blob: 6a20d48c758cd1f64f5fe4ab38d2fca93bece2be [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBlurMaskFilter.h"
#include "SkBlurMask.h"
#include "SkGpuBlurUtils.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkMaskFilter.h"
#include "SkRRect.h"
#include "SkRTConf.h"
#include "SkStringUtils.h"
#include "SkStrokeRec.h"
#if SK_SUPPORT_GPU
#include "GrCircleBlurFragmentProcessor.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrTexture.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "SkDraw.h"
#include "effects/GrSimpleTextureEffect.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLSampler.h"
#include "glsl/GrGLSLUniformHandler.h"
#endif
SkScalar SkBlurMaskFilter::ConvertRadiusToSigma(SkScalar radius) {
return SkBlurMask::ConvertRadiusToSigma(radius);
}
class SkBlurMaskFilterImpl : public SkMaskFilter {
public:
SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, uint32_t flags);
// overrides from SkMaskFilter
SkMask::Format getFormat() const override;
bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
SkIPoint* margin) const override;
#if SK_SUPPORT_GPU
bool canFilterMaskGPU(const SkRRect& devRRect,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const override;
bool directFilterMaskGPU(GrTextureProvider* texProvider,
GrDrawContext* drawContext,
GrPaint* grp,
const GrClip&,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const override;
bool directFilterRRectMaskGPU(GrTextureProvider* texProvider,
GrDrawContext* drawContext,
GrPaint* grp,
const GrClip&,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& rrect) const override;
bool filterMaskGPU(GrTexture* src,
const SkMatrix& ctm,
const SkIRect& maskRect,
GrTexture** result) const override;
#endif
void computeFastBounds(const SkRect&, SkRect*) const override;
bool asABlur(BlurRec*) const override;
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl)
protected:
FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const override;
FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const override;
bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
private:
// To avoid unseemly allocation requests (esp. for finite platforms like
// handset) we limit the radius so something manageable. (as opposed to
// a request like 10,000)
static const SkScalar kMAX_BLUR_SIGMA;
SkScalar fSigma;
SkBlurStyle fBlurStyle;
uint32_t fBlurFlags;
SkBlurQuality getQuality() const {
return (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ?
kHigh_SkBlurQuality : kLow_SkBlurQuality;
}
SkBlurMaskFilterImpl(SkReadBuffer&);
void flatten(SkWriteBuffer&) const override;
SkScalar computeXformedSigma(const SkMatrix& ctm) const {
bool ignoreTransform = SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
SkScalar xformedSigma = ignoreTransform ? fSigma : ctm.mapRadius(fSigma);
return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA);
}
friend class SkBlurMaskFilter;
typedef SkMaskFilter INHERITED;
};
const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
sk_sp<SkMaskFilter> SkBlurMaskFilter::Make(SkBlurStyle style, SkScalar sigma, uint32_t flags) {
if (!SkScalarIsFinite(sigma) || sigma <= 0) {
return nullptr;
}
if ((unsigned)style > (unsigned)kLastEnum_SkBlurStyle) {
return nullptr;
}
if (flags > SkBlurMaskFilter::kAll_BlurFlag) {
return nullptr;
}
return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, flags));
}
///////////////////////////////////////////////////////////////////////////////
SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, uint32_t flags)
: fSigma(sigma)
, fBlurStyle(style)
, fBlurFlags(flags) {
SkASSERT(fSigma > 0);
SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag);
}
SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
return SkMask::kA8_Format;
}
bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
if (fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag) {
return false;
}
if (rec) {
rec->fSigma = fSigma;
rec->fStyle = fBlurStyle;
rec->fQuality = this->getQuality();
}
return true;
}
bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
const SkMatrix& matrix,
SkIPoint* margin) const {
SkScalar sigma = this->computeXformedSigma(matrix);
return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, this->getQuality(), margin);
}
bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const {
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
}
bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const {
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
}
#include "SkCanvas.h"
static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
SkASSERT(mask != nullptr);
mask->fBounds = bounds.roundOut();
mask->fRowBytes = SkAlign4(mask->fBounds.width());
mask->fFormat = SkMask::kA8_Format;
const size_t size = mask->computeImageSize();
mask->fImage = SkMask::AllocImage(size);
if (nullptr == mask->fImage) {
return false;
}
// FIXME: use sk_calloc in AllocImage?
sk_bzero(mask->fImage, size);
return true;
}
static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
return false;
}
// FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
// clean way to share more code?
