| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/ops/GrOvalOpFactory.h" |
| |
| #include "include/core/SkStrokeRec.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkRRectPriv.h" |
| #include "src/gpu/BufferWriter.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDrawOpTest.h" |
| #include "src/gpu/ganesh/GrGeometryProcessor.h" |
| #include "src/gpu/ganesh/GrOpFlushState.h" |
| #include "src/gpu/ganesh/GrProcessor.h" |
| #include "src/gpu/ganesh/GrProcessorUnitTest.h" |
| #include "src/gpu/ganesh/GrProgramInfo.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/GrShaderCaps.h" |
| #include "src/gpu/ganesh/GrStyle.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" |
| #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h" |
| |
| #include <utility> |
| |
| #ifndef SK_ENABLE_OPTIMIZE_SIZE |
| |
| using skgpu::VertexWriter; |
| using skgpu::VertexColor; |
| |
| namespace { |
| |
| static inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } |
| |
| // Produces TriStrip vertex data for an origin-centered rectangle from [-x, -y] to [x, y] |
| static inline VertexWriter::TriStrip<float> origin_centered_tri_strip(float x, float y) { |
| return VertexWriter::TriStrip<float>{ -x, -y, x, y }; |
| } |
| |
| } // namespace |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle. It |
| * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
| * with origin at the circle center. Three vertex attributes are used: |
| * vec2f : position in device space of the bounding geometry vertices |
| * vec4ub: color |
| * vec4f : (p.xy, outerRad, innerRad) |
| * p is the position in the normalized space. |
| * outerRad is the outerRadius in device space. |
| * innerRad is the innerRadius in normalized space (ignored if not stroking). |
| * Additional clip planes are supported for rendering circular arcs. The additional planes are |
| * either intersected or unioned together. Up to three planes are supported (an initial plane, |
| * a plane intersected with the initial plane, and a plane unioned with the first two). Only two |
| * are useful for any given arc, but having all three in one instance allows combining different |
| * types of arcs. |
| * Round caps for stroking are allowed as well. The caps are specified as two circle center points |
| * in the same space as p.xy. |
| */ |
| |
| class CircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool stroke, bool clipPlane, |
| bool isectPlane, bool unionPlane, bool roundCaps, |
| bool wideColor, const SkMatrix& localMatrix) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) CircleGeometryProcessor(stroke, clipPlane, isectPlane, unionPlane, |
| roundCaps, wideColor, localMatrix); |
| }); |
| } |
| |
| const char* name() const override { return "CircleGeometryProcessor"; } |
| |
| void addToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override { |
| b->addBool(fStroke, "stroked" ); |
| b->addBool(fInClipPlane.isInitialized(), "clipPlane" ); |
| b->addBool(fInIsectPlane.isInitialized(), "isectPlane" ); |
| b->addBool(fInUnionPlane.isInitialized(), "unionPlane" ); |
| b->addBool(fInRoundCapCenters.isInitialized(), "roundCapCenters"); |
| b->addBits(ProgramImpl::kMatrixKeyBits, |
| ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix), |
| "localMatrixType"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override { |
| return std::make_unique<Impl>(); |
| } |
| |
| private: |
| CircleGeometryProcessor(bool stroke, bool clipPlane, bool isectPlane, bool unionPlane, |
| bool roundCaps, bool wideColor, const SkMatrix& localMatrix) |
| : INHERITED(kCircleGeometryProcessor_ClassID) |
| , fLocalMatrix(localMatrix) |
| , fStroke(stroke) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInColor = MakeColorAttribute("inColor", wideColor); |
| fInCircleEdge = {"inCircleEdge", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| |
| if (clipPlane) { |
| fInClipPlane = {"inClipPlane", kFloat3_GrVertexAttribType, SkSLType::kHalf3}; |
| } |
| if (isectPlane) { |
| fInIsectPlane = {"inIsectPlane", kFloat3_GrVertexAttribType, SkSLType::kHalf3}; |
| } |
| if (unionPlane) { |
| fInUnionPlane = {"inUnionPlane", kFloat3_GrVertexAttribType, SkSLType::kHalf3}; |
| } |
| if (roundCaps) { |
| SkASSERT(stroke); |
| SkASSERT(clipPlane); |
| fInRoundCapCenters = |
| {"inRoundCapCenters", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| } |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 7); |
| } |
| |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) override { |
| SetTransform(pdman, |
| shaderCaps, |
| fLocalMatrixUniform, |
| geomProc.cast<CircleGeometryProcessor>().fLocalMatrix, |
| &fLocalMatrix); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const CircleGeometryProcessor& cgp = args.fGeomProc.cast<CircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(cgp); |
| fragBuilder->codeAppend("float4 circleEdge;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInCircleEdge.asShaderVar(), "circleEdge"); |
| if (cgp.fInClipPlane.isInitialized()) { |
| fragBuilder->codeAppend("half3 clipPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInClipPlane.asShaderVar(), |
| "clipPlane"); |
| } |
| if (cgp.fInIsectPlane.isInitialized()) { |
| fragBuilder->codeAppend("half3 isectPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInIsectPlane.asShaderVar(), |
| "isectPlane"); |
| } |
| if (cgp.fInUnionPlane.isInitialized()) { |
| SkASSERT(cgp.fInClipPlane.isInitialized()); |
| fragBuilder->codeAppend("half3 unionPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInUnionPlane.asShaderVar(), |
| "unionPlane"); |
| } |
| GrGLSLVarying capRadius(SkSLType::kFloat); |
| if (cgp.fInRoundCapCenters.isInitialized()) { |
| fragBuilder->codeAppend("float4 roundCapCenters;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInRoundCapCenters.asShaderVar(), |
| "roundCapCenters"); |
| varyingHandler->addVarying("capRadius", &capRadius, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| // This is the cap radius in normalized space where the outer radius is 1 and |
| // circledEdge.w is the normalized inner radius. |
| vertBuilder->codeAppendf("%s = (1.0 - %s.w) / 2.0;", capRadius.vsOut(), |
| cgp.fInCircleEdge.name()); |
| } |
| |
| // setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute(cgp.fInColor.asShaderVar(), args.fOutputColor); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, cgp.fInPosition.name()); |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| cgp.fInPosition.asShaderVar(), |
| cgp.fLocalMatrix, |
| &fLocalMatrixUniform); |
| |
| fragBuilder->codeAppend("float d = length(circleEdge.xy);"); |
| fragBuilder->codeAppend("half distanceToOuterEdge = half(circleEdge.z * (1.0 - d));"); |
| fragBuilder->codeAppend("half edgeAlpha = saturate(distanceToOuterEdge);"); |
| if (cgp.fStroke) { |
| fragBuilder->codeAppend( |
| "half distanceToInnerEdge = half(circleEdge.z * (d - circleEdge.w));"); |
| fragBuilder->codeAppend("half innerAlpha = saturate(distanceToInnerEdge);"); |
| fragBuilder->codeAppend("edgeAlpha *= innerAlpha;"); |
| } |
| |
| if (cgp.fInClipPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "half clip = half(saturate(circleEdge.z * dot(circleEdge.xy, " |
| "clipPlane.xy) + clipPlane.z));"); |
| if (cgp.fInIsectPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "clip *= half(saturate(circleEdge.z * dot(circleEdge.xy, " |
| "isectPlane.xy) + isectPlane.z));"); |
| } |
| if (cgp.fInUnionPlane.isInitialized()) { |
| fragBuilder->codeAppend( |
| "clip = saturate(clip + half(saturate(circleEdge.z * dot(circleEdge.xy," |
| " unionPlane.xy) + unionPlane.z)));"); |
| } |
| fragBuilder->codeAppend("edgeAlpha *= clip;"); |
| if (cgp.fInRoundCapCenters.isInitialized()) { |
| // We compute coverage of the round caps as circles at the butt caps produced |
| // by the clip planes. The inverse of the clip planes is applied so that there |
| // is no double counting. |
| fragBuilder->codeAppendf( |
| "half dcap1 = half(circleEdge.z * (%s - length(circleEdge.xy - " |
| "roundCapCenters.xy)));" |
| "half dcap2 = half(circleEdge.z * (%s - length(circleEdge.xy - " |
| "roundCapCenters.zw)));" |
| "half capAlpha = (1 - clip) * (max(dcap1, 0) + max(dcap2, 0));" |
| "edgeAlpha = min(edgeAlpha + capAlpha, 1.0);", |
| capRadius.fsIn(), capRadius.fsIn()); |
| } |
| } |
| fragBuilder->codeAppendf("half4 %s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| UniformHandle fLocalMatrixUniform; |
| }; |
| |
| SkMatrix fLocalMatrix; |
| |
| Attribute fInPosition; |
| Attribute fInColor; |
| Attribute fInCircleEdge; |
| // Optional attributes. |
| Attribute fInClipPlane; |
| Attribute fInIsectPlane; |
| Attribute fInUnionPlane; |
| Attribute fInRoundCapCenters; |
| |
| bool fStroke; |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| bool stroke = d->fRandom->nextBool(); |
| bool roundCaps = stroke ? d->fRandom->nextBool() : false; |
| bool wideColor = d->fRandom->nextBool(); |
| bool clipPlane = d->fRandom->nextBool(); |
| bool isectPlane = d->fRandom->nextBool(); |
| bool unionPlane = d->fRandom->nextBool(); |
| const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
| return CircleGeometryProcessor::Make(d->allocator(), stroke, clipPlane, isectPlane, |
| unionPlane, roundCaps, wideColor, matrix); |
| } |
| #endif |
| |
| class ButtCapDashedCircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool wideColor, |
| const SkMatrix& localMatrix) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) ButtCapDashedCircleGeometryProcessor(wideColor, localMatrix); |
| }); |
| } |
| |
| ~ButtCapDashedCircleGeometryProcessor() override {} |
| |
| const char* name() const override { return "ButtCapDashedCircleGeometryProcessor"; } |
| |
| void addToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override { |
| b->addBits(ProgramImpl::kMatrixKeyBits, |
| ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix), |
| "localMatrixType"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override { |
