| // Not exposed in shared module |
| |
| $pure $genIType mix($genIType x, $genIType y, $genBType a); |
| $pure $genBType mix($genBType x, $genBType y, $genBType a); |
| $pure $genType fma($genType a, $genType b, $genType c); |
| $pure $genHType fma($genHType a, $genHType b, $genHType c); |
| $genType frexp($genType x, out $genIType exp); |
| $genHType frexp($genHType x, out $genIType exp); |
| $pure $genType ldexp($genType x, in $genIType exp); |
| $pure $genHType ldexp($genHType x, in $genIType exp); |
| |
| $pure uint packSnorm2x16(float2 v); |
| $pure uint packUnorm4x8(float4 v); |
| $pure uint packSnorm4x8(float4 v); |
| $pure float2 unpackSnorm2x16(uint p); |
| $pure float4 unpackUnorm4x8(uint p); |
| $pure float4 unpackSnorm4x8(uint p); |
| $pure uint packHalf2x16(float2 v); |
| $pure float2 unpackHalf2x16(uint v); |
| |
| $pure $genIType bitCount($genIType value); |
| $pure $genIType bitCount($genUType value); |
| $pure $genIType findLSB($genIType value); |
| $pure $genIType findLSB($genUType value); |
| $pure $genIType findMSB($genIType value); |
| $pure $genIType findMSB($genUType value); |
| |
| $pure half4 sample(sampler2D s, float2 P); |
| $pure half4 sample(sampler2D s, float3 P); |
| $pure half4 sample(sampler2D s, float3 P, float bias); |
| |
| $pure half4 sample(samplerExternalOES s, float2 P); |
| $pure half4 sample(samplerExternalOES s, float2 P, float bias); |
| |
| $pure half4 sample(sampler2DRect s, float2 P); |
| $pure half4 sample(sampler2DRect s, float3 P); |
| |
| $pure half4 sampleLod(sampler2D s, float2 P, float lod); |
| $pure half4 sampleLod(sampler2D s, float3 P, float lod); |
| |
| $pure half4 sampleGrad(sampler2D s, float2, float2 dPdx, float2 dPdy); |
| |
| // Currently we do not support the generic types of loading subpassInput so we have some explicit |
| // versions that we currently use |
| $pure half4 subpassLoad(subpassInput subpass); |
| $pure half4 subpassLoad(subpassInputMS subpass, int sample); |
| |
| /** Atomically loads the value from `a` and returns it. */ |
| $pure uint atomicLoad(atomicUint a); |
| |
| /** Atomically stores the value of `value` to `a` */ |
| void atomicStore(atomicUint a, uint value); |
| |
| /** |
| * Performs an atomic addition of `value` to the contents of `a` and returns the original contents |
| * of `a` from before the addition occurred. |
| */ |
| uint atomicAdd(atomicUint a, uint value); |
| |
| // Definitions of functions implementing all of the SkBlendMode blends. |
| |
| $pure half4 blend_clear(half4 src, half4 dst) { return half4(0); } |
| |
| $pure half4 blend_src(half4 src, half4 dst) { return src; } |
| |
| $pure half4 blend_dst(half4 src, half4 dst) { return dst; } |
| |
| $pure half4 blend_src_over(half4 src, half4 dst) { return src + (1 - src.a)*dst; } |
| |
| $pure half4 blend_dst_over(half4 src, half4 dst) { return (1 - dst.a)*src + dst; } |
| |
| $pure half4 blend_src_in(half4 src, half4 dst) { return src*dst.a; } |
| |
| $pure half4 blend_dst_in(half4 src, half4 dst) { return dst*src.a; } |
| |
| $pure half4 blend_src_out(half4 src, half4 dst) { return (1 - dst.a)*src; } |
| |
| $pure half4 blend_dst_out(half4 src, half4 dst) { return (1 - src.a)*dst; } |
| |
| $pure half4 blend_src_atop(half4 src, half4 dst) { return dst.a*src + (1 - src.a)*dst; } |
| |
| $pure half4 blend_dst_atop(half4 src, half4 dst) { return (1 - dst.a) * src + src.a*dst; } |
| |
| $pure half4 blend_xor(half4 src, half4 dst) { return (1 - dst.a)*src + (1 - src.a)*dst; } |
| |
| // This multi-purpose Porter-Duff blend function can perform any of the twelve blends above, |
| // when passed one of the following values for BlendOp: |
| // - Clear: 0*src + 0*dst = (0 + 0*dstA)*src + (0 + 0*srcA)*dst = (0, 0, 0, 0) |