SkBitmap bitmap;
bitmap.installMaskPixels(*mask);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
canvas.drawRRect(rrect, paint);
return true;
}
static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
if (!prepare_to_draw_into_mask(rects[0], mask)) {
return false;
}
SkBitmap bitmap;
bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
mask->fBounds.height(),
kAlpha_8_SkColorType,
kPremul_SkAlphaType),
mask->fImage, mask->fRowBytes);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
if (1 == count) {
canvas.drawRect(rects[0], paint);
} else {
// todo: do I need a fast way to do this?
SkPath path;
path.addRect(rects[0]);
path.addRect(rects[1]);
path.setFillType(SkPath::kEvenOdd_FillType);
canvas.drawPath(path, paint);
}
return true;
}
static bool rect_exceeds(const SkRect& r, SkScalar v) {
return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
r.width() > v || r.height() > v;
}
#include "SkMaskCache.h"
static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
const size_t size = mask->computeTotalImageSize();
SkCachedData* data = SkResourceCache::NewCachedData(size);
if (data) {
memcpy(data->writable_data(), mask->fImage, size);
SkMask::FreeImage(mask->fImage);
mask->fImage = (uint8_t*)data->data();
}
return data;
}
static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
return SkMaskCache::FindAndRef(sigma, style, quality, rrect, mask);
}
static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
SkCachedData* cache = copy_mask_to_cacheddata(mask);
if (cache) {
SkMaskCache::Add(sigma, style, quality, rrect, *mask, cache);
}
return cache;
}
static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
return SkMaskCache::FindAndRef(sigma, style, quality, rects, count, mask);
}
static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
SkCachedData* cache = copy_mask_to_cacheddata(mask);
if (cache) {
SkMaskCache::Add(sigma, style, quality, rects, count, *mask, cache);
}
return cache;
}
#ifdef SK_IGNORE_FAST_RRECT_BLUR
SK_CONF_DECLARE(bool, c_analyticBlurRRect, "mask.filter.blur.analyticblurrrect", false, "Use the faster analytic blur approach for ninepatch rects");
#else
SK_CONF_DECLARE(bool, c_analyticBlurRRect, "mask.filter.blur.analyticblurrrect", true, "Use the faster analytic blur approach for ninepatch round rects");
#endif
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
SkASSERT(patch != nullptr);
switch (rrect.getType()) {
case SkRRect::kEmpty_Type:
// Nothing to draw.
return kFalse_FilterReturn;
case SkRRect::kRect_Type:
// We should have caught this earlier.
SkASSERT(false);
// Fall through.
case SkRRect::kOval_Type:
// The nine patch special case does not handle ovals, and we
// already have code for rectangles.
return kUnimplemented_FilterReturn;
// These three can take advantage of this fast path.
case SkRRect::kSimple_Type:
case SkRRect::kNinePatch_Type:
case SkRRect::kComplex_Type:
break;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rrect.rect().roundOut();
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (c_analyticBlurRRect) {
// special case for fast round rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
}
if (!filterResult) {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
// Now figure out the appropriate width and height of the smaller round rectangle
// to stretch. It will take into account the larger radius per side as well as double
// the margin, to account for inner and outer blur.
const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
const SkScalar leftUnstretched = SkTMax(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
const SkScalar rightUnstretched = SkTMax(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
// Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
// any fractional space on either side plus 1 for the part to stretch.