| return std::make_unique<Impl>(); |
| } |
| |
| private: |
| ButtCapDashedCircleGeometryProcessor(bool wideColor, const SkMatrix& localMatrix) |
| : INHERITED(kButtCapStrokedCircleGeometryProcessor_ClassID) |
| , fLocalMatrix(localMatrix) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInColor = MakeColorAttribute("inColor", wideColor); |
| fInCircleEdge = {"inCircleEdge", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| fInDashParams = {"inDashParams", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 4); |
| } |
| |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) override { |
| SetTransform(pdman, |
| shaderCaps, |
| fLocalMatrixUniform, |
| geomProc.cast<ButtCapDashedCircleGeometryProcessor>().fLocalMatrix, |
| &fLocalMatrix); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const ButtCapDashedCircleGeometryProcessor& bcscgp = |
| args.fGeomProc.cast<ButtCapDashedCircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(bcscgp); |
| fragBuilder->codeAppend("float4 circleEdge;"); |
| varyingHandler->addPassThroughAttribute(bcscgp.fInCircleEdge.asShaderVar(), |
| "circleEdge"); |
| |
| fragBuilder->codeAppend("float4 dashParams;"); |
| varyingHandler->addPassThroughAttribute( |
| bcscgp.fInDashParams.asShaderVar(), |
| "dashParams", |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| GrGLSLVarying wrapDashes(SkSLType::kHalf4); |
| varyingHandler->addVarying("wrapDashes", &wrapDashes, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| GrGLSLVarying lastIntervalLength(SkSLType::kHalf); |
| varyingHandler->addVarying("lastIntervalLength", &lastIntervalLength, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| vertBuilder->codeAppendf("float4 dashParams = %s;", bcscgp.fInDashParams.name()); |
| // Our fragment shader works in on/off intervals as specified by dashParams.xy: |
| // x = length of on interval, y = length of on + off. |
| // There are two other parameters in dashParams.zw: |
| // z = start angle in radians, w = phase offset in radians in range -y/2..y/2. |
| // Each interval has a "corresponding" dash which may be shifted partially or |
| // fully out of its interval by the phase. So there may be up to two "visual" |
| // dashes in an interval. |
| // When computing coverage in an interval we look at three dashes. These are the |
| // "corresponding" dashes from the current, previous, and next intervals. Any of these |
| // may be phase shifted into our interval or even when phase=0 they may be within half a |
| // pixel distance of a pixel center in the interval. |
| // When in the first interval we need to check the dash from the last interval. And |
| // similarly when in the last interval we need to check the dash from the first |
| // interval. When 2pi is not perfectly divisible dashParams.y this is a boundary case. |
| // We compute the dash begin/end angles in the vertex shader and apply them in the |
| // fragment shader when we detect we're in the first/last interval. |
| vertBuilder->codeAppend( |
| // The two boundary dash intervals are stored in wrapDashes.xy and .zw and fed |
| // to the fragment shader as a varying. |
| "float4 wrapDashes;" |
| "half lastIntervalLength = mod(6.28318530718, half(dashParams.y));" |
| // We can happen to be perfectly divisible. |
| "if (0 == lastIntervalLength) {" |
| "lastIntervalLength = half(dashParams.y);" |
| "}" |
| // Let 'l' be the last interval before reaching 2 pi. |
| // Based on the phase determine whether (l-1)th, l-th, or (l+1)th interval's |
| // "corresponding" dash appears in the l-th interval and is closest to the 0-th |
| // interval. |
| "half offset = 0;" |
| "if (-dashParams.w >= lastIntervalLength) {" |
| "offset = half(-dashParams.y);" |
| "} else if (dashParams.w > dashParams.y - lastIntervalLength) {" |
| "offset = half(dashParams.y);" |
| "}" |
| "wrapDashes.x = -lastIntervalLength + offset - dashParams.w;" |
| // The end of this dash may be beyond the 2 pi and therefore clipped. Hence the |
| // min. |
| "wrapDashes.y = min(wrapDashes.x + dashParams.x, 0);" |
| |
| // Based on the phase determine whether the -1st, 0th, or 1st interval's |
| // "corresponding" dash appears in the 0th interval and is closest to l. |
| "offset = 0;" |
| "if (dashParams.w >= dashParams.x) {" |
| "offset = half(dashParams.y);" |
| "} else if (-dashParams.w > dashParams.y - dashParams.x) {" |
| "offset = half(-dashParams.y);" |
| "}" |
| "wrapDashes.z = lastIntervalLength + offset - dashParams.w;" |
| "wrapDashes.w = wrapDashes.z + dashParams.x;" |
| // The start of the dash we're considering may be clipped by the start of the |
| // circle. |
| "wrapDashes.z = max(wrapDashes.z, lastIntervalLength);" |
| ); |
| vertBuilder->codeAppendf("%s = half4(wrapDashes);", wrapDashes.vsOut()); |
| vertBuilder->codeAppendf("%s = lastIntervalLength;", lastIntervalLength.vsOut()); |
| fragBuilder->codeAppendf("half4 wrapDashes = %s;", wrapDashes.fsIn()); |
| fragBuilder->codeAppendf("half lastIntervalLength = %s;", lastIntervalLength.fsIn()); |
| |
| // setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute( |
| bcscgp.fInColor.asShaderVar(), |
| args.fOutputColor, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, bcscgp.fInPosition.name()); |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| bcscgp.fInPosition.asShaderVar(), |
| bcscgp.fLocalMatrix, |
| &fLocalMatrixUniform); |
| |
| GrShaderVar fnArgs[] = { |
| GrShaderVar("angleToEdge", SkSLType::kFloat), |
| GrShaderVar("diameter", SkSLType::kFloat), |
| }; |
| SkString fnName = fragBuilder->getMangledFunctionName("coverage_from_dash_edge"); |
| fragBuilder->emitFunction(SkSLType::kFloat, fnName.c_str(), |
| {fnArgs, std::size(fnArgs)}, |
| "float linearDist;" |
| "angleToEdge = clamp(angleToEdge, -3.1415, 3.1415);" |
| "linearDist = diameter * sin(angleToEdge / 2);" |
| "return saturate(linearDist + 0.5);" |
| ); |
| fragBuilder->codeAppend( |
| "float d = length(circleEdge.xy) * circleEdge.z;" |
| |
| // Compute coverage from outer/inner edges of the stroke. |
| "half distanceToOuterEdge = half(circleEdge.z - d);" |
| "half edgeAlpha = saturate(distanceToOuterEdge);" |
| "half distanceToInnerEdge = half(d - circleEdge.z * circleEdge.w);" |
| "half innerAlpha = saturate(distanceToInnerEdge);" |
| "edgeAlpha *= innerAlpha;" |
| |
| "half angleFromStart = half(atan(circleEdge.y, circleEdge.x) - dashParams.z);" |
| "angleFromStart = mod(angleFromStart, 6.28318530718);" |
| "float x = mod(angleFromStart, dashParams.y);" |
| // Convert the radial distance from center to pixel into a diameter. |
| "d *= 2;" |
| "half2 currDash = half2(half(-dashParams.w), half(dashParams.x) -" |
| "half(dashParams.w));" |
| "half2 nextDash = half2(half(dashParams.y) - half(dashParams.w)," |
| "half(dashParams.y) + half(dashParams.x) -" |
| "half(dashParams.w));" |
| "half2 prevDash = half2(half(-dashParams.y) - half(dashParams.w)," |
| "half(-dashParams.y) + half(dashParams.x) -" |
| "half(dashParams.w));" |
| "half dashAlpha = 0;" |
| ); |
| fragBuilder->codeAppendf( |
| "if (angleFromStart - x + dashParams.y >= 6.28318530718) {" |
| "dashAlpha += half(%s(x - wrapDashes.z, d) * %s(wrapDashes.w - x, d));" |
| "currDash.y = min(currDash.y, lastIntervalLength);" |
| "if (nextDash.x >= lastIntervalLength) {" |
| // The next dash is outside the 0..2pi range, throw it away |
| "nextDash.xy = half2(1000);" |
| "} else {" |
| // Clip the end of the next dash to the end of the circle |
| "nextDash.y = min(nextDash.y, lastIntervalLength);" |
| "}" |
| "}" |
| , fnName.c_str(), fnName.c_str()); |
| fragBuilder->codeAppendf( |
| "if (angleFromStart - x - dashParams.y < -0.01) {" |
| "dashAlpha += half(%s(x - wrapDashes.x, d) * %s(wrapDashes.y - x, d));" |
| "currDash.x = max(currDash.x, 0);" |
| "if (prevDash.y <= 0) {" |
| // The previous dash is outside the 0..2pi range, throw it away |
| "prevDash.xy = half2(1000);" |
| "} else {" |
| // Clip the start previous dash to the start of the circle |
| "prevDash.x = max(prevDash.x, 0);" |
| "}" |
| "}" |
| , fnName.c_str(), fnName.c_str()); |
| fragBuilder->codeAppendf( |
| "dashAlpha += half(%s(x - currDash.x, d) * %s(currDash.y - x, d));" |
| "dashAlpha += half(%s(x - nextDash.x, d) * %s(nextDash.y - x, d));" |
| "dashAlpha += half(%s(x - prevDash.x, d) * %s(prevDash.y - x, d));" |
| "dashAlpha = min(dashAlpha, 1);" |
| "edgeAlpha *= dashAlpha;" |
| , fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), |
| fnName.c_str()); |
| fragBuilder->codeAppendf("half4 %s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| UniformHandle fLocalMatrixUniform; |
| }; |
| |
| SkMatrix fLocalMatrix; |
| Attribute fInPosition; |
| Attribute fInColor; |
| Attribute fInCircleEdge; |
| Attribute fInDashParams; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* ButtCapDashedCircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| bool wideColor = d->fRandom->nextBool(); |
| const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
| return ButtCapDashedCircleGeometryProcessor::Make(d->allocator(), wideColor, matrix); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool stroke, bool wideColor, |
| bool useScale, const SkMatrix& localMatrix) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) EllipseGeometryProcessor(stroke, wideColor, useScale, localMatrix); |
| }); |
| } |
| |
| ~EllipseGeometryProcessor() override {} |
| |
| const char* name() const override { return "EllipseGeometryProcessor"; } |
| |
| void addToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override { |
| b->addBool(fStroke, "stroked"); |
| b->addBits(ProgramImpl::kMatrixKeyBits, |
| ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix), |
| "localMatrixType"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override { |
| return std::make_unique<Impl>(); |
| } |
| |
| private: |
| EllipseGeometryProcessor(bool stroke, bool wideColor, bool useScale, |
| const SkMatrix& localMatrix) |
| : INHERITED(kEllipseGeometryProcessor_ClassID) |
