blob: 8a45bbcc06ae4828a19060e53ad5ac1ab63caffe [file] [log] [blame] [edit]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkDraw.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkColorType.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkPathUtils.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRect.h"
#include "include/core/SkRegion.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSpan.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkTileMode.h"
#include "include/private/base/SkAlign.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkCPUTypes.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkFixed.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkArenaAlloc.h"
#include "src/base/SkTLazy.h"
#include "src/base/SkZip.h"
#include "src/core/SkAutoBlitterChoose.h"
#include "src/core/SkBlendModePriv.h"
#include "src/core/SkBlitter.h"
#include "src/core/SkBlitter_A8.h"
#include "src/core/SkDevice.h"
#include "src/core/SkDrawProcs.h"
#include "src/core/SkDrawTypes.h"
#include "src/core/SkImageInfoPriv.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMask.h"
#include "src/core/SkMaskFilterBase.h"
#include "src/core/SkMatrixUtils.h"
#include "src/core/SkPathEffectBase.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkScan.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <optional>
#include <string>
class SkResourceCache;
using namespace skia_private;
namespace skcpu {
static SkPaint make_paint_with_image(const SkPaint& origPaint, const SkBitmap& bitmap,
const SkSamplingOptions& sampling,
SkMatrix* matrix = nullptr) {
SkPaint paint(origPaint);
paint.setShader(SkMakeBitmapShaderForPaint(origPaint, bitmap, SkTileMode::kClamp,
SkTileMode::kClamp, sampling, matrix,
kNever_SkCopyPixelsMode));
return paint;
}
Draw::Draw() { fBlitterChooser = SkBlitter::Choose; }
struct PtProcRec {
SkCanvas::PointMode fMode;
const SkPaint* fPaint;
const SkRegion* fClip;
const SkRasterClip* fRC;
// computed values
SkRect fClipBounds;
SkScalar fRadius;
typedef void (*Proc)(const PtProcRec&, SkSpan<const SkPoint> devPts, SkBlitter*);
bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix,
const SkRasterClip*);
Proc chooseProc(SkBlitter** blitter);
private:
SkAAClipBlitterWrapper fWrapper;
};
#define DIRECT_BLIT_LOOP(writable_method, value) \
do { \
for (auto p : devPts) { \
int x = SkScalarFloorToInt(p.fX); \
int y = SkScalarFloorToInt(p.fY); \
if (cr.contains(x, y)) { \
*pm.writable_method(x, y) = value; \
} \
} \
} while (0)
static void bw_pt_hair_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
const auto direct = blitter->canDirectBlit();
if (direct && rec.fClip->isRect()) {
const SkIRect cr = rec.fClip->getBounds();
auto pm = direct->pm;
const auto v = direct->value;
switch (pm.info().bytesPerPixel()) {
case 1: DIRECT_BLIT_LOOP(writable_addr8, v); break;
case 2: DIRECT_BLIT_LOOP(writable_addr16, v); break;
case 4: DIRECT_BLIT_LOOP(writable_addr32, v); break;
case 8: DIRECT_BLIT_LOOP(writable_addr64, v); break;
default: SkASSERT(false);
}
} else {
for (auto p : devPts) {
int x = SkScalarFloorToInt(p.fX);
int y = SkScalarFloorToInt(p.fY);
if (rec.fClip->contains(x, y)) {
blitter->blitH(x, y, 1);
}
}
}
}
static void bw_line_hair_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
for (size_t i = 0; i < devPts.size(); i += 2) {
SkScan::HairLine(&devPts[i], 2, *rec.fRC, blitter);
}
}
static void bw_poly_hair_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
SkScan::HairLine(devPts.data(), SkToInt(devPts.size()), *rec.fRC, blitter);
}
// aa versions
static void aa_line_hair_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
for (size_t i = 0; i < devPts.size(); i += 2) {
SkScan::AntiHairLine(&devPts[i], 2, *rec.fRC, blitter);
}
}
static void aa_poly_hair_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
SkScan::AntiHairLine(devPts.data(), SkToInt(devPts.size()), *rec.fRC, blitter);
}
// square procs (strokeWidth > 0 but matrix is square-scale (sx == sy)
static SkRect make_square_rad(SkPoint center, SkScalar radius) {
return {
center.fX - radius, center.fY - radius,
center.fX + radius, center.fY + radius
};
}
static SkXRect make_xrect(const SkRect& r) {
SkASSERT(SkRectPriv::FitsInFixed(r));
return {
SkScalarToFixed(r.fLeft), SkScalarToFixed(r.fTop),
SkScalarToFixed(r.fRight), SkScalarToFixed(r.fBottom)
};
}
static void bw_square_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
for (auto p : devPts) {
SkRect r = make_square_rad(p, rec.fRadius);
if (r.intersect(rec.fClipBounds)) {
SkScan::FillXRect(make_xrect(r), *rec.fRC, blitter);
}
}
}
static void aa_square_proc(const PtProcRec& rec, SkSpan<const SkPoint> devPts,
SkBlitter* blitter) {
for (auto p : devPts) {
SkRect r = make_square_rad(p, rec.fRadius);
if (r.intersect(rec.fClipBounds)) {
SkScan::AntiFillXRect(make_xrect(r), *rec.fRC, blitter);
}
}
}
// If this returns true, then chooseProc() must return a valid proc
bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint,
const SkMatrix* matrix, const SkRasterClip* rc) {
if ((unsigned)mode > (unsigned)SkCanvas::kPolygon_PointMode) {
return false;
}
if (paint.getPathEffect() || paint.getMaskFilter()) {
return false;
}
SkScalar width = paint.getStrokeWidth();
SkScalar radius = -1; // sentinel value, a "valid" value must be > 0
if (0 == width) {
radius = 0.5f;
} else if (paint.getStrokeCap() != SkPaint::kRound_Cap &&
matrix->isScaleTranslate() && SkCanvas::kPoints_PointMode == mode) {
SkScalar sx = matrix->get(SkMatrix::kMScaleX);
SkScalar sy = matrix->get(SkMatrix::kMScaleY);
if (SkScalarNearlyZero(sx - sy)) {
radius = SkScalarHalf(width * SkScalarAbs(sx));
}
}
if (radius > 0) {
SkRect clipBounds = SkRect::Make(rc->getBounds());
// if we return true, the caller may assume that the constructed shapes can be represented
// using SkFixed (after clipping), so we preflight that here.
