blob: ed93c240510114eb4fab63b3d83580e11d185b44 [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/TiledTextureUtils.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkColor.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkRect.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkSize.h"
#include "src/base/SkSafeMath.h"
#include "src/core/SkCanvasPriv.h"
#include "src/core/SkDevice.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkSamplingPriv.h"
#include "src/image/SkImage_Base.h"
//////////////////////////////////////////////////////////////////////////////
// Helper functions for tiling a large SkBitmap
namespace {
static const int kBmpSmallTileSize = 1 << 10;
size_t get_tile_count(const SkIRect& srcRect, int tileSize) {
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
// We calculate expected tile count before we read the bitmap's pixels, so hypothetically we can
// have lazy images with excessive dimensions that would cause (tilesX*tilesY) to overflow int.
// In these situations we also later fail to allocate a bitmap to store the lazy image, so there
// isn't really a performance concern around one image turning into millions of tiles.
return SkSafeMath::Mul(tilesX, tilesY);
}
int determine_tile_size(const SkIRect& src, int maxTileSize) {
if (maxTileSize <= kBmpSmallTileSize) {
return maxTileSize;
}
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
maxTileTotalTileSize *= maxTileSize * maxTileSize;
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
return kBmpSmallTileSize;
} else {
return maxTileSize;
}
}
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
// pixels from the bitmap are necessary.
SkIRect determine_clipped_src_rect(SkIRect clippedSrcIRect,
const SkMatrix& viewMatrix,
const SkMatrix& srcToDstRect,
const SkISize& imageDimensions,
const SkRect* srcRectPtr) {
SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect);
if (!inv.invert(&inv)) {
return SkIRect::MakeEmpty();
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
inv.mapRect(&clippedSrcRect);
if (srcRectPtr) {
if (!clippedSrcRect.intersect(*srcRectPtr)) {
return SkIRect::MakeEmpty();
}
}
clippedSrcRect.roundOut(&clippedSrcIRect);
SkIRect bmpBounds = SkIRect::MakeSize(imageDimensions);
if (!clippedSrcIRect.intersect(bmpBounds)) {
return SkIRect::MakeEmpty();
}
return clippedSrcIRect;
}
int draw_tiled_bitmap(SkCanvas* canvas,
const SkBitmap& bitmap,
int tileSize,
const SkMatrix& srcToDst,
const SkRect& srcRect,
const SkIRect& clippedSrcIRect,
const SkPaint* paint,
SkCanvas::QuadAAFlags origAAFlags,
SkCanvas::SrcRectConstraint constraint,
SkSamplingOptions sampling) {
if (sampling.isAniso()) {
sampling = SkSamplingPriv::AnisoFallback(/* imageIsMipped= */ false);
}
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
int numTilesDrawn = 0;
skia_private::TArray<SkCanvas::ImageSetEntry> imgSet(nx * ny);
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.setLTRB(SkIntToScalar(x * tileSize), SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize), SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkIRect iTileR;
tileR.roundOut(&iTileR);
SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
SkRect rectToDraw = tileR;
if (!srcToDst.mapRect(&rectToDraw)) {
continue;
}
if (sampling.filter != SkFilterMode::kNearest || sampling.useCubic) {
SkIRect iClampRect;
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
// In bleed mode we want to always expand the tile on all edges
// but stay within the bitmap bounds
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
} else {
// In texture-domain/clamp mode we only want to expand the
// tile on edges interior to "srcRect" (i.e., we want to
// not bleed across the original clamped edges)
srcRect.roundOut(&iClampRect);
}
int outset = sampling.useCubic ? kBicubicFilterTexelPad : 1;
skgpu::TiledTextureUtils::ClampedOutsetWithOffset(&iTileR, outset, &offset,
iClampRect);
}
// We must subset as a bitmap and then turn it into an SkImage if we want caching to
// work. Image subsets always make a copy of the pixels and lose the association with
// the original's SkPixelRef.
if (SkBitmap subsetBmp; bitmap.extractSubset(&subsetBmp, iTileR)) {
sk_sp<SkImage> image = SkMakeImageFromRasterBitmap(subsetBmp,
kNever_SkCopyPixelsMode);
if (!image) {
continue;
}
unsigned aaFlags = SkCanvas::kNone_QuadAAFlags;
// Preserve the original edge AA flags for the exterior tile edges.