| , fLocalMatrix(localMatrix) |
| , fStroke(stroke) |
| , fUseScale(useScale) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInColor = MakeColorAttribute("inColor", wideColor); |
| if (useScale) { |
| fInEllipseOffset = {"inEllipseOffset", kFloat3_GrVertexAttribType, SkSLType::kFloat3}; |
| } else { |
| fInEllipseOffset = {"inEllipseOffset", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| } |
| fInEllipseRadii = {"inEllipseRadii", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 4); |
| } |
| |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) override { |
| const EllipseGeometryProcessor& egp = geomProc.cast<EllipseGeometryProcessor>(); |
| SetTransform(pdman, shaderCaps, fLocalMatrixUniform, egp.fLocalMatrix, &fLocalMatrix); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const EllipseGeometryProcessor& egp = args.fGeomProc.cast<EllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(egp); |
| |
| SkSLType offsetType = egp.fUseScale ? SkSLType::kFloat3 : SkSLType::kFloat2; |
| GrGLSLVarying ellipseOffsets(offsetType); |
| varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets); |
| vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), |
| egp.fInEllipseOffset.name()); |
| |
| GrGLSLVarying ellipseRadii(SkSLType::kFloat4); |
| varyingHandler->addVarying("EllipseRadii", &ellipseRadii); |
| vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), egp.fInEllipseRadii.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute(egp.fInColor.asShaderVar(), args.fOutputColor); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, egp.fInPosition.name()); |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| egp.fInPosition.asShaderVar(), |
| egp.fLocalMatrix, |
| &fLocalMatrixUniform); |
| |
| // For stroked ellipses, we use the full ellipse equation (x^2/a^2 + y^2/b^2 = 1) |
| // to compute both the edges because we need two separate test equations for |
| // the single offset. |
| // For filled ellipses we can use a unit circle equation (x^2 + y^2 = 1), and warp |
| // the distance by the gradient, non-uniformly scaled by the inverse of the |
| // ellipse size. |
| |
| // On medium precision devices, we scale the denominator of the distance equation |
| // before taking the inverse square root to minimize the chance that we're dividing |
| // by zero, then we scale the result back. |
| |
| // for outer curve |
| fragBuilder->codeAppendf("float2 offset = %s.xy;", ellipseOffsets.fsIn()); |
| if (egp.fStroke) { |
| fragBuilder->codeAppendf("offset *= %s.xy;", ellipseRadii.fsIn()); |
| } |
| fragBuilder->codeAppend("float test = dot(offset, offset) - 1.0;"); |
| if (egp.fUseScale) { |
| fragBuilder->codeAppendf("float2 grad = 2.0*offset*(%s.z*%s.xy);", |
| ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
| } else { |
| fragBuilder->codeAppendf("float2 grad = 2.0*offset*%s.xy;", ellipseRadii.fsIn()); |
| } |
| fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| |
| // avoid calling inversesqrt on zero. |
| if (args.fShaderCaps->fFloatIs32Bits) { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.1755e-38);"); |
| } else { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);"); |
| } |
| if (egp.fUseScale) { |
| fragBuilder->codeAppendf("float invlen = %s.z*inversesqrt(grad_dot);", |
| ellipseOffsets.fsIn()); |
| } else { |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| } |
| fragBuilder->codeAppend("float edgeAlpha = saturate(0.5-test*invlen);"); |
| |
| // for inner curve |
| if (egp.fStroke) { |
| fragBuilder->codeAppendf("offset = %s.xy*%s.zw;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("test = dot(offset, offset) - 1.0;"); |
| if (egp.fUseScale) { |
| fragBuilder->codeAppendf("grad = 2.0*offset*(%s.z*%s.zw);", |
| ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
| } else { |
| fragBuilder->codeAppendf("grad = 2.0*offset*%s.zw;", ellipseRadii.fsIn()); |
| } |
| fragBuilder->codeAppend("grad_dot = dot(grad, grad);"); |
| if (!args.fShaderCaps->fFloatIs32Bits) { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);"); |
| } |
| if (egp.fUseScale) { |
| fragBuilder->codeAppendf("invlen = %s.z*inversesqrt(grad_dot);", |
| ellipseOffsets.fsIn()); |
| } else { |
| fragBuilder->codeAppend("invlen = inversesqrt(grad_dot);"); |
| } |
| fragBuilder->codeAppend("edgeAlpha *= saturate(0.5+test*invlen);"); |
| } |
| |
| fragBuilder->codeAppendf("half4 %s = half4(half(edgeAlpha));", args.fOutputCoverage); |
| } |
| |
| using INHERITED = ProgramImpl; |
| |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| UniformHandle fLocalMatrixUniform; |
| }; |
| |
| Attribute fInPosition; |
| Attribute fInColor; |
| Attribute fInEllipseOffset; |
| Attribute fInEllipseRadii; |
| |
| SkMatrix fLocalMatrix; |
| bool fStroke; |
| bool fUseScale; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| bool stroke = d->fRandom->nextBool(); |
| bool wideColor = d->fRandom->nextBool(); |
| bool useScale = d->fRandom->nextBool(); |
| SkMatrix matrix = GrTest::TestMatrix(d->fRandom); |
| return EllipseGeometryProcessor::Make(d->allocator(), stroke, wideColor, useScale, matrix); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; |
| |
| class DIEllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool wideColor, bool useScale, |
| const SkMatrix& viewMatrix, DIEllipseStyle style) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) DIEllipseGeometryProcessor(wideColor, useScale, viewMatrix, style); |
| }); |
| } |
| |
| ~DIEllipseGeometryProcessor() override {} |
| |
| const char* name() const override { return "DIEllipseGeometryProcessor"; } |
| |
| void addToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const override { |
| b->addBits(2, static_cast<uint32_t>(fStyle), "style"); |
| b->addBits(ProgramImpl::kMatrixKeyBits, |
| ProgramImpl::ComputeMatrixKey(caps, fViewMatrix), |
| "viewMatrixType"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override { |
| return std::make_unique<Impl>(); |
| } |
| |
| private: |
| DIEllipseGeometryProcessor(bool wideColor, bool useScale, const SkMatrix& viewMatrix, |
| DIEllipseStyle style) |
| : INHERITED(kDIEllipseGeometryProcessor_ClassID) |
| , fViewMatrix(viewMatrix) |
| , fUseScale(useScale) |
| , fStyle(style) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInColor = MakeColorAttribute("inColor", wideColor); |
| if (useScale) { |
| fInEllipseOffsets0 = {"inEllipseOffsets0", kFloat3_GrVertexAttribType, |
| SkSLType::kFloat3}; |
| } else { |
| fInEllipseOffsets0 = {"inEllipseOffsets0", kFloat2_GrVertexAttribType, |
| SkSLType::kFloat2}; |
| } |
| fInEllipseOffsets1 = {"inEllipseOffsets1", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 4); |
| } |
| |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) override { |
| const auto& diegp = geomProc.cast<DIEllipseGeometryProcessor>(); |
| |
| SetTransform(pdman, shaderCaps, fViewMatrixUniform, diegp.fViewMatrix, &fViewMatrix); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const auto& diegp = args.fGeomProc.cast<DIEllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(diegp); |
| |
| SkSLType offsetType = (diegp.fUseScale) ? SkSLType::kFloat3 : SkSLType::kFloat2; |
| GrGLSLVarying offsets0(offsetType); |
| varyingHandler->addVarying("EllipseOffsets0", &offsets0); |
| vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), diegp.fInEllipseOffsets0.name()); |
| |
| GrGLSLVarying offsets1(SkSLType::kFloat2); |
| varyingHandler->addVarying("EllipseOffsets1", &offsets1); |
| vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), diegp.fInEllipseOffsets1.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute(diegp.fInColor.asShaderVar(), |
| args.fOutputColor); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| diegp.fInPosition.name(), |
| diegp.fViewMatrix, |
| &fViewMatrixUniform); |
| gpArgs->fLocalCoordVar = diegp.fInPosition.asShaderVar(); |
| |
| // for outer curve |
| fragBuilder->codeAppendf("float2 scaledOffset = %s.xy;", offsets0.fsIn()); |
| fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("float2 duvdx = dFdx(%s.xy);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("float2 duvdy = dFdy(%s.xy);", offsets0.fsIn()); |
| fragBuilder->codeAppendf( |
| "float2 grad = float2(%s.x*duvdx.x + %s.y*duvdx.y," |
| " %s.x*duvdy.x + %s.y*duvdy.y);", |
| offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); |
| if (diegp.fUseScale) { |
| fragBuilder->codeAppendf("grad *= %s.z;", offsets0.fsIn()); |
| } |
| |
| fragBuilder->codeAppend("float grad_dot = 4.0*dot(grad, grad);"); |
| // avoid calling inversesqrt on zero. |
| if (args.fShaderCaps->fFloatIs32Bits) { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.1755e-38);"); |
| } else { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);"); |
| } |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| if (diegp.fUseScale) { |
| fragBuilder->codeAppendf("invlen *= %s.z;", offsets0.fsIn()); |
| } |
| if (DIEllipseStyle::kHairline == diegp.fStyle) { |
| // can probably do this with one step |
| fragBuilder->codeAppend("float edgeAlpha = saturate(1.0-test*invlen);"); |
| fragBuilder->codeAppend("edgeAlpha *= saturate(1.0+test*invlen);"); |
| } else { |
| fragBuilder->codeAppend("float edgeAlpha = saturate(0.5-test*invlen);"); |
| } |
| |
| // for inner curve |
| if (DIEllipseStyle::kStroke == diegp.fStyle) { |
| fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("duvdx = float2(dFdx(%s));", offsets1.fsIn()); |
| fragBuilder->codeAppendf("duvdy = float2(dFdy(%s));", offsets1.fsIn()); |
| fragBuilder->codeAppendf( |
| "grad = float2(%s.x*duvdx.x + %s.y*duvdx.y," |
| " %s.x*duvdy.x + %s.y*duvdy.y);", |
| offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn()); |
| if (diegp.fUseScale) { |
| fragBuilder->codeAppendf("grad *= %s.z;", offsets0.fsIn()); |
| } |
| fragBuilder->codeAppend("grad_dot = 4.0*dot(grad, grad);"); |
| if (!args.fShaderCaps->fFloatIs32Bits) { |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);"); |
| } |
