| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/ops/AAConvexPathRenderer.h" |
| |
| #include "include/core/SkString.h" |
| #include "include/core/SkTypes.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/core/SkPointPriv.h" |
| #include "src/gpu/BufferWriter.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrAuditTrail.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrDrawOpTest.h" |
| #include "src/gpu/ganesh/GrGeometryProcessor.h" |
| #include "src/gpu/ganesh/GrProcessor.h" |
| #include "src/gpu/ganesh/GrProcessorUnitTest.h" |
| #include "src/gpu/ganesh/GrProgramInfo.h" |
| #include "src/gpu/ganesh/SurfaceDrawContext.h" |
| #include "src/gpu/ganesh/geometry/GrPathUtils.h" |
| #include "src/gpu/ganesh/geometry/GrStyledShape.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/ganesh/ops/GrMeshDrawOp.h" |
| #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelperWithStencil.h" |
| |
| namespace skgpu::v1 { |
| |
| namespace { |
| |
| struct Segment { |
| enum { |
| // These enum values are assumed in member functions below. |
| kLine = 0, |
| kQuad = 1, |
| } fType; |
| |
| // line uses one pt, quad uses 2 pts |
| SkPoint fPts[2]; |
| // normal to edge ending at each pt |
| SkVector fNorms[2]; |
| // is the corner where the previous segment meets this segment |
| // sharp. If so, fMid is a normalized bisector facing outward. |
| SkVector fMid; |
| |
| int countPoints() { |
| static_assert(0 == kLine && 1 == kQuad); |
| return fType + 1; |
| } |
| const SkPoint& endPt() const { |
| static_assert(0 == kLine && 1 == kQuad); |
| return fPts[fType]; |
| } |
| const SkPoint& endNorm() const { |
| static_assert(0 == kLine && 1 == kQuad); |
| return fNorms[fType]; |
| } |
| }; |
| |
| typedef SkTArray<Segment, true> SegmentArray; |
| |
| bool center_of_mass(const SegmentArray& segments, SkPoint* c) { |
| SkScalar area = 0; |
| SkPoint center = {0, 0}; |
| int count = segments.size(); |
| if (count <= 0) { |
| return false; |
| } |
| SkPoint p0 = {0, 0}; |
| if (count > 2) { |
| // We translate the polygon so that the first point is at the origin. |
| // This avoids some precision issues with small area polygons far away |
| // from the origin. |
| p0 = segments[0].endPt(); |
| SkPoint pi; |
| SkPoint pj; |
| // the first and last iteration of the below loop would compute |
| // zeros since the starting / ending point is (0,0). So instead we start |
| // at i=1 and make the last iteration i=count-2. |
| pj = segments[1].endPt() - p0; |
| for (int i = 1; i < count - 1; ++i) { |
| pi = pj; |
| pj = segments[i + 1].endPt() - p0; |
| |
| SkScalar t = SkPoint::CrossProduct(pi, pj); |
| area += t; |
| center.fX += (pi.fX + pj.fX) * t; |
| center.fY += (pi.fY + pj.fY) * t; |
| } |
| } |
| |
| // If the poly has no area then we instead return the average of |
| // its points. |
| if (SkScalarNearlyZero(area)) { |
| SkPoint avg; |
| avg.set(0, 0); |
| for (int i = 0; i < count; ++i) { |
| const SkPoint& pt = segments[i].endPt(); |
| avg.fX += pt.fX; |
| avg.fY += pt.fY; |
| } |
| SkScalar denom = SK_Scalar1 / count; |
| avg.scale(denom); |
| *c = avg; |
| } else { |
| area *= 3; |
| area = SkScalarInvert(area); |
| center.scale(area); |
| // undo the translate of p0 to the origin. |
| *c = center + p0; |
| } |
| return !SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY) && c->isFinite(); |
| } |
| |
| bool compute_vectors(SegmentArray* segments, |
| SkPoint* fanPt, |
| SkPathFirstDirection dir, |
| int* vCount, |
| int* iCount) { |
| if (!center_of_mass(*segments, fanPt)) { |
| return false; |
| } |
| int count = segments->size(); |
| |
| // Make the normals point towards the outside |
