blob: 863169c458b8d76642d3aae13e923c68cb90ede3 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAtomics.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkData.h"
#include "SkFilterQuality.h"
#include "SkMallocPixelRef.h"
#include "SkMask.h"
#include "SkMath.h"
#include "SkPixelRef.h"
#include "SkReadBuffer.h"
#include "SkRect.h"
#include "SkScalar.h"
#include "SkTemplates.h"
#include "SkUnPreMultiply.h"
#include "SkWriteBuffer.h"
#include <string.h>
static bool reset_return_false(SkBitmap* bm) {
bm->reset();
return false;
}
SkBitmap::SkBitmap() {
sk_bzero(this, sizeof(*this));
}
SkBitmap::SkBitmap(const SkBitmap& src) {
SkDEBUGCODE(src.validate();)
sk_bzero(this, sizeof(*this));
*this = src;
SkDEBUGCODE(this->validate();)
}
SkBitmap::SkBitmap(SkBitmap&& other) : SkBitmap() { this->swap(other); }
SkBitmap::~SkBitmap() {
SkDEBUGCODE(this->validate();)
this->freePixels();
}
SkBitmap& SkBitmap::operator=(const SkBitmap& src) {
if (this != &src) {
this->freePixels();
this->fPixelRef = SkSafeRef(src.fPixelRef);
if (this->fPixelRef) {
// ignore the values if we have a pixelRef
this->fPixels = nullptr;
this->fColorTable = nullptr;
} else {
this->fPixels = src.fPixels;
this->fColorTable = src.fColorTable;
}
// we reset our locks if we get blown away
this->fPixelLockCount = 0;
this->fPixelRefOrigin = src.fPixelRefOrigin;
this->fInfo = src.fInfo;
this->fRowBytes = src.fRowBytes;
this->fFlags = src.fFlags;
}
SkDEBUGCODE(this->validate();)
return *this;
}
SkBitmap& SkBitmap::operator=(SkBitmap&& other) {
if (this != &other) {
this->swap(other);
other.reset();
}
return *this;
}
void SkBitmap::swap(SkBitmap& other) {
SkTSwap(fColorTable, other.fColorTable);
SkTSwap(fPixelRef, other.fPixelRef);
SkTSwap(fPixelRefOrigin, other.fPixelRefOrigin);
SkTSwap(fPixelLockCount, other.fPixelLockCount);
SkTSwap(fPixels, other.fPixels);
SkTSwap(fInfo, other.fInfo);
SkTSwap(fRowBytes, other.fRowBytes);
SkTSwap(fFlags, other.fFlags);
SkDEBUGCODE(this->validate();)
}
void SkBitmap::reset() {
this->freePixels();
this->fInfo.reset();
sk_bzero(this, sizeof(*this));
}
void SkBitmap::getBounds(SkRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0,
SkIntToScalar(fInfo.width()), SkIntToScalar(fInfo.height()));
}
void SkBitmap::getBounds(SkIRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0, fInfo.width(), fInfo.height());
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::setInfo(const SkImageInfo& info, size_t rowBytes) {
SkAlphaType newAT = info.alphaType();
if (!SkColorTypeValidateAlphaType(info.colorType(), info.alphaType(), &newAT)) {
return reset_return_false(this);
}
// don't look at info.alphaType(), since newAT is the real value...
// require that rowBytes fit in 31bits
int64_t mrb = info.minRowBytes64();
if ((int32_t)mrb != mrb) {
return reset_return_false(this);
}
if ((int64_t)rowBytes != (int32_t)rowBytes) {
return reset_return_false(this);
}
if (info.width() < 0 || info.height() < 0) {
return reset_return_false(this);
}
if (kUnknown_SkColorType == info.colorType()) {
rowBytes = 0;
} else if (0 == rowBytes) {
rowBytes = (size_t)mrb;
} else if (!info.validRowBytes(rowBytes)) {
return reset_return_false(this);
}
this->freePixels();
fInfo = info.makeAlphaType(newAT);
fRowBytes = SkToU32(rowBytes);
return true;
}
bool SkBitmap::setAlphaType(SkAlphaType newAlphaType) {
if (!SkColorTypeValidateAlphaType(fInfo.colorType(), newAlphaType, &newAlphaType)) {
return false;
}
if (fInfo.alphaType() != newAlphaType) {
fInfo = fInfo.makeAlphaType(newAlphaType);
if (fPixelRef) {
fPixelRef->changeAlphaType(newAlphaType);
}
}
return true;
}
void SkBitmap::updatePixelsFromRef() const {
if (fPixelRef) {
if (fPixelLockCount > 0) {
SkASSERT(fPixelRef->isLocked());
void* p = fPixelRef->pixels();
if (p) {
p = (char*)p
+ fPixelRefOrigin.fY * fRowBytes
+ fPixelRefOrigin.fX * fInfo.bytesPerPixel();
}
fPixels = p;
fColorTable = fPixelRef->colorTable();
} else {
SkASSERT(0 == fPixelLockCount);
fPixels = nullptr;
fColorTable = nullptr;
}
}
}
SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, int dx, int dy) {
#ifdef SK_DEBUG
if (pr) {
if (kUnknown_SkColorType != fInfo.colorType()) {
const SkImageInfo& prInfo = pr->info();
SkASSERT(fInfo.width() <= prInfo.width());