| fragBuilder->codeAppend("invlen = inversesqrt(grad_dot);"); |
| if (diegp.fUseScale) { |
| fragBuilder->codeAppendf("invlen *= %s.z;", offsets0.fsIn()); |
| } |
| fragBuilder->codeAppend("edgeAlpha *= saturate(0.5+test*invlen);"); |
| } |
| |
| fragBuilder->codeAppendf("half4 %s = half4(half(edgeAlpha));", args.fOutputCoverage); |
| } |
| |
| SkMatrix fViewMatrix = SkMatrix::InvalidMatrix(); |
| UniformHandle fViewMatrixUniform; |
| }; |
| |
| Attribute fInPosition; |
| Attribute fInColor; |
| Attribute fInEllipseOffsets0; |
| Attribute fInEllipseOffsets1; |
| |
| SkMatrix fViewMatrix; |
| bool fUseScale; |
| DIEllipseStyle fStyle; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| bool wideColor = d->fRandom->nextBool(); |
| bool useScale = d->fRandom->nextBool(); |
| SkMatrix matrix = GrTest::TestMatrix(d->fRandom); |
| auto style = (DIEllipseStyle)(d->fRandom->nextRangeU(0, 2)); |
| return DIEllipseGeometryProcessor::Make(d->allocator(), wideColor, useScale, matrix, style); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // We have two possible cases for geometry for a circle: |
| |
| // In the case of a normal fill, we draw geometry for the circle as an octagon. |
| static const uint16_t gFillCircleIndices[] = { |
| // enter the octagon |
| // clang-format off |
| 0, 1, 8, 1, 2, 8, |
| 2, 3, 8, 3, 4, 8, |
| 4, 5, 8, 5, 6, 8, |
| 6, 7, 8, 7, 0, 8 |
| // clang-format on |
| }; |
| |
| // For stroked circles, we use two nested octagons. |
| static const uint16_t gStrokeCircleIndices[] = { |
| // enter the octagon |
| // clang-format off |
| 0, 1, 9, 0, 9, 8, |
| 1, 2, 10, 1, 10, 9, |
| 2, 3, 11, 2, 11, 10, |
| 3, 4, 12, 3, 12, 11, |
| 4, 5, 13, 4, 13, 12, |
| 5, 6, 14, 5, 14, 13, |
| 6, 7, 15, 6, 15, 14, |
| 7, 0, 8, 7, 8, 15, |
| // clang-format on |
| }; |
| |
| // Normalized geometry for octagons that circumscribe and lie on a circle: |
| |
| static constexpr SkScalar kOctOffset = 0.41421356237f; // sqrt(2) - 1 |
| static constexpr SkPoint kOctagonOuter[] = { |
| SkPoint::Make(-kOctOffset, -1), |
| SkPoint::Make( kOctOffset, -1), |
| SkPoint::Make( 1, -kOctOffset), |
| SkPoint::Make( 1, kOctOffset), |
| SkPoint::Make( kOctOffset, 1), |
| SkPoint::Make(-kOctOffset, 1), |
| SkPoint::Make(-1, kOctOffset), |
| SkPoint::Make(-1, -kOctOffset), |
| }; |
| |
| // cosine and sine of pi/8 |
| static constexpr SkScalar kCosPi8 = 0.923579533f; |
| static constexpr SkScalar kSinPi8 = 0.382683432f; |
| static constexpr SkPoint kOctagonInner[] = { |
| SkPoint::Make(-kSinPi8, -kCosPi8), |
| SkPoint::Make( kSinPi8, -kCosPi8), |
| SkPoint::Make( kCosPi8, -kSinPi8), |
| SkPoint::Make( kCosPi8, kSinPi8), |
| SkPoint::Make( kSinPi8, kCosPi8), |
| SkPoint::Make(-kSinPi8, kCosPi8), |
| SkPoint::Make(-kCosPi8, kSinPi8), |
| SkPoint::Make(-kCosPi8, -kSinPi8), |
| }; |
| |
| static const int kIndicesPerFillCircle = std::size(gFillCircleIndices); |
| static const int kIndicesPerStrokeCircle = std::size(gStrokeCircleIndices); |
| static const int kVertsPerStrokeCircle = 16; |
| static const int kVertsPerFillCircle = 9; |
| |
| static int circle_type_to_vert_count(bool stroked) { |
| return stroked ? kVertsPerStrokeCircle : kVertsPerFillCircle; |
| } |
| |
| static int circle_type_to_index_count(bool stroked) { |
| return stroked ? kIndicesPerStrokeCircle : kIndicesPerFillCircle; |
| } |
| |
| static const uint16_t* circle_type_to_indices(bool stroked) { |
| return stroked ? gStrokeCircleIndices : gFillCircleIndices; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| /** Optional extra params to render a partial arc rather than a full circle. */ |
| struct ArcParams { |
| SkScalar fStartAngleRadians; |
| SkScalar fSweepAngleRadians; |
| bool fUseCenter; |
| }; |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| SkPoint center, |
| SkScalar radius, |
| const GrStyle& style, |
| const ArcParams* arcParams = nullptr) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| if (style.hasPathEffect()) { |
| return nullptr; |
| } |
| const SkStrokeRec& stroke = style.strokeRec(); |
| SkStrokeRec::Style recStyle = stroke.getStyle(); |
| if (arcParams) { |
| // Arc support depends on the style. |
| switch (recStyle) { |
| case SkStrokeRec::kStrokeAndFill_Style: |
| // This produces a strange result that this op doesn't implement. |
| return nullptr; |
| case SkStrokeRec::kFill_Style: |
| // This supports all fills. |
| break; |
| case SkStrokeRec::kStroke_Style: |
| // Strokes that don't use the center point are supported with butt and round |
| // caps. |
| if (arcParams->fUseCenter || stroke.getCap() == SkPaint::kSquare_Cap) { |
| return nullptr; |
| } |
| break; |
| case SkStrokeRec::kHairline_Style: |
| // Hairline only supports butt cap. Round caps could be emulated by slightly |
| // extending the angle range if we ever care to. |
| if (arcParams->fUseCenter || stroke.getCap() != SkPaint::kButt_Cap) { |
| return nullptr; |
| } |
| break; |
| } |
| } |
| return Helper::FactoryHelper<CircleOp>(context, std::move(paint), viewMatrix, center, |
| radius, style, arcParams); |
| } |
| |
| CircleOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const SkMatrix& viewMatrix, SkPoint center, SkScalar radius, const GrStyle& style, |
| const ArcParams* arcParams) |
| : GrMeshDrawOp(ClassID()) |
| , fHelper(processorSet, GrAAType::kCoverage) { |
| const SkStrokeRec& stroke = style.strokeRec(); |
| SkStrokeRec::Style recStyle = stroke.getStyle(); |
| |
| fRoundCaps = false; |
| |
| viewMatrix.mapPoints(¢er, 1); |
| radius = viewMatrix.mapRadius(radius); |
| SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
| |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == recStyle || SkStrokeRec::kHairline_Style == recStyle; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == recStyle; |
| |
| SkScalar innerRadius = -SK_ScalarHalf; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| bool stroked = isStrokeOnly && innerRadius > 0.0f; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| |
| // This makes every point fully inside the intersection plane. |
| static constexpr SkScalar kUnusedIsectPlane[] = {0.f, 0.f, 1.f}; |
| // This makes every point fully outside the union plane. |
| static constexpr SkScalar kUnusedUnionPlane[] = {0.f, 0.f, 0.f}; |
| static constexpr SkPoint kUnusedRoundCaps[] = {{1e10f, 1e10f}, {1e10f, 1e10f}}; |
| SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| if (arcParams) { |
| // The shader operates in a space where the circle is translated to be centered at the |
| // origin. Here we compute points on the unit circle at the starting and ending angles. |
| SkPoint startPoint, stopPoint; |
| startPoint.fY = SkScalarSin(arcParams->fStartAngleRadians); |
| startPoint.fX = SkScalarCos(arcParams->fStartAngleRadians); |
| SkScalar endAngle = arcParams->fStartAngleRadians + arcParams->fSweepAngleRadians; |
| stopPoint.fY = SkScalarSin(endAngle); |
| stopPoint.fX = SkScalarCos(endAngle); |
| |
| // Adjust the start and end points based on the view matrix (to handle rotated arcs) |
| startPoint = viewMatrix.mapVector(startPoint.fX, startPoint.fY); |
| stopPoint = viewMatrix.mapVector(stopPoint.fX, stopPoint.fY); |
| startPoint.normalize(); |
| stopPoint.normalize(); |
| |
| // We know the matrix is a similarity here. Detect mirroring which will affect how we |
| // should orient the clip planes for arcs. |
| SkASSERT(viewMatrix.isSimilarity()); |
| auto upperLeftDet = viewMatrix.getScaleX()*viewMatrix.getScaleY() - |
| viewMatrix.getSkewX() *viewMatrix.getSkewY(); |
| if (upperLeftDet < 0) { |
| std::swap(startPoint, stopPoint); |
| } |
| |
| fRoundCaps = style.strokeRec().getWidth() > 0 && |
| style.strokeRec().getCap() == SkPaint::kRound_Cap; |
| SkPoint roundCaps[2]; |
| if (fRoundCaps) { |
| // Compute the cap center points in the normalized space. |
| SkScalar midRadius = (innerRadius + outerRadius) / (2 * outerRadius); |
| roundCaps[0] = startPoint * midRadius; |
| roundCaps[1] = stopPoint * midRadius; |
| } else { |
| roundCaps[0] = kUnusedRoundCaps[0]; |
| roundCaps[1] = kUnusedRoundCaps[1]; |
| } |
| |
| // Like a fill without useCenter, butt-cap stroke can be implemented by clipping against |
| // radial lines. We treat round caps the same way, but tack coverage of circles at the |
| // center of the butts. |
| // However, in both cases we have to be careful about the half-circle. |
| // case. In that case the two radial lines are equal and so that edge gets clipped |
| // twice. Since the shared edge goes through the center we fall back on the !useCenter |
| // case. |
| auto absSweep = SkScalarAbs(arcParams->fSweepAngleRadians); |
| bool useCenter = (arcParams->fUseCenter || isStrokeOnly) && |
| !SkScalarNearlyEqual(absSweep, SK_ScalarPI); |
| if (useCenter) { |
| SkVector norm0 = {startPoint.fY, -startPoint.fX}; |
| SkVector norm1 = {stopPoint.fY, -stopPoint.fX}; |
| // This ensures that norm0 is always the clockwise plane, and norm1 is CCW. |
| if (arcParams->fSweepAngleRadians < 0) { |
| std::swap(norm0, norm1); |
| } |
| norm0.negate(); |
| fClipPlane = true; |
| if (absSweep > SK_ScalarPI) { |
| fCircles.emplace_back(Circle{ |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = true; |
| } else { |
| fCircles.emplace_back(Circle{ |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlaneIsect = true; |
| fClipPlaneUnion = false; |
| } |
| } else { |
| // We clip to a secant of the original circle. |
| startPoint.scale(radius); |
| stopPoint.scale(radius); |
| SkVector norm = {startPoint.fY - stopPoint.fY, stopPoint.fX - startPoint.fX}; |
| norm.normalize(); |
| if (arcParams->fSweepAngleRadians > 0) { |
| norm.negate(); |
| } |
| SkScalar d = -norm.dot(startPoint) + 0.5f; |
| |
| fCircles.emplace_back( |
| Circle{color, |
| innerRadius, |
| outerRadius, |
| {norm.fX, norm.fY, d}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {roundCaps[0], roundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlane = true; |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = false; |
