| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/ops/DashOp.h" |
| |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkPointPriv.h" |
| #include "src/gpu/BufferWriter.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrAppliedClip.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDefaultGeoProcFactory.h" |
| #include "src/gpu/ganesh/GrGeometryProcessor.h" |
| #include "src/gpu/ganesh/GrMemoryPool.h" |
| #include "src/gpu/ganesh/GrOpFlushState.h" |
| #include "src/gpu/ganesh/GrProcessor.h" |
| #include "src/gpu/ganesh/GrProcessorUnitTest.h" |
| #include "src/gpu/ganesh/GrProgramInfo.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/GrStyle.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/geometry/GrQuad.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" |
| #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h" |
| |
| using AAMode = skgpu::ganesh::DashOp::AAMode; |
| |
| #if GR_TEST_UTILS |
| constexpr int kAAModeCnt = static_cast<int>(skgpu::ganesh::DashOp::AAMode::kCoverageWithMSAA) + 1; |
| #endif |
| |
| namespace skgpu::ganesh::DashOp { |
| |
| namespace { |
| |
| void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale, |
| const SkMatrix& viewMatrix, const SkPoint pts[2]) { |
| SkVector vecSrc = pts[1] - pts[0]; |
| if (pts[1] == pts[0]) { |
| vecSrc.set(1.0, 0.0); |
| } |
| SkScalar magSrc = vecSrc.length(); |
| SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0; |
| vecSrc.scale(invSrc); |
| |
| SkVector vecSrcPerp; |
| SkPointPriv::RotateCW(vecSrc, &vecSrcPerp); |
| viewMatrix.mapVectors(&vecSrc, 1); |
| viewMatrix.mapVectors(&vecSrcPerp, 1); |
| |
| // parallelScale tells how much to scale along the line parallel to the dash line |
| // perpScale tells how much to scale in the direction perpendicular to the dash line |
| *parallelScale = vecSrc.length(); |
| *perpScale = vecSrcPerp.length(); |
| } |
| |
| // calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1] |
| // Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot |
| void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = nullptr) { |
| SkVector vec = pts[1] - pts[0]; |
| if (pts[1] == pts[0]) { |
| vec.set(1.0, 0.0); |
| } |
| SkScalar mag = vec.length(); |
| SkScalar inv = mag ? SkScalarInvert(mag) : 0; |
| |
| vec.scale(inv); |
| rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); |
| if (ptsRot) { |
| rotMatrix->mapPoints(ptsRot, pts, 2); |
| // correction for numerical issues if map doesn't make ptsRot exactly horizontal |
| ptsRot[1].fY = pts[0].fY; |
| } |
| } |
| |
| // Assumes phase < sum of all intervals |
| SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) { |
| SkASSERT(phase < intervals[0] + intervals[1]); |
| if (phase >= intervals[0] && phase != 0) { |
| SkScalar srcIntervalLen = intervals[0] + intervals[1]; |
| return srcIntervalLen - phase; |
| } |
| return 0; |
| } |
| |
| SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2], |
| SkScalar phase, SkScalar* endingInt) { |
| if (pts[1].fX <= pts[0].fX) { |
| return 0; |
| } |
| SkScalar srcIntervalLen = intervals[0] + intervals[1]; |
| SkScalar totalLen = pts[1].fX - pts[0].fX; |
| SkScalar temp = totalLen / srcIntervalLen; |
| SkScalar numFullIntervals = SkScalarFloorToScalar(temp); |
| *endingInt = totalLen - numFullIntervals * srcIntervalLen + phase; |
| temp = *endingInt / srcIntervalLen; |
| *endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen; |
| if (0 == *endingInt) { |
| *endingInt = srcIntervalLen; |
| } |
| if (*endingInt > intervals[0]) { |
| return *endingInt - intervals[0]; |
| } |
| return 0; |
| } |
| |
| enum DashCap { |
| kRound_DashCap, |
| kNonRound_DashCap, |
| }; |
| |
| void setup_dashed_rect(const SkRect& rect, |
| VertexWriter& vertices, |
| const SkMatrix& matrix, |
| SkScalar offset, |
| SkScalar bloatX, |
| SkScalar len, |
| SkScalar startInterval, |
| SkScalar endInterval, |
| SkScalar strokeWidth, |
| SkScalar perpScale, |
| DashCap cap) { |
| SkScalar intervalLength = startInterval + endInterval; |
| // 'dashRect' gets interpolated over the rendered 'rect'. For y we want the perpendicular signed |
| // distance from the stroke center line in device space. 'perpScale' is the scale factor applied |
| // to the y dimension of 'rect' isolated from 'matrix'. |
| SkScalar halfDevRectHeight = rect.height() * perpScale / 2.f; |
| SkRect dashRect = { offset - bloatX, -halfDevRectHeight, |
| offset + len + bloatX, halfDevRectHeight }; |
| |
| if (kRound_DashCap == cap) { |
| SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f; |
| SkScalar centerX = SkScalarHalf(endInterval); |
| |
| vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix), |
| VertexWriter::TriStripFromRect(dashRect), |
| intervalLength, |
| radius, |
| centerX); |
| } else { |
| SkASSERT(kNonRound_DashCap == cap); |
| SkScalar halfOffLen = SkScalarHalf(endInterval); |
| SkScalar halfStroke = SkScalarHalf(strokeWidth); |
| SkRect rectParam; |
| rectParam.setLTRB(halfOffLen + 0.5f, -halfStroke + 0.5f, |
| halfOffLen + startInterval - 0.5f, halfStroke - 0.5f); |
| |
| vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix), |
| VertexWriter::TriStripFromRect(dashRect), |
| intervalLength, |
| rectParam); |