| // - Src: 1*src + 0*dst = (1 + 0*dstA)*src + (0 + 0*srcA)*dst = (1, 0, 0, 0) |
| // - Dst: 0*src + 1*dst = (0 + 0*dstA)*src + (1 + 0*srcA)*dst = (0, 1, 0, 0) |
| // - SrcOver: 1*src + (1-srcA)*dst = (1 + 0*dstA)*src + (1 + -1*srcA)*dst = (1, 1, 0, -1) |
| // - DstOver: (1-dstA)*src + 1*dst = (1 + -1*dstA)*src + (1 + 0*srcA)*dst = (1, 1, -1, 0) |
| // - SrcIn: dstA*src + 0*dst = (0 + 1*dstA)*src + (0 + 0*srcA)*dst = (0, 0, 1, 0) |
| // - DstIn: 0*src + srcA*dst = (0 + 0*dstA)*src + (0 + 1*srcA)*dst = (0, 0, 0, 1) |
| // - SrcOut: (1-dstA)*src + 0*dst = (1 + -1*dstA)*src + (0 + 0*srcA)*dst = (1, 0, -1, 0) |
| // - DstOut: 0*src + (1-srcA)*dst = (0 + 0*dstA)*src + (1 + -1*srcA)*dst = (0, 1, 0, -1) |
| // - SrcATop: dstA*src + (1-srcA)*dst = (0 + 1*dstA)*src + (1 + -1*srcA)*dst = (0, 1, 1, -1) |
| // - DstATop: (1-dstA)*src + srcA*dst = (1 + -1*dstA)*src + (0 + 1*srcA)*dst = (1, 0, -1, 1) |
| // - Xor: (1-dstA)*src + (1-srcA)*dst = (1 + -1*dstA)*src + (1 + -1*srcA)*dst = (1, 1, -1, -1) |
| $pure half4 blend_porter_duff(half4 blendOp, half4 src, half4 dst) { |
| // The supported blend modes all have coefficients that are of the form (C + S*alpha), where |
| // alpha is the other color's alpha channel. C can be 0 or 1, S can be -1, 0, or 1. |
| half2 coeff = blendOp.xy + blendOp.zw * half2(dst.a, src.a); |
| return src * coeff.x + dst * coeff.y; |
| } |
| |
| $pure half4 blend_plus(half4 src, half4 dst) { return min(src + dst, 1); } |
| |
| $pure half4 blend_modulate(half4 src, half4 dst) { return src*dst; } |
| |
| $pure half4 blend_screen(half4 src, half4 dst) { return src + (1 - src)*dst; } |
| |
| $pure half $blend_overlay_component(half2 s, half2 d) { |
| return (2*d.x <= d.y) ? 2*s.x*d.x |
| : s.y*d.y - 2*(d.y - d.x)*(s.y - s.x); |
| } |
| |
| $pure half4 blend_overlay(half4 src, half4 dst) { |
| half4 result = half4($blend_overlay_component(src.ra, dst.ra), |
| $blend_overlay_component(src.ga, dst.ga), |
| $blend_overlay_component(src.ba, dst.ba), |
| src.a + (1 - src.a)*dst.a); |
| result.rgb += dst.rgb*(1 - src.a) + src.rgb*(1 - dst.a); |
| return result; |
| } |
| |
| $pure half4 blend_overlay(half flip, half4 a, half4 b) { |
| return blend_overlay(bool(flip) ? b : a, bool(flip) ? a : b); |
| } |
| |
| $pure half4 blend_lighten(half4 src, half4 dst) { |
| half4 result = blend_src_over(src, dst); |
| result.rgb = max(result.rgb, (1 - dst.a)*src.rgb + dst.rgb); |
| return result; |
| } |
| |
| $pure half4 blend_darken(half mode /* darken: 1, lighten: -1 */, half4 src, half4 dst) { |
| half4 a = blend_src_over(src, dst); |
| half3 b = (1 - dst.a) * src.rgb + dst.rgb; // DstOver.rgb |
| a.rgb = mode * min(a.rgb * mode, b.rgb * mode); |
| return a; |
| } |
| |
| $pure half4 blend_darken(half4 src, half4 dst) { |
| return blend_darken(1, src, dst); |
| } |
| |
| // A useful constant to check against when dividing a half-precision denominator. |
| // Denormal half floats (values less than this) will compare not-equal to 0 but can easily cause the |
| // division to overflow to infinity. Even regular values can overflow given the low maximum value. |
| // For instance, any value x > ~3.998 will overflow when divided by $kMinNormalHalf. This is a |
| // reasonable value even for wide gamut colors being input to these blend functions, but the |
| // most correct denominator check is to treat anything with `denom < x/F16_MAX` as division by 0. |
| const half $kMinNormalHalf = 1.0 / (1 << 14); |
| |
| const half $kGuardedDivideEpsilon = sk_Caps.mustGuardDivisionEvenAfterExplicitZeroCheck |
| ? 0.00000001 |
| : 0.0; |
| |
| $pure inline half $guarded_divide(half n, half d) { |
| return n / (d + $kGuardedDivideEpsilon); |
| } |
| |
| $pure inline half3 $guarded_divide(half3 n, half d) { |