SkASSERT(fInfo.height() <= prInfo.height());
SkASSERT(fInfo.colorType() == prInfo.colorType());
switch (prInfo.alphaType()) {
case kUnknown_SkAlphaType:
SkASSERT(fInfo.alphaType() == kUnknown_SkAlphaType);
break;
case kOpaque_SkAlphaType:
case kPremul_SkAlphaType:
SkASSERT(fInfo.alphaType() == kOpaque_SkAlphaType ||
fInfo.alphaType() == kPremul_SkAlphaType);
break;
case kUnpremul_SkAlphaType:
SkASSERT(fInfo.alphaType() == kOpaque_SkAlphaType ||
fInfo.alphaType() == kUnpremul_SkAlphaType);
break;
}
}
}
#endif
if (pr) {
const SkImageInfo& info = pr->info();
fPixelRefOrigin.set(SkTPin(dx, 0, info.width()), SkTPin(dy, 0, info.height()));
} else {
// ignore dx,dy if there is no pixelref
fPixelRefOrigin.setZero();
}
if (fPixelRef != pr) {
this->freePixels();
SkASSERT(nullptr == fPixelRef);
SkSafeRef(pr);
fPixelRef = pr;
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
return pr;
}
void SkBitmap::lockPixels() const {
if (fPixelRef && 0 == sk_atomic_inc(&fPixelLockCount)) {
fPixelRef->lockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
void SkBitmap::unlockPixels() const {
SkASSERT(nullptr == fPixelRef || fPixelLockCount > 0);
if (fPixelRef && 1 == sk_atomic_dec(&fPixelLockCount)) {
fPixelRef->unlockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::lockPixelsAreWritable() const {
return (fPixelRef) ? fPixelRef->lockPixelsAreWritable() : false;
}
void SkBitmap::setPixels(void* p, SkColorTable* ctable) {
if (nullptr == p) {
this->setPixelRef(nullptr);
return;
}
if (kUnknown_SkColorType == fInfo.colorType()) {
this->setPixelRef(nullptr);
return;
}
SkPixelRef* pr = SkMallocPixelRef::NewDirect(fInfo, p, fRowBytes, ctable);
if (nullptr == pr) {
this->setPixelRef(nullptr);
return;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::tryAllocPixels(Allocator* allocator, SkColorTable* ctable) {
HeapAllocator stdalloc;
if (nullptr == allocator) {
allocator = &stdalloc;
}
return allocator->allocPixelRef(this, ctable);
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::tryAllocPixels(const SkImageInfo& requestedInfo, size_t rowBytes) {
if (kIndex_8_SkColorType == requestedInfo.colorType()) {
return reset_return_false(this);
}
if (!this->setInfo(requestedInfo, rowBytes)) {
return reset_return_false(this);
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
// setInfo may have computed a valid rowbytes if 0 were passed in
rowBytes = this->rowBytes();
SkMallocPixelRef::PRFactory defaultFactory;
SkPixelRef* pr = defaultFactory.create(correctedInfo, rowBytes, nullptr);
if (nullptr == pr) {
return reset_return_false(this);
}
this->setPixelRef(pr)->unref();
// TODO: lockPixels could/should return bool or void*/nullptr
this->lockPixels();
if (nullptr == this->getPixels()) {
return reset_return_false(this);
}
return true;
}
bool SkBitmap::tryAllocPixels(const SkImageInfo& requestedInfo, SkPixelRefFactory* factory,
SkColorTable* ctable) {
if (kIndex_8_SkColorType == requestedInfo.colorType() && nullptr == ctable) {
return reset_return_false(this);
}
if (!this->setInfo(requestedInfo)) {
return reset_return_false(this);
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
SkMallocPixelRef::PRFactory defaultFactory;
if (nullptr == factory) {
factory = &defaultFactory;
}
SkPixelRef* pr = factory->create(correctedInfo, correctedInfo.minRowBytes(), ctable);
if (nullptr == pr) {
return reset_return_false(this);
}
this->setPixelRef(pr)->unref();
// TODO: lockPixels could/should return bool or void*/nullptr
this->lockPixels();
if (nullptr == this->getPixels()) {
return reset_return_false(this);
}
return true;
}
static void invoke_release_proc(void (*proc)(void* pixels, void* ctx), void* pixels, void* ctx) {
if (proc) {
proc(pixels, ctx);
}
}
bool SkBitmap::installPixels(const SkImageInfo& requestedInfo, void* pixels, size_t rb,
SkColorTable* ct, void (*releaseProc)(void* addr, void* context),
void* context) {
if (!this->setInfo(requestedInfo, rb)) {
invoke_release_proc(releaseProc, pixels, context);
this->reset();
return false;
}
if (nullptr == pixels) {
invoke_release_proc(releaseProc, pixels, context);
return true; // we behaved as if they called setInfo()
}
// setInfo may have corrected info (e.g. 565 is always opaque).
