blob: a996a4bc27204f5dbc58c90fc828980a24362541 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleCode.h"
#include "SkAlphaThresholdFilter.h"
#include "SkBitmapSource.h"
#include "SkBlurImageFilter.h"
#include "SkCanvas.h"
#include "SkColorFilter.h"
#include "SkColorFilterImageFilter.h"
#include "SkComposeImageFilter.h"
#include "SkData.h"
#include "SkDisplacementMapEffect.h"
#include "SkDropShadowImageFilter.h"
#include "SkFlattenableSerialization.h"
#include "SkLightingImageFilter.h"
#include "SkMagnifierImageFilter.h"
#include "SkMatrixImageFilter.h"
#include "SkMatrixConvolutionImageFilter.h"
#include "SkMergeImageFilter.h"
#include "SkMorphologyImageFilter.h"
#include "SkOffsetImageFilter.h"
#include "SkPerlinNoiseShader.h"
#include "SkPictureImageFilter.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkRectShaderImageFilter.h"
#include "SkTestImageFilters.h"
#include "SkTileImageFilter.h"
#include "SkView.h"
#include "SkXfermodeImageFilter.h"
#include <stdio.h>
#include <time.h>
//#define SK_ADD_RANDOM_BIT_FLIPS
//#define SK_FUZZER_IS_VERBOSE
static const uint32_t kSeed = (uint32_t)(time(NULL));
static SkRandom gRand(kSeed);
static bool return_large = false;
static bool return_undef = false;
static const int kBitmapSize = 24;
static int R(float x) {
return (int)floor(SkScalarToFloat(gRand.nextUScalar1()) * x);
}
#if defined _WIN32
#pragma warning ( push )
// we are intentionally causing an overflow here
// (warning C4756: overflow in constant arithmetic)
#pragma warning ( disable : 4756 )
#endif
static float huge() {
double d = 1e100;
float f = (float)d;
return f;
}
#if defined _WIN32
#pragma warning ( pop )
#endif
static float make_number(bool positiveOnly) {
float f = positiveOnly ? 1.0f : 0.0f;
float v = f;
int sel;
if (return_large) sel = R(6); else sel = R(4);
if (!return_undef && sel == 0) sel = 1;
if (R(2) == 1) v = (float)(R(100)+f); else
switch (sel) {
case 0: break;
case 1: v = f; break;
case 2: v = 0.000001f; break;
case 3: v = 10000.0f; break;
case 4: v = 2000000000.0f; break;
case 5: v = huge(); break;
}
if (!positiveOnly && (R(4) == 1)) v = -v;
return v;
}
static SkScalar make_scalar(bool positiveOnly = false) {
return make_number(positiveOnly);
}
static SkRect make_rect() {
return SkRect::MakeWH(SkIntToScalar(R(static_cast<float>(kBitmapSize))),
SkIntToScalar(R(static_cast<float>(kBitmapSize))));
}
static SkRegion make_region() {
SkIRect iRegion = SkIRect::MakeXYWH(R(static_cast<float>(kBitmapSize)),
R(static_cast<float>(kBitmapSize)),
R(static_cast<float>(kBitmapSize)),
R(static_cast<float>(kBitmapSize)));
return SkRegion(iRegion);
}
static SkMatrix make_matrix() {
SkMatrix m;
for (int i = 0; i < 9; ++i) {
m[i] = make_scalar();
}
return m;
}
static SkXfermode::Mode make_xfermode() {
return static_cast<SkXfermode::Mode>(R(SkXfermode::kLastMode+1));
}
static SkColor make_color() {
return (R(2) == 1) ? 0xFFC0F0A0 : 0xFF000090;
}
static SkPoint3 make_point() {
return SkPoint3(make_scalar(), make_scalar(), make_scalar(true));
}
static SkDisplacementMapEffect::ChannelSelectorType make_channel_selector_type() {
return static_cast<SkDisplacementMapEffect::ChannelSelectorType>(R(4)+1);
}
static bool valid_for_raster_canvas(const SkImageInfo& info) {
switch (info.colorType()) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