| SkPointPriv::Side normSide; |
| if (dir == SkPathFirstDirection::kCCW) { |
| normSide = SkPointPriv::kRight_Side; |
| } else { |
| normSide = SkPointPriv::kLeft_Side; |
| } |
| |
| int64_t vCount64 = 0; |
| int64_t iCount64 = 0; |
| // compute normals at all points |
| for (int a = 0; a < count; ++a) { |
| Segment& sega = (*segments)[a]; |
| int b = (a + 1) % count; |
| Segment& segb = (*segments)[b]; |
| |
| const SkPoint* prevPt = &sega.endPt(); |
| int n = segb.countPoints(); |
| for (int p = 0; p < n; ++p) { |
| segb.fNorms[p] = segb.fPts[p] - *prevPt; |
| segb.fNorms[p].normalize(); |
| segb.fNorms[p] = SkPointPriv::MakeOrthog(segb.fNorms[p], normSide); |
| prevPt = &segb.fPts[p]; |
| } |
| if (Segment::kLine == segb.fType) { |
| vCount64 += 5; |
| iCount64 += 9; |
| } else { |
| vCount64 += 6; |
| iCount64 += 12; |
| } |
| } |
| |
| // compute mid-vectors where segments meet. TODO: Detect shallow corners |
| // and leave out the wedges and close gaps by stitching segments together. |
| for (int a = 0; a < count; ++a) { |
| const Segment& sega = (*segments)[a]; |
| int b = (a + 1) % count; |
| Segment& segb = (*segments)[b]; |
| segb.fMid = segb.fNorms[0] + sega.endNorm(); |
| segb.fMid.normalize(); |
| // corner wedges |
| vCount64 += 4; |
| iCount64 += 6; |
| } |
| if (vCount64 > SK_MaxS32 || iCount64 > SK_MaxS32) { |
| return false; |
| } |
| *vCount = vCount64; |
| *iCount = iCount64; |
| return true; |
| } |
| |
| struct DegenerateTestData { |
| DegenerateTestData() { fStage = kInitial; } |
| bool isDegenerate() const { return kNonDegenerate != fStage; } |
| enum { |
| kInitial, |
| kPoint, |
| kLine, |
| kNonDegenerate |
| } fStage; |
| SkPoint fFirstPoint; |
| SkVector fLineNormal; |
| SkScalar fLineC; |
| }; |
| |
| static const SkScalar kClose = (SK_Scalar1 / 16); |
| static const SkScalar kCloseSqd = kClose * kClose; |
| |
| void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { |
| switch (data->fStage) { |
| case DegenerateTestData::kInitial: |
| data->fFirstPoint = pt; |
| data->fStage = DegenerateTestData::kPoint; |
| break; |
| case DegenerateTestData::kPoint: |
| if (SkPointPriv::DistanceToSqd(pt, data->fFirstPoint) > kCloseSqd) { |
| data->fLineNormal = pt - data->fFirstPoint; |
| data->fLineNormal.normalize(); |
| data->fLineNormal = SkPointPriv::MakeOrthog(data->fLineNormal); |
| data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); |
| data->fStage = DegenerateTestData::kLine; |
| } |
| break; |
| case DegenerateTestData::kLine: |
| if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { |
| data->fStage = DegenerateTestData::kNonDegenerate; |
| } |
| break; |
| case DegenerateTestData::kNonDegenerate: |
| break; |
| default: |
| SK_ABORT("Unexpected degenerate test stage."); |
| } |
| } |
| |
| inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPathFirstDirection* dir) { |
| // At this point, we've already returned true from canDraw(), which checked that the path's |
| // direction could be determined, so this should just be fetching the cached direction. |
| // However, if perspective is involved, we're operating on a transformed path, which may no |
| // longer have a computable direction. |
| *dir = SkPathPriv::ComputeFirstDirection(path); |
| if (*dir == SkPathFirstDirection::kUnknown) { |
| return false; |
| } |
| |
| // check whether m reverses the orientation |
| SkASSERT(!m.hasPerspective()); |
| SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) - |
| m.get(SkMatrix::kMSkewX) * m.get(SkMatrix::kMSkewY); |
| if (det2x2 < 0) { |
| *dir = SkPathPriv::OppositeFirstDirection(*dir); |
| } |
| |
| return true; |
| } |
| |
| inline void add_line_to_segment(const SkPoint& pt, SegmentArray* segments) { |