| } |
| } |
| |
| /** |
| * An GrGeometryProcessor that renders a dashed line. |
| * This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair. |
| * Bounding geometry is rendered and the effect computes coverage based on the fragment's |
| * position relative to the dashed line. |
| */ |
| GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena, |
| const SkPMColor4f&, |
| AAMode aaMode, |
| DashCap cap, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords); |
| |
| class DashOpImpl final : public GrMeshDrawOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| struct LineData { |
| SkMatrix fViewMatrix; |
| SkMatrix fSrcRotInv; |
| SkPoint fPtsRot[2]; |
| SkScalar fSrcStrokeWidth; |
| SkScalar fPhase; |
| SkScalar fIntervals[2]; |
| SkScalar fParallelScale; |
| SkScalar fPerpendicularScale; |
| }; |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const LineData& geometry, |
| SkPaint::Cap cap, |
| AAMode aaMode, bool fullDash, |
| const GrUserStencilSettings* stencilSettings) { |
| return GrOp::Make<DashOpImpl>(context, std::move(paint), geometry, cap, |
| aaMode, fullDash, stencilSettings); |
| } |
| |
| const char* name() const override { return "DashOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fProcessorSet.visitProxies(func); |
| } |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { |
| FixedFunctionFlags flags = FixedFunctionFlags::kNone; |
| if (AAMode::kCoverageWithMSAA == fAAMode) { |
| flags |= FixedFunctionFlags::kUsesHWAA; |
| } |
| if (fStencilSettings != &GrUserStencilSettings::kUnused) { |
| flags |= FixedFunctionFlags::kUsesStencil; |
| } |
| return flags; |
| } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| GrProcessorAnalysisCoverage coverage = GrProcessorAnalysisCoverage::kSingleChannel; |
| auto analysis = fProcessorSet.finalize(fColor, coverage, clip, fStencilSettings, caps, |
| clampType, &fColor); |
| fUsesLocalCoords = analysis.usesLocalCoords(); |
| return analysis; |
| } |
| |
| private: |
| friend class GrOp; // for ctor |
| |
| DashOpImpl(GrPaint&& paint, const LineData& geometry, SkPaint::Cap cap, AAMode aaMode, |
| bool fullDash, const GrUserStencilSettings* stencilSettings) |
| : INHERITED(ClassID()) |
| , fColor(paint.getColor4f()) |
| , fFullDash(fullDash) |
| , fCap(cap) |
| , fAAMode(aaMode) |
| , fProcessorSet(std::move(paint)) |
| , fStencilSettings(stencilSettings) { |
| fLines.push_back(geometry); |
| |
| // compute bounds |
| SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth; |
| SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth; |
| SkRect bounds; |
| bounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]); |
| bounds.outset(xBloat, halfStrokeWidth); |
| |
| // Note, we actually create the combined matrix here, and save the work |
| SkMatrix& combinedMatrix = fLines[0].fSrcRotInv; |
| combinedMatrix.postConcat(geometry.fViewMatrix); |
| |
| IsHairline zeroArea = geometry.fSrcStrokeWidth ? IsHairline::kNo : IsHairline::kYes; |
| HasAABloat aaBloat = (aaMode == AAMode::kNone) ? HasAABloat::kNo : HasAABloat::kYes; |
| this->setTransformedBounds(bounds, combinedMatrix, aaBloat, zeroArea); |
| } |
| |
| struct DashDraw { |
| DashDraw(const LineData& geo) { |
| memcpy(fPtsRot, geo.fPtsRot, sizeof(geo.fPtsRot)); |
| memcpy(fIntervals, geo.fIntervals, sizeof(geo.fIntervals)); |
| fPhase = geo.fPhase; |
| } |
| SkPoint fPtsRot[2]; |
| SkScalar fIntervals[2]; |
| SkScalar fPhase; |
| SkScalar fStartOffset; |
| SkScalar fStrokeWidth; |
| SkScalar fLineLength; |
| SkScalar fDevBloatX; |
| SkScalar fPerpendicularScale; |
| bool fLineDone; |
| bool fHasStartRect; |
| bool fHasEndRect; |
| }; |
| |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| |
| DashCap capType = (this->cap() == SkPaint::kRound_Cap) ? kRound_DashCap : kNonRound_DashCap; |
| |
| GrGeometryProcessor* gp; |
| if (this->fullDash()) { |
| gp = make_dash_gp(arena, this->color(), this->aaMode(), capType, |
| this->viewMatrix(), fUsesLocalCoords); |
| } else { |
| // Set up the vertex data for the line and start/end dashes |
| using namespace GrDefaultGeoProcFactory; |
| Color color(this->color()); |
| LocalCoords::Type localCoordsType = |
| fUsesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; |
| gp = MakeForDeviceSpace(arena, |
| color, |
| Coverage::kSolid_Type, |
| localCoordsType, |
| this->viewMatrix()); |
| } |
| |
| if (!gp) { |
| SkDebugf("Could not create GrGeometryProcessor\n"); |
| return; |
| } |
| |
| fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo(caps, |
| arena, |
| writeView, |
| usesMSAASurface, |
| std::move(appliedClip), |
| dstProxyView, |
| gp, |
| std::move(fProcessorSet), |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, |
| colorLoadOp, |
| GrPipeline::InputFlags::kNone, |
| fStencilSettings); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| int instanceCount = fLines.size(); |
| SkPaint::Cap cap = this->cap(); |
| DashCap capType = (SkPaint::kRound_Cap == cap) ? kRound_DashCap : kNonRound_DashCap; |
| |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| // useAA here means Edge AA or MSAA |
| bool useAA = this->aaMode() != AAMode::kNone; |
| bool fullDash = this->fullDash(); |
| |