| return n / (d + $kGuardedDivideEpsilon); |
| } |
| |
| $pure half $color_dodge_component(half2 s, half2 d) { |
| // The following is a single flow of control implementation of: |
| // if (d.x == 0) { |
| // return s.x*(1 - d.y); |
| // } else { |
| // half delta = s.y - s.x; |
| // if (delta == 0) { |
| // return s.y*d.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| // } else { |
| // delta = min(d.y, $guarded_divide(d.x*s.y, delta)); |
| // return delta*s.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| // } |
| // } |
| // |
| // When d.x == 0, then dxScale forces delta to 0 and simplifying the return value to s.x*(1-d.y) |
| // When s.y-s.x == 0, the mix selects d.y and min(d.y, d.y) leaves delta = d.y |
| // Otherwise the mix selects the delta expression in the final else branch. |
| half dxScale = d.x == 0 ? 0 : 1; |
| half delta = dxScale * min(d.y, abs(s.y-s.x) >= $kMinNormalHalf |
| ? $guarded_divide(d.x*s.y, s.y-s.x) |
| : d.y); |
| return delta*s.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| } |
| |
| $pure half4 blend_color_dodge(half4 src, half4 dst) { |
| return half4($color_dodge_component(src.ra, dst.ra), |
| $color_dodge_component(src.ga, dst.ga), |
| $color_dodge_component(src.ba, dst.ba), |
| src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half $color_burn_component(half2 s, half2 d) { |
| // The following is a single flow of control implementation of: |
| // if (d.y == d.x) { |
| // return s.y*d.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| // } else if (s.x == 0) { |
| // return d.x*(1 - s.y); |
| // } else { |
| // half delta = max(0, d.y - $guarded_divide((d.y - d.x)*s.y, s.x)); |
| // return delta*s.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| // } |
| // |
| // When d.y == d.x, dyTerm is d.y. If s.x is also 0, the second ternary selects d.y, matching |
| // the first if condition. If s.x is not 0, then the $guarded_divide() evaluates to 0 and delta |
| // still evaluates to d.y. |
| // |
| // When d.y != d.x but s.x is 0, then dyTerm is 0 and the delta selects 0, matching the second |
| // if condition. |
| // |
| // Lastly, when d.y != d.x and s.x != 0, the delta evaluates to "d.y - min(d.y, |
| // $guarded_divide(...))", which is equivalent to max(0, d.y - $guarded_divide) except that it |
| // has the benefit of not wrapping the d.y evaluation in a max() to preserve the unclamped |
| // behavior when d.y == d.x. |
| half dyTerm = d.y == d.x ? d.y : 0; |
| half delta = abs(s.x) >= $kMinNormalHalf |
| ? d.y - min(d.y, $guarded_divide((d.y - d.x)*s.y, s.x)) |
| : dyTerm; |
| return delta*s.y + s.x*(1 - d.y) + d.x*(1 - s.y); |
| } |
| |
| $pure half4 blend_color_burn(half4 src, half4 dst) { |
| return half4($color_burn_component(src.ra, dst.ra), |
| $color_burn_component(src.ga, dst.ga), |
| $color_burn_component(src.ba, dst.ba), |
| src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half4 blend_hard_light(half4 src, half4 dst) { |
| return blend_overlay(dst, src); |
| } |
| |
| $pure half $soft_light_component(half2 s, half2 d) { |
| if (2*s.x <= s.y) { |
| return $guarded_divide(d.x*d.x*(s.y - 2*s.x), d.y) + (1 - d.y)*s.x + d.x*(-s.y + 2*s.x + 1); |
| } else if (4.0 * d.x <= d.y) { |
| half DSqd = d.x*d.x; |
| half DCub = DSqd*d.x; |
| half DaSqd = d.y*d.y; |
| half DaCub = DaSqd*d.y; |
| return $guarded_divide(DaSqd*(s.x - d.x*(3*s.y - 6*s.x - 1)) + 12*d.y*DSqd*(s.y - 2*s.x) |
| - 16*DCub * (s.y - 2*s.x) - DaCub*s.x, DaSqd); |
| } else { |
| return d.x*(s.y - 2*s.x + 1) + s.x - sqrt(d.y*d.x)*(s.y - 2*s.x) - d.y*s.x; |
| } |
| } |
| |
| $pure half4 blend_soft_light(half4 src, half4 dst) { |
| return (dst.a == 0) ? src : half4($soft_light_component(src.ra, dst.ra), |