| segments->push_back(); |
| segments->back().fType = Segment::kLine; |
| segments->back().fPts[0] = pt; |
| } |
| |
| inline void add_quad_segment(const SkPoint pts[3], SegmentArray* segments) { |
| if (SkPointPriv::DistanceToLineSegmentBetweenSqd(pts[1], pts[0], pts[2]) < kCloseSqd) { |
| if (pts[0] != pts[2]) { |
| add_line_to_segment(pts[2], segments); |
| } |
| } else { |
| segments->push_back(); |
| segments->back().fType = Segment::kQuad; |
| segments->back().fPts[0] = pts[1]; |
| segments->back().fPts[1] = pts[2]; |
| } |
| } |
| |
| inline void add_cubic_segments(const SkPoint pts[4], |
| SkPathFirstDirection dir, |
| SegmentArray* segments) { |
| SkSTArray<15, SkPoint, true> quads; |
| GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads); |
| int count = quads.size(); |
| for (int q = 0; q < count; q += 3) { |
| add_quad_segment(&quads[q], segments); |
| } |
| } |
| |
| bool get_segments(const SkPath& path, |
| const SkMatrix& m, |
| SegmentArray* segments, |
| SkPoint* fanPt, |
| int* vCount, |
| int* iCount) { |
| SkPath::Iter iter(path, true); |
| // This renderer over-emphasizes very thin path regions. We use the distance |
| // to the path from the sample to compute coverage. Every pixel intersected |
| // by the path will be hit and the maximum distance is sqrt(2)/2. We don't |
| // notice that the sample may be close to a very thin area of the path and |
| // thus should be very light. This is particularly egregious for degenerate |
| // line paths. We detect paths that are very close to a line (zero area) and |
| // draw nothing. |
| DegenerateTestData degenerateData; |
| SkPathFirstDirection dir; |
| if (!get_direction(path, m, &dir)) { |
| return false; |
| } |
| |
| for (;;) { |
| SkPoint pts[4]; |
| SkPath::Verb verb = iter.next(pts); |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| m.mapPoints(pts, 1); |
| update_degenerate_test(°enerateData, pts[0]); |
| break; |
| case SkPath::kLine_Verb: { |
| if (!SkPathPriv::AllPointsEq(pts, 2)) { |
| m.mapPoints(&pts[1], 1); |
| update_degenerate_test(°enerateData, pts[1]); |
| add_line_to_segment(pts[1], segments); |
| } |
| break; |
| } |
| case SkPath::kQuad_Verb: |
| if (!SkPathPriv::AllPointsEq(pts, 3)) { |
| m.mapPoints(pts, 3); |
| update_degenerate_test(°enerateData, pts[1]); |
| update_degenerate_test(°enerateData, pts[2]); |
| add_quad_segment(pts, segments); |
| } |
| break; |
| case SkPath::kConic_Verb: { |
| if (!SkPathPriv::AllPointsEq(pts, 3)) { |
| m.mapPoints(pts, 3); |
| SkScalar weight = iter.conicWeight(); |
| SkAutoConicToQuads converter; |
| const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f); |
| for (int i = 0; i < converter.countQuads(); ++i) { |
| update_degenerate_test(°enerateData, quadPts[2*i + 1]); |
| update_degenerate_test(°enerateData, quadPts[2*i + 2]); |
| add_quad_segment(quadPts + 2*i, segments); |
| } |
| } |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| if (!SkPathPriv::AllPointsEq(pts, 4)) { |
| m.mapPoints(pts, 4); |
| update_degenerate_test(°enerateData, pts[1]); |
| update_degenerate_test(°enerateData, pts[2]); |
| update_degenerate_test(°enerateData, pts[3]); |
| add_cubic_segments(pts, dir, segments); |
| } |
| break; |
| } |
| case SkPath::kDone_Verb: |
| if (degenerateData.isDegenerate()) { |
| return false; |
| } else { |
| return compute_vectors(segments, fanPt, dir, vCount, iCount); |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| struct Draw { |
| Draw() : fVertexCnt(0), fIndexCnt(0) {} |
| int fVertexCnt; |
| int fIndexCnt; |
| }; |
| |
| typedef SkTArray<Draw, true> DrawArray; |
| |
| void create_vertices(const SegmentArray& segments, |
