blob: 25a1fafb1e192db55338713248efdb7a227eec59 [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/BlurUtils.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkMath.h"
#include "include/private/base/SkPoint_impl.h"
#include "include/private/base/SkTemplates.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkMathPriv.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <memory>
#include <vector>
namespace skgpu {
///////////////////////////////////////////////////////////////////////////////
// Rect Blur
///////////////////////////////////////////////////////////////////////////////
// TODO: it seems like there should be some synergy with SkBlurMask::ComputeBlurProfile
SkBitmap CreateIntegralTable(int width) {
SkBitmap table;
if (width <= 0) {
return table;
}
if (!table.tryAllocPixels(SkImageInfo::MakeA8(width, 1))) {
return table;
}
*table.getAddr8(0, 0) = 255;
const float invWidth = 1.f / width;
for (int i = 1; i < width - 1; ++i) {
float x = (i + 0.5f) * invWidth;
x = (-6 * x + 3) * SK_ScalarRoot2Over2;
float integral = 0.5f * (std::erf(x) + 1.f);
*table.getAddr8(i, 0) = SkToU8(sk_float_round2int(255.f * integral));
}
*table.getAddr8(width - 1, 0) = 0;
table.setImmutable();
return table;
}
int ComputeIntegralTableWidth(float sixSigma) {
// Check for NaN/infinity
if (!SkIsFinite(sixSigma)) {
return 0;
}
// Avoid overflow, covers both multiplying by 2 and finding next power of 2:
// 2*((2^31-1)/4 + 1) = 2*(2^29-1) + 2 = 2^30 and SkNextPow2(2^30) = 2^30
if (sixSigma > SK_MaxS32 / 4 + 1) {
return 0;
}
// The texture we're producing represents the integral of a normal distribution over a
// six-sigma range centered at zero. We want enough resolution so that the linear
// interpolation done in texture lookup doesn't introduce noticeable artifacts. We
// conservatively choose to have 2 texels for each dst pixel.
int minWidth = 2 * ((int)std::ceil(sixSigma));
// Bin by powers of 2 with a minimum so we get good profile reuse.
return std::max(SkNextPow2(minWidth), 32);
}
///////////////////////////////////////////////////////////////////////////////
// Circle Blur
///////////////////////////////////////////////////////////////////////////////
// Computes an unnormalized half kernel (right side). Returns the summation of all the half
// kernel values.
static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
const float invSigma = 1.0f / sigma;
const float b = -0.5f * invSigma * invSigma;
float tot = 0.0f;
// Compute half kernel values at half pixel steps out from the center.
float t = 0.5f;
for (int i = 0; i < halfKernelSize; ++i) {
float value = expf(t * t * b);
tot += value;
halfKernel[i] = value;
t += 1.0f;
}
return tot;
}
// Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
// of discrete steps. The half kernel is normalized to sum to 0.5.
static void make_half_kernel_and_summed_table(float* halfKernel,
float* summedHalfKernel,
int halfKernelSize,
float sigma) {
// The half kernel should sum to 0.5 not 1.0.
const float tot = 2.0f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
float sum = 0.0f;
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[i] /= tot;
sum += halfKernel[i];
summedHalfKernel[i] = sum;
}
}
// Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
// origin with radius circleR.
static void apply_kernel_in_y(float* results,
int numSteps,
float firstX,
float circleR,
int halfKernelSize,
const float* summedHalfKernelTable) {
float x = firstX;
for (int i = 0; i < numSteps; ++i, x += 1.0f) {
if (x < -circleR || x > circleR) {
results[i] = 0;
continue;
}
float y = sqrtf(circleR * circleR - x * x);
// In the column at x we exit the circle at +y and -y
// The summed table entry j is actually reflects an offset of j + 0.5.
y -= 0.5f;
int yInt = SkScalarFloorToInt(y);
SkASSERT(yInt >= -1);
if (y < 0) {
results[i] = (y + 0.5f) * summedHalfKernelTable[0];
} else if (yInt >= halfKernelSize - 1) {
results[i] = 0.5f;
} else {
float yFrac = y - yInt;
results[i] = (1.0f - yFrac) * summedHalfKernelTable[yInt] +
yFrac * summedHalfKernelTable[yInt + 1];
}
}
}
// Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
// This relies on having a half kernel computed for the Gaussian and a table of applications of
// the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
// halfKernel) passed in as yKernelEvaluations.
static uint8_t eval_at(float evalX,
float circleR,
const float* halfKernel,
int halfKernelSize,
const float* yKernelEvaluations) {
float acc = 0;
float x = evalX - halfKernelSize;
for (int i = 0; i < halfKernelSize; ++i, x += 1.0f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i];
acc += verticalEval * halfKernel[halfKernelSize - i - 1];
}
for (int i = 0; i < halfKernelSize; ++i, x += 1.0f) {
if (x < -circleR || x > circleR) {
continue;
}
float verticalEval = yKernelEvaluations[i + halfKernelSize];
acc += verticalEval * halfKernel[i];
}
// Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
// the x axis).
return SkUnitScalarClampToByte(2.0f * acc);
}
// This function creates a profile of a blurred circle. It does this by computing a kernel for
// half the Gaussian and a matching summed area table. The summed area table is used to compute
// an array of vertical applications of the half kernel to the circle along the x axis. The
// table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
// the size of the profile being computed. Then for each of the n profile entries we walk out k
// steps in each horizontal direction multiplying the corresponding y evaluation by the half
// kernel entry and sum these values to compute the profile entry.
