blob: f8dee7983036a95d2f5fd7404553916b5c616e83 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef skgpu_ResourceKey_DEFINED
#define skgpu_ResourceKey_DEFINED
#include "include/core/SkData.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkAlign.h"
#include "include/private/base/SkAlignedStorage.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/base/SkTo.h"
#include <cstdint>
#include <cstring>
#include <new>
#include <utility>
class TestResource;
namespace skgpu {
uint32_t ResourceKeyHash(const uint32_t* data, size_t size);
/**
* Base class for all gpu Resource cache keys. There are two types of cache keys. Refer to the
* comments for each key type below.
*/
class ResourceKey {
public:
uint32_t hash() const {
this->validate();
return fKey[kHash_MetaDataIdx];
}
size_t size() const {
this->validate();
SkASSERT(this->isValid());
return this->internalSize();
}
/** Reset to an invalid key. */
void reset() {
fKey.reset(kMetaDataCnt);
fKey[kHash_MetaDataIdx] = 0;
fKey[kDomainAndSize_MetaDataIdx] = kInvalidDomain;
}
bool isValid() const { return kInvalidDomain != this->domain(); }
/** Used to initialize a key. */
class Builder {
public:
~Builder() { this->finish(); }
void finish() {
if (nullptr == fKey) {
return;
}
uint32_t* hash = &fKey->fKey[kHash_MetaDataIdx];
*hash = ResourceKeyHash(hash + 1, fKey->internalSize() - sizeof(uint32_t));
fKey->validate();
fKey = nullptr;
}
uint32_t& operator[](int dataIdx) {
SkASSERT(fKey);
SkDEBUGCODE(size_t dataCount = fKey->internalSize() / sizeof(uint32_t) - kMetaDataCnt;)
SkASSERT(SkToU32(dataIdx) < dataCount);
return fKey->fKey[(int)kMetaDataCnt + dataIdx];
}
protected:
Builder(ResourceKey* key, uint32_t domain, int data32Count) : fKey(key) {
size_t count = SkToSizeT(data32Count);
SkASSERT(domain != kInvalidDomain);
key->fKey.reset(kMetaDataCnt + count);
size_t size = (count + kMetaDataCnt) * sizeof(uint32_t);
SkASSERT(SkToU16(size) == size);
SkASSERT(SkToU16(domain) == domain);
key->fKey[kDomainAndSize_MetaDataIdx] = SkToU32(domain | (size << 16));
}
private:
ResourceKey* fKey;
};
protected:
static const uint32_t kInvalidDomain = 0;
ResourceKey() { this->reset(); }
bool operator==(const ResourceKey& that) const {
// Both keys should be sized to at least contain the meta data. The metadata contains each
// key's length. So the second memcmp should only run if the keys have the same length.
return 0 == memcmp(fKey.get(), that.fKey.get(), kMetaDataCnt*sizeof(uint32_t)) &&
0 == memcmp(&fKey[kMetaDataCnt], &that.fKey[kMetaDataCnt], this->dataSize());
}
ResourceKey& operator=(const ResourceKey& that) {
if (this != &that) {
if (!that.isValid()) {
this->reset();
} else {
size_t bytes = that.size();
SkASSERT(SkIsAlign4(bytes));
fKey.reset(bytes / sizeof(uint32_t));
memcpy(fKey.get(), that.fKey.get(), bytes);
this->validate();
}
}
return *this;
}
uint32_t domain() const { return fKey[kDomainAndSize_MetaDataIdx] & 0xffff; }
/** size of the key data, excluding meta-data (hash, domain, etc). */
size_t dataSize() const { return this->size() - 4 * kMetaDataCnt; }
/** ptr to the key data, excluding meta-data (hash, domain, etc). */
const uint32_t* data() const {
this->validate();
return &fKey[kMetaDataCnt];
}
#ifdef SK_DEBUG
void dump() const {
if (!this->isValid()) {
SkDebugf("Invalid Key\n");
} else {
SkDebugf("hash: %u ", this->hash());
SkDebugf("domain: %u ", this->domain());
SkDebugf("size: %zuB ", this->internalSize());
size_t dataCount = this->internalSize() / sizeof(uint32_t) - kMetaDataCnt;
for (size_t i = 0; i < dataCount; ++i) {
SkDebugf("%u ", fKey[SkTo<int>(kMetaDataCnt+i)]);
}
SkDebugf("\n");
}
}
#endif
private:
enum MetaDataIdx {
kHash_MetaDataIdx,
// The key domain and size are packed into a single uint32_t.
kDomainAndSize_MetaDataIdx,
kLastMetaDataIdx = kDomainAndSize_MetaDataIdx
};
static const uint32_t kMetaDataCnt = kLastMetaDataIdx + 1;
size_t internalSize() const { return fKey[kDomainAndSize_MetaDataIdx] >> 16; }
void validate() const {
SkASSERT(this->isValid());
SkASSERT(fKey[kHash_MetaDataIdx] ==
ResourceKeyHash(&fKey[kHash_MetaDataIdx] + 1,
this->internalSize() - sizeof(uint32_t)));
SkASSERT(SkIsAlign4(this->internalSize()));
}
friend class ::TestResource; // For unit test to access kMetaDataCnt.