const SkScalar stretchSize = SkIntToScalar(3);
const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
if (totalSmallWidth >= rrect.rect().width()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
const SkScalar topUnstretched = SkTMax(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar bottomUnstretched = SkTMax(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
if (totalSmallHeight >= rrect.rect().height()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
SkRRect smallRR;
SkVector radii[4];
radii[SkRRect::kUpperLeft_Corner] = UL;
radii[SkRRect::kUpperRight_Corner] = UR;
radii[SkRRect::kLowerRight_Corner] = LR;
radii[SkRRect::kLowerLeft_Corner] = LL;
smallRR.setRectRadii(smallR, radii);
const SkScalar sigma = this->computeXformedSigma(matrix);
SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle,
this->getQuality(), smallRR);
if (!cache) {
bool analyticBlurWorked = false;
if (c_analyticBlurRRect) {
analyticBlurWorked =
this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode);
}
if (!analyticBlurWorked) {
if (!draw_rrect_into_mask(smallRR, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
}
cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallRR);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
SkASSERT(nullptr == patch->fCache);
patch->fCache = cache; // transfer ownership to patch
return kTrue_FilterReturn;
}
SK_CONF_DECLARE(bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", true, "Use the faster analytic blur approach for ninepatch rects");
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
if (count < 1 || count > 2) {
return kUnimplemented_FilterReturn;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rects[0].roundOut();
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (count == 1 && c_analyticBlurNinepatch) {
// special case for fast rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
} else {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
/*
* smallR is the smallest version of 'rect' that will still guarantee that
* we get the same blur results on all edges, plus 1 center row/col that is
* representative of the extendible/stretchable edges of the ninepatch.
* Since our actual edge may be fractional we inset 1 more to be sure we
* don't miss any interior blur.
* x is an added pixel of blur, and { and } are the (fractional) edge
* pixels from the original rect.
*
* x x { x x .... x x } x x
*
* Thus, in this case, we inset by a total of 5 (on each side) beginning
* with our outer-rect (dstM.fBounds)
*/
SkRect smallR[2];
SkIPoint center;
// +2 is from +1 for each edge (to account for possible fractional edges
int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
SkIRect innerIR;
if (1 == count) {
innerIR = srcM.fBounds;
center.set(smallW, smallH);
} else {
SkASSERT(2 == count);
rects[1].roundIn(&innerIR);
center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
smallH + (innerIR.top() - srcM.fBounds.top()));
}
// +1 so we get a clean, stretchable, center row/col
smallW += 1;
smallH += 1;
// we want the inset amounts to be integral, so we don't change any
// fractional phase on the fRight or fBottom of our smallR.
const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
if (dx < 0 || dy < 0) {
// we're too small, relative to our blur, to break into nine-patch,
// so we ask to have our normal filterMask() be called.
return kUnimplemented_FilterReturn;
}
smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy);
if (smallR[0].width() < 2 || smallR[0].height() < 2) {
return kUnimplemented_FilterReturn;
}
if (2 == count) {
smallR[1].set(rects[1].left(), rects[1].top(),
rects[1].right() - dx, rects[1].bottom() - dy);
SkASSERT(!smallR[1].isEmpty());
}
const SkScalar sigma = this->computeXformedSigma(matrix);
SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle,
this->getQuality(), smallR, count);
if (!cache) {
if (count > 1 || !c_analyticBlurNinepatch) {
if (!draw_rects_into_mask(smallR, count, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
} else {
if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
return kFalse_FilterReturn;
}
}
cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallR, count);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter = center;
SkASSERT(nullptr == patch->fCache);
patch->fCache = cache; // transfer ownership to patch
return kTrue_FilterReturn;
}
void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
SkRect* dst) const {
SkScalar pad = 3.0f * fSigma;
dst->set(src.fLeft - pad, src.fTop - pad,
src.fRight + pad, src.fBottom + pad);
}
sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
const SkScalar sigma = buffer.readScalar();
const unsigned style = buffer.readUInt();
const unsigned flags = buffer.readUInt();
if (style <= kLastEnum_SkBlurStyle) {
return SkBlurMaskFilter::Make((SkBlurStyle)style, sigma, flags);
}
return nullptr;
}
void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
buffer.writeScalar(fSigma);
buffer.writeUInt(fBlurStyle);
buffer.writeUInt(fBlurFlags);
}
#if SK_SUPPORT_GPU
class GrGLRectBlurEffect;
class GrRectBlurEffect : public GrFragmentProcessor {
public:
~GrRectBlurEffect() override { }
const char* name() const override { return "RectBlur"; }
static sk_sp<GrFragmentProcessor> Make(GrTextureProvider *textureProvider,
const SkRect& rect, float sigma) {
int doubleProfileSize = SkScalarCeilToInt(12*sigma);
if (doubleProfileSize >= rect.width() || doubleProfileSize >= rect.height()) {
// if the blur sigma is too large so the gaussian overlaps the whole
// rect in either direction, fall back to CPU path for now.
return nullptr;
}
SkAutoTUnref<GrTexture> blurProfile(CreateBlurProfileTexture(textureProvider, sigma));
if (!blurProfile) {
return nullptr;
}
// in OpenGL ES, mediump floats have a minimum range of 2^14. If we have coordinates bigger
// than that, the shader math will end up with infinities and result in the blur effect not
// working correctly. To avoid this, we switch into highp when the coordinates are too big.
