blob: 6eaf67971584a6d52604767fe29a268e91435ee6 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPixmap.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkColorData.h"
#include "SkConvertPixels.h"
#include "SkData.h"
#include "SkHalf.h"
#include "SkImageInfoPriv.h"
#include "SkImageShader.h"
#include "SkMask.h"
#include "SkNx.h"
#include "SkPM4f.h"
#include "SkPixmapPriv.h"
#include "SkReadPixelsRec.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTo.h"
#include "SkUnPreMultiply.h"
#include "SkUtils.h"
#include <utility>
/////////////////////////////////////////////////////////////////////////////////////////////////
void SkPixmap::reset() {
fPixels = nullptr;
fRowBytes = 0;
fInfo = SkImageInfo::MakeUnknown();
}
void SkPixmap::reset(const SkImageInfo& info, const void* addr, size_t rowBytes) {
if (addr) {
SkASSERT(info.validRowBytes(rowBytes));
}
fPixels = addr;
fRowBytes = rowBytes;
fInfo = info;
}
bool SkPixmap::reset(const SkMask& src) {
if (SkMask::kA8_Format == src.fFormat) {
this->reset(SkImageInfo::MakeA8(src.fBounds.width(), src.fBounds.height()),
src.fImage, src.fRowBytes);
return true;
}
this->reset();
return false;
}
void SkPixmap::setColorSpace(sk_sp<SkColorSpace> cs) {
fInfo = fInfo.makeColorSpace(std::move(cs));
}
bool SkPixmap::extractSubset(SkPixmap* result, const SkIRect& subset) const {
SkIRect srcRect, r;
srcRect.set(0, 0, this->width(), this->height());
if (!r.intersect(srcRect, subset)) {
return false; // r is empty (i.e. no intersection)
}
// If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have
// exited above.
SkASSERT(static_cast<unsigned>(r.fLeft) < static_cast<unsigned>(this->width()));
SkASSERT(static_cast<unsigned>(r.fTop) < static_cast<unsigned>(this->height()));
const void* pixels = nullptr;
if (fPixels) {
const size_t bpp = fInfo.bytesPerPixel();
pixels = (const uint8_t*)fPixels + r.fTop * fRowBytes + r.fLeft * bpp;
}
result->reset(fInfo.makeWH(r.width(), r.height()), pixels, fRowBytes);
return true;
}
bool SkPixmap::readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB, int x, int y,
SkTransferFunctionBehavior behavior) const {
if (!SkImageInfoValidConversion(dstInfo, fInfo)) {
return false;
}
SkReadPixelsRec rec(dstInfo, dstPixels, dstRB, x, y);
if (!rec.trim(fInfo.width(), fInfo.height())) {
return false;
}
const void* srcPixels = this->addr(rec.fX, rec.fY);
const SkImageInfo srcInfo = fInfo.makeWH(rec.fInfo.width(), rec.fInfo.height());
SkConvertPixels(rec.fInfo, rec.fPixels, rec.fRowBytes, srcInfo, srcPixels, this->rowBytes(),
behavior);
return true;
}
static uint16_t pack_8888_to_4444(unsigned a, unsigned r, unsigned g, unsigned b) {
unsigned pixel = (SkA32To4444(a) << SK_A4444_SHIFT) |
(SkR32To4444(r) << SK_R4444_SHIFT) |
(SkG32To4444(g) << SK_G4444_SHIFT) |
(SkB32To4444(b) << SK_B4444_SHIFT);
return SkToU16(pixel);
}
bool SkPixmap::erase(SkColor color, const SkIRect& inArea) const {
if (nullptr == fPixels) {
return false;
}
SkIRect area;
if (!area.intersect(this->bounds(), inArea)) {
return false;
}
U8CPU a = SkColorGetA(color);
U8CPU r = SkColorGetR(color);
U8CPU g = SkColorGetG(color);
U8CPU b = SkColorGetB(color);
int height = area.height();
const int width = area.width();
const int rowBytes = this->rowBytes();
if (color == 0
&& width == this->rowBytesAsPixels()
&& inArea == this->bounds()) {
// All formats represent SkColor(0) as byte 0.