return true;
case kN32_SkColorType:
return kPremul_SkAlphaType == info.alphaType() ||
kOpaque_SkAlphaType == info.alphaType();
default:
break;
}
return false;
}
static SkColorType rand_colortype() {
return (SkColorType)R(kLastEnum_SkColorType + 1);
}
static void rand_bitmap_for_canvas(SkBitmap* bitmap) {
SkImageInfo info;
do {
info = SkImageInfo::Make(kBitmapSize, kBitmapSize, rand_colortype(),
kPremul_SkAlphaType);
} while (!valid_for_raster_canvas(info) || !bitmap->tryAllocPixels(info));
}
static void make_g_bitmap(SkBitmap& bitmap) {
rand_bitmap_for_canvas(&bitmap);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint paint;
paint.setAntiAlias(true);
paint.setColor(0xFF884422);
paint.setTextSize(SkIntToScalar(kBitmapSize/2));
const char* str = "g";
canvas.drawText(str, strlen(str), SkIntToScalar(kBitmapSize/8),
SkIntToScalar(kBitmapSize/4), paint);
}
static void make_checkerboard_bitmap(SkBitmap& bitmap) {
rand_bitmap_for_canvas(&bitmap);
SkCanvas canvas(bitmap);
canvas.clear(0x00000000);
SkPaint darkPaint;
darkPaint.setColor(0xFF804020);
SkPaint lightPaint;
lightPaint.setColor(0xFF244484);
const int i = kBitmapSize / 8;
const SkScalar f = SkIntToScalar(i);
for (int y = 0; y < kBitmapSize; y += i) {
for (int x = 0; x < kBitmapSize; x += i) {
canvas.save();
canvas.translate(SkIntToScalar(x), SkIntToScalar(y));
canvas.drawRect(SkRect::MakeXYWH(0, 0, f, f), darkPaint);
canvas.drawRect(SkRect::MakeXYWH(f, 0, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(0, f, f, f), lightPaint);
canvas.drawRect(SkRect::MakeXYWH(f, f, f, f), darkPaint);
canvas.restore();
}
}
}
static const SkBitmap& make_bitmap() {
static SkBitmap bitmap[2];
static bool initialized = false;
if (!initialized) {
make_g_bitmap(bitmap[0]);
make_checkerboard_bitmap(bitmap[1]);
initialized = true;
}
return bitmap[R(2)];
}
static void drawSomething(SkCanvas* canvas) {
SkPaint paint;
canvas->save();
canvas->scale(0.5f, 0.5f);
canvas->drawBitmap(make_bitmap(), 0, 0, NULL);
canvas->restore();
const char beforeStr[] = "before circle";
const char afterStr[] = "after circle";
paint.setAntiAlias(true);
paint.setColor(SK_ColorRED);
canvas->drawData(beforeStr, sizeof(beforeStr));
canvas->drawCircle(SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/3), paint);
canvas->drawData(afterStr, sizeof(afterStr));
paint.setColor(SK_ColorBLACK);
paint.setTextSize(SkIntToScalar(kBitmapSize/3));
canvas->drawText("Picture", 7, SkIntToScalar(kBitmapSize/2), SkIntToScalar(kBitmapSize/4), paint);
}
static SkImageFilter* make_image_filter(bool canBeNull = true) {
SkImageFilter* filter = 0;
// Add a 1 in 3 chance to get a NULL input
if (canBeNull && (R(3) == 1)) { return filter; }
enum { ALPHA_THRESHOLD, MERGE, COLOR, BLUR, MAGNIFIER,
DOWN_SAMPLE, XFERMODE, OFFSET, MATRIX, MATRIX_CONVOLUTION, COMPOSE,
DISTANT_LIGHT, POINT_LIGHT, SPOT_LIGHT, NOISE, DROP_SHADOW,
MORPHOLOGY, BITMAP, DISPLACE, TILE, PICTURE, NUM_FILTERS };
switch (R(NUM_FILTERS)) {
case ALPHA_THRESHOLD:
filter = SkAlphaThresholdFilter::Create(make_region(), make_scalar(), make_scalar());
break;
case MERGE:
filter = SkMergeImageFilter::Create(make_image_filter(), make_image_filter(), make_xfermode());
break;
case COLOR:
{
SkAutoTUnref<SkColorFilter> cf((R(2) == 1) ?
