blob: b9d7f6b418a1464f9fad9837b9c39d34c1377ffa [file] [log] [blame] [edit]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Fuzz.h"
#include "SkString.h"
#include "SkParsePath.h"
#include <stdlib.h>
// Most of this is taken from random_parse_path.cpp and adapted to use the Fuzz
// instead of SKRandom
static const struct Legal {
char fSymbol;
int fScalars;
} gLegal[] = {
{ 'M', 2 },
{ 'H', 1 },
{ 'V', 1 },
{ 'L', 2 },
{ 'Q', 4 },
{ 'T', 2 },
{ 'C', 6 },
{ 'S', 4 },
{ 'A', 4 },
{ 'Z', 0 },
};
static bool gEasy = false; // set to true while debugging to suppress unusual whitespace
// mostly do nothing, then bias towards spaces
static const char gWhiteSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, ' ', ' ', ' ', ' ', 0x09, 0x0D, 0x0A };
static void add_white(Fuzz* fuzz, SkString* atom) {
if (gEasy) {
atom->append(" ");
return;
}
// Use a uint8_t to conserve bytes. This makes our "fuzzed bytes footprint"
// smaller, which leads to more efficient fuzzing.
uint8_t reps;
fuzz->nextRange(&reps, 0, 2);
for (uint8_t rep = 0; rep < reps; ++rep) {
uint8_t index;
fuzz->nextRange(&index, 0, (int) SK_ARRAY_COUNT(gWhiteSpace) - 1);
if (gWhiteSpace[index]) {
atom->append(&gWhiteSpace[index], 1);
}
}
}
static void add_some_white(Fuzz* fuzz, SkString* atom) {
for(int i = 0; i < 10; i++) {
add_white(fuzz, atom);
}
}
static void add_comma(Fuzz* fuzz, SkString* atom) {
if (gEasy) {
atom->append(",");
return;
}
add_white(fuzz, atom);
bool b;
fuzz->next(&b);
if (b) {
atom->append(",");
}
add_some_white(fuzz, atom);
}
SkString MakeRandomParsePathPiece(Fuzz* fuzz) {
SkString atom;
uint8_t index;
fuzz->nextRange(&index, 0, (int) SK_ARRAY_COUNT(gLegal) - 1);
const Legal& legal = gLegal[index];
gEasy ? atom.append("\n") : add_white(fuzz, &atom);
bool b;
fuzz->next(&b);
char symbol = legal.fSymbol | (b ? 0x20 : 0);
atom.append(&symbol, 1);
uint8_t reps;
fuzz->nextRange(&reps, 1, 3);
for (int rep = 0; rep < reps; ++rep) {
for (int index = 0; index < legal.fScalars; ++index) {
SkScalar coord;
fuzz->nextRange(&coord, 0.0f, 100.0f);
add_white(fuzz, &atom);
atom.appendScalar(coord);
if (rep < reps - 1 && index < legal.fScalars - 1) {
add_comma(fuzz, &atom);
} else {
add_some_white(fuzz, &atom);
}
if ('A' == legal.fSymbol && 1 == index) {
SkScalar s;
fuzz->nextRange(&s, -720.0f, 720.0f);
atom.appendScalar(s);
add_comma(fuzz, &atom);
fuzz->next(&b);
atom.appendU32(b);
add_comma(fuzz, &atom);
fuzz->next(&b);
atom.appendU32(b);
add_comma(fuzz, &atom);
}
}
}
return atom;
}
DEF_FUZZ(ParsePath, fuzz) {
SkPath path;
SkString spec;
uint8_t count;
fuzz->nextRange(&count, 0, 40);
for (uint8_t i = 0; i < count; ++i) {
spec.append(MakeRandomParsePathPiece(fuzz));
}
SkDebugf("SkParsePath::FromSVGString(%s, &path);\n",spec.c_str());
if (!SkParsePath::FromSVGString(spec.c_str(), &path)){
SkDebugf("Could not decode path\n");
}
}