| } |
| } else { |
| fCircles.emplace_back( |
| Circle{color, |
| innerRadius, |
| outerRadius, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| {kUnusedRoundCaps[0], kUnusedRoundCaps[1]}, |
| devBounds, |
| stroked}); |
| fClipPlane = false; |
| fClipPlaneIsect = false; |
| fClipPlaneUnion = false; |
| } |
| // Use the original radius and stroke radius for the bounds so that it does not include the |
| // AA bloat. |
| radius += halfWidth; |
| this->setBounds( |
| {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
| HasAABloat::kYes, IsHairline::kNo); |
| fVertCount = circle_type_to_vert_count(stroked); |
| fIndexCount = circle_type_to_index_count(stroked); |
| fAllFill = !stroked; |
| } |
| |
| const char* name() const override { return "CircleOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| SkPMColor4f* color = &fCircles.front().fColor; |
| return fHelper.finalizeProcessors(caps, clip, clampType, |
| GrProcessorAnalysisCoverage::kSingleChannel, color, |
| &fWideColor); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkASSERT(!usesMSAASurface); |
| |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| GrGeometryProcessor* gp = CircleGeometryProcessor::Make(arena, !fAllFill, fClipPlane, |
| fClipPlaneIsect, fClipPlaneUnion, |
| fRoundCaps, fWideColor, |
| localMatrix); |
| |
| fProgramInfo = fHelper.createProgramInfo(caps, |
| arena, |
| writeView, |
| usesMSAASurface, |
| std::move(appliedClip), |
| dstProxyView, |
| gp, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, |
| colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| sk_sp<const GrBuffer> vertexBuffer; |
| int firstVertex; |
| VertexWriter vertices = target->makeVertexWriter(fProgramInfo->geomProc().vertexStride(), |
| fVertCount, &vertexBuffer, &firstVertex); |
| if (!vertices) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| sk_sp<const GrBuffer> indexBuffer = nullptr; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (const auto& circle : fCircles) { |
| SkScalar innerRadius = circle.fInnerRadius; |
| SkScalar outerRadius = circle.fOuterRadius; |
| VertexColor color(circle.fColor, fWideColor); |
| const SkRect& bounds = circle.fDevBounds; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| innerRadius = innerRadius / outerRadius; |
| SkPoint radii = { outerRadius, innerRadius }; |
| |
| SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
| SkScalar halfWidth = 0.5f * bounds.width(); |
| |
| SkVector geoClipPlane = { 0, 0 }; |
| SkScalar offsetClipDist = SK_Scalar1; |
| if (!circle.fStroked && fClipPlane && fClipPlaneIsect && |
| (circle.fClipPlane[0] * circle.fIsectPlane[0] + |
| circle.fClipPlane[1] * circle.fIsectPlane[1]) < 0.0f) { |
| // Acute arc. Clip the vertices to the perpendicular half-plane. We've constructed |
| // fClipPlane to be clockwise, and fISectPlane to be CCW, so we can can rotate them |
| // each 90 degrees to point "out", then average them. We back off by 1/2 pixel so |
| // the AA can extend just past the center of the circle. |
| geoClipPlane.set(circle.fClipPlane[1] - circle.fIsectPlane[1], |
| circle.fIsectPlane[0] - circle.fClipPlane[0]); |
| SkAssertResult(geoClipPlane.normalize()); |
| offsetClipDist = 0.5f / halfWidth; |
| } |
| |
| for (int i = 0; i < 8; ++i) { |
| // This clips the normalized offset to the half-plane we computed above. Then we |
| // compute the vertex position from this. |
| SkScalar dist = std::min(kOctagonOuter[i].dot(geoClipPlane) + offsetClipDist, 0.0f); |
| SkVector offset = kOctagonOuter[i] - geoClipPlane * dist; |
| vertices << (center + offset * halfWidth) |
| << color |
| << offset |
| << radii; |
| if (fClipPlane) { |
| vertices << circle.fClipPlane; |
| } |
| if (fClipPlaneIsect) { |
| vertices << circle.fIsectPlane; |
| } |
| if (fClipPlaneUnion) { |
| vertices << circle.fUnionPlane; |
| } |
| if (fRoundCaps) { |
| vertices << circle.fRoundCapCenters; |
| } |
| } |
| |
| if (circle.fStroked) { |
| // compute the inner ring |
| |
| for (int i = 0; i < 8; ++i) { |
| vertices << (center + kOctagonInner[i] * circle.fInnerRadius) |
| << color |
| << kOctagonInner[i] * innerRadius |
| << radii; |
| if (fClipPlane) { |
| vertices << circle.fClipPlane; |
| } |
| if (fClipPlaneIsect) { |
| vertices << circle.fIsectPlane; |
| } |
| if (fClipPlaneUnion) { |
| vertices << circle.fUnionPlane; |
| } |
| if (fRoundCaps) { |
| vertices << circle.fRoundCapCenters; |
| } |
| } |
| } else { |
| // filled |
| vertices << center << color << SkPoint::Make(0, 0) << radii; |
| if (fClipPlane) { |
| vertices << circle.fClipPlane; |
| } |
| if (fClipPlaneIsect) { |
| vertices << circle.fIsectPlane; |
| } |
| if (fClipPlaneUnion) { |
| vertices << circle.fUnionPlane; |
| } |
| if (fRoundCaps) { |
| vertices << circle.fRoundCapCenters; |
| } |
| } |
| |
| const uint16_t* primIndices = circle_type_to_indices(circle.fStroked); |
| const int primIndexCount = circle_type_to_index_count(circle.fStroked); |
| for (int i = 0; i < primIndexCount; ++i) { |
| *indices++ = primIndices[i] + currStartVertex; |
| } |
| |
| currStartVertex += circle_type_to_vert_count(circle.fStroked); |
| } |
| |
| fMesh = target->allocMesh(); |
| fMesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertCount - 1, |
| GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || !fMesh) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| flushState->drawMesh(*fMesh); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| CircleOp* that = t->cast<CircleOp>(); |
| |
| // can only represent 65535 unique vertices with 16-bit indices |
| if (fVertCount + that->fVertCount > 65536) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
| that->fViewMatrixIfUsingLocalCoords)) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| // Because we've set up the ops that don't use the planes with noop values |
| // we can just accumulate used planes by later ops. |
| fClipPlane |= that->fClipPlane; |
| fClipPlaneIsect |= that->fClipPlaneIsect; |
| fClipPlaneUnion |= that->fClipPlaneUnion; |
| fRoundCaps |= that->fRoundCaps; |
| fWideColor |= that->fWideColor; |
| |
| fCircles.push_back_n(that->fCircles.size(), that->fCircles.begin()); |
| fVertCount += that->fVertCount; |
| fIndexCount += that->fIndexCount; |
| fAllFill = fAllFill && that->fAllFill; |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fCircles.size(); ++i) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fCircles[i].fColor.toBytes_RGBA(), fCircles[i].fDevBounds.fLeft, |
| fCircles[i].fDevBounds.fTop, fCircles[i].fDevBounds.fRight, |
| fCircles[i].fDevBounds.fBottom, fCircles[i].fInnerRadius, |
| fCircles[i].fOuterRadius); |
| } |
| string += fHelper.dumpInfo(); |
| return string; |
| } |
| #endif |
| |
| struct Circle { |
| SkPMColor4f fColor; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| SkScalar fClipPlane[3]; |
| SkScalar fIsectPlane[3]; |
| SkScalar fUnionPlane[3]; |
| SkPoint fRoundCapCenters[2]; |
| SkRect fDevBounds; |
| bool fStroked; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| SkSTArray<1, Circle, true> fCircles; |
| int fVertCount; |
| int fIndexCount; |
| bool fAllFill; |
| bool fClipPlane; |
| bool fClipPlaneIsect; |
| bool fClipPlaneUnion; |
| bool fRoundCaps; |
| bool fWideColor; |
| |
| GrSimpleMesh* fMesh = nullptr; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| class ButtCapDashedCircleOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| SkPoint center, |
| SkScalar radius, |
| SkScalar strokeWidth, |
| SkScalar startAngle, |
| SkScalar onAngle, |
| SkScalar offAngle, |
| SkScalar phaseAngle) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| SkASSERT(strokeWidth < 2 * radius); |
| return Helper::FactoryHelper<ButtCapDashedCircleOp>(context, std::move(paint), viewMatrix, |
| center, radius, strokeWidth, startAngle, |
| onAngle, offAngle, phaseAngle); |
| } |
| |
| ButtCapDashedCircleOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const SkMatrix& viewMatrix, SkPoint center, SkScalar radius, |
| SkScalar strokeWidth, SkScalar startAngle, SkScalar onAngle, |
| SkScalar offAngle, SkScalar phaseAngle) |
| : GrMeshDrawOp(ClassID()) |
| , fHelper(processorSet, GrAAType::kCoverage) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| viewMatrix.mapPoints(¢er, 1); |
| radius = viewMatrix.mapRadius(radius); |
| strokeWidth = viewMatrix.mapRadius(strokeWidth); |
| |
| // Determine the angle where the circle starts in device space and whether its orientation |
| // has been reversed. |
| SkVector start; |
| bool reflection; |
| if (!startAngle) { |
| start = {1, 0}; |
| } else { |
| start.fY = SkScalarSin(startAngle); |
| start.fX = SkScalarCos(startAngle); |
| } |
| viewMatrix.mapVectors(&start, 1); |
| startAngle = SkScalarATan2(start.fY, start.fX); |
| reflection = (viewMatrix.getScaleX() * viewMatrix.getScaleY() - |
| viewMatrix.getSkewX() * viewMatrix.getSkewY()) < 0; |
| |
| auto totalAngle = onAngle + offAngle; |
| phaseAngle = SkScalarMod(phaseAngle + totalAngle / 2, totalAngle) - totalAngle / 2; |
| |
| SkScalar halfWidth = 0; |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| SkScalar outerRadius = radius + halfWidth; |
| SkScalar innerRadius = radius - halfWidth; |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| |
| SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| |
| // We store whether there is a reflection as a negative total angle. |
| if (reflection) { |
| totalAngle = -totalAngle; |
| } |
| fCircles.push_back(Circle{ |
| color, |
| outerRadius, |
| innerRadius, |
| onAngle, |
| totalAngle, |
| startAngle, |
| phaseAngle, |
| devBounds |
| }); |
| // Use the original radius and stroke radius for the bounds so that it does not include the |
| // AA bloat. |
| radius += halfWidth; |
| this->setBounds( |
| {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
| HasAABloat::kYes, IsHairline::kNo); |
| fVertCount = circle_type_to_vert_count(true); |
| fIndexCount = circle_type_to_index_count(true); |