SkColorFilter::CreateModeFilter(make_color(), make_xfermode()) :
SkColorFilter::CreateLightingFilter(make_color(), make_color()));
filter = cf.get() ? SkColorFilterImageFilter::Create(cf, make_image_filter()) : 0;
}
break;
case BLUR:
filter = SkBlurImageFilter::Create(make_scalar(true), make_scalar(true), make_image_filter());
break;
case MAGNIFIER:
filter = SkMagnifierImageFilter::Create(make_rect(), make_scalar(true));
break;
case DOWN_SAMPLE:
filter = SkDownSampleImageFilter::Create(make_scalar());
break;
case XFERMODE:
{
SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(make_xfermode()));
filter = SkXfermodeImageFilter::Create(mode, make_image_filter(), make_image_filter());
}
break;
case OFFSET:
filter = SkOffsetImageFilter::Create(make_scalar(), make_scalar(), make_image_filter());
break;
case MATRIX:
filter = SkMatrixImageFilter::Create(make_matrix(),
(SkPaint::FilterLevel)R(4),
make_image_filter());
break;
case MATRIX_CONVOLUTION:
{
SkImageFilter::CropRect cropR(SkRect::MakeWH(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize)));
SkISize size = SkISize::Make(R(10)+1, R(10)+1);
int arraySize = size.width() * size.height();
SkTArray<SkScalar> kernel(arraySize);
for (int i = 0; i < arraySize; ++i) {
kernel.push_back() = make_scalar();
}
SkIPoint kernelOffset = SkIPoint::Make(R(SkIntToScalar(size.width())),
R(SkIntToScalar(size.height())));
filter = SkMatrixConvolutionImageFilter::Create(size,
kernel.begin(),
make_scalar(),
make_scalar(),
kernelOffset,
(SkMatrixConvolutionImageFilter::TileMode)R(3),
R(2) == 1,
make_image_filter(),
&cropR);
}
break;
case COMPOSE:
filter = SkComposeImageFilter::Create(make_image_filter(), make_image_filter());
break;
case DISTANT_LIGHT:
filter = (R(2) == 1) ?
SkLightingImageFilter::CreateDistantLitDiffuse(make_point(),
make_color(), make_scalar(), make_scalar(), make_image_filter()) :
SkLightingImageFilter::CreateDistantLitSpecular(make_point(),
make_color(), make_scalar(), make_scalar(), SkIntToScalar(R(10)),
make_image_filter());
break;
case POINT_LIGHT:
filter = (R(2) == 1) ?
SkLightingImageFilter::CreatePointLitDiffuse(make_point(),
make_color(), make_scalar(), make_scalar(), make_image_filter()) :
SkLightingImageFilter::CreatePointLitSpecular(make_point(),
make_color(), make_scalar(), make_scalar(), SkIntToScalar(R(10)),
make_image_filter());
break;
case SPOT_LIGHT:
filter = (R(2) == 1) ?
SkLightingImageFilter::CreateSpotLitDiffuse(SkPoint3(0, 0, 0),
make_point(), make_scalar(), make_scalar(), make_color(),
make_scalar(), make_scalar(), make_image_filter()) :
SkLightingImageFilter::CreateSpotLitSpecular(SkPoint3(0, 0, 0),
make_point(), make_scalar(), make_scalar(), make_color(),
make_scalar(), make_scalar(), SkIntToScalar(R(10)), make_image_filter());
break;
case NOISE:
{
SkAutoTUnref<SkShader> shader((R(2) == 1) ?