// As 2^14 is the minimum range but the actual range can be bigger, we might end up
// switching to highp sooner than strictly necessary, but most devices that have a bigger
// range for mediump also have mediump being exactly the same as highp (e.g. all non-OpenGL
// ES devices), and thus incur no additional penalty for the switch.
static const SkScalar kMAX_BLUR_COORD = SkIntToScalar(16000);
GrSLPrecision precision;
if (SkScalarAbs(rect.top()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.left()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.bottom()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.right()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.width()) > kMAX_BLUR_COORD ||
SkScalarAbs(rect.height()) > kMAX_BLUR_COORD) {
precision = kHigh_GrSLPrecision;
} else {
precision = kDefault_GrSLPrecision;
}
return sk_sp<GrFragmentProcessor>(
new GrRectBlurEffect(rect, sigma, blurProfile, precision));
}
const SkRect& getRect() const { return fRect; }
float getSigma() const { return fSigma; }
GrSLPrecision precision() const { return fPrecision; }
private:
GrRectBlurEffect(const SkRect& rect, float sigma, GrTexture *blurProfile,
GrSLPrecision fPrecision);
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
static GrTexture* CreateBlurProfileTexture(GrTextureProvider*, float sigma);
SkRect fRect;
float fSigma;
GrTextureAccess fBlurProfileAccess;
GrSLPrecision fPrecision;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
class GrGLRectBlurEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
UniformHandle fProxyRectUniform;
UniformHandle fProfileSizeUniform;
typedef GrGLSLFragmentProcessor INHERITED;
};
void OutputRectBlurProfileLookup(GrGLSLFPFragmentBuilder* fragBuilder,
GrGLSLFragmentProcessor::SamplerHandle sampler,
const char *output,
const char *profileSize, const char *loc,
const char *blurred_width,
const char *sharp_width) {
fragBuilder->codeAppendf("float %s;", output);
fragBuilder->codeAppendf("{");
fragBuilder->codeAppendf("float coord = ((abs(%s - 0.5 * %s) - 0.5 * %s)) / %s;",
loc, blurred_width, sharp_width, profileSize);
fragBuilder->codeAppendf("%s = ", output);
fragBuilder->appendTextureLookup(sampler, "vec2(coord,0.5)");
fragBuilder->codeAppend(".a;");
fragBuilder->codeAppendf("}");
}
void GrGLRectBlurEffect::GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const GrRectBlurEffect& rbe = proc.cast<GrRectBlurEffect>();
b->add32(rbe.precision());
}
void GrGLRectBlurEffect::emitCode(EmitArgs& args) {
const GrRectBlurEffect& rbe = args.fFp.cast<GrRectBlurEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
const char *rectName;
const char *profileSizeName;
SkString precisionString;
if (args.fGLSLCaps->usesPrecisionModifiers()) {
precisionString.printf("%s ", GrGLSLPrecisionString(rbe.precision()));
}
fProxyRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
rbe.precision(),
"proxyRect",
&rectName);
fProfileSizeUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"profileSize",
&profileSizeName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char *fragmentPos = fragBuilder->fragmentPosition();
if (args.fInputColor) {
fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor);
} else {
fragBuilder->codeAppendf("vec4 src=vec4(1);");
}
fragBuilder->codeAppendf("%s vec2 translatedPos = %s.xy - %s.xy;", precisionString.c_str(),
fragmentPos, rectName);
fragBuilder->codeAppendf("%s float width = %s.z - %s.x;", precisionString.c_str(), rectName,
rectName);
fragBuilder->codeAppendf("%s float height = %s.w - %s.y;", precisionString.c_str(), rectName,
rectName);
fragBuilder->codeAppendf("%s vec2 smallDims = vec2(width - %s, height - %s);",
precisionString.c_str(), profileSizeName, profileSizeName);
fragBuilder->codeAppendf("%s float center = 2.0 * floor(%s/2.0 + .25) - 1.0;",
precisionString.c_str(), profileSizeName);
fragBuilder->codeAppendf("%s vec2 wh = smallDims - vec2(center,center);",
precisionString.c_str());
OutputRectBlurProfileLookup(fragBuilder, args.fTexSamplers[0], "horiz_lookup", profileSizeName,
"translatedPos.x", "width", "wh.x");
OutputRectBlurProfileLookup(fragBuilder, args.fTexSamplers[0], "vert_lookup", profileSizeName,
"translatedPos.y", "height", "wh.y");
fragBuilder->codeAppendf("float final = horiz_lookup * vert_lookup;");
fragBuilder->codeAppendf("%s = src * final;", args.fOutputColor);
}
void GrGLRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrRectBlurEffect& rbe = proc.cast<GrRectBlurEffect>();
SkRect rect = rbe.getRect();