memset(this->writable_addr(), 0, (int64_t)height * rowBytes);
return true;
}
switch (this->colorType()) {
case kGray_8_SkColorType: {
if (255 != a) {
r = SkMulDiv255Round(r, a);
g = SkMulDiv255Round(g, a);
b = SkMulDiv255Round(b, a);
}
int gray = SkComputeLuminance(r, g, b);
uint8_t* p = this->writable_addr8(area.fLeft, area.fTop);
while (--height >= 0) {
memset(p, gray, width);
p += rowBytes;
}
break;
}
case kAlpha_8_SkColorType: {
uint8_t* p = this->writable_addr8(area.fLeft, area.fTop);
while (--height >= 0) {
memset(p, a, width);
p += rowBytes;
}
break;
}
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType: {
uint16_t* p = this->writable_addr16(area.fLeft, area.fTop);
uint16_t v;
// make rgb premultiplied
if (255 != a) {
r = SkMulDiv255Round(r, a);
g = SkMulDiv255Round(g, a);
b = SkMulDiv255Round(b, a);
}
if (kARGB_4444_SkColorType == this->colorType()) {
v = pack_8888_to_4444(a, r, g, b);
} else {
v = SkPackRGB16(r >> (8 - SK_R16_BITS),
g >> (8 - SK_G16_BITS),
b >> (8 - SK_B16_BITS));
}
while (--height >= 0) {
sk_memset16(p, v, width);
p = (uint16_t*)((char*)p + rowBytes);
}
break;
}
case kRGB_888x_SkColorType:
a = 255; // then fallthrough to 8888
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType: {
uint32_t* p = this->writable_addr32(area.fLeft, area.fTop);
if (255 != a && kPremul_SkAlphaType == this->alphaType()) {
r = SkMulDiv255Round(r, a);
g = SkMulDiv255Round(g, a);
b = SkMulDiv255Round(b, a);
}
uint32_t v = kBGRA_8888_SkColorType == this->colorType()
? SkPackARGB_as_BGRA(a, r, g, b) // bgra 8888
: SkPackARGB_as_RGBA(a, r, g, b); // rgba 8888 or rgb 888
while (--height >= 0) {
sk_memset32(p, v, width);
p = (uint32_t*)((char*)p + rowBytes);
}
break;
}
case kRGB_101010x_SkColorType:
a = 255; // then fallthrough to 1010102
case kRGBA_1010102_SkColorType: {
uint32_t* p = this->writable_addr32(area.fLeft, area.fTop);
float R = r * (1/255.0f),
G = g * (1/255.0f),
B = b * (1/255.0f),
A = a * (1/255.0f);
if (a != 255 && this->alphaType() == kPremul_SkAlphaType) {
R *= A;
G *= A;
B *= A;
}
uint32_t v = (uint32_t)(R * 1023.0f) << 0
| (uint32_t)(G * 1023.0f) << 10
| (uint32_t)(B * 1023.0f) << 20
| (uint32_t)(A * 3.0f) << 30;
while (--height >= 0) {
sk_memset32(p, v, width);
p = (uint32_t*)((char*)p + rowBytes);
}
break;
}
case kRGBA_F16_SkColorType:
// The colorspace is unspecified, so assume linear just like getColor().
this->erase(SkColor4f{(1 / 255.0f) * r,
(1 / 255.0f) * g,
(1 / 255.0f) * b,
(1 / 255.0f) * a}, &area);
break;
default:
return false; // no change, so don't call notifyPixelsChanged()
}
return true;
}
bool SkPixmap::erase(const SkColor4f& origColor, const SkIRect* subset) const {
SkPixmap pm;
if (subset) {
if (!this->extractSubset(&pm, *subset)) {
return false;
}
} else {
pm = *this;
}
const SkColor4f color = origColor.pin();
if (kRGBA_F16_SkColorType != pm.colorType()) {
return pm.erase(color.toSkColor());
}
const uint64_t half4 = color.premul().toF16();
for (int y = 0; y < pm.height(); ++y) {
sk_memset64(pm.writable_addr64(0, y), half4, pm.width());
}
return true;
}
bool SkPixmap::scalePixels(const SkPixmap& actualDst, SkFilterQuality quality) const {
// We may need to tweak how we interpret these just a little below, so we make copies.
SkPixmap src = *this,
dst = actualDst;
// Can't do anthing with empty src or dst
if (src.width() <= 0 || src.height() <= 0 ||
dst.width() <= 0 || dst.height() <= 0) {
return false;
}
// no scaling involved?
if (src.width() == dst.width() && src.height() == dst.height()) {
return src.readPixels(dst);
}
// If src and dst are both unpremul, we'll fake them out to appear as if premul.
bool clampAsIfUnpremul = false;
if (src.alphaType() == kUnpremul_SkAlphaType &&
dst.alphaType() == kUnpremul_SkAlphaType) {
src.reset(src.info().makeAlphaType(kPremul_SkAlphaType), src.addr(), src.rowBytes());
dst.reset(dst.info().makeAlphaType(kPremul_SkAlphaType), dst.addr(), dst.rowBytes());
// In turn, we'll need to tell the image shader to clamp to [0,1] instead
// of the usual [0,a] when using a bicubic scaling (kHigh_SkFilterQuality)
// or a gamut transformation.
clampAsIfUnpremul = true;
}
SkBitmap bitmap;
if (!bitmap.installPixels(src)) {
return false;
}
bitmap.setImmutable(); // Don't copy when we create an image.
bitmap.setIsVolatile(true); // Disable any caching.