SkPerlinNoiseShader::CreateFractalNoise(
make_scalar(true), make_scalar(true), R(10.0f), make_scalar()) :
SkPerlinNoiseShader::CreateTurbulence(
make_scalar(true), make_scalar(true), R(10.0f), make_scalar()));
SkImageFilter::CropRect cropR(SkRect::MakeWH(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize)));
filter = SkRectShaderImageFilter::Create(shader, &cropR);
}
break;
case DROP_SHADOW:
filter = SkDropShadowImageFilter::Create(make_scalar(), make_scalar(),
make_scalar(true), make_scalar(true), make_color(), make_image_filter());
break;
case MORPHOLOGY:
if (R(2) == 1) {
filter = SkDilateImageFilter::Create(R(static_cast<float>(kBitmapSize)),
R(static_cast<float>(kBitmapSize)), make_image_filter());
} else {
filter = SkErodeImageFilter::Create(R(static_cast<float>(kBitmapSize)),
R(static_cast<float>(kBitmapSize)), make_image_filter());
}
break;
case BITMAP:
if (R(2) == 1) {
filter = SkBitmapSource::Create(make_bitmap(), make_rect(), make_rect());
} else {
filter = SkBitmapSource::Create(make_bitmap());
}
break;
case DISPLACE:
filter = SkDisplacementMapEffect::Create(make_channel_selector_type(),
make_channel_selector_type(), make_scalar(),
make_image_filter(false), make_image_filter());
break;
case TILE:
filter = SkTileImageFilter::Create(make_rect(), make_rect(), make_image_filter(false));
break;
case PICTURE:
{
SkRTreeFactory factory;
SkPictureRecorder recorder;
SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(kBitmapSize),
SkIntToScalar(kBitmapSize),
&factory, 0);
drawSomething(recordingCanvas);
SkAutoTUnref<SkPicture> pict(recorder.endRecording());
filter = SkPictureImageFilter::Create(pict.get(), make_rect());
}
break;
default:
break;
}
return (filter || canBeNull) ? filter : make_image_filter(canBeNull);
}
static SkImageFilter* make_serialized_image_filter() {
SkAutoTUnref<SkImageFilter> filter(make_image_filter(false));
SkAutoTUnref<SkData> data(SkValidatingSerializeFlattenable(filter));
const unsigned char* ptr = static_cast<const unsigned char*>(data->data());
size_t len = data->size();
#ifdef SK_ADD_RANDOM_BIT_FLIPS
unsigned char* p = const_cast<unsigned char*>(ptr);
for (size_t i = 0; i < len; ++i, ++p) {
if (R(250) == 1) { // 0.4% of the time, flip a bit or byte
if (R(10) == 1) { // Then 10% of the time, change a whole byte
switch(R(3)) {
case 0:
*p ^= 0xFF; // Flip entire byte
break;
case 1:
*p = 0xFF; // Set all bits to 1
break;
case 2:
*p = 0x00; // Set all bits to 0
break;
}
} else {
*p ^= (1 << R(8));
}
}
}
#endif // SK_ADD_RANDOM_BIT_FLIPS
SkFlattenable* flattenable = SkValidatingDeserializeFlattenable(ptr, len,
SkImageFilter::GetFlattenableType());
return static_cast<SkImageFilter*>(flattenable);
}
static void drawClippedBitmap(SkCanvas* canvas, int x, int y, const SkPaint& paint) {
canvas->save();
canvas->clipRect(SkRect::MakeXYWH(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize)));
canvas->drawBitmap(make_bitmap(), SkIntToScalar(x), SkIntToScalar(y), &paint);
canvas->restore();
}
static void do_fuzz(SkCanvas* canvas) {
SkImageFilter* filter = make_serialized_image_filter();
#ifdef SK_FUZZER_IS_VERBOSE
static uint32_t numFilters = 0;
static uint32_t numValidFilters = 0;
if (0 == numFilters) {
printf("Fuzzing with %u\n", kSeed);
}
numFilters++;
if (filter) {
numValidFilters++;
}
printf("Filter no : %u. Valid filters so far : %u\r", numFilters, numValidFilters);
fflush(stdout);
#endif
SkPaint paint;
SkSafeUnref(paint.setImageFilter(filter));
drawClippedBitmap(canvas, 0, 0, paint);
}
//////////////////////////////////////////////////////////////////////////////
class ImageFilterFuzzView : public SampleView {
public:
ImageFilterFuzzView() {
this->setBGColor(0xFFDDDDDD);
}
protected:
// overrides from SkEventSink
virtual bool onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "ImageFilterFuzzer");
return true;
}
return this->INHERITED::onQuery(evt);
}
void drawBG(SkCanvas* canvas) {
canvas->drawColor(0xFFDDDDDD);
}
virtual void onDrawContent(SkCanvas* canvas) {
do_fuzz(canvas);
this->inval(0);
}
private:
typedef SkView INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
static SkView* MyFactory() { return new ImageFilterFuzzView; }
static SkViewRegister reg(MyFactory);