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
pdman.set1f(fProfileSizeUniform, SkScalarCeilToScalar(6*rbe.getSigma()));
}
GrTexture* GrRectBlurEffect::CreateBlurProfileTexture(GrTextureProvider* textureProvider,
float sigma) {
GrSurfaceDesc texDesc;
unsigned int profileSize = SkScalarCeilToInt(6*sigma);
texDesc.fWidth = profileSize;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
texDesc.fIsMipMapped = false;
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 1);
builder[0] = profileSize;
builder.finish();
GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key);
if (!blurProfile) {
SkAutoTDeleteArray<uint8_t> profile(SkBlurMask::ComputeBlurProfile(sigma));
blurProfile = textureProvider->createTexture(texDesc, SkBudgeted::kYes, profile.get(), 0);
if (blurProfile) {
textureProvider->assignUniqueKeyToTexture(key, blurProfile);
}
}
return blurProfile;
}
GrRectBlurEffect::GrRectBlurEffect(const SkRect& rect, float sigma, GrTexture *blurProfile,
GrSLPrecision precision)
: fRect(rect)
, fSigma(sigma)
, fBlurProfileAccess(blurProfile)
, fPrecision(precision) {
this->initClassID<GrRectBlurEffect>();
this->addTextureAccess(&fBlurProfileAccess);
this->setWillReadFragmentPosition();
}
void GrRectBlurEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLRectBlurEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrRectBlurEffect::onCreateGLSLInstance() const {
return new GrGLRectBlurEffect;
}
bool GrRectBlurEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrRectBlurEffect& s = sBase.cast<GrRectBlurEffect>();
return this->getSigma() == s.getSigma() && this->getRect() == s.getRect();
}
void GrRectBlurEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRectBlurEffect);
sk_sp<GrFragmentProcessor> GrRectBlurEffect::TestCreate(GrProcessorTestData* d) {
float sigma = d->fRandom->nextRangeF(3,8);
float width = d->fRandom->nextRangeF(200,300);
float height = d->fRandom->nextRangeF(200,300);
return GrRectBlurEffect::Make(d->fContext->textureProvider(), SkRect::MakeWH(width, height),
sigma);
}
bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrTextureProvider* texProvider,
GrDrawContext* drawContext,
GrPaint* grp,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const {
SkASSERT(drawContext);
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
// TODO: we could handle blurred stroked circles
if (!strokeRec.isFillStyle()) {
return false;
}
SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
sk_sp<GrFragmentProcessor> fp;
SkRect rect;
if (path.isRect(&rect)) {
int pad = SkScalarCeilToInt(6*xformedSigma)/2;
rect.outset(SkIntToScalar(pad), SkIntToScalar(pad));
fp = GrRectBlurEffect::Make(texProvider, rect, xformedSigma);
} else if (path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height())) {
fp = GrCircleBlurFragmentProcessor::Make(texProvider, rect, xformedSigma);
// expand the rect for the coverage geometry
int pad = SkScalarCeilToInt(6*xformedSigma)/2;
rect.outset(SkIntToScalar(pad), SkIntToScalar(pad));
} else {
return false;
}
if (!fp) {
return false;
}
grp->addCoverageFragmentProcessor(std::move(fp));
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
drawContext->fillRectWithLocalMatrix(clip, *grp, SkMatrix::I(), rect, inverse);
return true;
}
//////////////////////////////////////////////////////////////////////////////
class GrRRectBlurEffect : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(GrTextureProvider*, float sigma, const SkRRect&);
virtual ~GrRRectBlurEffect() {};
const char* name() const override { return "GrRRectBlur"; }
const SkRRect& getRRect() const { return fRRect; }
float getSigma() const { return fSigma; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
GrRRectBlurEffect(float sigma, const SkRRect&, GrTexture* profileTexture);
virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& other) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
SkRRect fRRect;
float fSigma;
GrTextureAccess fNinePatchAccess;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
sk_sp<GrFragmentProcessor> GrRRectBlurEffect::Make(GrTextureProvider* texProvider, float sigma,
const SkRRect& rrect) {
if (rrect.isCircle()) {
return GrCircleBlurFragmentProcessor::Make(texProvider, rrect.rect(), sigma);
}
if (!rrect.isSimpleCircular()) {
return nullptr;
}
// Make sure we can successfully ninepatch this rrect -- the blur sigma has to be
// sufficiently small relative to both the size of the corner radius and the
// width (and height) of the rrect.
