blob: f20b6cd415ebf7629420224b3a849a2b4fe75980 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTextBlob.h"
#include "include/core/SkData.h"
#include "include/core/SkMaskFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRSXform.h"
#include "include/private/base/SkAlign.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkSafeMath.h"
#include "src/base/SkTLazy.h"
#include "src/core/SkFontPriv.h"
#include "src/core/SkGlyph.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkStrikeSpec.h"
#include "src/core/SkTextBlobPriv.h"
#include "src/core/SkWriteBuffer.h"
#include "src/text/GlyphRun.h"
#include <algorithm>
#include <atomic>
#include <limits>
#include <new>
#include <vector>
using namespace skia_private;
namespace {
struct RunFontStorageEquivalent {
SkScalar fSize, fScaleX;
void* fTypeface;
SkScalar fSkewX;
uint32_t fFlags;
};
static_assert(sizeof(SkFont) == sizeof(RunFontStorageEquivalent), "runfont_should_stay_packed");
} // namespace
size_t SkTextBlob::RunRecord::StorageSize(uint32_t glyphCount, uint32_t textSize,
SkTextBlob::GlyphPositioning positioning,
SkSafeMath* safe) {
static_assert(SkIsAlign4(sizeof(SkScalar)), "SkScalar size alignment");
auto glyphSize = safe->mul(glyphCount, sizeof(uint16_t)),
posSize = safe->mul(PosCount(glyphCount, positioning, safe), sizeof(SkScalar));
// RunRecord object + (aligned) glyph buffer + position buffer
auto size = sizeof(SkTextBlob::RunRecord);
size = safe->add(size, safe->alignUp(glyphSize, 4));
size = safe->add(size, posSize);
if (textSize) { // Extended run.
size = safe->add(size, sizeof(uint32_t));
size = safe->add(size, safe->mul(glyphCount, sizeof(uint32_t)));
size = safe->add(size, textSize);
}
return safe->alignUp(size, sizeof(void*));
}
const SkTextBlob::RunRecord* SkTextBlob::RunRecord::First(const SkTextBlob* blob) {
// The first record (if present) is stored following the blob object.
// (aligned up to make the RunRecord aligned too)
return reinterpret_cast<const RunRecord*>(SkAlignPtr((uintptr_t)(blob + 1)));
}
const SkTextBlob::RunRecord* SkTextBlob::RunRecord::Next(const RunRecord* run) {
return SkToBool(run->fFlags & kLast_Flag) ? nullptr : NextUnchecked(run);
}
namespace {
struct RunRecordStorageEquivalent {
SkFont fFont;
SkPoint fOffset;
uint32_t fCount;
uint32_t fFlags;
SkDEBUGCODE(unsigned fMagic;)
};
} // namespace
void SkTextBlob::RunRecord::validate(const uint8_t* storageTop) const {
SkASSERT(kRunRecordMagic == fMagic);
SkASSERT((const uint8_t*)NextUnchecked(this) <= storageTop);
SkASSERT(glyphBuffer() + fCount <= (uint16_t*)posBuffer());
SkASSERT(posBuffer() + fCount * ScalarsPerGlyph(positioning())
<= (const SkScalar*)NextUnchecked(this));
if (isExtended()) {
SkASSERT(textSize() > 0);
SkASSERT(textSizePtr() < (const uint32_t*)NextUnchecked(this));
SkASSERT(clusterBuffer() < (const uint32_t*)NextUnchecked(this));
SkASSERT(textBuffer() + textSize() <= (const char*)NextUnchecked(this));
}
static_assert(sizeof(SkTextBlob::RunRecord) == sizeof(RunRecordStorageEquivalent),
"runrecord_should_stay_packed");
}
const SkTextBlob::RunRecord* SkTextBlob::RunRecord::NextUnchecked(const RunRecord* run) {
SkSafeMath safe;
auto res = reinterpret_cast<const RunRecord*>(
reinterpret_cast<const uint8_t*>(run)
+ StorageSize(run->glyphCount(), run->textSize(), run->positioning(), &safe));
SkASSERT(safe);
return res;
}
size_t SkTextBlob::RunRecord::PosCount(uint32_t glyphCount,
SkTextBlob::GlyphPositioning positioning,
SkSafeMath* safe) {
return safe->mul(glyphCount, ScalarsPerGlyph(positioning));
}
uint32_t* SkTextBlob::RunRecord::textSizePtr() const {
// textSize follows the position buffer.