const SkImageInfo& correctedInfo = this->info();
SkPixelRef* pr = SkMallocPixelRef::NewWithProc(correctedInfo, rb, ct, pixels, releaseProc,
context);
if (!pr) {
this->reset();
return false;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
return true;
}
bool SkBitmap::installPixels(const SkPixmap& pixmap) {
return this->installPixels(pixmap.info(), pixmap.writable_addr(),
pixmap.rowBytes(), pixmap.ctable(),
nullptr, nullptr);
}
bool SkBitmap::installMaskPixels(const SkMask& mask) {
if (SkMask::kA8_Format != mask.fFormat) {
this->reset();
return false;
}
return this->installPixels(SkImageInfo::MakeA8(mask.fBounds.width(),
mask.fBounds.height()),
mask.fImage, mask.fRowBytes);
}
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::freePixels() {
if (fPixelRef) {
if (fPixelLockCount > 0) {
fPixelRef->unlockPixels();
}
fPixelRef->unref();
fPixelRef = nullptr;
fPixelRefOrigin.setZero();
}
fPixelLockCount = 0;
fPixels = nullptr;
fColorTable = nullptr;
}
uint32_t SkBitmap::getGenerationID() const {
return (fPixelRef) ? fPixelRef->getGenerationID() : 0;
}
void SkBitmap::notifyPixelsChanged() const {
SkASSERT(!this->isImmutable());
if (fPixelRef) {
fPixelRef->notifyPixelsChanged();
}
}
GrTexture* SkBitmap::getTexture() const {
return fPixelRef ? fPixelRef->getTexture() : nullptr;
}
///////////////////////////////////////////////////////////////////////////////
/** We explicitly use the same allocator for our pixels that SkMask does,
so that we can freely assign memory allocated by one class to the other.
*/
bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst,
SkColorTable* ctable) {
const SkImageInfo info = dst->info();
if (kUnknown_SkColorType == info.colorType()) {
// SkDebugf("unsupported config for info %d\n", dst->config());
return false;
}
SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, dst->rowBytes(), ctable);
if (nullptr == pr) {
return false;
}
dst->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
dst->lockPixels();
return true;
}
///////////////////////////////////////////////////////////////////////////////
static bool copy_pixels_to(const SkPixmap& src, void* const dst, size_t dstSize,
size_t dstRowBytes, bool preserveDstPad) {
const SkImageInfo& info = src.info();
if (0 == dstRowBytes) {
dstRowBytes = src.rowBytes();
}
if (dstRowBytes < info.minRowBytes()) {
return false;
}
if (!preserveDstPad && static_cast<uint32_t>(dstRowBytes) == src.rowBytes()) {
size_t safeSize = src.getSafeSize();
if (safeSize > dstSize || safeSize == 0)
return false;
else {
// This implementation will write bytes beyond the end of each row,
// excluding the last row, if the bitmap's stride is greater than
// strictly required by the current config.
memcpy(dst, src.addr(), safeSize);
return true;
}
} else {
// If destination has different stride than us, then copy line by line.
if (info.getSafeSize(dstRowBytes) > dstSize) {
return false;
} else {
// Just copy what we need on each line.