if (!SkRectPriv::FitsInFixed(clipBounds)) {
return false;
}
fMode = mode;
fPaint = &paint;
fClip = nullptr;
fRC = rc;
fClipBounds = clipBounds;
fRadius = radius;
return true;
}
return false;
}
PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) {
Proc proc = nullptr;
SkBlitter* blitter = *blitterPtr;
if (fRC->isBW()) {
fClip = &fRC->bwRgn();
} else {
fWrapper.init(*fRC, blitter);
fClip = &fWrapper.getRgn();
blitter = fWrapper.getBlitter();
*blitterPtr = blitter;
}
// for our arrays
SkASSERT(0 == SkCanvas::kPoints_PointMode);
SkASSERT(1 == SkCanvas::kLines_PointMode);
SkASSERT(2 == SkCanvas::kPolygon_PointMode);
SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode);
if (fPaint->isAntiAlias()) {
if (0 == fPaint->getStrokeWidth()) {
static const Proc gAAProcs[] = {
aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc
};
proc = gAAProcs[fMode];
} else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) {
SkASSERT(SkCanvas::kPoints_PointMode == fMode);
proc = aa_square_proc;
}
} else { // BW
if (fRadius <= 0.5f) { // small radii and hairline
static const Proc gBWProcs[] = {
bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc
};
proc = gBWProcs[fMode];
} else {
proc = bw_square_proc;
}
}
return proc;
}
// each of these costs 8-bytes of stack space, so don't make it too large
// must be even for lines/polygon to work
#define MAX_DEV_PTS 32
void Draw::drawPoints(SkCanvas::PointMode mode,
SkSpan<const SkPoint> points,
const SkPaint& paint,
SkDevice* device) const {
// if we're in lines mode, force count to be even
if (SkCanvas::kLines_PointMode == mode) {
points = points.first(points.size() & ~1); // force it to be even
}
SkDEBUGCODE(this->validate();)
// nothing to draw
if (points.empty() || fRC->isEmpty()) {
return;
}
PtProcRec rec;
if (!device && rec.init(mode, paint, fCTM, fRC)) {
// Can't easily get bounds of points so don't try.
SkAutoBlitterChoose blitter(*this, nullptr, paint, SkRect::MakeEmpty());
SkPoint devPts[MAX_DEV_PTS];
SkBlitter* bltr = blitter.get();
PtProcRec::Proc proc = rec.chooseProc(&bltr);
// we have to back up subsequent passes if we're in polygon mode
const size_t backup = (SkCanvas::kPolygon_PointMode == mode);
auto count = points.size();
auto pts = points.data();
do {
int n = SkToInt(count);
if (n > MAX_DEV_PTS) {
n = MAX_DEV_PTS;
}
fCTM->mapPoints({devPts, n}, {pts, n});
if (!SkIsFinite(&devPts[0].fX, n * 2)) {
return;
}
proc(rec, {devPts, n}, bltr);
pts += n - backup;
SkASSERT(SkToInt(count) >= n);
count -= n;
if (count > 0) {
count += backup;
}
} while (count != 0);
} else {
this->drawDevicePoints(mode, points, paint, device);
}
}
static bool clipped_out(const SkMatrix& m, const SkRasterClip& c,
const SkRect& srcR) {
SkRect dstR;
m.mapRect(&dstR, srcR);
return c.quickReject(dstR.roundOut());
}
static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip,
int width, int height) {
SkRect r;
r.setIWH(width, height);
return clipped_out(matrix, clip, r);
}
static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, const SkPixmap& pmap) {
return clip.isBW() || clip.quickContains(SkIRect::MakeXYWH(x, y, pmap.width(), pmap.height()));
}
void Draw::drawBitmap(const SkBitmap& bitmap,
const SkMatrix& prematrix,
const SkRect* dstBounds,
const SkSamplingOptions& sampling,
const SkPaint& origPaint) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty() ||
bitmap.width() == 0 || bitmap.height() == 0 ||
bitmap.colorType() == kUnknown_SkColorType) {
return;
}
SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
if (origPaint.getStyle() != SkPaint::kFill_Style) {
paint.writable()->setStyle(SkPaint::kFill_Style);
}
SkMatrix matrix = *fCTM * prematrix;
if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) {
return;
}
if (!SkColorTypeIsAlphaOnly(bitmap.colorType()) &&
SkTreatAsSprite(matrix, bitmap.dimensions(), sampling, paint->isAntiAlias())) {
//
// It is safe to call lock pixels now, since we know the matrix is
// (more or less) identity.
