3, 3, 4
};
#include "SkPackBits.h"
void SkTable_ColorFilter::flatten(SkWriteBuffer& buffer) const {
uint8_t storage[5*256];
int count = gCountNibBits[fFlags & 0xF];
size_t size = SkPackBits::Pack8(fStorage, count * 256, storage,
sizeof(storage));
buffer.write32(fFlags);
buffer.writeByteArray(storage, size);
}
sk_sp<SkFlattenable> SkTable_ColorFilter::CreateProc(SkReadBuffer& buffer) {
const int flags = buffer.read32();
const size_t count = gCountNibBits[flags & 0xF];
SkASSERT(count <= 4);
uint8_t packedStorage[5*256];
size_t packedSize = buffer.getArrayCount();
if (!buffer.validate(packedSize <= sizeof(packedStorage))) {
return nullptr;
}
if (!buffer.readByteArray(packedStorage, packedSize)) {
return nullptr;
}
uint8_t unpackedStorage[4*256];
size_t unpackedSize = SkPackBits::Unpack8(packedStorage, packedSize,
unpackedStorage, sizeof(unpackedStorage));
// now check that we got the size we expected
if (!buffer.validate(unpackedSize == count*256)) {
return nullptr;
}
const uint8_t* a = nullptr;
const uint8_t* r = nullptr;
const uint8_t* g = nullptr;
const uint8_t* b = nullptr;
const uint8_t* ptr = unpackedStorage;
if (flags & kA_Flag) {
a = ptr;
ptr += 256;
}
if (flags & kR_Flag) {
r = ptr;
ptr += 256;
}
if (flags & kG_Flag) {
g = ptr;
ptr += 256;
}
if (flags & kB_Flag) {
b = ptr;
ptr += 256;
}
return SkTableColorFilter::MakeARGB(a, r, g, b);
}
bool SkTable_ColorFilter::asComponentTable(SkBitmap* table) const {
if (table) {
if (nullptr == fBitmap) {
SkBitmap* bmp = new SkBitmap;
bmp->allocPixels(SkImageInfo::MakeA8(256, 4));
uint8_t* bitmapPixels = bmp->getAddr8(0, 0);
int offset = 0;
static const unsigned kFlags[] = { kA_Flag, kR_Flag, kG_Flag, kB_Flag };
for (int x = 0; x < 4; ++x) {
if (!(fFlags & kFlags[x])) {
memcpy(bitmapPixels, gIdentityTable, sizeof(gIdentityTable));
} else {
memcpy(bitmapPixels, fStorage + offset, 256);
offset += 256;
}
bitmapPixels += 256;
}
fBitmap = bmp;
}
*table = *fBitmap;
}
return true;
}
// Combines the two lookup tables so that making a lookup using res[] has
// the same effect as making a lookup through inner[] then outer[].
static void combine_tables(uint8_t res[256], const uint8_t outer[256], const uint8_t inner[256]) {
for (int i = 0; i < 256; i++) {
res[i] = outer[inner[i]];
}
}
sk_sp<SkColorFilter> SkTable_ColorFilter::makeComposed(sk_sp<SkColorFilter> innerFilter) const {
SkBitmap innerBM;
if (!innerFilter->asComponentTable(&innerBM)) {
return nullptr;
}
innerBM.lockPixels();
if (nullptr == innerBM.getPixels()) {
return nullptr;
}
const uint8_t* table = fStorage;
const uint8_t* tableA = gIdentityTable;
const uint8_t* tableR = gIdentityTable;
const uint8_t* tableG = gIdentityTable;
const uint8_t* tableB = gIdentityTable;
if (fFlags & kA_Flag) {
tableA = table; table += 256;
}
if (fFlags & kR_Flag) {
tableR = table; table += 256;
}
if (fFlags & kG_Flag) {
tableG = table; table += 256;
}
if (fFlags & kB_Flag) {
tableB = table;
}
uint8_t concatA[256];
uint8_t concatR[256];
uint8_t concatG[256];
uint8_t concatB[256];
combine_tables(concatA, tableA, innerBM.getAddr8(0, 0));
combine_tables(concatR, tableR, innerBM.getAddr8(0, 1));
combine_tables(concatG, tableG, innerBM.getAddr8(0, 2));
combine_tables(concatB, tableB, innerBM.getAddr8(0, 3));
return SkTableColorFilter::MakeARGB(concatA, concatR, concatG, concatB);
}
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "SkGr.h"
#include "effects/GrTextureStripAtlas.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
class ColorTableEffect : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(GrContext* context, SkBitmap bitmap, unsigned flags);
virtual ~ColorTableEffect();
const char* name() const override { return "ColorTable"; }
const GrTextureStripAtlas* atlas() const { return fAtlas; }
int atlasRow() const { return fRow; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
ColorTableEffect(GrTexture* texture, GrTextureStripAtlas* atlas, int row, unsigned flags);
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
GrTextureAccess fTextureAccess;
// currently not used in shader code, just to assist onComputeInvariantOutput().