size_t rowBytes = info.minRowBytes();
const uint8_t* srcP = reinterpret_cast<const uint8_t*>(src.addr());
uint8_t* dstP = reinterpret_cast<uint8_t*>(dst);
for (int row = 0; row < info.height(); ++row) {
memcpy(dstP, srcP, rowBytes);
srcP += src.rowBytes();
dstP += dstRowBytes;
}
return true;
}
}
}
bool SkBitmap::copyPixelsTo(void* dst, size_t dstSize, size_t dstRB, bool preserveDstPad) const {
if (nullptr == dst) {
return false;
}
SkAutoPixmapUnlock result;
if (!this->requestLock(&result)) {
return false;
}
return copy_pixels_to(result.pixmap(), dst, dstSize, dstRB, preserveDstPad);
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::isImmutable() const {
return fPixelRef ? fPixelRef->isImmutable() : false;
}
void SkBitmap::setImmutable() {
if (fPixelRef) {
fPixelRef->setImmutable();
}
}
bool SkBitmap::isVolatile() const {
return (fFlags & kImageIsVolatile_Flag) != 0;
}
void SkBitmap::setIsVolatile(bool isVolatile) {
if (isVolatile) {
fFlags |= kImageIsVolatile_Flag;
} else {
fFlags &= ~kImageIsVolatile_Flag;
}
}
void* SkBitmap::getAddr(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
char* base = (char*)this->getPixels();
if (base) {
base += y * this->rowBytes();
switch (this->colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
base += x << 2;
break;
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType:
base += x << 1;
break;
case kAlpha_8_SkColorType:
case kIndex_8_SkColorType:
case kGray_8_SkColorType:
base += x;
break;
default:
SkDEBUGFAIL("Can't return addr for config");
base = nullptr;
break;
}
}
return base;
}
#include "SkHalf.h"
SkColor SkBitmap::getColor(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
switch (this->colorType()) {
case kGray_8_SkColorType: {
uint8_t* addr = this->getAddr8(x, y);
return SkColorSetRGB(*addr, *addr, *addr);
}
case kAlpha_8_SkColorType: {
uint8_t* addr = this->getAddr8(x, y);
return SkColorSetA(0, addr[0]);
}
case kIndex_8_SkColorType: {
SkPMColor c = this->getIndex8Color(x, y);
return SkUnPreMultiply::PMColorToColor(c);
}
case kRGB_565_SkColorType: {
uint16_t* addr = this->getAddr16(x, y);
return SkPixel16ToColor(addr[0]);
}
case kARGB_4444_SkColorType: {
uint16_t* addr = this->getAddr16(x, y);
SkPMColor c = SkPixel4444ToPixel32(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case kBGRA_8888_SkColorType: {
uint32_t* addr = this->getAddr32(x, y);
SkPMColor c = SkSwizzle_BGRA_to_PMColor(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case kRGBA_8888_SkColorType: {
uint32_t* addr = this->getAddr32(x, y);
SkPMColor c = SkSwizzle_RGBA_to_PMColor(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case kRGBA_F16_SkColorType: {
const uint64_t* addr = (const uint64_t*)fPixels + y * (fRowBytes >> 3) + x;
Sk4f p4 = SkHalfToFloat_01(addr[0]);
if (p4[3]) {
float inva = 1 / p4[3];
p4 = p4 * Sk4f(inva, inva, inva, 1);
}
SkColor c;
SkNx_cast<uint8_t>(p4 * Sk4f(255) + Sk4f(0.5f)).store(&c);
// p4 is RGBA, but we want BGRA, so we need to swap next
return SkSwizzle_RB(c);
}
default:
SkASSERT(false);
return 0;
}
SkASSERT(false); // Not reached.
return 0;
}
static bool compute_is_opaque(const SkPixmap& pmap) {
const int height = pmap.height();
const int width = pmap.width();
switch (pmap.colorType()) {
case kAlpha_8_SkColorType: {
unsigned a = 0xFF;
for (int y = 0; y < height; ++y) {
const uint8_t* row = pmap.addr8(0, y);
for (int x = 0; x < width; ++x) {
a &= row[x];
}
if (0xFF != a) {
return false;
}
}
return true;
} break;
case kIndex_8_SkColorType: {
const SkColorTable* ctable = pmap.ctable();
if (nullptr == ctable) {
return false;
}
const SkPMColor* table = ctable->readColors();
SkPMColor c = (SkPMColor)~0;
for (int i = ctable->count() - 1; i >= 0; --i) {
c &= table[i];
}
return 0xFF == SkGetPackedA32(c);
} break;
case kRGB_565_SkColorType:
case kGray_8_SkColorType:
return true;
break;
case kARGB_4444_SkColorType: {
unsigned c = 0xFFFF;
for (int y = 0; y < height; ++y) {
const SkPMColor16* row = pmap.addr16(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xF != SkGetPackedA4444(c)) {
return false;
}
}
return true;
} break;
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
SkPMColor c = (SkPMColor)~0;
for (int y = 0; y < height; ++y) {
const SkPMColor* row = pmap.addr32(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xFF != SkGetPackedA32(c)) {
return false;
}
}
return true;
}
default:
break;
}
return false;
}
bool SkBitmap::ComputeIsOpaque(const SkBitmap& bm) {
SkAutoPixmapUnlock result;
if (!bm.requestLock(&result)) {
return false;
}
return compute_is_opaque(result.pixmap());
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::erase(SkColor c, const SkIRect& area) const {
SkDEBUGCODE(this->validate();)
switch (fInfo.colorType()) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
// TODO: can we ASSERT that we never get here?
return; // can't erase. Should we bzero so the memory is not uninitialized?