//
SkPixmap pmap;
if (!bitmap.peekPixels(&pmap)) {
return;
}
int ix = SkScalarRoundToInt(matrix.getTranslateX());
int iy = SkScalarRoundToInt(matrix.getTranslateY());
if (clipHandlesSprite(*fRC, ix, iy, pmap)) {
SkSTArenaAlloc<kSkBlitterContextSize> allocator;
// blitter will be owned by the allocator.
SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, *paint, pmap, ix, iy, &allocator,
fRC->clipShader());
if (blitter) {
SkScan::FillIRect(SkIRect::MakeXYWH(ix, iy, pmap.width(), pmap.height()),
*fRC, blitter);
return;
}
// if !blitter, then we fall-through to the slower case
}
}
// now make a temp draw on the stack, and use it
Draw draw(*this);
draw.fCTM = &matrix;
// For a long time, the CPU backend treated A8 bitmaps as coverage, rather than alpha. This was
// inconsistent with the GPU backend (skbug.com/40041022). When this was fixed, it altered behavior
// for some Android apps (b/231400686). Thus: keep the old behavior in the framework.
#if defined(SK_SUPPORT_LEGACY_ALPHA_BITMAP_AS_COVERAGE)
if (bitmap.colorType() == kAlpha_8_SkColorType && !paint->getColorFilter()) {
draw.drawBitmapAsMask(bitmap, sampling, *paint, nullptr);
return;
}
#endif
SkPaint paintWithShader = make_paint_with_image(*paint, bitmap, sampling);
const SkRect srcBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height());
if (dstBounds) {
this->drawRect(srcBounds, paintWithShader, &prematrix, dstBounds);
} else {
draw.drawRect(srcBounds, paintWithShader);
}
}
void Draw::drawSprite(const SkBitmap& bitmap, int x, int y, const SkPaint& origPaint) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty() ||
bitmap.width() == 0 || bitmap.height() == 0 ||
bitmap.colorType() == kUnknown_SkColorType) {
return;
}
const SkIRect bounds = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height());
if (fRC->quickReject(bounds)) {
return; // nothing to draw
}
SkPaint paint(origPaint);
paint.setStyle(SkPaint::kFill_Style);
SkPixmap pmap;
if (!bitmap.peekPixels(&pmap)) {
return;
}
if (nullptr == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, pmap)) {
// blitter will be owned by the allocator.
SkSTArenaAlloc<kSkBlitterContextSize> allocator;
SkBlitter* blitter = SkBlitter::ChooseSprite(fDst, paint, pmap, x, y, &allocator,
fRC->clipShader());
if (blitter) {
SkScan::FillIRect(bounds, *fRC, blitter);
return;
}
}
SkMatrix matrix;
SkRect r;
// get a scalar version of our rect
r.set(bounds);
// create shader with offset
matrix.setTranslate(r.fLeft, r.fTop);
SkPaint paintWithShader = make_paint_with_image(paint, bitmap, SkSamplingOptions(), &matrix);
Draw draw(*this);
draw.fCTM = &SkMatrix::I();
// call ourself with a rect
draw.drawRect(r, paintWithShader);
}
void Draw::drawDevMask(const SkMask& srcM,
const SkPaint& paint,
const SkMatrix* paintMatrix) const {
if (srcM.fBounds.isEmpty()) {
return;
}
const SkMask* mask = &srcM;
SkMaskBuilder dstM;
if (paint.getMaskFilter() &&
as_MFB(paint.getMaskFilter())->filterMask(&dstM, srcM, *fCTM, nullptr)) {
mask = &dstM;
}
SkAutoMaskFreeImage ami(dstM.image());
SkAutoBlitterChoose blitterChooser(*this, paintMatrix, paint, SkRect::Make(dstM.bounds()));
SkBlitter* blitter = blitterChooser.get();
SkAAClipBlitterWrapper wrapper;
const SkRegion* clipRgn;
if (fRC->isBW()) {
clipRgn = &fRC->bwRgn();
} else {
wrapper.init(*fRC, blitter);
clipRgn = &wrapper.getRgn();
blitter = wrapper.getBlitter();
}
blitter->blitMaskRegion(*mask, *clipRgn);
}
void Draw::drawBitmapAsMask(const SkBitmap& bitmap,
const SkSamplingOptions& sampling,
const SkPaint& paint,
const SkMatrix* paintMatrix) const {
SkASSERT(bitmap.colorType() == kAlpha_8_SkColorType);
// nothing to draw
if (fRC->isEmpty()) {
return;
}
if (SkTreatAsSprite(*fCTM, bitmap.dimensions(), sampling, paint.isAntiAlias()))
{
int ix = SkScalarRoundToInt(fCTM->getTranslateX());
int iy = SkScalarRoundToInt(fCTM->getTranslateY());
SkPixmap pmap;
if (!bitmap.peekPixels(&pmap)) {
return;
}
SkMask mask(pmap.addr8(0, 0),
SkIRect::MakeXYWH(ix, iy, pmap.width(), pmap.height()),
SkToU32(pmap.rowBytes()),
SkMask::kA8_Format);
this->drawDevMask(mask, paint, paintMatrix);
} else { // need to xform the bitmap first
SkRect r;
SkMaskBuilder mask;
r.setIWH(bitmap.width(), bitmap.height());
fCTM->mapRect(&r);
r.round(&mask.bounds());
// set the mask's bounds to the transformed bitmap-bounds,
// clipped to the actual device and further limited by the clip bounds
{
SkASSERT(fDst.bounds().contains(fRC->getBounds()));
SkIRect devBounds = fDst.bounds();
devBounds.intersect(fRC->getBounds().makeOutset(1, 1));
// need intersect(l, t, r, b) on irect
if (!mask.bounds().intersect(devBounds)) {
return;
}
}
mask.format() = SkMask::kA8_Format;
mask.rowBytes() = SkAlign4(mask.fBounds.width());
size_t size = mask.computeImageSize();