if (tileR.fLeft <= srcRect.fLeft && (origAAFlags & SkCanvas::kLeft_QuadAAFlag)) {
aaFlags |= SkCanvas::kLeft_QuadAAFlag;
}
if (tileR.fRight >= srcRect.fRight && (origAAFlags & SkCanvas::kRight_QuadAAFlag)) {
aaFlags |= SkCanvas::kRight_QuadAAFlag;
}
if (tileR.fTop <= srcRect.fTop && (origAAFlags & SkCanvas::kTop_QuadAAFlag)) {
aaFlags |= SkCanvas::kTop_QuadAAFlag;
}
if (tileR.fBottom >= srcRect.fBottom &&
(origAAFlags & SkCanvas::kBottom_QuadAAFlag)) {
aaFlags |= SkCanvas::kBottom_QuadAAFlag;
}
// Offset the source rect to make it "local" to our tmp bitmap
tileR.offset(-offset.fX, -offset.fY);
imgSet.push_back(SkCanvas::ImageSetEntry(std::move(image),
tileR,
rectToDraw,
/* matrixIndex= */ -1,
/* alpha= */ 1.0f,
aaFlags,
/* hasClip= */ false));
numTilesDrawn += 1;
}
}
}
canvas->experimental_DrawEdgeAAImageSet(imgSet.data(),
imgSet.size(),
/* dstClips= */ nullptr,
/* preViewMatrices= */ nullptr,
sampling,
paint,
constraint);
return numTilesDrawn;
}
} // anonymous namespace
namespace skgpu {
// tileSize and clippedSubset are valid if true is returned
bool TiledTextureUtils::ShouldTileImage(SkIRect conservativeClipBounds,
const SkISize& imageSize,
const SkMatrix& ctm,
const SkMatrix& srcToDst,
const SkRect* src,
int maxTileSize,
size_t cacheSize,
int* tileSize,
SkIRect* clippedSubset) {
// if it's larger than the max tile size, then we have no choice but tiling.
if (imageSize.width() > maxTileSize || imageSize.height() > maxTileSize) {
*clippedSubset = determine_clipped_src_rect(conservativeClipBounds, ctm,
srcToDst, imageSize, src);
*tileSize = determine_tile_size(*clippedSubset, maxTileSize);
return true;
}
// If the image would only produce 4 tiles of the smaller size, don't bother tiling it.
const size_t area = imageSize.width() * imageSize.height();
if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap as a texture.
// However, if the texture would be large compared to the cache size and we don't require most
// of it for this draw then tile to reduce the amount of upload and cache spill.
if (!cacheSize) {
// We don't have access to the cacheSize so we will just upload the entire image
// to be on the safe side and not tile.
return false;
}
// An assumption here is that sw bitmap size is a good proxy for its size as a texture
size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels
if (bmpSize < cacheSize / 2) {
return false;
}
// Figure out how much of the src we will need based on the src rect and clipping. Reject if
// tiling memory savings would be < 50%.
*clippedSubset = determine_clipped_src_rect(conservativeClipBounds, ctm,
srcToDst, imageSize, src);
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) *
kBmpSmallTileSize * kBmpSmallTileSize *
sizeof(SkPMColor); // assume 32bit pixels;
return usedTileBytes * 2 < bmpSize;
}
/**
* Optimize the src rect sampling area within an image (sized 'width' x 'height') such that
* 'outSrcRect' will be completely contained in the image's bounds. The corresponding rect
* to draw will be output to 'outDstRect'. The mapping between src and dst will be cached in
* 'outSrcToDst'. Outputs are not always updated when kSkip is returned.
*
* 'dstClip' should be null when there is no additional clipping.
*/
TiledTextureUtils::ImageDrawMode TiledTextureUtils::OptimizeSampleArea(const SkISize& imageSize,
const SkRect& origSrcRect,
const SkRect& origDstRect,
const SkPoint dstClip[4],
SkRect* outSrcRect,
SkRect* outDstRect,
SkMatrix* outSrcToDst) {
if (origSrcRect.isEmpty() || origDstRect.isEmpty()) {
return ImageDrawMode::kSkip;
}
*outSrcToDst = SkMatrix::RectToRect(origSrcRect, origDstRect);
SkRect src = origSrcRect;
SkRect dst = origDstRect;
const SkRect srcBounds = SkRect::Make(imageSize);
if (!srcBounds.contains(src)) {
if (!src.intersect(srcBounds)) {
return ImageDrawMode::kSkip;
}
outSrcToDst->mapRect(&dst, src);
// Both src and dst have gotten smaller. If dstClip is provided, confirm it is still
// contained in dst, otherwise cannot optimize the sample area and must use a decal instead
if (dstClip) {
for (int i = 0; i < 4; ++i) {
if (!dst.contains(dstClip[i].fX, dstClip[i].fY)) {
// Must resort to using a decal mode restricted to the clipped 'src', and
// use the original dst rect (filling in src bounds as needed)
*outSrcRect = src;
*outDstRect = origDstRect;
return ImageDrawMode::kDecal;
}
}
}
}
// The original src and dst were fully contained in the image, or there was no dst clip to
// worry about, or the clip was still contained in the restricted dst rect.