| // We do two passes over all of the dashes. First we setup the start, end, and bounds, |
| // rectangles. We preserve all of this work in the rects / draws arrays below. Then we |
| // iterate again over these decomposed dashes to generate vertices |
| static const int kNumStackDashes = 128; |
| SkSTArray<kNumStackDashes, SkRect, true> rects; |
| SkSTArray<kNumStackDashes, DashDraw, true> draws; |
| |
| int totalRectCount = 0; |
| int rectOffset = 0; |
| rects.push_back_n(3 * instanceCount); |
| for (int i = 0; i < instanceCount; i++) { |
| const LineData& args = fLines[i]; |
| |
| DashDraw& draw = draws.push_back(args); |
| |
| bool hasCap = SkPaint::kButt_Cap != cap; |
| |
| SkScalar halfSrcStroke = args.fSrcStrokeWidth * 0.5f; |
| if (halfSrcStroke == 0.0f || this->aaMode() != AAMode::kCoverageWithMSAA) { |
| // In the non-MSAA case, we always want to at least stroke out half a pixel on each |
| // side in device space. 0.5f / fPerpendicularScale gives us this min in src space. |
| // This is also necessary when the stroke width is zero, to allow hairlines to draw. |
| halfSrcStroke = std::max(halfSrcStroke, 0.5f / args.fPerpendicularScale); |
| } |
| |
| SkScalar strokeAdj = hasCap ? halfSrcStroke : 0.0f; |
| SkScalar startAdj = 0; |
| |
| bool lineDone = false; |
| |
| // Too simplify the algorithm, we always push back rects for start and end rect. |
| // Otherwise we'd have to track start / end rects for each individual geometry |
| SkRect& bounds = rects[rectOffset++]; |
| SkRect& startRect = rects[rectOffset++]; |
| SkRect& endRect = rects[rectOffset++]; |
| |
| bool hasStartRect = false; |
| // If we are using AA, check to see if we are drawing a partial dash at the start. If so |
| // draw it separately here and adjust our start point accordingly |
| if (useAA) { |
| if (draw.fPhase > 0 && draw.fPhase < draw.fIntervals[0]) { |
| SkPoint startPts[2]; |
| startPts[0] = draw.fPtsRot[0]; |
| startPts[1].fY = startPts[0].fY; |
| startPts[1].fX = std::min(startPts[0].fX + draw.fIntervals[0] - draw.fPhase, |
| draw.fPtsRot[1].fX); |
| startRect.setBounds(startPts, 2); |
| startRect.outset(strokeAdj, halfSrcStroke); |
| |
| hasStartRect = true; |
| startAdj = draw.fIntervals[0] + draw.fIntervals[1] - draw.fPhase; |
| } |
| } |
| |
| // adjustments for start and end of bounding rect so we only draw dash intervals |
| // contained in the original line segment. |
| startAdj += calc_start_adjustment(draw.fIntervals, draw.fPhase); |
| if (startAdj != 0) { |
| draw.fPtsRot[0].fX += startAdj; |
| draw.fPhase = 0; |
| } |
| SkScalar endingInterval = 0; |
| SkScalar endAdj = calc_end_adjustment(draw.fIntervals, draw.fPtsRot, draw.fPhase, |
| &endingInterval); |
| draw.fPtsRot[1].fX -= endAdj; |
| if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { |
| lineDone = true; |
| } |
| |
| bool hasEndRect = false; |
| // If we are using AA, check to see if we are drawing a partial dash at then end. If so |
| // draw it separately here and adjust our end point accordingly |
| if (useAA && !lineDone) { |
| // If we adjusted the end then we will not be drawing a partial dash at the end. |
| // If we didn't adjust the end point then we just need to make sure the ending |
| // dash isn't a full dash |
| if (0 == endAdj && endingInterval != draw.fIntervals[0]) { |
| SkPoint endPts[2]; |
| endPts[1] = draw.fPtsRot[1]; |
| endPts[0].fY = endPts[1].fY; |
| endPts[0].fX = endPts[1].fX - endingInterval; |
| |
| endRect.setBounds(endPts, 2); |
| endRect.outset(strokeAdj, halfSrcStroke); |
| |
| hasEndRect = true; |
| endAdj = endingInterval + draw.fIntervals[1]; |
| |
| draw.fPtsRot[1].fX -= endAdj; |
| if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { |
| lineDone = true; |
| } |
| } |
| } |
| |
| if (draw.fPtsRot[0].fX == draw.fPtsRot[1].fX && |
| (0 != endAdj || 0 == startAdj) && |
| hasCap) { |
| // At this point the fPtsRot[0]/[1] represent the start and end of the inner rect of |
| // dashes that we want to draw. The only way they can be equal is if the on interval |
| // is zero (or an edge case if the end of line ends at a full off interval, but this |
| // is handled as well). Thus if the on interval is zero then we need to draw a cap |
| // at this position if the stroke has caps. The spec says we only draw this point if |
| // point lies between [start of line, end of line). Thus we check if we are at the |
| // end (but not the start), and if so we don't draw the cap. |
| lineDone = false; |
| } |
| |
| if (startAdj != 0) { |
| draw.fPhase = 0; |
| } |
| |
| // Change the dashing info from src space into device space |
| SkScalar* devIntervals = draw.fIntervals; |
| devIntervals[0] = draw.fIntervals[0] * args.fParallelScale; |
| devIntervals[1] = draw.fIntervals[1] * args.fParallelScale; |
| SkScalar devPhase = draw.fPhase * args.fParallelScale; |
| SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale; |
| |
| if ((strokeWidth < 1.f && !useAA) || 0.f == strokeWidth) { |
| strokeWidth = 1.f; |
| } |
| |
| SkScalar halfDevStroke = strokeWidth * 0.5f; |
| |
| if (SkPaint::kSquare_Cap == cap) { |
| // add cap to on interval and remove from off interval |
| devIntervals[0] += strokeWidth; |