unsigned fFlags;
GrTextureStripAtlas* fAtlas;
int fRow;
typedef GrFragmentProcessor INHERITED;
};
class GLColorTableEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*) {}
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
UniformHandle fRGBAYValuesUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GLColorTableEffect::onSetData(const GrGLSLProgramDataManager& pdm, const GrProcessor& proc) {
// The textures are organized in a strip where the rows are ordered a, r, g, b.
float rgbaYValues[4];
const ColorTableEffect& cte = proc.cast<ColorTableEffect>();
if (cte.atlas()) {
SkScalar yDelta = cte.atlas()->getNormalizedTexelHeight();
rgbaYValues[3] = cte.atlas()->getYOffset(cte.atlasRow()) + SK_ScalarHalf * yDelta;
rgbaYValues[0] = rgbaYValues[3] + yDelta;
rgbaYValues[1] = rgbaYValues[0] + yDelta;
rgbaYValues[2] = rgbaYValues[1] + yDelta;
} else {
rgbaYValues[3] = 0.125;
rgbaYValues[0] = 0.375;
rgbaYValues[1] = 0.625;
rgbaYValues[2] = 0.875;
}
pdm.set4fv(fRGBAYValuesUni, 1, rgbaYValues);
}
void GLColorTableEffect::emitCode(EmitArgs& args) {
const char* yoffsets;
fRGBAYValuesUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"yoffsets", &yoffsets);
static const float kColorScaleFactor = 255.0f / 256.0f;
static const float kColorOffsetFactor = 1.0f / 512.0f;
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
if (nullptr == args.fInputColor) {
// the input color is solid white (all ones).
static const float kMaxValue = kColorScaleFactor + kColorOffsetFactor;
fragBuilder->codeAppendf("\t\tvec4 coord = vec4(%f, %f, %f, %f);\n",
kMaxValue, kMaxValue, kMaxValue, kMaxValue);
} else {
fragBuilder->codeAppendf("\t\tfloat nonZeroAlpha = max(%s.a, .0001);\n", args.fInputColor);
fragBuilder->codeAppendf("\t\tvec4 coord = vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha);\n",
args.fInputColor);
fragBuilder->codeAppendf("\t\tcoord = coord * %f + vec4(%f, %f, %f, %f);\n",
kColorScaleFactor,
kColorOffsetFactor, kColorOffsetFactor,
kColorOffsetFactor, kColorOffsetFactor);
}
SkString coord;
fragBuilder->codeAppendf("\t\t%s.a = ", args.fOutputColor);
coord.printf("vec2(coord.a, %s.a)", yoffsets);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], coord.c_str());
fragBuilder->codeAppend(".a;\n");
fragBuilder->codeAppendf("\t\t%s.r = ", args.fOutputColor);
coord.printf("vec2(coord.r, %s.r)", yoffsets);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], coord.c_str());
fragBuilder->codeAppend(".a;\n");
fragBuilder->codeAppendf("\t\t%s.g = ", args.fOutputColor);
coord.printf("vec2(coord.g, %s.g)", yoffsets);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], coord.c_str());
fragBuilder->codeAppend(".a;\n");
fragBuilder->codeAppendf("\t\t%s.b = ", args.fOutputColor);
coord.printf("vec2(coord.b, %s.b)", yoffsets);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], coord.c_str());
fragBuilder->codeAppend(".a;\n");
fragBuilder->codeAppendf("\t\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> ColorTableEffect::Make(GrContext* context, SkBitmap bitmap,
unsigned flags) {
GrTextureStripAtlas::Desc desc;
desc.fWidth = bitmap.width();
desc.fHeight = 128;
desc.fRowHeight = bitmap.height();
desc.fContext = context;
desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *context->caps());
GrTextureStripAtlas* atlas = GrTextureStripAtlas::GetAtlas(desc);
int row = atlas->lockRow(bitmap);
SkAutoTUnref<GrTexture> texture;
if (-1 == row) {
atlas = nullptr;
texture.reset(GrRefCachedBitmapTexture(context, bitmap, GrTextureParams::ClampNoFilter(),
SkSourceGammaTreatment::kRespect));
} else {
texture.reset(SkRef(atlas->getTexture()));
}
return sk_sp<GrFragmentProcessor>(new ColorTableEffect(texture, atlas, row, flags));
}
ColorTableEffect::ColorTableEffect(GrTexture* texture, GrTextureStripAtlas* atlas, int row,
unsigned flags)
: fTextureAccess(texture)
, fFlags(flags)
, fAtlas(atlas)
, fRow(row) {
this->initClassID<ColorTableEffect>();
this->addTextureAccess(&fTextureAccess);
}
ColorTableEffect::~ColorTableEffect() {
if (fAtlas) {
fAtlas->unlockRow(fRow);
}
}
void ColorTableEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLColorTableEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* ColorTableEffect::onCreateGLSLInstance() const {
return new GLColorTableEffect;
}
bool ColorTableEffect::onIsEqual(const GrFragmentProcessor& other) const {
// For non-atlased instances, the texture (compared by base class) is sufficient to
// differentiate different tables. For atlased instances we ensure they are using the
// same row.