default:
break;
}
SkAutoPixmapUnlock result;
if (!this->requestLock(&result)) {
return;
}
if (result.pixmap().erase(c, area)) {
this->notifyPixelsChanged();
}
}
void SkBitmap::eraseColor(SkColor c) const {
this->erase(c, SkIRect::MakeWH(this->width(), this->height()));
}
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const {
SkDEBUGCODE(this->validate();)
if (nullptr == result || nullptr == fPixelRef) {
return false; // no src pixels
}
SkIRect srcRect, r;
srcRect.set(0, 0, this->width(), this->height());
if (!r.intersect(srcRect, subset)) {
return false; // r is empty (i.e. no intersection)
}
if (fPixelRef->getTexture() != nullptr) {
// Do a deep copy
SkPixelRef* pixelRef = fPixelRef->deepCopy(this->colorType(), this->colorSpace(), &subset);
if (pixelRef != nullptr) {
SkBitmap dst;
dst.setInfo(this->info().makeWH(subset.width(), subset.height()));
dst.setIsVolatile(this->isVolatile());
dst.setPixelRef(pixelRef)->unref();
SkDEBUGCODE(dst.validate());
result->swap(dst);
return true;
}
}
// If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have
// exited above.
SkASSERT(static_cast<unsigned>(r.fLeft) < static_cast<unsigned>(this->width()));
SkASSERT(static_cast<unsigned>(r.fTop) < static_cast<unsigned>(this->height()));
SkBitmap dst;
dst.setInfo(this->info().makeWH(r.width(), r.height()), this->rowBytes());
dst.setIsVolatile(this->isVolatile());
if (fPixelRef) {
SkIPoint origin = fPixelRefOrigin;
origin.fX += r.fLeft;
origin.fY += r.fTop;
// share the pixelref with a custom offset
dst.setPixelRef(fPixelRef, origin);
}
SkDEBUGCODE(dst.validate();)
// we know we're good, so commit to result
result->swap(dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::canCopyTo(SkColorType dstColorType) const {
const SkColorType srcCT = this->colorType();
if (srcCT == kUnknown_SkColorType) {
return false;
}
bool sameConfigs = (srcCT == dstColorType);
switch (dstColorType) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
break;
case kIndex_8_SkColorType:
if (!sameConfigs) {
return false;
}
break;
case kARGB_4444_SkColorType:
return sameConfigs || kN32_SkColorType == srcCT || kIndex_8_SkColorType == srcCT;
case kGray_8_SkColorType:
switch (srcCT) {
case kGray_8_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
return true;
default:
break;
}
return false;
default:
return false;
}
return true;
}
bool SkBitmap::readPixels(const SkImageInfo& requestedDstInfo, void* dstPixels, size_t dstRB,
int x, int y) const {
SkAutoPixmapUnlock src;
if (!this->requestLock(&src)) {
return false;
}
return src.pixmap().readPixels(requestedDstInfo, dstPixels, dstRB, x, y);
}
bool SkBitmap::copyTo(SkBitmap* dst, SkColorType dstColorType, Allocator* alloc) const {
if (!this->canCopyTo(dstColorType)) {
return false;
}
// if we have a texture, first get those pixels
SkBitmap tmpSrc;
const SkBitmap* src = this;
if (fPixelRef) {
SkIRect subset;
subset.setXYWH(fPixelRefOrigin.fX, fPixelRefOrigin.fY,
fInfo.width(), fInfo.height());
if (fPixelRef->readPixels(&tmpSrc, dstColorType, &subset)) {
if (fPixelRef->info().alphaType() == kUnpremul_SkAlphaType) {
// FIXME: The only meaningful implementation of readPixels
// (GrPixelRef) assumes premultiplied pixels.
return false;
}
SkASSERT(tmpSrc.width() == this->width());
SkASSERT(tmpSrc.height() == this->height());
// did we get lucky and we can just return tmpSrc?
if (tmpSrc.colorType() == dstColorType && nullptr == alloc) {
dst->swap(tmpSrc);
// If the result is an exact copy, clone the gen ID.
if (dst->pixelRef() && dst->pixelRef()->info() == fPixelRef->info()) {
dst->pixelRef()->cloneGenID(*fPixelRef);
}
return true;
}
// fall through to the raster case
src = &tmpSrc;
}
}
SkAutoPixmapUnlock srcUnlocker;
if (!src->requestLock(&srcUnlocker)) {
return false;
}
const SkPixmap& srcPM = srcUnlocker.pixmap();
const SkImageInfo dstInfo = srcPM.info().makeColorType(dstColorType);
SkBitmap tmpDst;
if (!tmpDst.setInfo(dstInfo)) {
return false;
}
// allocate colortable if srcConfig == kIndex8_Config
SkAutoTUnref<SkColorTable> ctable;
if (dstColorType == kIndex_8_SkColorType) {
ctable.reset(SkRef(srcPM.ctable()));
}
if (!tmpDst.tryAllocPixels(alloc, ctable)) {
return false;
}
SkAutoPixmapUnlock dstUnlocker;
if (!tmpDst.requestLock(&dstUnlocker)) {
return false;
}
if (!srcPM.readPixels(dstUnlocker.pixmap())) {
return false;
}
// (for BitmapHeap) Clone the pixelref genID even though we have a new pixelref.