if (0 == size) {
// the mask is too big to allocated, draw nothing
return;
}
// allocate (and clear) our temp buffer to hold the transformed bitmap
AutoTMalloc<uint8_t> storage(size);
mask.image() = storage.get();
memset(mask.image(), 0, size);
// now draw our bitmap(src) into mask(dst), transformed by the matrix
{
SkBitmap device;
device.installPixels(SkImageInfo::MakeA8(mask.fBounds.width(), mask.fBounds.height()),
mask.image(), mask.fRowBytes);
SkCanvas c(device);
// need the unclipped top/left for the translate
c.translate(-SkIntToScalar(mask.fBounds.fLeft),
-SkIntToScalar(mask.fBounds.fTop));
c.concat(*fCTM);
// We can't call drawBitmap, or we'll infinitely recurse. Instead
// we manually build a shader and draw that into our new mask
SkPaint tmpPaint;
tmpPaint.setAntiAlias(paint.isAntiAlias());
tmpPaint.setDither(paint.isDither());
SkPaint paintWithShader = make_paint_with_image(tmpPaint, bitmap, sampling);
SkRect rr;
rr.setIWH(bitmap.width(), bitmap.height());
c.drawRect(rr, paintWithShader);
}
this->drawDevMask(mask, paint, paintMatrix);
}
}
///////////////////////////////////////////////////////////////////////////////
bool Draw::computeConservativeLocalClipBounds(SkRect* localBounds) const {
if (fRC->isEmpty()) {
return false;
}
if (auto inverse = fCTM->invert()) {
SkIRect devBounds = fRC->getBounds();
// outset to have slop for antialasing and hairlines
devBounds.outset(1, 1);
inverse->mapRect(localBounds, SkRect::Make(devBounds));
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
void Draw::drawPaint(const SkPaint& paint) const {
SkDEBUGCODE(this->validate();)
if (fRC->isEmpty()) {
return;
}
SkIRect devRect;
devRect.setWH(fDst.width(), fDst.height());
SkAutoBlitterChoose blitter(*this, nullptr, paint, SkRect::Make(devRect));
SkScan::FillIRect(devRect, *fRC, blitter.get());
}
///////////////////////////////////////////////////////////////////////////////
static inline SkPoint compute_stroke_size(const SkPaint& paint, const SkMatrix& matrix) {
SkASSERT(matrix.rectStaysRect());
SkASSERT(SkPaint::kFill_Style != paint.getStyle());
SkVector size = matrix.mapVector({paint.getStrokeWidth(), paint.getStrokeWidth()});
return SkPoint::Make(SkScalarAbs(size.fX), SkScalarAbs(size.fY));
}
static bool easy_rect_join(const SkRect& rect,
const SkPaint& paint,
const SkMatrix& matrix,
SkPoint* strokeSize) {
if (rect.isEmpty() || SkPaint::kMiter_Join != paint.getStrokeJoin() ||
paint.getStrokeMiter() < SK_ScalarSqrt2) {
return false;
}
*strokeSize = compute_stroke_size(paint, matrix);
return true;
}
Draw::RectType Draw::ComputeRectType(const SkRect& rect,
const SkPaint& paint,
const SkMatrix& matrix,
SkPoint* strokeSize) {
const SkScalar width = paint.getStrokeWidth();
const bool zeroWidth = (0 == width);
SkPaint::Style style = paint.getStyle();
if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) {
style = SkPaint::kFill_Style;
}
if (paint.getPathEffect() || paint.getMaskFilter() || !matrix.rectStaysRect() ||
SkPaint::kStrokeAndFill_Style == style) {
return RectType::kPath;
}
if (SkPaint::kFill_Style == style) {
return RectType::kFill;
}
if (zeroWidth) {
return RectType::kHair;
}
if (easy_rect_join(rect, paint, matrix, strokeSize)) {
return RectType::kStroke;
}
return RectType::kPath;
}
static SkSpan<const SkPoint> rect_points(const SkRect& r) {
return {reinterpret_cast<const SkPoint*>(&r), 2};
}
static SkSpan<SkPoint> rect_points(SkRect& r) { return {reinterpret_cast<SkPoint*>(&r), 2}; }
static void draw_rect_as_path(const Draw& orig,
const SkRect& prePaintRect,
const SkPaint& paint,
const SkMatrix& ctm) {
Draw draw(orig);
draw.fCTM = &ctm;
draw.drawPath(SkPath::Rect(prePaintRect), paint, nullptr, true);
}
void Draw::drawRect(const SkRect& prePaintRect,
const SkPaint& paint,
const SkMatrix* paintMatrix,
const SkRect* postPaintRect) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty()) {
return;
}
SkTCopyOnFirstWrite<SkMatrix> matrix(fCTM);
if (paintMatrix) {
SkASSERT(postPaintRect);
matrix.writable()->preConcat(*paintMatrix);
} else {
SkASSERT(!postPaintRect);
}
SkPoint strokeSize;
RectType rtype = ComputeRectType(prePaintRect, paint, *fCTM, &strokeSize);
if (RectType::kPath == rtype) {
draw_rect_as_path(*this, prePaintRect, paint, *matrix);
return;
}
SkRect devRect;
const SkRect& paintRect = paintMatrix ? *postPaintRect : prePaintRect;
// skip the paintMatrix when transforming the rect by the CTM
fCTM->mapPoints(rect_points(devRect), rect_points(paintRect));
devRect.sort();
// look for the quick exit, before we build a blitter
SkRect bbox = devRect;
if (paint.getStyle() != SkPaint::kFill_Style) {
// extra space for hairlines
if (paint.getStrokeWidth() == 0) {
bbox.outset(1, 1);
} else {
// For RectType::kStroke, strokeSize is already computed.