SkBitmap CreateCircleProfile(float sigma, float radius, int profileWidth) {
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(profileWidth, 1))) {
return bitmap;
}
uint8_t* profile = bitmap.getAddr8(0, 0);
const int numSteps = profileWidth;
// The full kernel is 6 sigmas wide.
int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
// Round up to next multiple of 2 and then divide by 2.
halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
// Number of x steps at which to apply kernel in y to cover all the profile samples in x.
const int numYSteps = numSteps + 2 * halfKernelSize;
skia_private::AutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
float* halfKernel = bulkAlloc.get();
float* summedKernel = bulkAlloc.get() + halfKernelSize;
float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
float firstX = -halfKernelSize + 0.5f;
apply_kernel_in_y(yEvals, numYSteps, firstX, radius, halfKernelSize, summedKernel);
for (int i = 0; i < numSteps - 1; ++i) {
float evalX = i + 0.5f;
profile[i] = eval_at(evalX, radius, halfKernel, halfKernelSize, yEvals + i);
}
// Ensure the tail of the Gaussian goes to zero.
profile[numSteps - 1] = 0;
bitmap.setImmutable();
return bitmap;
}
SkBitmap CreateHalfPlaneProfile(int profileWidth) {
SkASSERT(!(profileWidth & 0x1));
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(SkImageInfo::MakeA8(profileWidth, 1))) {
return bitmap;
}
uint8_t* profile = bitmap.getAddr8(0, 0);
// The full kernel is 6 sigmas wide.
const float sigma = profileWidth / 6.0f;
const int halfKernelSize = profileWidth / 2;
skia_private::AutoTArray<float> halfKernel(halfKernelSize);
// The half kernel should sum to 0.5.
const float tot = 2.0f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
float sum = 0.0f;
// Populate the profile from the right edge to the middle.
for (int i = 0; i < halfKernelSize; ++i) {
halfKernel[halfKernelSize - i - 1] /= tot;
sum += halfKernel[halfKernelSize - i - 1];
profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
}
// Populate the profile from the middle to the left edge (by flipping the half kernel and
// continuing the summation).
for (int i = 0; i < halfKernelSize; ++i) {
sum += halfKernel[i];
profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
}
// Ensure the tail of the Gaussian goes to zero.
profile[profileWidth - 1] = 0;
bitmap.setImmutable();
return bitmap;
}
///////////////////////////////////////////////////////////////////////////////
// RRect Blur
///////////////////////////////////////////////////////////////////////////////
// Evaluate the vertical blur at the specified 'y' value given the location of the top of the
// rrect.
static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
if (top < 0) {
return 0; // an empty column
}
float fT = (top - y - 0.5f) * (integralSize / sixSigma);
if (fT < 0) {
return 255;
} else if (fT >= integralSize - 1) {
return 0;
}
int lower = (int)fT;
float frac = fT - lower;
SkASSERT(lower + 1 < integralSize);
return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
}
// Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
static uint8_t eval_H(int x,
int y,
const std::vector<float>& topVec,
const float* kernel,
int kernelSize,
const uint8_t* integral,
int integralSize,
float sixSigma) {
SkASSERT(0 <= x && x < (int)topVec.size());
SkASSERT(kernelSize % 2);
float accum = 0.0f;
int xSampleLoc = x - (kernelSize / 2);
for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
continue;
}
accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
}
return accum + 0.5f;
}
SkBitmap CreateRRectBlurMask(const SkRRect& rrectToDraw, const SkISize& dimensions, float sigma) {
SkASSERT(!skgpu::BlurIsEffectivelyIdentity(sigma));
int radius = skgpu::BlurSigmaRadius(sigma);
int kernelSize = skgpu::BlurKernelWidth(radius);
SkASSERT(kernelSize % 2);
SkASSERT(dimensions.width() % 2);
SkASSERT(dimensions.height() % 2);
SkVector radii = rrectToDraw.getSimpleRadii();
SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
std::unique_ptr<float[]> kernel(new float[kernelSize]);
skgpu::Compute1DBlurKernel(sigma, radius, SkSpan<float>(kernel.get(), kernelSize));
const int tableWidth = ComputeIntegralTableWidth(6.0f * sigma);
SkBitmap integral = CreateIntegralTable(tableWidth);
if (integral.empty()) {
return {};
}
SkBitmap result;
if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
return {};
}
std::vector<float> topVec;
topVec.reserve(dimensions.width());
for (int x = 0; x < dimensions.width(); ++x) {
if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
topVec.push_back(-1);
} else {
if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) { // in the circular section
float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
SkASSERT(0 <= h && h < radii.fY);
topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * sigma);
} else {
topVec.push_back(rrectToDraw.rect().fTop + 3 * sigma);
}
}
}
for (int y = 0; y < halfHeightPlus1; ++y) {
uint8_t* scanline = result.getAddr8(0, y);
for (int x = 0; x < halfWidthPlus1; ++x) {
scanline[x] = eval_H(x,
y,
topVec,
kernel.get(),
kernelSize,
integral.getAddr8(0, 0),
integral.width(),
6.0f * sigma);
scanline[dimensions.width() - x - 1] = scanline[x];
}
memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
}
result.setImmutable();
return result;
}
} // namespace skgpu