| const SkPoint& fanPt, |
| const VertexColor& color, |
| DrawArray* draws, |
| VertexWriter& verts, |
| uint16_t* idxs, |
| size_t vertexStride) { |
| Draw* draw = &draws->push_back(); |
| // alias just to make vert/index assignments easier to read. |
| int* v = &draw->fVertexCnt; |
| int* i = &draw->fIndexCnt; |
| |
| int count = segments.size(); |
| for (int a = 0; a < count; ++a) { |
| const Segment& sega = segments[a]; |
| int b = (a + 1) % count; |
| const Segment& segb = segments[b]; |
| |
| // Check whether adding the verts for this segment to the current draw would cause index |
| // values to overflow. |
| int vCount = 4; |
| if (Segment::kLine == segb.fType) { |
| vCount += 5; |
| } else { |
| vCount += 6; |
| } |
| if (draw->fVertexCnt + vCount > (1 << 16)) { |
| idxs += *i; |
| draw = &draws->push_back(); |
| v = &draw->fVertexCnt; |
| i = &draw->fIndexCnt; |
| } |
| |
| const SkScalar negOneDists[2] = { -SK_Scalar1, -SK_Scalar1 }; |
| |
| // FIXME: These tris are inset in the 1 unit arc around the corner |
| SkPoint p0 = sega.endPt(); |
| // Position, Color, UV, D0, D1 |
| verts << p0 << color << SkPoint{0, 0} << negOneDists; |
| verts << (p0 + sega.endNorm()) << color << SkPoint{0, -SK_Scalar1} << negOneDists; |
| verts << (p0 + segb.fMid) << color << SkPoint{0, -SK_Scalar1} << negOneDists; |
| verts << (p0 + segb.fNorms[0]) << color << SkPoint{0, -SK_Scalar1} << negOneDists; |
| |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| idxs[*i + 3] = *v + 0; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| *v += 4; |
| *i += 6; |
| |
| if (Segment::kLine == segb.fType) { |
| // we draw the line edge as a degenerate quad (u is 0, v is the |
| // signed distance to the edge) |
| SkPoint v1Pos = sega.endPt(); |
| SkPoint v2Pos = segb.fPts[0]; |
| SkScalar dist = SkPointPriv::DistanceToLineBetween(fanPt, v1Pos, v2Pos); |
| |
| verts << fanPt << color << SkPoint{0, dist} << negOneDists; |
| verts << v1Pos << color << SkPoint{0, 0} << negOneDists; |
| verts << v2Pos << color << SkPoint{0, 0} << negOneDists; |
| verts << (v1Pos + segb.fNorms[0]) << color << SkPoint{0, -SK_Scalar1} << negOneDists; |
| verts << (v2Pos + segb.fNorms[0]) << color << SkPoint{0, -SK_Scalar1} << negOneDists; |
| |
| idxs[*i + 0] = *v + 3; |
| idxs[*i + 1] = *v + 1; |
| idxs[*i + 2] = *v + 2; |
| |
| idxs[*i + 3] = *v + 4; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| *i += 6; |
| |
| // Draw the interior fan if it exists. |
| // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| // with no interior, and that the resulting shared edge uses the same endpoints. |
| if (count >= 3) { |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| |
| *i += 3; |
| } |
| |
| *v += 5; |
| } else { |
| SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; |
| |
| SkScalar c0 = segb.fNorms[0].dot(qpts[0]); |
| SkScalar c1 = segb.fNorms[1].dot(qpts[2]); |
| |
| // We must transform the positions into UV in cpu memory and then copy them to the gpu |
| // buffer. If we write the position first into the gpu buffer then calculate the UVs, it |
| // will cause us to read from the GPU buffer which can be very slow. |
| struct PosAndUV { |
| SkPoint fPos; |
| SkPoint fUV; |
| }; |
| PosAndUV posAndUVPoints[6]; |
| posAndUVPoints[0].fPos = fanPt; |
| posAndUVPoints[1].fPos = qpts[0]; |
| posAndUVPoints[2].fPos = qpts[2]; |
| posAndUVPoints[3].fPos = qpts[0] + segb.fNorms[0]; |
| posAndUVPoints[4].fPos = qpts[2] + segb.fNorms[1]; |
| SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; |
| midVec.normalize(); |
| posAndUVPoints[5].fPos = qpts[1] + midVec; |
| |
| GrPathUtils::QuadUVMatrix toUV(qpts); |