const SkPoint& ssize = (RectType::kStroke == rtype)
? strokeSize
: compute_stroke_size(paint, *fCTM);
bbox.outset(SkScalarHalf(ssize.x()), SkScalarHalf(ssize.y()));
}
}
if (SkPathPriv::TooBigForMath(bbox)) {
return;
}
if (!SkRectPriv::FitsInFixed(bbox) && rtype != RectType::kHair) {
draw_rect_as_path(*this, prePaintRect, paint, *matrix);
return;
}
SkIRect ir = bbox.roundOut();
if (fRC->quickReject(ir)) {
return;
}
SkAutoBlitterChoose blitterStorage(*this, matrix, paint, devRect);
const SkRasterClip& clip = *fRC;
SkBlitter* blitter = blitterStorage.get();
// we want to "fill" if we are kFill or kStrokeAndFill, since in the latter
// case we are also hairline (if we've gotten to here), which devolves to
// effectively just kFill
switch (rtype) {
case RectType::kFill:
if (paint.isAntiAlias()) {
SkScan::AntiFillRect(devRect, clip, blitter);
} else {
SkScan::FillRect(devRect, clip, blitter);
}
break;
case RectType::kStroke:
if (paint.isAntiAlias()) {
SkScan::AntiFrameRect(devRect, strokeSize, clip, blitter);
} else {
SkScan::FrameRect(devRect, strokeSize, clip, blitter);
}
break;
case RectType::kHair:
if (paint.isAntiAlias()) {
SkScan::AntiHairRect(devRect, clip, blitter);
} else {
SkScan::HairRect(devRect, clip, blitter);
}
break;
default:
SkDEBUGFAIL("bad rtype");
}
}
static SkScalar fast_len(const SkVector& vec) {
SkScalar x = SkScalarAbs(vec.fX);
SkScalar y = SkScalarAbs(vec.fY);
if (x < y) {
using std::swap;
swap(x, y);
}
return x + SkScalarHalf(y);
}
bool DrawTreatAAStrokeAsHairline(SkScalar strokeWidth, const SkMatrix& matrix, SkScalar* coverage) {
SkASSERT(strokeWidth > 0);
// We need to try to fake a thick-stroke with a modulated hairline.
if (matrix.hasPerspective()) {
return false;
}
SkVector src[2], dst[2];
src[0].set(strokeWidth, 0);
src[1].set(0, strokeWidth);
matrix.mapVectors(dst, src);
SkScalar len0 = fast_len(dst[0]);
SkScalar len1 = fast_len(dst[1]);
if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) {
if (coverage) {
*coverage = SkScalarAve(len0, len1);
}
return true;
}
return false;
}
void Draw::drawOval(const SkRect& oval, const SkPaint& paint) const {
SkDEBUGCODE(this->validate();)
if (fRC->isEmpty()) {
return;
}
this->drawPath(SkPath::Oval(oval), paint, nullptr, true);
}
void Draw::drawRRect(const SkRRect& rrect, const SkPaint& paint) const {
SkDEBUGCODE(this->validate();)
if (fRC->isEmpty()) {
return;
}
{
// TODO: Investigate optimizing these options. They are in the same
// order as skcpu::Draw::drawPath, which handles each case. It may be
// that there is no way to optimize for these using the SkRRect path.