// For Ganesh, bmp textures require 5 uint32_t values. Graphite requires 6 (due to
// storing mipmap status as part of the key).
skia_private::AutoSTMalloc<kMetaDataCnt + 6, uint32_t> fKey;
};
/**
* A key used for scratch resources. There are three important rules about scratch keys:
* * Multiple resources can share the same scratch key. Therefore resources assigned the same
* scratch key should be interchangeable with respect to the code that uses them.
* * A resource can have at most one scratch key and it is set at resource creation by the
* resource itself.
* * When a scratch resource is ref'ed it will not be returned from the
* cache for a subsequent cache request until all refs are released. This facilitates using
* a scratch key for multiple render-to-texture scenarios. An example is a separable blur:
*
* GrTexture* texture[2];
* texture[0] = get_scratch_texture(scratchKey);
* texture[1] = get_scratch_texture(scratchKey); // texture[0] is already owned so we will get a
* // different one for texture[1]
* draw_mask(texture[0], path); // draws path mask to texture[0]
* blur_x(texture[0], texture[1]); // blurs texture[0] in y and stores result in texture[1]
* blur_y(texture[1], texture[0]); // blurs texture[1] in y and stores result in texture[0]
* texture[1]->unref(); // texture 1 can now be recycled for the next request with scratchKey
* consume_blur(texture[0]);
* texture[0]->unref(); // texture 0 can now be recycled for the next request with scratchKey
*/
class ScratchKey : public ResourceKey {
public:
/** Uniquely identifies the type of resource that is cached as scratch. */
typedef uint32_t ResourceType;
/** Generate a unique ResourceType. */
static ResourceType GenerateResourceType();
/** Creates an invalid scratch key. It must be initialized using a Builder object before use. */
ScratchKey() {}
ScratchKey(const ScratchKey& that) { *this = that; }
ResourceType resourceType() const { return this->domain(); }
ScratchKey& operator=(const ScratchKey& that) {
this->ResourceKey::operator=(that);
return *this;
}
bool operator==(const ScratchKey& that) const { return this->ResourceKey::operator==(that); }
bool operator!=(const ScratchKey& that) const { return !(*this == that); }
class Builder : public ResourceKey::Builder {
public:
Builder(ScratchKey* key, ResourceType type, int data32Count)
: ResourceKey::Builder(key, type, data32Count) {}
};
};
/**
* A key that allows for exclusive use of a resource for a use case (AKA "domain"). There are three
* rules governing the use of unique keys:
* * Only one resource can have a given unique key at a time. Hence, "unique".
* * A resource can have at most one unique key at a time.
* * Unlike scratch keys, multiple requests for a unique key will return the same
* resource even if the resource already has refs.
* This key type allows a code path to create cached resources for which it is the exclusive user.
* The code path creates a domain which it sets on its keys. This guarantees that there are no
* cross-domain collisions.
*
* Unique keys preempt scratch keys. While a resource has a unique key it is inaccessible via its
* scratch key. It can become scratch again if the unique key is removed.
*/
class UniqueKey : public ResourceKey {
public:
typedef uint32_t Domain;
/** Generate a Domain for unique keys. */
static Domain GenerateDomain();
/** Creates an invalid unique key. It must be initialized using a Builder object before use. */
UniqueKey() : fTag(nullptr) {}
UniqueKey(const UniqueKey& that) { *this = that; }
UniqueKey& operator=(const UniqueKey& that) {
this->ResourceKey::operator=(that);
this->setCustomData(sk_ref_sp(that.getCustomData()));
fTag = that.fTag;
return *this;
}
bool operator==(const UniqueKey& that) const { return this->ResourceKey::operator==(that); }
bool operator!=(const UniqueKey& that) const { return !(*this == that); }
void setCustomData(sk_sp<SkData> data) { fData = std::move(data); }
SkData* getCustomData() const { return fData.get(); }
sk_sp<SkData> refCustomData() const { return fData; }
const char* tag() const { return fTag; }
const uint32_t* data() const { return this->ResourceKey::data(); }
#ifdef SK_DEBUG
uint32_t domain() const { return this->ResourceKey::domain(); }
size_t dataSize() const { return this->ResourceKey::dataSize(); }
void dump(const char* label) const {
SkDebugf("%s tag: %s\n", label, fTag ? fTag : "None");
this->ResourceKey::dump();
}
#endif
class Builder : public ResourceKey::Builder {
public:
Builder(UniqueKey* key, Domain type, int data32Count, const char* tag = nullptr)
: ResourceKey::Builder(key, type, data32Count) {
key->fTag = tag;
}
/** Used to build a key that wraps another key and adds additional data. */
Builder(UniqueKey* key, const UniqueKey& innerKey, Domain domain, int extraData32Cnt,
const char* tag = nullptr)
: ResourceKey::Builder(key,
domain,
Data32CntForInnerKey(innerKey) + extraData32Cnt) {
SkASSERT(&innerKey != key);
// add the inner key to the end of the key so that op[] can be indexed normally.
uint32_t* innerKeyData = &this->operator[](extraData32Cnt);
const uint32_t* srcData = innerKey.data();
(*innerKeyData++) = innerKey.domain();
memcpy(innerKeyData, srcData, innerKey.dataSize());
key->fTag = tag;
}
private:
static int Data32CntForInnerKey(const UniqueKey& innerKey) {
// key data + domain
return SkToInt((innerKey.dataSize() >> 2) + 1);
}
};
private:
sk_sp<SkData> fData;
const char* fTag;
};
/**
* It is common to need a frequently reused UniqueKey where the only requirement is that the key
* is unique. These macros create such a key in a thread safe manner so the key can be truly global
* and only constructed once.