*outSrcRect = src;
*outDstRect = dst;
return ImageDrawMode::kOptimized;
}
bool TiledTextureUtils::CanDisableMipmap(const SkMatrix& viewM,
const SkMatrix& localM,
bool sharpenMipmappedTextures) {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
// With sharp mips, we bias mipmap lookups by -0.5. That means our final LOD is >= 0 until
// the computed LOD is >= 0.5. At what scale factor does a texture get an LOD of
// 0.5?
//
// Want: 0 = log2(1/s) - 0.5
// 0.5 = log2(1/s)
// 2^0.5 = 1/s
// 1/2^0.5 = s
// 2^0.5/2 = s
SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1;
return matrix.getMinScale() >= mipScale;
}
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
// of 'iRect' for all possible outsets/clamps.
void TiledTextureUtils::ClampedOutsetWithOffset(SkIRect* iRect, int outset, SkPoint* offset,
const SkIRect& clamp) {
iRect->outset(outset, outset);
int leftClampDelta = clamp.fLeft - iRect->fLeft;
if (leftClampDelta > 0) {
offset->fX -= outset - leftClampDelta;
iRect->fLeft = clamp.fLeft;
} else {
offset->fX -= outset;
}
int topClampDelta = clamp.fTop - iRect->fTop;
if (topClampDelta > 0) {
offset->fY -= outset - topClampDelta;
iRect->fTop = clamp.fTop;
} else {
offset->fY -= outset;
}
if (iRect->fRight > clamp.fRight) {
iRect->fRight = clamp.fRight;
}
if (iRect->fBottom > clamp.fBottom) {
iRect->fBottom = clamp.fBottom;
}
}
std::tuple<bool, size_t> TiledTextureUtils::DrawAsTiledImageRect(
SkCanvas* canvas,
const SkImage* image,
const SkRect& srcRect,
const SkRect& dstRect,
SkCanvas::QuadAAFlags aaFlags,
const SkSamplingOptions& origSampling,
const SkPaint* paint,
SkCanvas::SrcRectConstraint constraint,
bool sharpenMM,
size_t cacheSize,
size_t maxTextureSize) {
if (canvas->isClipEmpty()) {
return {true, 0};
}
if (!image->isTextureBacked()) {
SkRect src;
SkRect dst;
SkMatrix srcToDst;
ImageDrawMode mode = OptimizeSampleArea(SkISize::Make(image->width(), image->height()),
srcRect, dstRect, /* dstClip= */ nullptr,
&src, &dst, &srcToDst);
if (mode == ImageDrawMode::kSkip) {
return {true, 0};
}
SkASSERT(mode != ImageDrawMode::kDecal); // only happens if there is a 'dstClip'
if (src.contains(image->bounds())) {
constraint = SkCanvas::kFast_SrcRectConstraint;
}
SkDevice* device = SkCanvasPriv::TopDevice(canvas);
const SkMatrix& localToDevice = device->localToDevice();
SkSamplingOptions sampling = origSampling;
if (sampling.mipmap != SkMipmapMode::kNone &&
CanDisableMipmap(localToDevice, srcToDst, sharpenMM)) {
sampling = SkSamplingOptions(sampling.filter);
}
SkIRect clipRect = device->devClipBounds();
int tileFilterPad;
if (sampling.useCubic) {
tileFilterPad = kBicubicFilterTexelPad;
} else if (sampling.filter == SkFilterMode::kLinear || sampling.isAniso()) {
// Aniso will fallback to linear filtering in the tiling case.
tileFilterPad = 1;
} else {
tileFilterPad = 0;
}
int maxTileSize = maxTextureSize - 2 * tileFilterPad;
int tileSize;
SkIRect clippedSubset;
if (ShouldTileImage(clipRect,
image->dimensions(),
localToDevice,
srcToDst,
&src,
maxTileSize,
cacheSize,
&tileSize,
&clippedSubset)) {
// Extract pixels on the CPU, since we have to split into separate textures before
// sending to the GPU if tiling.
if (SkBitmap bm; as_IB(image)->getROPixels(nullptr, &bm)) {
size_t tiles = draw_tiled_bitmap(canvas,
bm,
tileSize,
srcToDst,
src,
clippedSubset,
paint,
aaFlags,
constraint,
sampling);
return {true, tiles};
}
}
}
return {false, 0};
}
} // namespace skgpu