unsigned int blurRadius = 3*SkScalarCeilToInt(sigma-1/6.0f);
unsigned int cornerRadius = SkScalarCeilToInt(rrect.getSimpleRadii().x());
if (cornerRadius + blurRadius > rrect.width()/2 ||
cornerRadius + blurRadius > rrect.height()/2) {
return nullptr;
}
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey key;
GrUniqueKey::Builder builder(&key, kDomain, 2);
builder[0] = blurRadius;
builder[1] = cornerRadius;
builder.finish();
SkAutoTUnref<GrTexture> blurNinePatchTexture(texProvider->findAndRefTextureByUniqueKey(key));
if (!blurNinePatchTexture) {
SkMask mask;
unsigned int smallRectSide = 2*(blurRadius + cornerRadius) + 1;
mask.fBounds = SkIRect::MakeWH(smallRectSide, smallRectSide);
mask.fFormat = SkMask::kA8_Format;
mask.fRowBytes = mask.fBounds.width();
mask.fImage = SkMask::AllocImage(mask.computeTotalImageSize());
SkAutoMaskFreeImage amfi(mask.fImage);
memset(mask.fImage, 0, mask.computeTotalImageSize());
SkRect smallRect;
smallRect.setWH(SkIntToScalar(smallRectSide), SkIntToScalar(smallRectSide));
SkRRect smallRRect;
smallRRect.setRectXY(smallRect, SkIntToScalar(cornerRadius), SkIntToScalar(cornerRadius));
SkPath path;
path.addRRect(smallRRect);
SkDraw::DrawToMask(path, &mask.fBounds, nullptr, nullptr, &mask,
SkMask::kJustRenderImage_CreateMode, SkStrokeRec::kFill_InitStyle);
SkMask blurredMask;
if (!SkBlurMask::BoxBlur(&blurredMask, mask, sigma, kNormal_SkBlurStyle,
kHigh_SkBlurQuality, nullptr, true)) {
return nullptr;
}
unsigned int texSide = smallRectSide + 2*blurRadius;
GrSurfaceDesc texDesc;
texDesc.fWidth = texSide;
texDesc.fHeight = texSide;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
texDesc.fIsMipMapped = false;
blurNinePatchTexture.reset(
texProvider->createTexture(texDesc, SkBudgeted::kYes , blurredMask.fImage, 0));
SkMask::FreeImage(blurredMask.fImage);
if (!blurNinePatchTexture) {
return nullptr;
}
texProvider->assignUniqueKeyToTexture(key, blurNinePatchTexture);
}
return sk_sp<GrFragmentProcessor>(new GrRRectBlurEffect(sigma, rrect, blurNinePatchTexture));
}
void GrRRectBlurEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
GrRRectBlurEffect::GrRRectBlurEffect(float sigma, const SkRRect& rrect, GrTexture *ninePatchTexture)
: fRRect(rrect),
fSigma(sigma),
fNinePatchAccess(ninePatchTexture) {
this->initClassID<GrRRectBlurEffect>();
this->addTextureAccess(&fNinePatchAccess);
this->setWillReadFragmentPosition();
}
bool GrRRectBlurEffect::onIsEqual(const GrFragmentProcessor& other) const {
const GrRRectBlurEffect& rrbe = other.cast<GrRRectBlurEffect>();
return fRRect.getSimpleRadii().fX == rrbe.fRRect.getSimpleRadii().fX &&
fSigma == rrbe.fSigma &&
fRRect.rect() == rrbe.fRRect.rect();
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRRectBlurEffect);
sk_sp<GrFragmentProcessor> GrRRectBlurEffect::TestCreate(GrProcessorTestData* d) {
SkScalar w = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar h = d->fRandom->nextRangeScalar(100.f, 1000.f);
SkScalar r = d->fRandom->nextRangeF(1.f, 9.f);
SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f);
SkRRect rrect;
rrect.setRectXY(SkRect::MakeWH(w, h), r, r);
return GrRRectBlurEffect::Make(d->fContext->textureProvider(), sigma, rrect);
}
//////////////////////////////////////////////////////////////////////////////
class GrGLRRectBlurEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fProxyRectUniform;
GrGLSLProgramDataManager::UniformHandle fCornerRadiusUniform;
GrGLSLProgramDataManager::UniformHandle fBlurRadiusUniform;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrGLRRectBlurEffect::emitCode(EmitArgs& args) {
const char *rectName;
const char *cornerRadiusName;
const char *blurRadiusName;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// The proxy rect has left, top, right, and bottom edges correspond to
// components x, y, z, and w, respectively.
fProxyRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"proxyRect",
&rectName);
fCornerRadiusUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"cornerRadius",
&cornerRadiusName);
fBlurRadiusUniform = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"blurRadius",
&blurRadiusName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// warp the fragment position to the appropriate part of the 9patch blur texture
fragBuilder->codeAppendf("vec2 rectCenter = (%s.xy + %s.zw)/2.0;", rectName, rectName);
fragBuilder->codeAppendf("vec2 translatedFragPos = %s.xy - %s.xy;", fragmentPos, rectName);
fragBuilder->codeAppendf("float threshold = %s + 2.0*%s;", cornerRadiusName, blurRadiusName);
fragBuilder->codeAppendf("vec2 middle = %s.zw - %s.xy - 2.0*threshold;", rectName, rectName);
fragBuilder->codeAppendf(
"if (translatedFragPos.x >= threshold && translatedFragPos.x < (middle.x+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x = threshold;\n");
fragBuilder->codeAppendf("} else if (translatedFragPos.x >= (middle.x + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.x -= middle.x - 1.0;");
fragBuilder->codeAppendf("}");
fragBuilder->codeAppendf(
"if (translatedFragPos.y > threshold && translatedFragPos.y < (middle.y+threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y = threshold;");
fragBuilder->codeAppendf("} else if (translatedFragPos.y >= (middle.y + threshold)) {");
fragBuilder->codeAppendf("translatedFragPos.y -= middle.y - 1.0;");
fragBuilder->codeAppendf("}");
fragBuilder->codeAppendf("vec2 proxyDims = vec2(2.0*threshold+1.0);");
fragBuilder->codeAppendf("vec2 texCoord = translatedFragPos / proxyDims;");
fragBuilder->codeAppendf("%s = ", args.fOutputColor);
fragBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fTexSamplers[0], "texCoord");
fragBuilder->codeAppend(";");
}
void GrGLRRectBlurEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrRRectBlurEffect& brre = proc.cast<GrRRectBlurEffect>();
const SkRRect& rrect = brre.getRRect();
float blurRadius = 3.f*SkScalarCeilToScalar(brre.getSigma()-1/6.0f);
pdman.set1f(fBlurRadiusUniform, blurRadius);
SkRect rect = rrect.getBounds();
rect.outset(blurRadius, blurRadius);
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
SkScalar radius = 0;
SkASSERT(rrect.isSimpleCircular() || rrect.isRect());
radius = rrect.getSimpleRadii().fX;
pdman.set1f(fCornerRadiusUniform, radius);
}
void GrRRectBlurEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLRRectBlurEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrRRectBlurEffect::onCreateGLSLInstance() const {
return new GrGLRRectBlurEffect;
}
bool SkBlurMaskFilterImpl::directFilterRRectMaskGPU(GrTextureProvider* texProvider,
GrDrawContext* drawContext,
GrPaint* grp,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& rrect) const {
SkASSERT(drawContext);
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
if (!strokeRec.isFillStyle()) {
return false;
}
SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
SkRect proxyRect = rrect.rect();
proxyRect.outset(extra, extra);
sk_sp<GrFragmentProcessor> fp(GrRRectBlurEffect::Make(texProvider, xformedSigma, rrect));
if (!fp) {
return false;
}
grp->addCoverageFragmentProcessor(std::move(fp));
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
drawContext->fillRectWithLocalMatrix(clip, *grp, SkMatrix::I(), proxyRect, inverse);
return true;
}
bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRRect& devRRect,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const {
SkScalar xformedSigma = this->computeXformedSigma(ctm);
if (xformedSigma <= 0) {
return false;
}
// We always do circles on the GPU
if (!devRRect.isCircle()) {
static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64);
static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
if (devRRect.width() <= kMIN_GPU_BLUR_SIZE &&
devRRect.height() <= kMIN_GPU_BLUR_SIZE &&
xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
// We prefer to blur small rects with small radii on the CPU.