| toUV.apply(posAndUVPoints, 6, sizeof(PosAndUV), sizeof(SkPoint)); |
| |
| verts << posAndUVPoints[0].fPos << color << posAndUVPoints[0].fUV |
| << (-segb.fNorms[0].dot(fanPt) + c0) |
| << (-segb.fNorms[1].dot(fanPt) + c1); |
| |
| verts << posAndUVPoints[1].fPos << color << posAndUVPoints[1].fUV |
| << 0.0f |
| << (-segb.fNorms[1].dot(qpts[0]) + c1); |
| |
| verts << posAndUVPoints[2].fPos << color << posAndUVPoints[2].fUV |
| << (-segb.fNorms[0].dot(qpts[2]) + c0) |
| << 0.0f; |
| // We need a negative value that is very large that it won't effect results if it is |
| // interpolated with. However, the value can't be too large of a negative that it |
| // effects numerical precision on less powerful GPUs. |
| static const SkScalar kStableLargeNegativeValue = -SK_ScalarMax/1000000; |
| verts << posAndUVPoints[3].fPos << color << posAndUVPoints[3].fUV |
| << kStableLargeNegativeValue |
| << kStableLargeNegativeValue; |
| |
| verts << posAndUVPoints[4].fPos << color << posAndUVPoints[4].fUV |
| << kStableLargeNegativeValue |
| << kStableLargeNegativeValue; |
| |
| verts << posAndUVPoints[5].fPos << color << posAndUVPoints[5].fUV |
| << kStableLargeNegativeValue |
| << kStableLargeNegativeValue; |
| |
| idxs[*i + 0] = *v + 3; |
| idxs[*i + 1] = *v + 1; |
| idxs[*i + 2] = *v + 2; |
| idxs[*i + 3] = *v + 4; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| idxs[*i + 6] = *v + 5; |
| idxs[*i + 7] = *v + 3; |
| idxs[*i + 8] = *v + 4; |
| |
| *i += 9; |
| |
| // Draw the interior fan if it exists. |
| // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| // with no interior, and that the resulting shared edge uses the same endpoints. |
| if (count >= 3) { |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| |
| *i += 3; |
| } |
| |
| *v += 6; |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
| * two components of the vertex attribute. Coverage is based on signed |
| * distance with negative being inside, positive outside. The edge is specified in |
| * window space (y-down). If either the third or fourth component of the interpolated |
| * vertex coord is > 0 then the pixel is considered outside the edge. This is used to |
| * attempt to trim to a portion of the infinite quad. |
| * Requires shader derivative instruction support. |
| */ |
| |
| class QuadEdgeEffect : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, |
| const SkMatrix& localMatrix, |
| bool usesLocalCoords, |
| bool wideColor) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) QuadEdgeEffect(localMatrix, usesLocalCoords, wideColor); |
| }); |
| } |
| |
| ~QuadEdgeEffect() override {} |
| |
| const char* name() const override { return "QuadEdge"; } |
| |
| void addToKey(const GrShaderCaps& caps, KeyBuilder* b) const override { |
| b->addBool(fUsesLocalCoords, "usesLocalCoords"); |
| b->addBits(ProgramImpl::kMatrixKeyBits, |
| ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix), |
| "localMatrixType"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override; |
| |
| private: |
| QuadEdgeEffect(const SkMatrix& localMatrix, bool usesLocalCoords, bool wideColor) |
| : INHERITED(kQuadEdgeEffect_ClassID) |
| , fLocalMatrix(localMatrix) |
| , fUsesLocalCoords(usesLocalCoords) { |
| fInPosition = {"inPosition", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fInColor = MakeColorAttribute("inColor", wideColor); |
| // GL on iOS 14 needs more precision for the quadedge attributes |
| fInQuadEdge = {"inQuadEdge", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| this->setVertexAttributesWithImplicitOffsets(&fInPosition, 3); |
| } |
| |
| Attribute fInPosition; |
| Attribute fInColor; |
| Attribute fInQuadEdge; |
| |
| SkMatrix fLocalMatrix; |