| } |
| |
| const char* name() const override { return "ButtCappedDashedCircleOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| SkPMColor4f* color = &fCircles.front().fColor; |
| return fHelper.finalizeProcessors(caps, clip, clampType, |
| GrProcessorAnalysisCoverage::kSingleChannel, color, |
| &fWideColor); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkASSERT(!usesMSAASurface); |
| |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| GrGeometryProcessor* gp = ButtCapDashedCircleGeometryProcessor::Make(arena, |
| fWideColor, |
| localMatrix); |
| |
| fProgramInfo = fHelper.createProgramInfo(caps, |
| arena, |
| writeView, |
| usesMSAASurface, |
| std::move(appliedClip), |
| dstProxyView, |
| gp, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, |
| colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| sk_sp<const GrBuffer> vertexBuffer; |
| int firstVertex; |
| VertexWriter vertices = target->makeVertexWriter(fProgramInfo->geomProc().vertexStride(), |
| fVertCount, &vertexBuffer, &firstVertex); |
| if (!vertices) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| sk_sp<const GrBuffer> indexBuffer; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (const auto& circle : fCircles) { |
| // The inner radius in the vertex data must be specified in normalized space so that |
| // length() can be called with smaller values to avoid precision issues with half |
| // floats. |
| auto normInnerRadius = circle.fInnerRadius / circle.fOuterRadius; |
| const SkRect& bounds = circle.fDevBounds; |
| bool reflect = false; |
| struct { float onAngle, totalAngle, startAngle, phaseAngle; } dashParams = { |
| circle.fOnAngle, circle.fTotalAngle, circle.fStartAngle, circle.fPhaseAngle |
| }; |
| if (dashParams.totalAngle < 0) { |
| reflect = true; |
| dashParams.totalAngle = -dashParams.totalAngle; |
| dashParams.startAngle = -dashParams.startAngle; |
| } |
| |
| VertexColor color(circle.fColor, fWideColor); |
| |
| // The bounding geometry for the circle is composed of an outer bounding octagon and |
| // an inner bounded octagon. |
| |
| // Compute the vertices of the outer octagon. |
| SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
| SkScalar halfWidth = 0.5f * bounds.width(); |
| |
| auto reflectY = [=](const SkPoint& p) { |
| return SkPoint{ p.fX, reflect ? -p.fY : p.fY }; |
| }; |
| |
| for (int i = 0; i < 8; ++i) { |
| vertices << (center + kOctagonOuter[i] * halfWidth) |
| << color |
| << reflectY(kOctagonOuter[i]) |
| << circle.fOuterRadius |
| << normInnerRadius |
| << dashParams; |
| } |
| |
| // Compute the vertices of the inner octagon. |
| for (int i = 0; i < 8; ++i) { |
| vertices << (center + kOctagonInner[i] * circle.fInnerRadius) |
| << color |
| << (reflectY(kOctagonInner[i]) * normInnerRadius) |
| << circle.fOuterRadius |
| << normInnerRadius |
| << dashParams; |
| } |
| |
| const uint16_t* primIndices = circle_type_to_indices(true); |
| const int primIndexCount = circle_type_to_index_count(true); |
| for (int i = 0; i < primIndexCount; ++i) { |
| *indices++ = primIndices[i] + currStartVertex; |
| } |
| |
| currStartVertex += circle_type_to_vert_count(true); |
| } |
| |
| fMesh = target->allocMesh(); |
| fMesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertCount - 1, |
| GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || !fMesh) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| flushState->drawMesh(*fMesh); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| ButtCapDashedCircleOp* that = t->cast<ButtCapDashedCircleOp>(); |
| |
| // can only represent 65535 unique vertices with 16-bit indices |
| if (fVertCount + that->fVertCount > 65536) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
| that->fViewMatrixIfUsingLocalCoords)) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| fCircles.push_back_n(that->fCircles.size(), that->fCircles.begin()); |
| fVertCount += that->fVertCount; |
| fIndexCount += that->fIndexCount; |
| fWideColor |= that->fWideColor; |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fCircles.size(); ++i) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f, OnAngle: %.2f, TotalAngle: %.2f, " |
| "Phase: %.2f\n", |
| fCircles[i].fColor.toBytes_RGBA(), fCircles[i].fDevBounds.fLeft, |
| fCircles[i].fDevBounds.fTop, fCircles[i].fDevBounds.fRight, |
| fCircles[i].fDevBounds.fBottom, fCircles[i].fInnerRadius, |
| fCircles[i].fOuterRadius, fCircles[i].fOnAngle, fCircles[i].fTotalAngle, |
| fCircles[i].fPhaseAngle); |
| } |
| string += fHelper.dumpInfo(); |
| return string; |
| } |
| #endif |
| |
| struct Circle { |
| SkPMColor4f fColor; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| SkScalar fOnAngle; |
| SkScalar fTotalAngle; |
| SkScalar fStartAngle; |
| SkScalar fPhaseAngle; |
| SkRect fDevBounds; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| SkSTArray<1, Circle, true> fCircles; |
| int fVertCount; |
| int fIndexCount; |
| bool fWideColor; |
| |
| GrSimpleMesh* fMesh = nullptr; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| struct DeviceSpaceParams { |
| SkPoint fCenter; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| }; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| DeviceSpaceParams params; |
| // do any matrix crunching before we reset the draw state for device coords |
| params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| viewMatrix.mapPoints(¶ms.fCenter, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| params.fXRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX] * ellipseXRadius + |
| viewMatrix[SkMatrix::kMSkewX] * ellipseYRadius); |
| params.fYRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewY] * ellipseXRadius + |
| viewMatrix[SkMatrix::kMScaleY] * ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs( |
| strokeWidth * (viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs( |
| strokeWidth * (viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| params.fInnerXRadius = 0; |
| params.fInnerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (0.5f * params.fXRadius > params.fYRadius || |
| 0.5f * params.fYRadius > params.fXRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX * (params.fXRadius * params.fYRadius) < |
| (scaledStroke.fY * scaledStroke.fY) * params.fXRadius || |
| scaledStroke.fY * (params.fXRadius * params.fXRadius) < |
| (scaledStroke.fX * scaledStroke.fX) * params.fYRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| params.fInnerXRadius = params.fXRadius - scaledStroke.fX; |
| params.fInnerYRadius = params.fYRadius - scaledStroke.fY; |
| } |
| |
| params.fXRadius += scaledStroke.fX; |
| params.fYRadius += scaledStroke.fY; |
| } |
| |
| // For large ovals with low precision floats, we fall back to the path renderer. |
| // To compute the AA at the edge we divide by the gradient, which is clamped to a |
| // minimum value to avoid divides by zero. With large ovals and low precision this |
| // leads to blurring at the edge of the oval. |
| const SkScalar kMaxOvalRadius = 16384; |
| if (!context->priv().caps()->shaderCaps()->fFloatIs32Bits && |
| (params.fXRadius >= kMaxOvalRadius || params.fYRadius >= kMaxOvalRadius)) { |
| return nullptr; |
| } |
| |
| return Helper::FactoryHelper<EllipseOp>(context, std::move(paint), viewMatrix, |
| params, stroke); |
| } |
| |
| EllipseOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const SkMatrix& viewMatrix, const DeviceSpaceParams& params, |
| const SkStrokeRec& stroke) |
| : INHERITED(ClassID()) |
| , fHelper(processorSet, GrAAType::kCoverage) |
| , fUseScale(false) { |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = |
| SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
| |
| fEllipses.emplace_back(Ellipse{color, params.fXRadius, params.fYRadius, |
| params.fInnerXRadius, params.fInnerYRadius, |
| SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius, |
| params.fCenter.fY - params.fYRadius, |
| params.fCenter.fX + params.fXRadius, |
| params.fCenter.fY + params.fYRadius)}); |
| |
| this->setBounds(fEllipses.back().fDevBounds, HasAABloat::kYes, IsHairline::kNo); |
| |
| fStroked = isStrokeOnly && params.fInnerXRadius > 0 && params.fInnerYRadius > 0; |
| fViewMatrixIfUsingLocalCoords = viewMatrix; |
| } |
| |
| const char* name() const override { return "EllipseOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| fUseScale = !caps.shaderCaps()->fFloatIs32Bits && |
| !caps.shaderCaps()->fHasLowFragmentPrecision; |
| SkPMColor4f* color = &fEllipses.front().fColor; |
| return fHelper.finalizeProcessors(caps, clip, clampType, |
| GrProcessorAnalysisCoverage::kSingleChannel, color, |
| &fWideColor); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| GrGeometryProcessor* gp = EllipseGeometryProcessor::Make(arena, fStroked, fWideColor, |
| fUseScale, localMatrix); |
| |
| fProgramInfo = fHelper.createProgramInfo(caps, |
| arena, |
| writeView, |
| usesMSAASurface, |
| std::move(appliedClip), |
| dstProxyView, |
| gp, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, |
| colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| QuadHelper helper(target, fProgramInfo->geomProc().vertexStride(), fEllipses.size()); |
| VertexWriter verts{helper.vertices()}; |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| // On MSAA, bloat enough to guarantee any pixel that might be touched by the ellipse has |
| // full sample coverage. |
| float aaBloat = target->usesMSAASurface() ? SK_ScalarSqrt2 : .5f; |
| |
| for (const auto& ellipse : fEllipses) { |
| VertexColor color(ellipse.fColor, fWideColor); |
| SkScalar xRadius = ellipse.fXRadius; |
| SkScalar yRadius = ellipse.fYRadius; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| struct { float xOuter, yOuter, xInner, yInner; } invRadii = { |
| SkScalarInvert(xRadius), |
| SkScalarInvert(yRadius), |
| SkScalarInvert(ellipse.fInnerXRadius), |
| SkScalarInvert(ellipse.fInnerYRadius) |
| }; |
| SkScalar xMaxOffset = xRadius + aaBloat; |
| SkScalar yMaxOffset = yRadius + aaBloat; |