SkASSERT(isExtended());
SkSafeMath safe;
auto res = (uint32_t*)(&this->posBuffer()[PosCount(fCount, positioning(), &safe)]);
SkASSERT(safe);
return res;
}
void SkTextBlob::RunRecord::grow(uint32_t count) {
SkScalar* initialPosBuffer = posBuffer();
uint32_t initialCount = fCount;
fCount += count;
// Move the initial pos scalars to their new location.
size_t copySize = initialCount * sizeof(SkScalar) * ScalarsPerGlyph(positioning());
SkASSERT((uint8_t*)posBuffer() + copySize <= (const uint8_t*)NextUnchecked(this));
// memmove, as the buffers may overlap
memmove(posBuffer(), initialPosBuffer, copySize);
}
static uint32_t next_id() {
static std::atomic<uint32_t> nextID{1};
uint32_t id;
do {
id = nextID.fetch_add(1, std::memory_order_relaxed);
} while (id == SK_InvalidGenID);
return id;
}
SkTextBlob::SkTextBlob(const SkRect& bounds)
: fBounds(bounds)
, fUniqueID(next_id())
, fCacheID(SK_InvalidUniqueID)
, fPurgeDelegate(nullptr) {}
SkTextBlob::~SkTextBlob() {
if (SK_InvalidUniqueID != fCacheID.load()) {
PurgeDelegate f = fPurgeDelegate.load();
SkASSERT(f);
f(fUniqueID, fCacheID);
}
const auto* run = RunRecord::First(this);
do {
const auto* nextRun = RunRecord::Next(run);
SkDEBUGCODE(run->validate((uint8_t*)this + fStorageSize);)
run->~RunRecord();
run = nextRun;
} while (run);
}
namespace {
union PositioningAndExtended {
int32_t intValue;
struct {
uint8_t positioning;
uint8_t extended;
uint16_t padding;
};
};
static_assert(sizeof(PositioningAndExtended) == sizeof(int32_t), "");
} // namespace
enum SkTextBlob::GlyphPositioning : uint8_t {
kDefault_Positioning = 0, // Default glyph advances -- zero scalars per glyph.
kHorizontal_Positioning = 1, // Horizontal positioning -- one scalar per glyph.
kFull_Positioning = 2, // Point positioning -- two scalars per glyph.
kRSXform_Positioning = 3, // RSXform positioning -- four scalars per glyph.
};
unsigned SkTextBlob::ScalarsPerGlyph(GlyphPositioning pos) {
const uint8_t gScalarsPerPositioning[] = {
0, // kDefault_Positioning
1, // kHorizontal_Positioning
2, // kFull_Positioning
4, // kRSXform_Positioning
};
SkASSERT((unsigned)pos <= 3);
return gScalarsPerPositioning[pos];
}
void SkTextBlob::operator delete(void* p) {
sk_free(p);
}
void* SkTextBlob::operator new(size_t) {
SK_ABORT("All blobs are created by placement new.");
}
void* SkTextBlob::operator new(size_t, void* p) {
return p;
}
SkTextBlobRunIterator::SkTextBlobRunIterator(const SkTextBlob* blob)
: fCurrentRun(SkTextBlob::RunRecord::First(blob)) {
SkDEBUGCODE(fStorageTop = (const uint8_t*)blob + blob->fStorageSize;)
}
void SkTextBlobRunIterator::next() {
SkASSERT(!this->done());
if (!this->done()) {
SkDEBUGCODE(fCurrentRun->validate(fStorageTop);)
fCurrentRun = SkTextBlob::RunRecord::Next(fCurrentRun);
}
}