SkScalar coverage;
if (skcpu::DrawTreatAsHairline(paint, *fCTM, &coverage)) {
goto DRAW_PATH;
}
if (paint.getPathEffect() || paint.getStyle() != SkPaint::kFill_Style) {
goto DRAW_PATH;
}
}
if (paint.getMaskFilter()) {
if (this->drawRRectNinePatch(rrect, paint)) {
return;
}
}
DRAW_PATH:
// Now fall back to the default case of using a path.
this->drawPath(SkPath::RRect(rrect), paint, nullptr, true);
}
bool Draw::drawRRectNinePatch(const SkRRect& rrect, const SkPaint& paint) const {
SkASSERT(paint.getMaskFilter());
if (auto rr = rrect.transform(*fCTM)) {
SkAutoBlitterChoose blitter(*this, nullptr, paint, rrect.getBounds());
SkResourceCache* cache = nullptr; // TODO(kjlubick) get this from fCtx
const SkMaskFilterBase* maskFilter = as_MFB(paint.getMaskFilter());
if (rrect.getType() == SkRRect::kRect_Type) {
SkRect devRect = rr->rect();
if (maskFilter->filterRects(SkSpan(&devRect, 1), *fCTM, *fRC, blitter.get(), cache) ==
SkMaskFilterBase::FilterReturn::kTrue) {
return true;
}
} else {
if (maskFilter->filterRRect(*rr, *fCTM, *fRC, blitter.get(), cache)) {
return true; // filterRRect() called the blitter, so we're done
}
}
}
return false;
}
void Draw::drawDevPath(const SkPathRaw& raw,
const SkPaint& paint,
SkDrawCoverage drawCoverage,
SkBlitter* customBlitter,
bool doFill) const {
if (SkPathPriv::TooBigForMath(raw.bounds())) {
return;
}
SkBlitter* blitter = nullptr;
SkAutoBlitterChoose blitterStorage;
if (nullptr == customBlitter) {
blitter = blitterStorage.choose(*this, nullptr, paint, raw.bounds(), drawCoverage);
} else {
blitter = customBlitter;
}
if (paint.getMaskFilter()) {
SkStrokeRec::InitStyle style = doFill ? SkStrokeRec::kFill_InitStyle
: SkStrokeRec::kHairline_InitStyle;
SkResourceCache* cache = nullptr; // TODO(kjlubick) get this from fCtx
if (as_MFB(paint.getMaskFilter())->filterPath(raw, *fCTM, *fRC, blitter, style, cache)) {
return; // filterPath() called the blitter, so we're done
}
}
void (*proc)(const SkPathRaw&, const SkRasterClip&, SkBlitter*);
if (doFill) {
if (paint.isAntiAlias()) {
proc = SkScan::AntiFillPath;
} else {
proc = SkScan::FillPath;
}
} else { // hairline
if (paint.isAntiAlias()) {
switch (paint.getStrokeCap()) {
case SkPaint::kButt_Cap:
proc = SkScan::AntiHairPath;
break;
case SkPaint::kSquare_Cap:
proc = SkScan::AntiHairSquarePath;
break;
case SkPaint::kRound_Cap:
proc = SkScan::AntiHairRoundPath;
break;
}
} else {
switch (paint.getStrokeCap()) {
case SkPaint::kButt_Cap:
proc = SkScan::HairPath;
break;
case SkPaint::kSquare_Cap:
proc = SkScan::HairSquarePath;
break;
case SkPaint::kRound_Cap:
proc = SkScan::HairRoundPath;
break;
}
}
}
proc(raw, *fRC, blitter);
}
/*
* Tricky idea: can we treat thin strokes as hairlines? If so, depending on how
* thin, we may decide to modulate the paint's alpha to 'simulate' very think
* strokes, even though hairline is always 1-pixel wide.
*
* The motivation at the time was performance: hairlines draw faster than constructing
* the inner/outer contours and filling that (as we do for normal stroking).
*
* Questionable decision, since our hairline algorithm draws each segment of the path
* separately, meaning a path that crosses itself can have blending artifacts.
* Note: this doesn't happen with normal stroking, as the built inner/outer path
* never double-hits a pixel.
*/
static std::optional<SkPaint> modifyPaintForHairlines(const SkPaint& origPaint,
const SkMatrix& matrix) {
float coverage;
if (DrawTreatAsHairline(origPaint, matrix, &coverage)) {
const auto bm = origPaint.asBlendMode();
if (coverage == 1) {
SkPaint paint(origPaint);
paint.setStrokeWidth(0);
return paint;
} else if (bm && SkBlendMode_SupportsCoverageAsAlpha(bm.value())) {
U8CPU newAlpha;
#if 0
newAlpha = SkToU8(SkScalarRoundToInt(coverage * origPaint.getAlpha()));
#else
// this is the old technique, which we preserve for now so
// we don't change previous results (testing)
// the new way seems fine, its just (a tiny bit) different
int scale = (int)(coverage * 256);
newAlpha = origPaint.getAlpha() * scale >> 8;
#endif
SkPaint paint(origPaint);
paint.setStrokeWidth(0);
paint.setAlpha(newAlpha);
return paint;
}
}
return {};
}
void Draw::drawPath(const SkPath& origSrcPath,
const SkPaint& origPaint,
const SkMatrix* prePathMatrix,
bool pathIsMutable,
SkDrawCoverage drawCoverage,
SkBlitter* customBlitter) const {
SkDEBUGCODE(this->validate();)
// nothing to draw
if (fRC->isEmpty()) {
return;
}
SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath);
bool doFill = true;
SkPath tmpPathStorage;
SkPath* tmpPath = &tmpPathStorage;
SkTCopyOnFirstWrite<SkMatrix> matrix(fCTM);
tmpPath->setIsVolatile(true);
if (prePathMatrix) {
if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style) {
SkPath* result = pathPtr;
if (!pathIsMutable) {
result = tmpPath;
pathIsMutable = true;
}
pathPtr->transform(*prePathMatrix, result);
pathPtr = result;
} else {
matrix.writable()->preConcat(*prePathMatrix);
}
}
std::optional<SkPaint> newPaint = modifyPaintForHairlines(origPaint, *matrix);
const SkPaint* paint = newPaint.has_value() ? &newPaint.value()
: &origPaint;
if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) {
SkRect cullRect;
const SkRect* cullRectPtr = nullptr;
if (this->computeConservativeLocalClipBounds(&cullRect)) {
cullRectPtr = &cullRect;
}
SkPathBuilder builder;
doFill = skpathutils::FillPathWithPaint(*pathPtr, *paint, &builder, cullRectPtr, *fCTM);
*tmpPath = builder.detach();
pathPtr = tmpPath;
}
// avoid possibly allocating a new path in transform if we can
SkPath* devPathPtr = pathIsMutable ? pathPtr : tmpPath;
// transform the path into device space
pathPtr->transform(*matrix, devPathPtr);
if (!devPathPtr->isFinite()) {
return;
}
#if defined(SK_BUILD_FOR_FUZZER)
if (devPathPtr->countPoints() > 1000) {
return;
}
#endif
SkPathRaw raw = SkPathPriv::Raw(*devPathPtr);
this->drawDevPath(raw, *paint, drawCoverage, customBlitter, doFill);
}
////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void Draw::validate() const {
SkASSERT(fCTM != nullptr);
SkASSERT(fRC != nullptr);
const SkIRect& cr = fRC->getBounds();
SkIRect br;
br.setWH(fDst.width(), fDst.height());
SkASSERT(cr.isEmpty() || br.contains(cr));
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////
static bool compute_mask_bounds(const SkRect& devPathBounds,
const SkIRect& clipBounds,
const SkMaskFilter* filter,
const SkMatrix* filterMatrix,
SkIRect* bounds) {
SkASSERT(filter);
SkASSERT(filterMatrix);
// init our bounds from the path
*bounds = devPathBounds.makeOutset(SK_ScalarHalf, SK_ScalarHalf).roundOut();
SkIVector margin = SkIPoint::Make(0, 0);
SkMask srcM(nullptr, *bounds, 0, SkMask::kA8_Format);
SkMaskBuilder dstM;
if (!as_MFB(filter)->filterMask(&dstM, srcM, *filterMatrix, &margin)) {
return false;
}
// trim the bounds to reflect the clip (plus whatever slop the filter needs)
// Ugh. Guard against gigantic margins from wacky filters. Without this
// check we can request arbitrary amounts of slop beyond our visible
// clip, and bring down the renderer (at least on finite RAM machines
// like handsets, etc.). Need to balance this invented value between
// quality of large filters like blurs, and the corresponding memory
// requests.
static constexpr int kMaxMargin = 128;
if (!bounds->intersect(clipBounds.makeOutset(std::min(margin.fX, kMaxMargin),
std::min(margin.fY, kMaxMargin)))) {
return false;
}
return true;
}
static void draw_into_mask(const SkMask& mask,
SkPathRaw raw,
SkStrokeRec::InitStyle style) {
SkPixmap dst;
if (!dst.reset(mask)) {
return;
}
const float dx = -mask.fBounds.fLeft,
dy = -mask.fBounds.fTop;
const SkMatrix translate = SkMatrix::Translate(dx, dy);
SkPaint paint;
paint.setAntiAlias(true);
SkBlitterSizedArena alloc;
SkBlitter* blitter = SkChooseA8Blitter(dst, translate, paint, &alloc,
SkDrawCoverage::kNo, nullptr);
// transform a copy of the points, so we can apply the ctm/translate
skia_private::AutoSTArray<32, SkPoint> devPoints(raw.fPoints.size());
translate.mapPoints(devPoints, raw.fPoints);
raw.fPoints = devPoints;
raw.fBounds = raw.fBounds.makeOffset(dx, dy);
if (!raw.fBounds.isFinite()) {
return;
}
const SkRasterClip clip(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height()));
switch (style) {
case SkStrokeRec::kHairline_InitStyle:
SkScan::AntiHairPath(raw, clip, blitter);
break;
case SkStrokeRec::kFill_InitStyle:
SkScan::AntiFillPath(raw, clip, blitter);
break;
}
}
bool DrawToMask(const SkPathRaw& devRaw,
const SkIRect& clipBounds,
const SkMaskFilter* filter,
const SkMatrix* filterMatrix,
SkMaskBuilder* dst,
SkMaskBuilder::CreateMode mode,
SkStrokeRec::InitStyle style) {
SkASSERT(filter);
if (devRaw.empty()) {
return false;
}
if (SkMaskBuilder::kJustRenderImage_CreateMode != mode) {
// By using infinite bounds for inverse fills, compute_mask_bounds is able to clip it to
// 'clipBounds' outset by whatever extra margin the mask filter requires.