// The old copyTo impl did this, so we continue it for now.
//
// TODO: should we ignore rowbytes (i.e. getSize)? Then it could just be
// if (src_pixelref->info == dst_pixelref->info)
//
if (srcPM.colorType() == dstColorType && tmpDst.getSize() == srcPM.getSize64()) {
SkPixelRef* dstPixelRef = tmpDst.pixelRef();
if (dstPixelRef->info() == fPixelRef->info()) {
dstPixelRef->cloneGenID(*fPixelRef);
}
}
dst->swap(tmpDst);
return true;
}
bool SkBitmap::deepCopyTo(SkBitmap* dst) const {
const SkColorType dstCT = this->colorType();
SkColorSpace* dstCS = this->colorSpace();
if (!this->canCopyTo(dstCT)) {
return false;
}
// If we have a PixelRef, and it supports deep copy, use it.
// Currently supported only by texture-backed bitmaps.
if (fPixelRef) {
SkPixelRef* pixelRef = fPixelRef->deepCopy(dstCT, dstCS, nullptr);
if (pixelRef) {
uint32_t rowBytes;
if (this->colorType() == dstCT && this->colorSpace() == dstCS) {
// Since there is no subset to pass to deepCopy, and deepCopy
// succeeded, the new pixel ref must be identical.
SkASSERT(fPixelRef->info() == pixelRef->info());
pixelRef->cloneGenID(*fPixelRef);
// Use the same rowBytes as the original.
rowBytes = fRowBytes;
} else {
// With the new config, an appropriate fRowBytes will be computed by setInfo.
rowBytes = 0;
}
const SkImageInfo info = fInfo.makeColorType(dstCT);
if (!dst->setInfo(info, rowBytes)) {
return false;
}
dst->setPixelRef(pixelRef, fPixelRefOrigin)->unref();
return true;
}
}
if (this->getTexture()) {
return false;
} else {
return this->copyTo(dst, dstCT, nullptr);
}
}
///////////////////////////////////////////////////////////////////////////////
static void rect_memset(uint8_t* array, U8CPU value, SkISize size, size_t rowBytes) {
for (int y = 0; y < size.height(); ++y) {
memset(array, value, size.width());
array += rowBytes;
}
}
static void get_bitmap_alpha(const SkPixmap& pmap, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) {
SkColorType colorType = pmap.colorType();
int w = pmap.width();
int h = pmap.height();
size_t rb = pmap.rowBytes();
if (kAlpha_8_SkColorType == colorType && !pmap.isOpaque()) {
const uint8_t* s = pmap.addr8(0, 0);
while (--h >= 0) {
memcpy(alpha, s, w);
s += rb;
alpha += alphaRowBytes;
}
} else if (kN32_SkColorType == colorType && !pmap.isOpaque()) {
const SkPMColor* SK_RESTRICT s = pmap.addr32(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(s[x]);
}
s = (const SkPMColor*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (kARGB_4444_SkColorType == colorType && !pmap.isOpaque()) {
const SkPMColor16* SK_RESTRICT s = pmap.addr16(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkPacked4444ToA32(s[x]);
}
s = (const SkPMColor16*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (kIndex_8_SkColorType == colorType && !pmap.isOpaque()) {
const SkColorTable* ct = pmap.ctable();
if (ct) {
const SkPMColor* SK_RESTRICT table = ct->readColors();
const uint8_t* SK_RESTRICT s = pmap.addr8(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(table[s[x]]);
}
s += rb;
alpha += alphaRowBytes;
}
}
} else { // src is opaque, so just fill alpha[] with 0xFF
rect_memset(alpha, 0xFF, pmap.info().dimensions(), alphaRowBytes);
}
}
static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha, int alphaRowBytes) {
SkASSERT(alpha != nullptr);
SkASSERT(alphaRowBytes >= src.width());
SkAutoPixmapUnlock apl;
if (!src.requestLock(&apl)) {
rect_memset(alpha, 0, src.info().dimensions(), alphaRowBytes);
return false;
}
get_bitmap_alpha(apl.pixmap(), alpha, alphaRowBytes);
return true;
}
#include "SkPaint.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint,
Allocator *allocator, SkIPoint* offset) const {
SkDEBUGCODE(this->validate();)
SkBitmap tmpBitmap;
SkMatrix identity;
SkMask srcM, dstM;
srcM.fBounds.set(0, 0, this->width(), this->height());
srcM.fRowBytes = SkAlign4(this->width());
srcM.fFormat = SkMask::kA8_Format;
SkMaskFilter* filter = paint ? paint->getMaskFilter() : nullptr;