| devIntervals[1] -= strokeWidth; |
| } |
| SkScalar startOffset = devIntervals[1] * 0.5f + devPhase; |
| |
| SkScalar devBloatX = 0.0f; |
| SkScalar devBloatY = 0.0f; |
| switch (this->aaMode()) { |
| case AAMode::kNone: |
| break; |
| case AAMode::kCoverage: |
| // For EdgeAA, we bloat in X & Y for both square and round caps. |
| devBloatX = 0.5f; |
| devBloatY = 0.5f; |
| break; |
| case AAMode::kCoverageWithMSAA: |
| // For MSAA, we only bloat in Y for round caps. |
| devBloatY = (cap == SkPaint::kRound_Cap) ? 0.5f : 0.0f; |
| break; |
| } |
| |
| SkScalar bloatX = devBloatX / args.fParallelScale; |
| SkScalar bloatY = devBloatY / args.fPerpendicularScale; |
| |
| if (devIntervals[1] <= 0.f && useAA) { |
| // Case when we end up drawing a solid AA rect |
| // Reset the start rect to draw this single solid rect |
| // but it requires to upload a new intervals uniform so we can mimic |
| // one giant dash |
| draw.fPtsRot[0].fX -= hasStartRect ? startAdj : 0; |
| draw.fPtsRot[1].fX += hasEndRect ? endAdj : 0; |
| startRect.setBounds(draw.fPtsRot, 2); |
| startRect.outset(strokeAdj, halfSrcStroke); |
| hasStartRect = true; |
| hasEndRect = false; |
| lineDone = true; |
| |
| SkPoint devicePts[2]; |
| args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2); |
| SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]); |
| if (hasCap) { |
| lineLength += 2.f * halfDevStroke; |
| } |
| devIntervals[0] = lineLength; |
| } |
| |
| totalRectCount += !lineDone ? 1 : 0; |
| totalRectCount += hasStartRect ? 1 : 0; |
| totalRectCount += hasEndRect ? 1 : 0; |
| |
| if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) { |
| // need to adjust this for round caps to correctly set the dashPos attrib on |
| // vertices |
| startOffset -= halfDevStroke; |
| } |
| |
| if (!lineDone) { |
| SkPoint devicePts[2]; |
| args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2); |
| draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]); |
| if (hasCap) { |
| draw.fLineLength += 2.f * halfDevStroke; |
| } |
| |
| bounds.setLTRB(draw.fPtsRot[0].fX, draw.fPtsRot[0].fY, |
| draw.fPtsRot[1].fX, draw.fPtsRot[1].fY); |
| bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke); |
| } |
| |
| if (hasStartRect) { |
| SkASSERT(useAA); // so that we know bloatX and bloatY have been set |
| startRect.outset(bloatX, bloatY); |
| } |
| |
| if (hasEndRect) { |
| SkASSERT(useAA); // so that we know bloatX and bloatY have been set |
| endRect.outset(bloatX, bloatY); |
| } |
| |
| draw.fStartOffset = startOffset; |
| draw.fDevBloatX = devBloatX; |
| draw.fPerpendicularScale = args.fPerpendicularScale; |
| draw.fStrokeWidth = strokeWidth; |
| draw.fHasStartRect = hasStartRect; |
| draw.fLineDone = lineDone; |
| draw.fHasEndRect = hasEndRect; |
| } |
| |
| if (!totalRectCount) { |
| return; |
| } |
| |
| QuadHelper helper(target, fProgramInfo->geomProc().vertexStride(), totalRectCount); |
| VertexWriter vertices{ helper.vertices() }; |
| if (!vertices) { |
| return; |
| } |
| |
| int rectIndex = 0; |
| for (int i = 0; i < instanceCount; i++) { |
| const LineData& geom = fLines[i]; |
| |
| if (!draws[i].fLineDone) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fLineLength, draws[i].fIntervals[0], |
| draws[i].fIntervals[1], draws[i].fStrokeWidth, |
| draws[i].fPerpendicularScale, |
| capType); |
| } else { |
| vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); |
| } |
| } |
| rectIndex++; |
| |
| if (draws[i].fHasStartRect) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fIntervals[0], draws[i].fIntervals[0], |
| draws[i].fIntervals[1], draws[i].fStrokeWidth, |
| draws[i].fPerpendicularScale, capType); |
| } else { |
| vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); |
| } |
| } |
| rectIndex++; |
| |
| if (draws[i].fHasEndRect) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fIntervals[0], draws[i].fIntervals[0], |
| draws[i].fIntervals[1], draws[i].fStrokeWidth, |
| draws[i].fPerpendicularScale, capType); |
| } else { |
| vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); |
| } |
| } |
| rectIndex++; |
| } |
| |
| fMesh = helper.mesh(); |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || !fMesh) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| flushState->drawMesh(*fMesh); |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| auto that = t->cast<DashOpImpl>(); |
| if (fProcessorSet != that->fProcessorSet) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (this->aaMode() != that->aaMode()) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (this->fullDash() != that->fullDash()) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (this->cap() != that->cap()) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| // TODO vertex color |
| if (this->color() != that->color()) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| if (fUsesLocalCoords && !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| fLines.push_back_n(that->fLines.size(), that->fLines.begin()); |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| SkString string; |
| for (const auto& geo : fLines) { |
| string.appendf("Pt0: [%.2f, %.2f], Pt1: [%.2f, %.2f], Width: %.2f, Ival0: %.2f, " |
| "Ival1 : %.2f, Phase: %.2f\n", |