static const SkRect kInverseBounds = {SK_ScalarNegativeInfinity,
SK_ScalarNegativeInfinity,
SK_ScalarInfinity,
SK_ScalarInfinity};
SkRect pathBounds = devRaw.isInverseFillType() ? kInverseBounds : devRaw.bounds();
if (!compute_mask_bounds(pathBounds, clipBounds, filter, filterMatrix, &dst->bounds())) {
return false;
}
}
if (SkMaskBuilder::kComputeBoundsAndRenderImage_CreateMode == mode) {
dst->format() = SkMask::kA8_Format;
dst->rowBytes() = dst->fBounds.width();
size_t size = dst->computeImageSize();
if (0 == size) {
// we're too big to allocate the mask, abort
return false;
}
dst->image() = SkMaskBuilder::AllocImage(size, SkMaskBuilder::kZeroInit_Alloc);
}
if (SkMaskBuilder::kJustComputeBounds_CreateMode != mode) {
draw_into_mask(*dst, devRaw, style);
}
return true;
}
void Draw::drawDevicePoints(SkCanvas::PointMode mode,
SkSpan<const SkPoint> points,
const SkPaint& paint,
SkDevice* device) const {
// if we're in lines mode, force count to be even
if (SkCanvas::kLines_PointMode == mode) {
points = points.first(points.size() & ~1); // force it to be even
}
SkDEBUGCODE(this->validate();)
// nothing to draw
if (points.empty() || fRC->isEmpty()) {
return;
}
// needed?
if (!SkIsFinite(&points[0].fX, points.size() * 2)) {
return;
}
switch (mode) {
case SkCanvas::kPoints_PointMode: {
// temporarily mark the paint as filling.
SkPaint newPaint(paint);
newPaint.setStyle(SkPaint::kFill_Style);
SkScalar width = newPaint.getStrokeWidth();
SkScalar radius = SkScalarHalf(width);
if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) {
if (device) {
for (const auto& pt : points) {
SkRect r = SkRect::MakeLTRB(pt.fX - radius, pt.fY - radius,
pt.fX + radius, pt.fY + radius);
device->drawOval(r, newPaint);
}
} else {
SkPath path = SkPath::Circle(0, 0, radius);
SkMatrix preMatrix;
for (const auto& pt : points) {
preMatrix.setTranslate(pt.fX, pt.fY);
// pass true for the last point, since we can modify
// then path then
const bool isLast = &pt == &points.back();
this->drawPath(path, newPaint, &preMatrix, isLast);
}
}
} else {
SkRect r;
for (const auto& pt : points) {
r.fLeft = pt.fX - radius;
r.fTop = pt.fY - radius;
r.fRight = r.fLeft + width;
r.fBottom = r.fTop + width;
if (device) {
device->drawRect(r, newPaint);
} else {
this->drawRect(r, newPaint);
}
}
}
break;
}
case SkCanvas::kLines_PointMode:
if (2 == points.size() && paint.getPathEffect()) {
// most likely a dashed line - see if it is one of the ones
// we can accelerate
SkStrokeRec stroke(paint);
SkPathEffectBase::PointData pointData;
SkPath path = SkPath::Line(points[0], points[1]);
SkRect cullRect = SkRect::Make(fRC->getBounds());
if (as_PEB(paint.getPathEffect())
->asPoints(&pointData, path, stroke, *fCTM, &cullRect)) {
// 'asPoints' managed to find some fast path
SkPaint newP(paint);
newP.setPathEffect(nullptr);
newP.setStyle(SkPaint::kFill_Style);
if (!pointData.fFirst.isEmpty()) {
if (device) {
device->drawPath(pointData.fFirst, newP, true);
} else {
this->drawPath(pointData.fFirst, newP, nullptr, true);
}
}
if (!pointData.fLast.isEmpty()) {
if (device) {
device->drawPath(pointData.fLast, newP, true);
} else {
this->drawPath(pointData.fLast, newP, nullptr, true);
}
}
if (pointData.fSize.fX == pointData.fSize.fY) {
// The rest of the dashed line can just be drawn as points
SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth()));
if (SkPathEffectBase::PointData::kCircles_PointFlag & pointData.fFlags) {
newP.setStrokeCap(SkPaint::kRound_Cap);
} else {
newP.setStrokeCap(SkPaint::kButt_Cap);
}
if (device) {
device->drawPoints(
SkCanvas::kPoints_PointMode, pointData.points(), newP);
} else {
this->drawDevicePoints(
SkCanvas::kPoints_PointMode, pointData.points(), newP, device);
}
break;
} else {
// The rest of the dashed line must be drawn as rects
SkASSERT(!(SkPathEffectBase::PointData::kCircles_PointFlag &
pointData.fFlags));
SkRect r;
for (const auto& pt : pointData.points()) {
r.setLTRB(pt.fX - pointData.fSize.fX,
pt.fY - pointData.fSize.fY,
pt.fX + pointData.fSize.fX,
pt.fY + pointData.fSize.fY);
if (device) {
device->drawRect(r, newP);
} else {
this->drawRect(r, newP);
}
}
}
break;
}
}
[[fallthrough]]; // couldn't take fast path
case SkCanvas::kPolygon_PointMode: {
auto count = points.size() - 1;
SkPaint p(paint);
p.setStyle(SkPaint::kStroke_Style);
size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1;
for (size_t i = 0; i < count; i += inc) {
auto path = SkPath::Line(points[i], points[i + 1]);
if (device) {
device->drawPath(path, p, true);
} else {
this->drawPath(path, p, nullptr, true);
}
}
break;
}
}
}
} // namespace skcpu