return false;
}
}
if (nullptr == maskRect) {
// don't need to compute maskRect
return true;
}
float sigma3 = 3 * SkScalarToFloat(xformedSigma);
SkRect clipRect = SkRect::Make(clipBounds);
SkRect srcRect(devRRect.rect());
// Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
srcRect.outset(sigma3, sigma3);
clipRect.outset(sigma3, sigma3);
if (!srcRect.intersect(clipRect)) {
srcRect.setEmpty();
}
*maskRect = srcRect;
return true;
}
bool SkBlurMaskFilterImpl::filterMaskGPU(GrTexture* src,
const SkMatrix& ctm,
const SkIRect& maskRect,
GrTexture** result) const {
// 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
GrContext* context = src->getContext();
SkScalar xformedSigma = this->computeXformedSigma(ctm);
SkASSERT(xformedSigma > 0);
// If we're doing a normal blur, we can clobber the pathTexture in the
// gaussianBlur. Otherwise, we need to save it for later compositing.
static const bool kIsGammaCorrect = false;
bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
sk_sp<GrDrawContext> drawContext(SkGpuBlurUtils::GaussianBlur(context, src,
kIsGammaCorrect,
clipRect, nullptr,
xformedSigma, xformedSigma));
if (!drawContext) {
return false;
}
if (!isNormalBlur) {
GrPaint paint;
SkMatrix matrix;
matrix.setIDiv(src->width(), src->height());
// Blend pathTexture over blurTexture.
paint.addCoverageFragmentProcessor(GrSimpleTextureEffect::Make(src, matrix));
if (kInner_SkBlurStyle == fBlurStyle) {
// inner: dst = dst * src
paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
} else if (kSolid_SkBlurStyle == fBlurStyle) {
// solid: dst = src + dst - src * dst
// = src + (1 - src) * dst
paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
} else if (kOuter_SkBlurStyle == fBlurStyle) {
// outer: dst = dst * (1 - src)
// = 0 * src + (1 - src) * dst
paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
} else {
paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
}
drawContext->drawRect(GrNoClip(), paint, SkMatrix::I(), SkRect::Make(clipRect));
}
*result = drawContext->asTexture().release();
return true;
}
#endif // SK_SUPPORT_GPU
#ifndef SK_IGNORE_TO_STRING
void SkBlurMaskFilterImpl::toString(SkString* str) const {
str->append("SkBlurMaskFilterImpl: (");
str->append("sigma: ");
str->appendScalar(fSigma);
str->append(" ");
static const char* gStyleName[kLastEnum_SkBlurStyle + 1] = {
"normal", "solid", "outer", "inner"
};
str->appendf("style: %s ", gStyleName[fBlurStyle]);
str->append("flags: (");
if (fBlurFlags) {
bool needSeparator = false;
SkAddFlagToString(str,
SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag),
"IgnoreXform", &needSeparator);
SkAddFlagToString(str,
SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag),
"HighQuality", &needSeparator);
} else {
str->append("None");
}
str->append("))");
}
#endif
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END