| geo.fPtsRot[0].fX, geo.fPtsRot[0].fY, |
| geo.fPtsRot[1].fX, geo.fPtsRot[1].fY, |
| geo.fSrcStrokeWidth, |
| geo.fIntervals[0], |
| geo.fIntervals[1], |
| geo.fPhase); |
| } |
| string += fProcessorSet.dumpProcessors(); |
| return string; |
| } |
| #endif |
| |
| const SkPMColor4f& color() const { return fColor; } |
| const SkMatrix& viewMatrix() const { return fLines[0].fViewMatrix; } |
| AAMode aaMode() const { return fAAMode; } |
| bool fullDash() const { return fFullDash; } |
| SkPaint::Cap cap() const { return fCap; } |
| |
| SkSTArray<1, LineData, true> fLines; |
| SkPMColor4f fColor; |
| bool fUsesLocalCoords : 1; |
| bool fFullDash : 1; |
| // We use 3 bits for this 3-value enum because MSVS makes the underlying types signed. |
| SkPaint::Cap fCap : 3; |
| AAMode fAAMode; |
| GrProcessorSet fProcessorSet; |
| const GrUserStencilSettings* fStencilSettings; |
| |
| GrSimpleMesh* fMesh = nullptr; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| /* |
| * This effect will draw a dotted line (defined as a dashed lined with round caps and no on |
| * interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo. |
| * Both of the previous two parameters are in device space. This effect also requires the setting of |
| * a float2 vertex attribute for the the four corners of the bounding rect. This attribute is the |
| * "dash position" of each vertex. In other words it is the vertex coords (in device space) if we |
| * transform the line to be horizontal, with the start of line at the origin then shifted to the |
| * right by half the off interval. The line then goes in the positive x direction. |
| */ |
| class DashingCircleEffect : public GrGeometryProcessor { |
| public: |
| typedef SkPathEffect::DashInfo DashInfo; |
| |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, |
| const SkPMColor4f&, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords); |
| |
| const char* name() const override { return "DashingCircleEffect"; } |
| |
| void addToKey(const GrShaderCaps&, KeyBuilder*) const override; |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override; |
| |
| private: |
| class Impl; |
| |
| DashingCircleEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, |
| bool usesLocalCoords); |
| |
| SkPMColor4f fColor; |
| SkMatrix fLocalMatrix; |
| bool fUsesLocalCoords; |
| AAMode fAAMode; |
| |
| Attribute fInPosition; |
| Attribute fInDashParams; |
| Attribute fInCircleParams; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class DashingCircleEffect::Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager&, |
| const GrShaderCaps&, |
| const GrGeometryProcessor&) override; |
| |
| private: |
| void onEmitCode(EmitArgs&, GrGPArgs*) override; |
| |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| SkPMColor4f fColor = SK_PMColor4fILLEGAL; |
| float fPrevRadius = SK_FloatNaN; |
| float fPrevCenterX = SK_FloatNaN; |
| float fPrevIntervalLength = SK_FloatNaN; |
| |
| UniformHandle fParamUniform; |
| UniformHandle fColorUniform; |
| UniformHandle fLocalMatrixUniform; |
| }; |
| |
| void DashingCircleEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| const DashingCircleEffect& dce = args.fGeomProc.cast<DashingCircleEffect>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(dce); |
| |
| // XY are dashPos, Z is dashInterval |
| GrGLSLVarying dashParams(SkSLType::kHalf3); |
| varyingHandler->addVarying("DashParam", &dashParams); |
| vertBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.fInDashParams.name()); |
| |
| // x refers to circle radius - 0.5, y refers to cicle's center x coord |
| GrGLSLVarying circleParams(SkSLType::kHalf2); |
| varyingHandler->addVarying("CircleParams", &circleParams); |
| vertBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.fInCircleParams.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // Setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, dce.fInPosition.name()); |
| if (dce.fUsesLocalCoords) { |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| dce.fInPosition.asShaderVar(), |
| dce.fLocalMatrix, |
| &fLocalMatrixUniform); |
| } |
| |
| // transforms all points so that we can compare them to our test circle |
| fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);", |
| dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(), |
| dashParams.fsIn()); |
| fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));", |
| dashParams.fsIn()); |
| fragBuilder->codeAppendf("half2 center = half2(%s.y, 0.0);", circleParams.fsIn()); |
| fragBuilder->codeAppend("half dist = length(center - fragPosShifted);"); |
| if (dce.fAAMode != AAMode::kNone) { |
| fragBuilder->codeAppendf("half diff = dist - %s.x;", circleParams.fsIn()); |
| fragBuilder->codeAppend("diff = 1.0 - diff;"); |
| fragBuilder->codeAppend("half alpha = saturate(diff);"); |
| } else { |
| fragBuilder->codeAppendf("half alpha = 1.0;"); |
| fragBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn()); |
| } |
| fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage); |
| } |
| |
| void DashingCircleEffect::Impl::setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) { |
| const DashingCircleEffect& dce = geomProc.cast<DashingCircleEffect>(); |