SkTextBlobRunIterator::GlyphPositioning SkTextBlobRunIterator::positioning() const {
SkASSERT(!this->done());
static_assert(static_cast<GlyphPositioning>(SkTextBlob::kDefault_Positioning) ==
kDefault_Positioning, "");
static_assert(static_cast<GlyphPositioning>(SkTextBlob::kHorizontal_Positioning) ==
kHorizontal_Positioning, "");
static_assert(static_cast<GlyphPositioning>(SkTextBlob::kFull_Positioning) ==
kFull_Positioning, "");
static_assert(static_cast<GlyphPositioning>(SkTextBlob::kRSXform_Positioning) ==
kRSXform_Positioning, "");
return SkTo<GlyphPositioning>(fCurrentRun->positioning());
}
unsigned SkTextBlobRunIterator::scalarsPerGlyph() const {
return SkTextBlob::ScalarsPerGlyph(fCurrentRun->positioning());
}
bool SkTextBlobRunIterator::isLCD() const {
return fCurrentRun->font().getEdging() == SkFont::Edging::kSubpixelAntiAlias;
}
SkTextBlobBuilder::SkTextBlobBuilder()
: fStorageSize(0)
, fStorageUsed(0)
, fRunCount(0)
, fDeferredBounds(false)
, fLastRun(0) {
fBounds.setEmpty();
}
SkTextBlobBuilder::~SkTextBlobBuilder() {
if (nullptr != fStorage.get()) {
// We are abandoning runs and must destruct the associated font data.
// The easiest way to accomplish that is to use the blob destructor.
this->make();
}
}
static SkRect map_quad_to_rect(const SkRSXform& xform, const SkRect& rect) {
return SkMatrix().setRSXform(xform).mapRect(rect);
}
SkRect SkTextBlobBuilder::TightRunBounds(const SkTextBlob::RunRecord& run) {
const SkFont& font = run.font();
SkRect bounds;
if (SkTextBlob::kDefault_Positioning == run.positioning()) {
font.measureText(run.glyphBuffer(), run.glyphCount() * sizeof(uint16_t),
SkTextEncoding::kGlyphID, &bounds);
return bounds.makeOffset(run.offset().x(), run.offset().y());
}
AutoSTArray<16, SkRect> glyphBounds(run.glyphCount());
font.getBounds(run.glyphBuffer(), run.glyphCount(), glyphBounds.get(), nullptr);
if (SkTextBlob::kRSXform_Positioning == run.positioning()) {
bounds.setEmpty();
const SkRSXform* xform = run.xformBuffer();
SkASSERT((void*)(xform + run.glyphCount()) <= SkTextBlob::RunRecord::Next(&run));
for (unsigned i = 0; i < run.glyphCount(); ++i) {
bounds.join(map_quad_to_rect(xform[i], glyphBounds[i]));
}
} else {
SkASSERT(SkTextBlob::kFull_Positioning == run.positioning() ||
SkTextBlob::kHorizontal_Positioning == run.positioning());
// kFull_Positioning => [ x, y, x, y... ]
// kHorizontal_Positioning => [ x, x, x... ]
// (const y applied by runBounds.offset(run->offset()) later)
const SkScalar horizontalConstY = 0;
const SkScalar* glyphPosX = run.posBuffer();
const SkScalar* glyphPosY = (run.positioning() == SkTextBlob::kFull_Positioning) ?
glyphPosX + 1 : &horizontalConstY;
const unsigned posXInc = SkTextBlob::ScalarsPerGlyph(run.positioning());
const unsigned posYInc = (run.positioning() == SkTextBlob::kFull_Positioning) ?