| bool fUsesLocalCoords; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> QuadEdgeEffect::makeProgramImpl( |
| const GrShaderCaps&) const { |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps& shaderCaps, |
| const GrGeometryProcessor& geomProc) override { |
| const QuadEdgeEffect& qe = geomProc.cast<QuadEdgeEffect>(); |
| SetTransform(pdman, shaderCaps, fLocalMatrixUniform, qe.fLocalMatrix, &fLocalMatrix); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const QuadEdgeEffect& qe = args.fGeomProc.cast<QuadEdgeEffect>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(qe); |
| |
| // GL on iOS 14 needs more precision for the quadedge attributes |
| // We might as well enable it everywhere |
| GrGLSLVarying v(SkSLType::kFloat4); |
| varyingHandler->addVarying("QuadEdge", &v); |
| vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.fInQuadEdge.name()); |
| |
| // Setup pass through color |
| fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute(qe.fInColor.asShaderVar(), args.fOutputColor); |
| |
| // Setup position |
| WriteOutputPosition(vertBuilder, gpArgs, qe.fInPosition.name()); |
| if (qe.fUsesLocalCoords) { |
| WriteLocalCoord(vertBuilder, |
| uniformHandler, |
| *args.fShaderCaps, |
| gpArgs, |
| qe.fInPosition.asShaderVar(), |
| qe.fLocalMatrix, |
| &fLocalMatrixUniform); |
| } |
| |
| fragBuilder->codeAppendf("half edgeAlpha;"); |
| |
| // keep the derivative instructions outside the conditional |
| fragBuilder->codeAppendf("half2 duvdx = half2(dFdx(%s.xy));", v.fsIn()); |
| fragBuilder->codeAppendf("half2 duvdy = half2(dFdy(%s.xy));", v.fsIn()); |
| fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); |
| // today we know z and w are in device space. We could use derivatives |
| fragBuilder->codeAppendf("edgeAlpha = half(min(min(%s.z, %s.w) + 0.5, 1.0));", v.fsIn(), |
| v.fsIn()); |
| fragBuilder->codeAppendf ("} else {"); |
| fragBuilder->codeAppendf("half2 gF = half2(half(2.0*%s.x*duvdx.x - duvdx.y)," |
| " half(2.0*%s.x*duvdy.x - duvdy.y));", |
| v.fsIn(), v.fsIn()); |
| fragBuilder->codeAppendf("edgeAlpha = half(%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), |
| v.fsIn()); |
| fragBuilder->codeAppendf("edgeAlpha = " |
| "saturate(0.5 - edgeAlpha / length(gF));}"); |
| |
| fragBuilder->codeAppendf("half4 %s = half4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| private: |
| SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); |
| |
| UniformHandle fLocalMatrixUniform; |
| }; |
| |
| return std::make_unique<Impl>(); |
| } |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect) |
| |
| #if GR_TEST_UTILS |
| GrGeometryProcessor* QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { |
| SkMatrix localMatrix = GrTest::TestMatrix(d->fRandom); |
| bool usesLocalCoords = d->fRandom->nextBool(); |
| bool wideColor = d->fRandom->nextBool(); |
| // Doesn't work without derivative instructions. |
| return d->caps()->shaderCaps()->fShaderDerivativeSupport |
| ? QuadEdgeEffect::Make(d->allocator(), localMatrix, usesLocalCoords, wideColor) |
| : nullptr; |
| } |
| #endif |
| |
| class AAConvexPathOp final : public GrMeshDrawOp { |
| private: |
| using Helper = GrSimpleMeshDrawOpHelperWithStencil; |
| |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static GrOp::Owner Make(GrRecordingContext* context, |
| GrPaint&& paint, |
| const SkMatrix& viewMatrix, |
| const SkPath& path, |
| const GrUserStencilSettings* stencilSettings) { |
| return Helper::FactoryHelper<AAConvexPathOp>(context, std::move(paint), viewMatrix, path, |
| stencilSettings); |
| } |
| |
| AAConvexPathOp(GrProcessorSet* processorSet, const SkPMColor4f& color, |
| const SkMatrix& viewMatrix, const SkPath& path, |