const ColorTableEffect& that = other.cast<ColorTableEffect>();
SkASSERT(SkToBool(fAtlas) == SkToBool(that.fAtlas));
// Ok to always do this comparison since both would be -1 if non-atlased.
return fRow == that.fRow;
}
void ColorTableEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
// If we kept the table in the effect then we could actually run known inputs through the
// table.
GrColorComponentFlags invalidateFlags = kNone_GrColorComponentFlags;
if (fFlags & SkTable_ColorFilter::kR_Flag) {
invalidateFlags |= kR_GrColorComponentFlag;
}
if (fFlags & SkTable_ColorFilter::kG_Flag) {
invalidateFlags |= kG_GrColorComponentFlag;
}
if (fFlags & SkTable_ColorFilter::kB_Flag) {
invalidateFlags |= kB_GrColorComponentFlag;
}
if (fFlags & SkTable_ColorFilter::kA_Flag) {
invalidateFlags |= kA_GrColorComponentFlag;
}
inout->invalidateComponents(invalidateFlags, GrInvariantOutput::kWill_ReadInput);
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(ColorTableEffect);
sk_sp<GrFragmentProcessor> ColorTableEffect::TestCreate(GrProcessorTestData* d) {
int flags = 0;
uint8_t luts[256][4];
do {
for (int i = 0; i < 4; ++i) {
flags |= d->fRandom->nextBool() ? (1 << i): 0;
}
} while (!flags);
for (int i = 0; i < 4; ++i) {
if (flags & (1 << i)) {
for (int j = 0; j < 256; ++j) {
luts[j][i] = SkToU8(d->fRandom->nextBits(8));
}
}
}
auto filter(SkTableColorFilter::MakeARGB(
(flags & (1 << 0)) ? luts[0] : nullptr,
(flags & (1 << 1)) ? luts[1] : nullptr,
(flags & (1 << 2)) ? luts[2] : nullptr,
(flags & (1 << 3)) ? luts[3] : nullptr
));
sk_sp<GrFragmentProcessor> fp = filter->asFragmentProcessor(d->fContext);
SkASSERT(fp);
return fp;
}
sk_sp<GrFragmentProcessor> SkTable_ColorFilter::asFragmentProcessor(GrContext* context) const {
SkBitmap bitmap;
this->asComponentTable(&bitmap);
return ColorTableEffect::Make(context, bitmap, fFlags);
}
#endif // SK_SUPPORT_GPU
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_CPU_BENDIAN
#else
#define SK_A32_INDEX (3 - (SK_A32_SHIFT >> 3))
#define SK_R32_INDEX (3 - (SK_R32_SHIFT >> 3))
#define SK_G32_INDEX (3 - (SK_G32_SHIFT >> 3))
#define SK_B32_INDEX (3 - (SK_B32_SHIFT >> 3))
#endif
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkColorFilter> SkTableColorFilter::Make(const uint8_t table[256]) {
return sk_make_sp<SkTable_ColorFilter>(table, table, table, table);
}
sk_sp<SkColorFilter> SkTableColorFilter::MakeARGB(const uint8_t tableA[256],
const uint8_t tableR[256],
const uint8_t tableG[256],
const uint8_t tableB[256]) {
return sk_make_sp<SkTable_ColorFilter>(tableA, tableR, tableG, tableB);
}
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkTableColorFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTable_ColorFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END