SkMatrix scale = SkMatrix::MakeRectToRect(SkRect::Make(src.bounds()),
SkRect::Make(dst.bounds()),
SkMatrix::kFill_ScaleToFit);
// We'll create a shader to do this draw so we have control over the bicubic clamp.
sk_sp<SkShader> shader = SkImageShader::Make(SkImage::MakeFromBitmap(bitmap),
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode,
&scale,
clampAsIfUnpremul);
sk_sp<SkSurface> surface = SkSurface::MakeRasterDirect(dst.info(),
dst.writable_addr(),
dst.rowBytes());
if (!shader || !surface) {
return false;
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
paint.setFilterQuality(quality);
paint.setShader(std::move(shader));
surface->getCanvas()->drawPaint(paint);
return true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
SkColor SkPixmap::getColor(int x, int y) const {
SkASSERT(this->addr());
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
const bool needsUnpremul = (kPremul_SkAlphaType == fInfo.alphaType());
auto toColor = [needsUnpremul](uint32_t maybePremulColor) {
return needsUnpremul ? SkUnPreMultiply::PMColorToColor(maybePremulColor)
: SkSwizzle_BGRA_to_PMColor(maybePremulColor);
};
switch (this->colorType()) {
case kGray_8_SkColorType: {
uint8_t value = *this->addr8(x, y);
return SkColorSetRGB(value, value, value);
}
case kAlpha_8_SkColorType: {
return SkColorSetA(0, *this->addr8(x, y));
}
case kRGB_565_SkColorType: {
return SkPixel16ToColor(*this->addr16(x, y));
}
case kARGB_4444_SkColorType: {
uint16_t value = *this->addr16(x, y);
SkPMColor c = SkPixel4444ToPixel32(value);
return toColor(c);
}
case kRGB_888x_SkColorType: {
uint32_t value = *this->addr32(x, y);
return SkSwizzle_RB(value | 0xff000000);
}
case kBGRA_8888_SkColorType: {
uint32_t value = *this->addr32(x, y);
SkPMColor c = SkSwizzle_BGRA_to_PMColor(value);
return toColor(c);
}
case kRGBA_8888_SkColorType: {
uint32_t value = *this->addr32(x, y);
SkPMColor c = SkSwizzle_RGBA_to_PMColor(value);
return toColor(c);
}
case kRGB_101010x_SkColorType: {
uint32_t value = *this->addr32(x, y);
// Convert 10-bit rgb to 8-bit bgr, and mask in 0xff alpha at the top.
return (uint32_t)( ((value >> 0) & 0x3ff) * (255/1023.0f) ) << 16
| (uint32_t)( ((value >> 10) & 0x3ff) * (255/1023.0f) ) << 8
| (uint32_t)( ((value >> 20) & 0x3ff) * (255/1023.0f) ) << 0
| 0xff000000;
}
case kRGBA_1010102_SkColorType: {
uint32_t value = *this->addr32(x, y);
float r = ((value >> 0) & 0x3ff) * (1/1023.0f),
g = ((value >> 10) & 0x3ff) * (1/1023.0f),
b = ((value >> 20) & 0x3ff) * (1/1023.0f),
a = ((value >> 30) & 0x3 ) * (1/ 3.0f);
if (a != 0 && needsUnpremul) {
r *= (1.0f/a);
g *= (1.0f/a);
b *= (1.0f/a);
}
return (uint32_t)( r * 255.0f ) << 16
| (uint32_t)( g * 255.0f ) << 8
| (uint32_t)( b * 255.0f ) << 0
| (uint32_t)( a * 255.0f ) << 24;
}
case kRGBA_F16_SkColorType: {
const uint64_t* addr =
(const uint64_t*)fPixels + y * (fRowBytes >> 3) + x;
Sk4f p4 = SkHalfToFloat_finite_ftz(*addr);
if (p4[3] && needsUnpremul) {
float inva = 1 / p4[3];
p4 = p4 * Sk4f(inva, inva, inva, 1);
}
SkColor c;
SkNx_cast<uint8_t>(p4 * Sk4f(255) + Sk4f(0.5f)).store(&c);
// p4 is RGBA, but we want BGRA, so we need to swap next
return SkSwizzle_RB(c);
}
default:
SkDEBUGFAIL("");
return SkColorSetARGB(0, 0, 0, 0);
}
}
bool SkPixmap::computeIsOpaque() const {
const int height = this->height();
const int width = this->width();
switch (this->colorType()) {
case kAlpha_8_SkColorType: {
unsigned a = 0xFF;
for (int y = 0; y < height; ++y) {