| |
| if (!fStroked) { |
| // For filled ellipses we map a unit circle in the vertex attributes rather than |
| // computing an ellipse and modifying that distance, so we normalize to 1 |
| xMaxOffset /= xRadius; |
| yMaxOffset /= yRadius; |
| } |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| verts.writeQuad(VertexWriter::TriStripFromRect( |
| ellipse.fDevBounds.makeOutset(aaBloat, aaBloat)), |
| color, |
| origin_centered_tri_strip(xMaxOffset, yMaxOffset), |
| VertexWriter::If(fUseScale, std::max(xRadius, yRadius)), |
| invRadii); |
| } |
| fMesh = helper.mesh(); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || !fMesh) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| flushState->drawMesh(*fMesh); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| EllipseOp* that = t->cast<EllipseOp>(); |
| |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fHelper.usesLocalCoords() && |
| !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
| that->fViewMatrixIfUsingLocalCoords)) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| fEllipses.push_back_n(that->fEllipses.size(), that->fEllipses.begin()); |
| fWideColor |= that->fWideColor; |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| SkString string = SkStringPrintf("Stroked: %d\n", fStroked); |
| for (const auto& geo : fEllipses) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " |
| "XRad: %.2f, YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f\n", |
| geo.fColor.toBytes_RGBA(), geo.fDevBounds.fLeft, geo.fDevBounds.fTop, |
| geo.fDevBounds.fRight, geo.fDevBounds.fBottom, geo.fXRadius, geo.fYRadius, |
| geo.fInnerXRadius, geo.fInnerYRadius); |
| } |
| string += fHelper.dumpInfo(); |
| return string; |
| } |
| #endif |
| |
| struct Ellipse { |
| SkPMColor4f fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkRect fDevBounds; |
| }; |
| |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| Helper fHelper; |
| bool fStroked; |
| bool fWideColor; |
| bool fUseScale; |
| SkSTArray<1, Ellipse, true> fEllipses; |
| |
| GrSimpleMesh* fMesh = nullptr; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class DIEllipseOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| struct DeviceSpaceParams { |
| SkPoint fCenter; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| DIEllipseStyle fStyle; |
| }; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| DeviceSpaceParams params; |
| params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| params.fXRadius = SkScalarHalf(ellipse.width()); |
| params.fYRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| params.fStyle = (SkStrokeRec::kStroke_Style == style) |
| ? DIEllipseStyle::kStroke |
| : (SkStrokeRec::kHairline_Style == style) |
| ? DIEllipseStyle::kHairline |
| : DIEllipseStyle::kFill; |
| |
| params.fInnerXRadius = 0; |
| params.fInnerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf * params.fXRadius > params.fYRadius || |
| SK_ScalarHalf * params.fYRadius > params.fXRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth * (params.fYRadius * params.fYRadius) < |
| (strokeWidth * strokeWidth) * params.fXRadius) { |
| return nullptr; |
| } |
| if (strokeWidth * (params.fXRadius * params.fXRadius) < |
| (strokeWidth * strokeWidth) * params.fYRadius) { |
| return nullptr; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| params.fInnerXRadius = params.fXRadius - strokeWidth; |
| params.fInnerYRadius = params.fYRadius - strokeWidth; |
| } |
| |
| params.fXRadius += strokeWidth; |
| params.fYRadius += strokeWidth; |
| } |
| |
| // For large ovals with low precision floats, we fall back to the path renderer. |
| // To compute the AA at the edge we divide by the gradient, which is clamped to a |
| // minimum value to avoid divides by zero. With large ovals and low precision this |
| // leads to blurring at the edge of the oval. |
| const SkScalar kMaxOvalRadius = 16384; |
| if (!context->priv().caps()->shaderCaps()->fFloatIs32Bits && |
| (params.fXRadius >= kMaxOvalRadius || params.fYRadius >= kMaxOvalRadius)) { |
| return nullptr; |
| } |
| |
| if (DIEllipseStyle::kStroke == params.fStyle && |
| (params.fInnerXRadius <= 0 || params.fInnerYRadius <= 0)) { |
| params.fStyle = DIEllipseStyle::kFill; |
| } |
| return Helper::FactoryHelper<DIEllipseOp>(context, std::move(paint), params, viewMatrix); |
| } |
| |
| DIEllipseOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const DeviceSpaceParams& params, const SkMatrix& viewMatrix) |
| : INHERITED(ClassID()) |
| , fHelper(processorSet, GrAAType::kCoverage) |
| , fUseScale(false) { |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
| SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
| SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
| SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
| SkScalar geoDx = 1.f / SkScalarSqrt(a * a + c * c); |
| SkScalar geoDy = 1.f / SkScalarSqrt(b * b + d * d); |
| |
| fEllipses.emplace_back( |
| Ellipse{viewMatrix, color, params.fXRadius, params.fYRadius, params.fInnerXRadius, |
| params.fInnerYRadius, geoDx, geoDy, params.fStyle, |
| SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius, |
| params.fCenter.fY - params.fYRadius, |
| params.fCenter.fX + params.fXRadius, |
| params.fCenter.fY + params.fYRadius)}); |
| this->setTransformedBounds(fEllipses[0].fBounds, viewMatrix, HasAABloat::kYes, |
| IsHairline::kNo); |
| } |
| |
| const char* name() const override { return "DIEllipseOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| fUseScale = !caps.shaderCaps()->fFloatIs32Bits && |
| !caps.shaderCaps()->fHasLowFragmentPrecision; |
| SkPMColor4f* color = &fEllipses.front().fColor; |
| return fHelper.finalizeProcessors(caps, clip, clampType, |
| GrProcessorAnalysisCoverage::kSingleChannel, color, |
| &fWideColor); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| GrGeometryProcessor* gp = DIEllipseGeometryProcessor::Make(arena, fWideColor, fUseScale, |
| this->viewMatrix(), |
| this->style()); |
| |
| fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, usesMSAASurface, |
| std::move(appliedClip), dstProxyView, gp, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| } |
| |
| QuadHelper helper(target, fProgramInfo->geomProc().vertexStride(), fEllipses.size()); |
| VertexWriter verts{helper.vertices()}; |
| if (!verts) { |
| return; |
| } |
| |
| for (const auto& ellipse : fEllipses) { |
| VertexColor color(ellipse.fColor, fWideColor); |
| SkScalar xRadius = ellipse.fXRadius; |
| SkScalar yRadius = ellipse.fYRadius; |
| |
| // On MSAA, bloat enough to guarantee any pixel that might be touched by the ellipse has |
| // full sample coverage. |
| float aaBloat = target->usesMSAASurface() ? SK_ScalarSqrt2 : .5f; |
| SkRect drawBounds = ellipse.fBounds.makeOutset(ellipse.fGeoDx * aaBloat, |
| ellipse.fGeoDy * aaBloat); |
| |
| // Normalize the "outer radius" coordinates within drawBounds so that the outer edge |
| // occurs at x^2 + y^2 == 1. |
| float outerCoordX = drawBounds.width() / (xRadius * 2); |
| float outerCoordY = drawBounds.height() / (yRadius * 2); |
| |
| // By default, constructed so that inner coord is (0, 0) for all points |
| float innerCoordX = 0; |
| float innerCoordY = 0; |
| |
| // ... unless we're stroked. Then normalize the "inner radius" coordinates within |
| // drawBounds so that the inner edge occurs at x2^2 + y2^2 == 1. |
| if (DIEllipseStyle::kStroke == this->style()) { |
| innerCoordX = drawBounds.width() / (ellipse.fInnerXRadius * 2); |
| innerCoordY = drawBounds.height() / (ellipse.fInnerYRadius * 2); |
| } |
| |
| verts.writeQuad(VertexWriter::TriStripFromRect(drawBounds), |
| color, |
| origin_centered_tri_strip(outerCoordX, outerCoordY), |
| VertexWriter::If(fUseScale, std::max(xRadius, yRadius)), |
| origin_centered_tri_strip(innerCoordX, innerCoordY)); |
| } |
| fMesh = helper.mesh(); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || !fMesh) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| flushState->drawMesh(*fMesh); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| DIEllipseOp* that = t->cast<DIEllipseOp>(); |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (this->style() != that->style()) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| // TODO rewrite to allow positioning on CPU |
| if (!SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| fEllipses.push_back_n(that->fEllipses.size(), that->fEllipses.begin()); |
| fWideColor |= that->fWideColor; |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| SkString string; |
| for (const auto& geo : fEllipses) { |
| string.appendf( |
| "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], XRad: %.2f, " |
| "YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f, GeoDX: %.2f, " |
| "GeoDY: %.2f\n", |
| geo.fColor.toBytes_RGBA(), geo.fBounds.fLeft, geo.fBounds.fTop, |
| geo.fBounds.fRight, geo.fBounds.fBottom, geo.fXRadius, geo.fYRadius, |
| geo.fInnerXRadius, geo.fInnerYRadius, geo.fGeoDx, geo.fGeoDy); |
| } |
| string += fHelper.dumpInfo(); |
| return string; |
| } |
| #endif |
| |
| const SkMatrix& viewMatrix() const { return fEllipses[0].fViewMatrix; } |
| DIEllipseStyle style() const { return fEllipses[0].fStyle; } |
| |
| struct Ellipse { |
| SkMatrix fViewMatrix; |
| SkPMColor4f fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkScalar fGeoDx; |
| SkScalar fGeoDy; |
| DIEllipseStyle fStyle; |
| SkRect fBounds; |
| }; |
| |
| Helper fHelper; |
| bool fWideColor; |
| bool fUseScale; |
| SkSTArray<1, Ellipse, true> fEllipses; |
| |
| GrSimpleMesh* fMesh = nullptr; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // We have three possible cases for geometry for a roundrect. |
| // |
| // In the case of a normal fill or a stroke, we draw the roundrect as a 9-patch: |
| // ____________ |
| // |_|________|_| |
| // | | | | |
| // | | | | |
| // | | | | |
| // |_|________|_| |
| // |_|________|_| |
| // |
| // For strokes, we don't draw the center quad. |
| // |