| const GrUserStencilSettings* stencilSettings) |
| : INHERITED(ClassID()), fHelper(processorSet, GrAAType::kCoverage, stencilSettings) { |
| fPaths.emplace_back(PathData{viewMatrix, path, color}); |
| this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, |
| IsHairline::kNo); |
| } |
| |
| const char* name() const override { return "AAConvexPathOp"; } |
| |
| void visitProxies(const GrVisitProxyFunc& func) const override { |
| if (fProgramInfo) { |
| fProgramInfo->visitFPProxies(func); |
| } else { |
| fHelper.visitProxies(func); |
| } |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| |
| GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, |
| GrClampType clampType) override { |
| return fHelper.finalizeProcessors( |
| caps, clip, clampType, GrProcessorAnalysisCoverage::kSingleChannel, |
| &fPaths.back().fColor, &fWideColor); |
| } |
| |
| private: |
| GrProgramInfo* programInfo() override { return fProgramInfo; } |
| |
| void onCreateProgramInfo(const GrCaps* caps, |
| SkArenaAlloc* arena, |
| const GrSurfaceProxyView& writeView, |
| bool usesMSAASurface, |
| GrAppliedClip&& appliedClip, |
| const GrDstProxyView& dstProxyView, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override { |
| SkMatrix invert; |
| if (fHelper.usesLocalCoords() && !fPaths.back().fViewMatrix.invert(&invert)) { |
| return; |
| } |
| |
| GrGeometryProcessor* quadProcessor = QuadEdgeEffect::Make(arena, invert, |
| fHelper.usesLocalCoords(), |
| fWideColor); |
| |
| fProgramInfo = fHelper.createProgramInfoWithStencil(caps, arena, writeView, usesMSAASurface, |
| std::move(appliedClip), |
| dstProxyView, quadProcessor, |
| GrPrimitiveType::kTriangles, |
| renderPassXferBarriers, colorLoadOp); |
| } |
| |
| void onPrepareDraws(GrMeshDrawTarget* target) override { |
| int instanceCount = fPaths.size(); |
| |
| if (!fProgramInfo) { |
| this->createProgramInfo(target); |
| if (!fProgramInfo) { |
| return; |
| } |
| } |
| |
| const size_t kVertexStride = fProgramInfo->geomProc().vertexStride(); |
| |
| fDraws.reserve(instanceCount); |
| |
| // TODO generate all segments for all paths and use one vertex buffer |
| for (int i = 0; i < instanceCount; i++) { |
| const PathData& args = fPaths[i]; |
| |
| // We use the fact that SkPath::transform path does subdivision based on |
| // perspective. Otherwise, we apply the view matrix when copying to the |
| // segment representation. |
| const SkMatrix* viewMatrix = &args.fViewMatrix; |
| |
| // We avoid initializing the path unless we have to |
| const SkPath* pathPtr = &args.fPath; |
| SkTLazy<SkPath> tmpPath; |
| if (viewMatrix->hasPerspective()) { |
| SkPath* tmpPathPtr = tmpPath.init(*pathPtr); |
| tmpPathPtr->setIsVolatile(true); |
| tmpPathPtr->transform(*viewMatrix); |
| viewMatrix = &SkMatrix::I(); |
| pathPtr = tmpPathPtr; |
| } |
| |
| int vertexCount; |
| int indexCount; |
| enum { |
| kPreallocSegmentCnt = 512 / sizeof(Segment), |
| kPreallocDrawCnt = 4, |
| }; |
| SkSTArray<kPreallocSegmentCnt, Segment, true> segments; |
| SkPoint fanPt; |
| |
| if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount, |
| &indexCount)) { |
| continue; |
| } |
| |
| sk_sp<const GrBuffer> vertexBuffer; |
| int firstVertex; |
| |
| VertexWriter verts = target->makeVertexWriter(kVertexStride, |
| vertexCount, |
| &vertexBuffer, |
| &firstVertex); |
| |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| sk_sp<const GrBuffer> indexBuffer; |
| int firstIndex; |
| |
| uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); |
| if (!idxs) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| SkSTArray<kPreallocDrawCnt, Draw, true> draws; |
| VertexColor color(args.fColor, fWideColor); |