| if (dce.fColor != fColor) { |
| pdman.set4fv(fColorUniform, 1, dce.fColor.vec()); |
| fColor = dce.fColor; |
| } |
| SetTransform(pdman, shaderCaps, fLocalMatrixUniform, dce.fLocalMatrix, &fLocalMatrix); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrGeometryProcessor* DashingCircleEffect::Make(SkArenaAlloc* arena, |
| const SkPMColor4f& color, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) DashingCircleEffect(color, aaMode, localMatrix, usesLocalCoords); |
| }); |
| } |
| |
| void DashingCircleEffect::addToKey(const GrShaderCaps& caps, KeyBuilder* b) const { |
| uint32_t key = 0; |
| key |= fUsesLocalCoords ? 0x1 : 0x0; |
| key |= static_cast<uint32_t>(fAAMode) << 1; |
| key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3; |
| b->add32(key); |
| } |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> DashingCircleEffect::makeProgramImpl( |
| const GrShaderCaps&) const { |
| return std::make_unique<Impl>(); |
| } |
| |
| DashingCircleEffect::DashingCircleEffect(const SkPMColor4f& color, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords) |
| : INHERITED(kDashingCircleEffect_ClassID) |
| , fColor(color) |
| , fLocalMatrix(localMatrix) |
| , fUsesLocalCoords(usesLocalCoords) |
| , fAAMode(aaMode) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, SkSLType::kHalf3}; |
| fInCircleParams = {"inCircleParams", kFloat2_GrVertexAttribType, SkSLType::kHalf2}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 3); |
| } |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* DashingCircleEffect::TestCreate(GrProcessorTestData* d) { |
| AAMode aaMode = static_cast<AAMode>(d->fRandom->nextULessThan(kAAModeCnt)); |
| GrColor color = GrTest::RandomColor(d->fRandom); |
| SkMatrix matrix = GrTest::TestMatrix(d->fRandom); |
| return DashingCircleEffect::Make(d->allocator(), |
| SkPMColor4f::FromBytes_RGBA(color), |
| aaMode, |
| matrix, |
| d->fRandom->nextBool()); |
| } |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the |
| * length and spacing by the DashInfo. Both of the previous two parameters are in device space. |
| * This effect also requires the setting of a float2 vertex attribute for the the four corners of the |
| * bounding rect. This attribute is the "dash position" of each vertex. In other words it is the |
| * vertex coords (in device space) if we transform the line to be horizontal, with the start of |
| * line at the origin then shifted to the right by half the off interval. The line then goes in the |
| * positive x direction. |
| */ |
| class DashingLineEffect : public GrGeometryProcessor { |
| public: |
| typedef SkPathEffect::DashInfo DashInfo; |
| |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, |
| const SkPMColor4f&, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords); |
| |
| const char* name() const override { return "DashingEffect"; } |
| |
| bool usesLocalCoords() const { return fUsesLocalCoords; } |
| |
| void addToKey(const GrShaderCaps&, KeyBuilder*) const override; |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override; |
| |
| private: |
| class Impl; |
| |
| DashingLineEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, |
| bool usesLocalCoords); |
| |
| SkPMColor4f fColor; |
| SkMatrix fLocalMatrix; |
| bool fUsesLocalCoords; |
| AAMode fAAMode; |
| |
| Attribute fInPosition; |
| Attribute fInDashParams; |
| Attribute fInRect; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class DashingLineEffect::Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager&, |
| const GrShaderCaps&, |
| const GrGeometryProcessor&) override; |
| |
| private: |
| void onEmitCode(EmitArgs&, GrGPArgs*) override; |
| |
| SkPMColor4f fColor = SK_PMColor4fILLEGAL; |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| |
| UniformHandle fLocalMatrixUniform; |
| UniformHandle fColorUniform; |
| }; |
| |
| void DashingLineEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| const DashingLineEffect& de = args.fGeomProc.cast<DashingLineEffect>(); |
| |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(de); |
| |
| // XY refers to dashPos, Z is the dash interval length |
| GrGLSLVarying inDashParams(SkSLType::kFloat3); |
| varyingHandler->addVarying("DashParams", &inDashParams); |
| vertBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.fInDashParams.name()); |
| |
| // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5), |
| // respectively. |
| GrGLSLVarying inRectParams(SkSLType::kFloat4); |
| varyingHandler->addVarying("RectParams", &inRectParams); |
| vertBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.fInRect.name()); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // Setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, de.fInPosition.name()); |
| if (de.usesLocalCoords()) { |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| de.fInPosition.asShaderVar(), |
| de.fLocalMatrix, |
| &fLocalMatrixUniform); |
| } |
| |
| // transforms all points so that we can compare them to our test rect |
| fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);", |
| inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(), |
| inDashParams.fsIn()); |
| fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));", |