*/
/** Place outside of function/class definitions. */
#define SKGPU_DECLARE_STATIC_UNIQUE_KEY(name) static SkOnce name##_once
/** Place inside function where the key is used. */
#define SKGPU_DEFINE_STATIC_UNIQUE_KEY(name) \
static SkAlignedSTStorage<1, skgpu::UniqueKey> name##_storage; \
name##_once(skgpu::skgpu_init_static_unique_key_once, &name##_storage); \
static const skgpu::UniqueKey& name = \
*reinterpret_cast<skgpu::UniqueKey*>(name##_storage.get())
static inline void skgpu_init_static_unique_key_once(SkAlignedSTStorage<1, UniqueKey>* keyStorage) {
UniqueKey* key = new (keyStorage->get()) UniqueKey;
UniqueKey::Builder builder(key, UniqueKey::GenerateDomain(), 0);
}
// The cache listens for these messages to purge junk resources proactively.
class UniqueKeyInvalidatedMessage {
public:
UniqueKeyInvalidatedMessage() = default;
UniqueKeyInvalidatedMessage(const UniqueKey& key,
uint32_t contextUniqueID,
bool inThreadSafeCache = false)
: fKey(key), fContextID(contextUniqueID), fInThreadSafeCache(inThreadSafeCache) {
SkASSERT(SK_InvalidUniqueID != contextUniqueID);
}
UniqueKeyInvalidatedMessage(const UniqueKeyInvalidatedMessage&) = default;
UniqueKeyInvalidatedMessage& operator=(const UniqueKeyInvalidatedMessage&) = default;
const UniqueKey& key() const { return fKey; }
uint32_t contextID() const { return fContextID; }
bool inThreadSafeCache() const { return fInThreadSafeCache; }
private:
UniqueKey fKey;
uint32_t fContextID = SK_InvalidUniqueID;
bool fInThreadSafeCache = false;
};
static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMessage& msg,
uint32_t msgBusUniqueID) {
return msg.contextID() == msgBusUniqueID;
}
class UniqueKeyInvalidatedMsg_Graphite {
public:
UniqueKeyInvalidatedMsg_Graphite() = default;
UniqueKeyInvalidatedMsg_Graphite(const UniqueKey& key, uint32_t recorderID)
: fKey(key), fRecorderID(recorderID) {
SkASSERT(SK_InvalidUniqueID != fRecorderID);
}
UniqueKeyInvalidatedMsg_Graphite(const UniqueKeyInvalidatedMsg_Graphite&) = default;
UniqueKeyInvalidatedMsg_Graphite& operator=(const UniqueKeyInvalidatedMsg_Graphite&) = default;
const UniqueKey& key() const { return fKey; }
uint32_t recorderID() const { return fRecorderID; }
private:
UniqueKey fKey;
uint32_t fRecorderID = SK_InvalidUniqueID;
};
static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMsg_Graphite& msg,
uint32_t msgBusUniqueID) {
return msg.recorderID() == msgBusUniqueID;
}
/**
* This is a special key that doesn't have domain and can only be used in a dedicated cache.
* Unlike UniqueKey & ScratchKey, this key has compile time size (in number of uint32_t)
* and doesn't need dynamic allocations. In comparison, UniqueKey & ScratchKey will need
* dynamic allocation if a key is larger than 6 uint32_ts.
*/
template <size_t SizeInUInt32>
class FixedSizeKey {
public:
uint32_t hash() const { return fHash; }
bool operator==(const FixedSizeKey& that) const {
return fHash == that.fHash &&
0 == memcmp(fPackedData, that.fPackedData, sizeof(fPackedData));
}
class Builder {
public:
Builder(FixedSizeKey* key) : fKey(key) {}
void finish() {
SkASSERT(fKey);
fKey->fHash = ResourceKeyHash(fKey->fPackedData, sizeof(fKey->fPackedData));
fKey = nullptr;
}
uint32_t& operator[](int dataIdx) {
SkASSERT(fKey);
SkASSERT(SkToU32(dataIdx) < SizeInUInt32);
return fKey->fPackedData[dataIdx];
}
private:
FixedSizeKey* fKey = nullptr;
};
struct Hash {
uint32_t operator()(const FixedSizeKey& key) const { return key.hash(); }
};
private:
uint32_t fHash = 0;
uint32_t fPackedData[SizeInUInt32] = {};
};
} // namespace skgpu
#endif // skgpu_ResourceKey_DEFINED