const uint8_t* row = this->addr8(0, y);
for (int x = 0; x < width; ++x) {
a &= row[x];
}
if (0xFF != a) {
return false;
}
}
return true;
} break;
case kRGB_565_SkColorType:
case kGray_8_SkColorType:
return true;
break;
case kARGB_4444_SkColorType: {
unsigned c = 0xFFFF;
for (int y = 0; y < height; ++y) {
const SkPMColor16* row = this->addr16(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xF != SkGetPackedA4444(c)) {
return false;
}
}
return true;
} break;
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
SkPMColor c = (SkPMColor)~0;
for (int y = 0; y < height; ++y) {
const SkPMColor* row = this->addr32(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xFF != SkGetPackedA32(c)) {
return false;
}
}
return true;
}
case kRGBA_F16_SkColorType: {
const SkHalf* row = (const SkHalf*)this->addr();
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
if (row[4 * x + 3] < SK_Half1) {
return false;
}
}
row += this->rowBytes() >> 1;
}
return true;
}
default:
break;
}
return false;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
static bool draw_orientation(const SkPixmap& dst, const SkPixmap& src, unsigned flags) {
auto surf = SkSurface::MakeRasterDirect(dst.info(), dst.writable_addr(), dst.rowBytes());
if (!surf) {
return false;
}
SkBitmap bm;
bm.installPixels(src);
SkMatrix m;
m.setIdentity();
SkScalar W = SkIntToScalar(src.width());
SkScalar H = SkIntToScalar(src.height());
if (flags & SkPixmapPriv::kSwapXY) {
SkMatrix s;
s.setAll(0, 1, 0, 1, 0, 0, 0, 0, 1);
m.postConcat(s);
using std::swap;
swap(W, H);
}
if (flags & SkPixmapPriv::kMirrorX) {
m.postScale(-1, 1);
m.postTranslate(W, 0);
}
if (flags & SkPixmapPriv::kMirrorY) {
m.postScale(1, -1);
m.postTranslate(0, H);
}
SkPaint p;
p.setBlendMode(SkBlendMode::kSrc);
surf->getCanvas()->concat(m);
surf->getCanvas()->drawBitmap(bm, 0, 0, &p);
return true;
}
bool SkPixmapPriv::Orient(const SkPixmap& dst, const SkPixmap& src, OrientFlags flags) {
SkASSERT((flags & ~(kMirrorX | kMirrorY | kSwapXY)) == 0);
if (src.colorType() != dst.colorType()) {
return false;
}
// note: we just ignore alphaType and colorSpace for this transformation
int w = src.width();
int h = src.height();
if (flags & kSwapXY) {
using std::swap;
swap(w, h);
}
if (dst.width() != w || dst.height() != h) {
return false;
}
if (w == 0 || h == 0) {
return true;
}
// check for aliasing to self
if (src.addr() == dst.addr()) {
return flags == 0;
}
return draw_orientation(dst, src, flags);
}
#define kMirrorX SkPixmapPriv::kMirrorX
#define kMirrorY SkPixmapPriv::kMirrorY
#define kSwapXY SkPixmapPriv::kSwapXY
static constexpr uint8_t gOrientationFlags[] = {
0, // kTopLeft_SkEncodedOrigin
kMirrorX, // kTopRight_SkEncodedOrigin
kMirrorX | kMirrorY, // kBottomRight_SkEncodedOrigin
kMirrorY, // kBottomLeft_SkEncodedOrigin
kSwapXY, // kLeftTop_SkEncodedOrigin
kMirrorX | kSwapXY, // kRightTop_SkEncodedOrigin
kMirrorX | kMirrorY | kSwapXY, // kRightBottom_SkEncodedOrigin
kMirrorY | kSwapXY, // kLeftBottom_SkEncodedOrigin
};
SkPixmapPriv::OrientFlags SkPixmapPriv::OriginToOrient(SkEncodedOrigin o) {
unsigned io = static_cast<int>(o) - 1;
SkASSERT(io < SK_ARRAY_COUNT(gOrientationFlags));
return static_cast<SkPixmapPriv::OrientFlags>(gOrientationFlags[io]);
}
bool SkPixmapPriv::ShouldSwapWidthHeight(SkEncodedOrigin o) {
return SkToBool(OriginToOrient(o) & kSwapXY);
}
SkImageInfo SkPixmapPriv::SwapWidthHeight(const SkImageInfo& info) {
return info.makeWH(info.height(), info.width());
}