| create_vertices(segments, fanPt, color, &draws, verts, idxs, kVertexStride); |
| |
| GrSimpleMesh* meshes = target->allocMeshes(draws.size()); |
| for (int j = 0; j < draws.size(); ++j) { |
| const Draw& draw = draws[j]; |
| meshes[j].setIndexed(indexBuffer, draw.fIndexCnt, firstIndex, 0, |
| draw.fVertexCnt - 1, GrPrimitiveRestart::kNo, vertexBuffer, |
| firstVertex); |
| firstIndex += draw.fIndexCnt; |
| firstVertex += draw.fVertexCnt; |
| } |
| |
| fDraws.push_back({ meshes, draws.size() }); |
| } |
| } |
| |
| void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| if (!fProgramInfo || fDraws.empty()) { |
| return; |
| } |
| |
| flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); |
| for (int i = 0; i < fDraws.size(); ++i) { |
| for (int j = 0; j < fDraws[i].fMeshCount; ++j) { |
| flushState->drawMesh(fDraws[i].fMeshes[j]); |
| } |
| } |
| } |
| |
| CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { |
| AAConvexPathOp* that = t->cast<AAConvexPathOp>(); |
| if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| return CombineResult::kCannotCombine; |
| } |
| if (fHelper.usesLocalCoords() && |
| !SkMatrixPriv::CheapEqual(fPaths[0].fViewMatrix, that->fPaths[0].fViewMatrix)) { |
| return CombineResult::kCannotCombine; |
| } |
| |
| fPaths.push_back_n(that->fPaths.size(), that->fPaths.begin()); |
| fWideColor |= that->fWideColor; |
| return CombineResult::kMerged; |
| } |
| |
| #if GR_TEST_UTILS |
| SkString onDumpInfo() const override { |
| return SkStringPrintf("Count: %d\n%s", fPaths.size(), fHelper.dumpInfo().c_str()); |
| } |
| #endif |
| |
| struct PathData { |
| SkMatrix fViewMatrix; |
| SkPath fPath; |
| SkPMColor4f fColor; |
| }; |
| |
| Helper fHelper; |
| SkSTArray<1, PathData, true> fPaths; |
| bool fWideColor; |
| |
| struct MeshDraw { |
| GrSimpleMesh* fMeshes; |
| int fMeshCount; |
| }; |
| |
| SkTDArray<MeshDraw> fDraws; |
| GrProgramInfo* fProgramInfo = nullptr; |
| |
| using INHERITED = GrMeshDrawOp; |
| }; |
| |
| } // anonymous namespace |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| PathRenderer::CanDrawPath AAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
| // This check requires convexity and known direction, since the direction is used to build |
| // the geometry segments. Degenerate convex paths will fall through to some other path renderer. |
| if (args.fCaps->shaderCaps()->fShaderDerivativeSupport && |
| (GrAAType::kCoverage == args.fAAType) && args.fShape->style().isSimpleFill() && |
| !args.fShape->inverseFilled() && args.fShape->knownToBeConvex() && |
| args.fShape->knownDirection()) { |
| return CanDrawPath::kYes; |
| } |
| return CanDrawPath::kNo; |
| } |
| |
| bool AAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { |
| GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(), |
| "AAConvexPathRenderer::onDrawPath"); |
| SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1); |
| SkASSERT(!args.fShape->isEmpty()); |
| |
| SkPath path; |
| args.fShape->asPath(&path); |
| |
| GrOp::Owner op = AAConvexPathOp::Make(args.fContext, std::move(args.fPaint), |
| *args.fViewMatrix, |
| path, args.fUserStencilSettings); |
| args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op)); |
| return true; |
| } |
| |
| } // namespace skgpu::v1 |
| |
| #if GR_TEST_UTILS |
| |
| GR_DRAW_OP_TEST_DEFINE(AAConvexPathOp) { |
| SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); |
| const SkPath& path = GrTest::TestPathConvex(random); |
| const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context); |
| return skgpu::v1::AAConvexPathOp::Make(context, std::move(paint), viewMatrix, path, |
| stencilSettings); |
| } |
| |
| #endif |