| $soft_light_component(src.ga, dst.ga), |
| $soft_light_component(src.ba, dst.ba), |
| src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half4 blend_difference(half4 src, half4 dst) { |
| return half4(src.rgb + dst.rgb - 2*min(src.rgb*dst.a, dst.rgb*src.a), |
| src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half4 blend_exclusion(half4 src, half4 dst) { |
| return half4(dst.rgb + src.rgb - 2*dst.rgb*src.rgb, src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half4 blend_multiply(half4 src, half4 dst) { |
| return half4((1 - src.a)*dst.rgb + (1 - dst.a)*src.rgb + src.rgb*dst.rgb, |
| src.a + (1 - src.a)*dst.a); |
| } |
| |
| $pure half $blend_color_luminance(half3 color) { return dot(half3(0.3, 0.59, 0.11), color); } |
| |
| $pure half3 $blend_set_color_luminance(half3 hueSatColor, half alpha, half3 lumColor) { |
| half lum = $blend_color_luminance(lumColor); |
| half3 result = lum - $blend_color_luminance(hueSatColor) + hueSatColor; |
| half minComp = min(min(result.r, result.g), result.b); |
| half maxComp = max(max(result.r, result.g), result.b); |
| if (minComp < 0 && lum != minComp) { |
| result = lum + (result - lum) * $guarded_divide(lum, (lum - minComp) + $kMinNormalHalf); |
| } |
| if (maxComp > alpha && maxComp != lum) { |
| result = lum + |
| $guarded_divide((result - lum) * (alpha - lum), (maxComp - lum) + $kMinNormalHalf); |
| } |
| return result; |
| } |
| |
| $pure half $blend_color_saturation(half3 color) { |
| return max(max(color.r, color.g), color.b) - min(min(color.r, color.g), color.b); |
| } |
| |
| $pure half3 $blend_set_color_saturation(half3 color, half3 satColor) { |
| half mn = min(min(color.r, color.g), color.b); |
| half mx = max(max(color.r, color.g), color.b); |
| |
| return (mx > mn) ? ((color - mn) * $blend_color_saturation(satColor)) / (mx - mn) |
| : half3(0); |
| } |
| |
| $pure half4 blend_hslc(half2 flipSat, half4 src, half4 dst) { |
| half alpha = dst.a * src.a; |
| half3 sda = src.rgb * dst.a; |
| half3 dsa = dst.rgb * src.a; |
| half3 l = bool(flipSat.x) ? dsa : sda; |
| half3 r = bool(flipSat.x) ? sda : dsa; |
| if (bool(flipSat.y)) { |
| l = $blend_set_color_saturation(l, r); |
| r = dsa; |
| } |
| return half4($blend_set_color_luminance(l, alpha, r) + dst.rgb - dsa + src.rgb - sda, |
| src.a + dst.a - alpha); |
| } |
| |
| $pure half4 blend_hue(half4 src, half4 dst) { |
| return blend_hslc(half2(0, 1), src, dst); |
| } |
| |
| $pure half4 blend_saturation(half4 src, half4 dst) { |
| return blend_hslc(half2(1), src, dst); |
| } |
| |
| $pure half4 blend_color(half4 src, half4 dst) { |
| return blend_hslc(half2(0), src, dst); |
| } |
| |
| $pure half4 blend_luminosity(half4 src, half4 dst) { |
| return blend_hslc(half2(1, 0), src, dst); |
| } |
| |
| $pure float2 proj(float3 p) { return p.xy / p.z; } |
| |
| // Implement cross() as a determinant to communicate our intent more clearly to the compiler. |
| // NOTE: Due to precision issues, it might be the case that cross(a, a) != 0. |
| $pure float cross_length_2d(float2 a, float2 b) { |
| return determinant(float2x2(a, b)); |
| } |
| |
| $pure half cross_length_2d(half2 a, half2 b) { |
| return determinant(half2x2(a, b)); |
| } |
| |
| $pure float2 perp(float2 v) { |
| return float2(-v.y, v.x); |
| } |
| |
| $pure half2 perp(half2 v) { |
| return half2(-v.y, v.x); |
| } |
| |
| // Returns a bias given a scale factor, such that 'scale * (dist + bias)' converts the distance to |
| // a per-pixel coverage value, automatically widening the visible coverage ramp for subpixel |
| // dimensions. The 'scale' must already be equal to the narrowest dimension of the shape and clamped |
| // to [0, 1.0]. |
| $pure float coverage_bias(float scale) { |
| return 1.0 - 0.5 * scale; |
| } |