| // For circular roundrects, in the case where the stroke width is greater than twice |
| // the corner radius (overstroke), we add additional geometry to mark out the rectangle |
| // in the center. The shared vertices are duplicated so we can set a different outer radius |
| // for the fill calculation. |
| // ____________ |
| // |_|________|_| |
| // | |\ ____ /| | |
| // | | | | | | |
| // | | |____| | | |
| // |_|/______\|_| |
| // |_|________|_| |
| // |
| // We don't draw the center quad from the fill rect in this case. |
| // |
| // For filled rrects that need to provide a distance vector we resuse the overstroke |
| // geometry but make the inner rect degenerate (either a point or a horizontal or |
| // vertical line). |
| |
| static const uint16_t gOverstrokeRRectIndices[] = { |
| // clang-format off |
| // overstroke quads |
| // we place this at the beginning so that we can skip these indices when rendering normally |
| 16, 17, 19, 16, 19, 18, |
| 19, 17, 23, 19, 23, 21, |
| 21, 23, 22, 21, 22, 20, |
| 22, 16, 18, 22, 18, 20, |
| |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when not rendering as filled |
| 5, 6, 10, 5, 10, 9, |
| // clang-format on |
| }; |
| |
| // fill and standard stroke indices skip the overstroke "ring" |
| static const uint16_t* gStandardRRectIndices = gOverstrokeRRectIndices + 6 * 4; |
| |
| // overstroke count is arraysize minus the center indices |
| static const int kIndicesPerOverstrokeRRect = std::size(gOverstrokeRRectIndices) - 6; |
| // fill count skips overstroke indices and includes center |
| static const int kIndicesPerFillRRect = kIndicesPerOverstrokeRRect - 6 * 4 + 6; |
| // stroke count is fill count minus center indices |
| static const int kIndicesPerStrokeRRect = kIndicesPerFillRRect - 6; |
| static const int kVertsPerStandardRRect = 16; |
| static const int kVertsPerOverstrokeRRect = 24; |
| |
| enum RRectType { |
| kFill_RRectType, |
| kStroke_RRectType, |
| kOverstroke_RRectType, |
| }; |
| |
| static int rrect_type_to_vert_count(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| case kStroke_RRectType: |
| return kVertsPerStandardRRect; |
| case kOverstroke_RRectType: |
| return kVertsPerOverstrokeRRect; |
| } |
| SK_ABORT("Invalid type"); |
| } |
| |
| static int rrect_type_to_index_count(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| return kIndicesPerFillRRect; |
| case kStroke_RRectType: |
| return kIndicesPerStrokeRRect; |
| case kOverstroke_RRectType: |
| return kIndicesPerOverstrokeRRect; |
| } |
| SK_ABORT("Invalid type"); |
| } |
| |
| static const uint16_t* rrect_type_to_indices(RRectType type) { |
| switch (type) { |
| case kFill_RRectType: |
| case kStroke_RRectType: |
| return gStandardRRectIndices; |
| case kOverstroke_RRectType: |
| return gOverstrokeRRectIndices; |
| } |
| SK_ABORT("Invalid type"); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| // For distance computations in the interior of filled rrects we: |
| // |
| // add a interior degenerate (point or line) rect |
| // each vertex of that rect gets -outerRad as its radius |
| // this makes the computation of the distance to the outer edge be negative |
| // negative values are caught and then handled differently in the GP's onEmitCode |
| // each vertex is also given the normalized x & y distance from the interior rect's edge |
| // the GP takes the min of those depths +1 to get the normalized distance to the outer edge |
| |
| class CircularRRectOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelper; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| // A devStrokeWidth <= 0 indicates a fill only. If devStrokeWidth > 0 then strokeOnly indicates |
| // whether the rrect is only stroked or stroked and filled. |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkRect& devRect, |
| float devRadius, |
| float devStrokeWidth, |
| bool strokeOnly) { |
| return Helper::FactoryHelper<CircularRRectOp>(context, std::move(paint), viewMatrix, |
| devRect, devRadius, |
| devStrokeWidth, strokeOnly); |
| } |
| CircularRRectOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const SkMatrix& viewMatrix, const SkRect& devRect, float devRadius, |
| float devStrokeWidth, bool strokeOnly) |
| : INHERITED(ClassID()) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) |
| , fHelper(processorSet, GrAAType::kCoverage) { |
| SkRect bounds = devRect; |
| SkASSERT(!(devStrokeWidth <= 0 && strokeOnly)); |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = devRadius; |
| SkScalar halfWidth = 0; |
| RRectType type = kFill_RRectType; |
| if (devStrokeWidth > 0) { |
| if (SkScalarNearlyZero(devStrokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(devStrokeWidth); |
| } |
| |
| if (strokeOnly) { |
| // Outset stroke by 1/4 pixel |
| devStrokeWidth += 0.25f; |
| // If stroke is greater than width or height, this is still a fill |
| // Otherwise we compute stroke params |
| if (devStrokeWidth <= devRect.width() && devStrokeWidth <= devRect.height()) { |
| innerRadius = devRadius - halfWidth; |
| type = (innerRadius >= 0) ? kStroke_RRectType : kOverstroke_RRectType; |
| } |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the rrect |
| // corners. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| this->setBounds(bounds, HasAABloat::kYes, IsHairline::kNo); |
| |
| // Expand the rect for aa to generate correct vertices. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| fRRects.emplace_back(RRect{color, innerRadius, outerRadius, bounds, type}); |
| fVertCount = rrect_type_to_vert_count(type); |
| fIndexCount = rrect_type_to_index_count(type); |
| fAllFill = (kFill_RRectType == type); |
| } |
| |
| const char* name() const override { return "CircularRRectOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| SkPMColor4f* color = &fRRects.front().fColor; |
| return fHelper.finalizeProcessors(caps, clip, clampType, |
| GrProcessorAnalysisCoverage::kSingleChannel, color, |
| &fWideColor); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| private: |
| static void FillInOverstrokeVerts(VertexWriter& verts, const SkRect& bounds, SkScalar smInset, |
| SkScalar bigInset, SkScalar xOffset, SkScalar outerRadius, |
| SkScalar innerRadius, const VertexColor& color) { |
| SkASSERT(smInset < bigInset); |
| |
| // TL |
| verts << (bounds.fLeft + smInset) << (bounds.fTop + smInset) |
| << color |
| << xOffset << 0.0f |
| << outerRadius << innerRadius; |
| |
| // TR |
| verts << (bounds.fRight - smInset) << (bounds.fTop + smInset) |
| << color |
| << xOffset << 0.0f |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fLeft + bigInset) << (bounds.fTop + bigInset) |
| << color |
| << 0.0f << 0.0f |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fRight - bigInset) << (bounds.fTop + bigInset) |
| << color |
| << 0.0f << 0.0f |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fLeft + bigInset) << (bounds.fBottom - bigInset) |
| << color |
| << 0.0f << 0.0f |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fRight - bigInset) << (bounds.fBottom - bigInset) |
| << color |
| << 0.0f << 0.0f |
| << outerRadius << innerRadius; |
| |
| // BL |
| verts << (bounds.fLeft + smInset) << (bounds.fBottom - smInset) |
| << color |
| << xOffset << 0.0f |
| << outerRadius << innerRadius; |
| |
| // BR |
| verts << (bounds.fRight - smInset) << (bounds.fBottom - smInset) |
| << color |
| << xOffset << 0.0f |
| << outerRadius << innerRadius; |
| } |
| |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkASSERT(!usesMSAASurface); |
| |
| // Invert the view matrix as a local matrix (if any other processors require coords). |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| GrGeometryProcessor* gp = CircleGeometryProcessor::Make(arena, !fAllFill, |
| false, false, false, false, |
| fWideColor, localMatrix); |
| |
| fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, usesMSAASurface, |
| std::move(appliedClip), dstProxyView, gp, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| sk_sp<const GrBuffer> vertexBuffer; |
| int firstVertex; |
| |
| VertexWriter verts = target->makeVertexWriter(fProgramInfo->geomProc().vertexStride(), |
| fVertCount, &vertexBuffer, &firstVertex); |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| sk_sp<const GrBuffer> indexBuffer; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (const auto& rrect : fRRects) { |
| VertexColor color(rrect.fColor, fWideColor); |
| SkScalar outerRadius = rrect.fOuterRadius; |
| const SkRect& bounds = rrect.fDevBounds; |
| |
| SkScalar yCoords[4] = {bounds.fTop, bounds.fTop + outerRadius, |
| bounds.fBottom - outerRadius, bounds.fBottom}; |
| |
| SkScalar yOuterRadii[4] = {-1, 0, 0, 1}; |
| // The inner radius in the vertex data must be specified in normalized space. |
| // For fills, specifying -1/outerRadius guarantees an alpha of 1.0 at the inner radius. |
| SkScalar innerRadius = rrect.fType != kFill_RRectType |
| ? rrect.fInnerRadius / rrect.fOuterRadius |
| : -1.0f / rrect.fOuterRadius; |
| for (int i = 0; i < 4; ++i) { |
| verts << bounds.fLeft << yCoords[i] |
| << color |
| << -1.0f << yOuterRadii[i] |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fLeft + outerRadius) << yCoords[i] |
| << color |
| << 0.0f << yOuterRadii[i] |
| << outerRadius << innerRadius; |
| |
| verts << (bounds.fRight - outerRadius) << yCoords[i] |
| << color |
| << 0.0f << yOuterRadii[i] |
| << outerRadius << innerRadius; |
| |
| verts << bounds.fRight << yCoords[i] |
| << color |
| << 1.0f << yOuterRadii[i] |
| << outerRadius << innerRadius; |
| } |
| // Add the additional vertices for overstroked rrects. |
| // Effectively this is an additional stroked rrect, with its |
| // outer radius = outerRadius - innerRadius, and inner radius = 0. |
| // This will give us correct AA in the center and the correct |
| // distance to the outer edge. |
| // |
| // Also, the outer offset is a constant vector pointing to the right, which |
| // guarantees that the distance value along the outer rectangle is constant.<
|