// compute our (larger?) dst bounds if we have a filter
if (filter) {
identity.reset();
if (!filter->filterMask(&dstM, srcM, identity, nullptr)) {
goto NO_FILTER_CASE;
}
dstM.fRowBytes = SkAlign4(dstM.fBounds.width());
} else {
NO_FILTER_CASE:
tmpBitmap.setInfo(SkImageInfo::MakeA8(this->width(), this->height()), srcM.fRowBytes);
if (!tmpBitmap.tryAllocPixels(allocator, nullptr)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes);
if (offset) {
offset->set(0, 0);
}
tmpBitmap.swap(*dst);
return true;
}
srcM.fImage = SkMask::AllocImage(srcM.computeImageSize());
SkAutoMaskFreeImage srcCleanup(srcM.fImage);
GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes);
if (!filter->filterMask(&dstM, srcM, identity, nullptr)) {
goto NO_FILTER_CASE;
}
SkAutoMaskFreeImage dstCleanup(dstM.fImage);
tmpBitmap.setInfo(SkImageInfo::MakeA8(dstM.fBounds.width(), dstM.fBounds.height()),
dstM.fRowBytes);
if (!tmpBitmap.tryAllocPixels(allocator, nullptr)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize());
if (offset) {
offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop);
}
SkDEBUGCODE(tmpBitmap.validate();)
tmpBitmap.swap(*dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
static void write_raw_pixels(SkWriteBuffer* buffer, const SkPixmap& pmap) {
const SkImageInfo& info = pmap.info();
const size_t snugRB = info.width() * info.bytesPerPixel();
const char* src = (const char*)pmap.addr();
const size_t ramRB = pmap.rowBytes();
buffer->write32(SkToU32(snugRB));
info.flatten(*buffer);
const size_t size = snugRB * info.height();
SkAutoTMalloc<char> storage(size);
char* dst = storage.get();
for (int y = 0; y < info.height(); ++y) {
memcpy(dst, src, snugRB);
dst += snugRB;
src += ramRB;
}
buffer->writeByteArray(storage.get(), size);
const SkColorTable* ct = pmap.ctable();
if (kIndex_8_SkColorType == info.colorType() && ct) {
buffer->writeBool(true);
ct->writeToBuffer(*buffer);
} else {
buffer->writeBool(false);
}
}
void SkBitmap::WriteRawPixels(SkWriteBuffer* buffer, const SkBitmap& bitmap) {
const SkImageInfo info = bitmap.info();
if (0 == info.width() || 0 == info.height() || nullptr == bitmap.pixelRef()) {
buffer->writeUInt(0); // instead of snugRB, signaling no pixels
return;
}
SkAutoPixmapUnlock result;
if (!bitmap.requestLock(&result)) {
buffer->writeUInt(0); // instead of snugRB, signaling no pixels
return;
}
write_raw_pixels(buffer, result.pixmap());
}
bool SkBitmap::ReadRawPixels(SkReadBuffer* buffer, SkBitmap* bitmap) {
const size_t snugRB = buffer->readUInt();
if (0 == snugRB) { // no pixels
return false;
}
SkImageInfo info;
info.unflatten(*buffer);
// If there was an error reading "info" or if it is bogus,
// don't use it to compute minRowBytes()
if (!buffer->validate(SkColorTypeValidateAlphaType(info.colorType(),
info.alphaType()))) {
return false;
}
const size_t ramRB = info.minRowBytes();
const int height = SkMax32(info.height(), 0);
const uint64_t snugSize = sk_64_mul(snugRB, height);
const uint64_t ramSize = sk_64_mul(ramRB, height);
static const uint64_t max_size_t = (size_t)(-1);
if (!buffer->validate((snugSize <= ramSize) && (ramSize <= max_size_t))) {
return false;
}
sk_sp<SkData> data(SkData::MakeUninitialized(SkToSizeT(ramSize)));
unsigned char* dst = (unsigned char*)data->writable_data();
buffer->readByteArray(dst, SkToSizeT(snugSize));
if (snugSize != ramSize) {
const unsigned char* srcRow = dst + snugRB * (height - 1);
unsigned char* dstRow = dst + ramRB * (height - 1);
for (int y = height - 1; y >= 1; --y) {
memmove(dstRow, srcRow, snugRB);
srcRow -= snugRB;
dstRow -= ramRB;
}
SkASSERT(srcRow == dstRow); // first row does not need to be moved
}
SkAutoTUnref<SkColorTable> ctable;
if (buffer->readBool()) {
ctable.reset(SkColorTable::Create(*buffer));
if (!ctable) {
return false;
}
if (info.isEmpty()) {
// require an empty ctable
if (ctable->count() != 0) {
buffer->validate(false);
return false;
}
} else {
// require a non-empty ctable
if (ctable->count() == 0) {