| inDashParams.fsIn()); |
| if (de.fAAMode == AAMode::kCoverage) { |
| // The amount of coverage removed in x and y by the edges is computed as a pair of negative |
| // numbers, xSub and ySub. |
| fragBuilder->codeAppend("half xSub, ySub;"); |
| fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));", |
| inRectParams.fsIn()); |
| fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));", |
| inRectParams.fsIn()); |
| fragBuilder->codeAppendf("ySub = half(min(fragPosShifted.y - %s.y, 0.0));", |
| inRectParams.fsIn()); |
| fragBuilder->codeAppendf("ySub += half(min(%s.w - fragPosShifted.y, 0.0));", |
| inRectParams.fsIn()); |
| // Now compute coverage in x and y and multiply them to get the fraction of the pixel |
| // covered. |
| fragBuilder->codeAppendf( |
| "half alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));"); |
| } else if (de.fAAMode == AAMode::kCoverageWithMSAA) { |
| // For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle |
| // AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha. |
| fragBuilder->codeAppend("half xSub;"); |
| fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));", |
| inRectParams.fsIn()); |
| fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));", |
| inRectParams.fsIn()); |
| // Now compute coverage in x to get the fraction of the pixel covered. |
| fragBuilder->codeAppendf("half alpha = (1.0 + max(xSub, -1.0));"); |
| } else { |
| // Assuming the bounding geometry is tight so no need to check y values |
| fragBuilder->codeAppendf("half alpha = 1.0;"); |
| fragBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;", |
| inRectParams.fsIn()); |
| fragBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;", |
| inRectParams.fsIn()); |
| } |
| fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage); |
| } |
| |
| void DashingLineEffect::Impl::setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) { |
| const DashingLineEffect& de = geomProc.cast<DashingLineEffect>(); |
| if (de.fColor != fColor) { |
| pdman.set4fv(fColorUniform, 1, de.fColor.vec()); |
| fColor = de.fColor; |
| } |
| SetTransform(pdman, shaderCaps, fLocalMatrixUniform, de.fLocalMatrix, &fLocalMatrix); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrGeometryProcessor* DashingLineEffect::Make(SkArenaAlloc* arena, |
| const SkPMColor4f& color, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) DashingLineEffect(color, aaMode, localMatrix, usesLocalCoords); |
| }); |
| } |
| |
| void DashingLineEffect::addToKey(const GrShaderCaps& caps, KeyBuilder* b) const { |
| uint32_t key = 0; |
| key |= fUsesLocalCoords ? 0x1 : 0x0; |
| key |= static_cast<int>(fAAMode) << 1; |
| key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3; |
| b->add32(key); |
| } |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> DashingLineEffect::makeProgramImpl( |
| const GrShaderCaps&) const { |
| return std::make_unique<Impl>(); |
| } |
| |
| DashingLineEffect::DashingLineEffect(const SkPMColor4f& color, |
| AAMode aaMode, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords) |
| : INHERITED(kDashingLineEffect_ClassID) |
| , fColor(color) |
| , fLocalMatrix(localMatrix) |
| , fUsesLocalCoords(usesLocalCoords) |
| , fAAMode(aaMode) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, SkSLType::kHalf3}; |
| fInRect = {"inRect", kFloat4_GrVertexAttribType, SkSLType::kHalf4}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 3); |
| } |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* DashingLineEffect::TestCreate(GrProcessorTestData* d) { |
| AAMode aaMode = static_cast<AAMode>(d->fRandom->nextULessThan(kAAModeCnt)); |
| GrColor color = GrTest::RandomColor(d->fRandom); |
| SkMatrix matrix = GrTest::TestMatrix(d->fRandom); |
| return DashingLineEffect::Make(d->allocator(), |
| SkPMColor4f::FromBytes_RGBA(color), |
| aaMode, |
| matrix, |
| d->fRandom->nextBool()); |
| } |
| |
| #endif |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena, |
| const SkPMColor4f& color, |
| AAMode aaMode, |
| DashCap cap, |
| const SkMatrix& viewMatrix, |
| bool usesLocalCoords) { |
| SkMatrix invert; |
| if (usesLocalCoords && !viewMatrix.invert(&invert)) { |
| SkDebugf("Failed to invert\n"); |
| return nullptr; |
| } |
| |
| switch (cap) { |
| case kRound_DashCap: |
| return DashingCircleEffect::Make(arena, color, aaMode, invert, usesLocalCoords); |
| case kNonRound_DashCap: |
| return DashingLineEffect::Make(arena, color, aaMode, invert, usesLocalCoords); |
| } |
| return nullptr; |
| } |
| |
| } // anonymous namespace |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| GrOp::Owner MakeDashLineOp(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkPoint pts[2], |
| AAMode aaMode, |
| const GrStyle& style, |
| const GrUserStencilSettings* stencilSettings) { |
| SkASSERT(CanDrawDashLine(pts, style, viewMatrix)); |
| const SkScalar* intervals = style.dashIntervals(); |
| SkScalar phase = style.dashPhase(); |
| |
| SkPaint::Cap cap = style.strokeRec().getCap(); |
| |
| DashOpImpl::LineData lineData; |
| lineData.fSrcStrokeWidth = style.strokeRec().getWidth(); |
| |
| // the phase should be normalized to be [0, sum of all intervals) |
| SkASSERT(phase >= 0 && phase < intervals[0] + intervals[1]); |
| |
| // Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX |
| if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) { |
| SkMatrix rotMatrix; |
| align_to_x_axis(pts, &rotMatrix, lineData.fPtsRot); |
| if (!rotMatrix.invert(&lineData.fSrcRotInv)) { |
| SkDebugf("Failed to create invertible rotation matrix!\n"); |
| return nullptr; |
| } |
| } else { |
| lineData.fSrcRotInv.reset(); |
| memcpy(lineData.fPtsRot, pts, 2 * sizeof(SkPoint)); |
| } |
| |
| // Scale corrections of intervals and stroke from view matrix |
| calc_dash_scaling(&lineData.fParallelScale, &lineData.fPerpendicularScale, viewMatrix, pts); |
| if (SkScalarNearlyZero(lineData.fParallelScale) || |
| SkScalarNearlyZero(lineData.fPerpendicularScale)) { |
| return nullptr; |
| } |
| |
| SkScalar offInterval = intervals[1] * lineData.fParallelScale; |
| SkScalar strokeWidth = lineData.fSrcStrokeWidth * lineData.fPerpendicularScale; |
| |
| if (SkPaint::kSquare_Cap == cap && 0 != lineData.fSrcStrokeWidth) { |
| // add cap to on interval and remove from off interval |
| offInterval -= strokeWidth; |
| } |
| |
| // TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA) |
| bool fullDash = offInterval > 0.f || aaMode != AAMode::kNone; |
| |
| lineData.fViewMatrix = viewMatrix; |
| lineData.fPhase = phase; |
| lineData.fIntervals[0] = intervals[0]; |
| lineData.fIntervals[1] = intervals[1]; |
| |
| return DashOpImpl::Make(context, std::move(paint), lineData, cap, aaMode, fullDash, |
| stencilSettings); |
| } |
| |
| // Returns whether or not the gpu can fast path the dash line effect. |
| bool CanDrawDashLine(const SkPoint pts[2], const GrStyle& style, const SkMatrix& viewMatrix) { |
| // Pts must be either horizontal or vertical in src space |
| if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) { |
| return false; |
| } |
| |
| // May be able to relax this to include skew. As of now cannot do perspective |
| // because of the non uniform scaling of bloating a rect |
| if (!viewMatrix.preservesRightAngles()) { |
| return false; |
| } |
| |
| if (!style.isDashed() || 2 != style.dashIntervalCnt()) { |
| return false; |
| } |
| |
| const SkScalar* intervals = style.dashIntervals(); |
| if (0 == intervals[0] && 0 == intervals[1]) { |
| return false; |
| } |
| |
| SkPaint::Cap cap = style.strokeRec().getCap(); |
| if (SkPaint::kRound_Cap == cap) { |
| // Current we don't support round caps unless the on interval is zero |
| if (intervals[0] != 0.f) { |
| return false; |
| } |
| // If the width of the circle caps in greater than the off interval we will pick up unwanted |
| // segments of circles at the start and end of the dash line. |
| if (style.strokeRec().getWidth() > intervals[1]) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| } // namespace skgpu::ganesh::DashOp |
| |
| #if GR_TEST_UTILS |
| |
| #include "src/gpu/ganesh/GrDrawOpTest.h" |
| |
| GR_DRAW_OP_TEST_DEFINE(DashOpImpl) { |
| SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); |
| AAMode aaMode; |
| do { |
| aaMode = static_cast<AAMode>(random->nextULessThan(kAAModeCnt)); |
| } while (AAMode::kCoverageWithMSAA == aaMode && numSamples <= 1); |
| |
| // We can only dash either horizontal or vertical lines |
| SkPoint pts[2]; |
| if (random->nextBool()) { |
| // vertical |
| pts[0].fX = 1.f; |
| pts[0].fY = random->nextF() * 10.f; |
| pts[1].fX = 1.f; |
| pts[1].fY = random->nextF() * 10.f; |
| } else { |
| // horizontal |
| pts[0].fX = random->nextF() * 10.f; |
| pts[0].fY = 1.f; |
| pts[1].fX = random->nextF() * 10.f; |
| pts[1].fY = 1.f; |
| } |
| |
| // pick random cap |
| SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::kCapCount)); |
| |
| SkScalar intervals[2]; |
| |
| // We can only dash with the following intervals |
| enum Intervals { |
| kOpenOpen_Intervals , |
| kOpenClose_Intervals, |
| kCloseOpen_Intervals, |
| }; |
| |
| Intervals intervalType = SkPaint::kRound_Cap == cap ? |
| kOpenClose_Intervals : |
| Intervals(random->nextULessThan(kCloseOpen_Intervals + 1)); |
| static const SkScalar kIntervalMin = 0.1f; |
| static const SkScalar kIntervalMinCircles = 1.f; // Must be >= to stroke width |
| static const SkScalar kIntervalMax = 10.f; |
| switch (intervalType) { |
| case kOpenOpen_Intervals: |
| intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| break; |
| case kOpenClose_Intervals: { |
| intervals[0] = 0.f; |
| SkScalar min = SkPaint::kRound_Cap == cap ? kIntervalMinCircles : kIntervalMin; |
| intervals[1] = random->nextRangeScalar(min, kIntervalMax); |
| break; |
| } |
| case kCloseOpen_Intervals: |
| intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| intervals[1] = 0.f; |
| break; |
| |
| } |
| |
| // phase is 0 < sum (i0, i1) |
| SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]); |
| |
| SkPaint p; |
| p.setStyle(SkPaint::kStroke_Style); |
| p.setStrokeWidth(SkIntToScalar(1)); |
| p.setStrokeCap(cap); |
| p.setPathEffect(GrTest::TestDashPathEffect::Make(intervals, 2, phase)); |
| |
| GrStyle style(p); |
| |
| return skgpu::ganesh::DashOp::MakeDashLineOp(context, std::move(paint), viewMatrix, pts, aaMode, |
| style, GrGetRandomStencil(random, context)); |
| } |
| |
| #endif // GR_TEST_UTILS |