buffer->validate(false);
return false;
}
unsigned char maxIndex = ctable->count() - 1;
for (uint64_t i = 0; i < ramSize; ++i) {
dst[i] = SkTMin(dst[i], maxIndex);
}
}
}
SkAutoTUnref<SkPixelRef> pr(SkMallocPixelRef::NewWithData(info, info.minRowBytes(),
ctable.get(), data.get()));
if (!pr.get()) {
return false;
}
bitmap->setInfo(pr->info());
bitmap->setPixelRef(pr, 0, 0);
return true;
}
enum {
SERIALIZE_PIXELTYPE_NONE,
SERIALIZE_PIXELTYPE_REF_DATA
};
///////////////////////////////////////////////////////////////////////////////
SkBitmap::RLEPixels::RLEPixels(int width, int height) {
fHeight = height;
fYPtrs = (uint8_t**)sk_calloc_throw(height * sizeof(uint8_t*));
}
SkBitmap::RLEPixels::~RLEPixels() {
sk_free(fYPtrs);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkBitmap::validate() const {
fInfo.validate();
// ImageInfo may not require this, but Bitmap ensures that opaque-only
// colorTypes report opaque for their alphatype
if (kRGB_565_SkColorType == fInfo.colorType()) {
SkASSERT(kOpaque_SkAlphaType == fInfo.alphaType());
}
SkASSERT(fInfo.validRowBytes(fRowBytes));
uint8_t allFlags = kImageIsVolatile_Flag;
#ifdef SK_BUILD_FOR_ANDROID
allFlags |= kHasHardwareMipMap_Flag;
#endif
SkASSERT((~allFlags & fFlags) == 0);
SkASSERT(fPixelLockCount >= 0);
if (fPixels) {
SkASSERT(fPixelRef);
SkASSERT(fPixelLockCount > 0);
SkASSERT(fPixelRef->isLocked());
SkASSERT(fPixelRef->rowBytes() == fRowBytes);
SkASSERT(fPixelRefOrigin.fX >= 0);
SkASSERT(fPixelRefOrigin.fY >= 0);
SkASSERT(fPixelRef->info().width() >= (int)this->width() + fPixelRefOrigin.fX);
SkASSERT(fPixelRef->info().height() >= (int)this->height() + fPixelRefOrigin.fY);
SkASSERT(fPixelRef->rowBytes() >= fInfo.minRowBytes());
} else {
SkASSERT(nullptr == fColorTable);
}
}
#endif
#ifndef SK_IGNORE_TO_STRING
#include "SkString.h"
void SkBitmap::toString(SkString* str) const {
static const char* gColorTypeNames[kLastEnum_SkColorType + 1] = {
"UNKNOWN", "A8", "565", "4444", "RGBA", "BGRA", "INDEX8",
};
str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(),
gColorTypeNames[this->colorType()]);
str->append(" (");
if (this->isOpaque()) {
str->append("opaque");
} else {
str->append("transparent");
}
if (this->isImmutable()) {
str->append(", immutable");
} else {
str->append(", not-immutable");
}
str->append(")");
SkPixelRef* pr = this->pixelRef();
if (nullptr == pr) {
// show null or the explicit pixel address (rare)
str->appendf(" pixels:%p", this->getPixels());
} else {
const char* uri = pr->getURI();
if (uri) {
str->appendf(" uri:\"%s\"", uri);
} else {
str->appendf(" pixelref:%p", pr);
}
}
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::requestLock(SkAutoPixmapUnlock* result) const {
SkASSERT(result);
SkPixelRef* pr = fPixelRef;
if (nullptr == pr) {
return false;
}
// We have to lock the whole thing (using the pixelref's dimensions) until the api supports
// a partial lock (with offset/origin). Hence we can't use our fInfo.
SkPixelRef::LockRequest req = { pr->info().dimensions(), kNone_SkFilterQuality };
SkPixelRef::LockResult res;
if (pr->requestLock(req, &res)) {
SkASSERT(res.fPixels);
// The bitmap may be a subset of the pixelref's dimensions
SkASSERT(fPixelRefOrigin.x() + fInfo.width() <= res.fSize.width());
SkASSERT(fPixelRefOrigin.y() + fInfo.height() <= res.fSize.height());
const void* addr = (const char*)res.fPixels + SkColorTypeComputeOffset(fInfo.colorType(),
fPixelRefOrigin.x(),
fPixelRefOrigin.y(),
res.fRowBytes);
result->reset(SkPixmap(this->info(), addr, res.fRowBytes, res.fCTable),
res.fUnlockProc, res.fUnlockContext);
return true;
}
return false;
}
bool SkBitmap::peekPixels(SkPixmap* pmap) const {
if (fPixels) {
if (pmap) {
pmap->reset(fInfo, fPixels, fRowBytes, fColorTable);
}
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkImageInfo::validate() const {
SkASSERT(fWidth >= 0);
SkASSERT(fHeight >= 0);
SkASSERT(SkColorTypeIsValid(fColorType));
SkASSERT(SkAlphaTypeIsValid(fAlphaType));
}
#endif