posXInc : 0;
bounds.setEmpty();
for (unsigned i = 0; i < run.glyphCount(); ++i) {
bounds.join(glyphBounds[i].makeOffset(*glyphPosX, *glyphPosY));
glyphPosX += posXInc;
glyphPosY += posYInc;
}
SkASSERT((void*)glyphPosX <= SkTextBlob::RunRecord::Next(&run));
}
return bounds.makeOffset(run.offset().x(), run.offset().y());
}
SkRect SkTextBlobBuilder::ConservativeRunBounds(const SkTextBlob::RunRecord& run) {
SkASSERT(run.glyphCount() > 0);
SkASSERT(SkTextBlob::kFull_Positioning == run.positioning() ||
SkTextBlob::kHorizontal_Positioning == run.positioning() ||
SkTextBlob::kRSXform_Positioning == run.positioning());
const SkRect fontBounds = SkFontPriv::GetFontBounds(run.font());
if (fontBounds.isEmpty()) {
// Empty font bounds are likely a font bug. TightBounds has a better chance of
// producing useful results in this case.
return TightRunBounds(run);
}
// Compute the glyph position bbox.
SkRect bounds;
switch (run.positioning()) {
case SkTextBlob::kHorizontal_Positioning: {
const SkScalar* glyphPos = run.posBuffer();
SkASSERT((void*)(glyphPos + run.glyphCount()) <= SkTextBlob::RunRecord::Next(&run));
SkScalar minX = *glyphPos;
SkScalar maxX = *glyphPos;
for (unsigned i = 1; i < run.glyphCount(); ++i) {
SkScalar x = glyphPos[i];
minX = std::min(x, minX);
maxX = std::max(x, maxX);
}
bounds.setLTRB(minX, 0, maxX, 0);
} break;
case SkTextBlob::kFull_Positioning: {
const SkPoint* glyphPosPts = run.pointBuffer();
SkASSERT((void*)(glyphPosPts + run.glyphCount()) <= SkTextBlob::RunRecord::Next(&run));
bounds.setBounds(glyphPosPts, run.glyphCount());
} break;
case SkTextBlob::kRSXform_Positioning: {
const SkRSXform* xform = run.xformBuffer();
SkASSERT((void*)(xform + run.glyphCount()) <= SkTextBlob::RunRecord::Next(&run));
bounds.setEmpty();
for (unsigned i = 0; i < run.glyphCount(); ++i) {
bounds.join(map_quad_to_rect(xform[i], fontBounds));
}
} break;
default:
SK_ABORT("unsupported positioning mode");
}
if (run.positioning() != SkTextBlob::kRSXform_Positioning) {
// Expand by typeface glyph bounds.
bounds.fLeft += fontBounds.left();
bounds.fTop += fontBounds.top();
bounds.fRight += fontBounds.right();
bounds.fBottom += fontBounds.bottom();
}
// Offset by run position.
return bounds.makeOffset(run.offset().x(), run.offset().y());
}
void SkTextBlobBuilder::updateDeferredBounds() {
SkASSERT(!fDeferredBounds || fRunCount > 0);
if (!fDeferredBounds) {
return;
}
SkASSERT(fLastRun >= SkAlignPtr(sizeof(SkTextBlob)));
SkTextBlob::RunRecord* run = reinterpret_cast<SkTextBlob::RunRecord*>(fStorage.get() +
fLastRun);
// FIXME: we should also use conservative bounds for kDefault_Positioning.
SkRect runBounds = SkTextBlob::kDefault_Positioning == run->positioning() ?
TightRunBounds(*run) : ConservativeRunBounds(*run);
fBounds.join(runBounds);
fDeferredBounds = false;
}
void SkTextBlobBuilder::reserve(size_t size) {
SkSafeMath safe;
// We don't currently pre-allocate, but maybe someday...
if (safe.add(fStorageUsed, size) <= fStorageSize && safe) {
return;
}
if (0 == fRunCount) {
SkASSERT(nullptr == fStorage.get());
SkASSERT(0 == fStorageSize);
SkASSERT(0 == fStorageUsed);
// the first allocation also includes blob storage
// aligned up to a pointer alignment so SkTextBlob::RunRecords after it stay aligned.
fStorageUsed = SkAlignPtr(sizeof(SkTextBlob));
}
fStorageSize = safe.add(fStorageUsed, size);
// FYI: This relies on everything we store being relocatable, particularly SkPaint.
// Also, this is counting on the underlying realloc to throw when passed max().
fStorage.realloc(safe ? fStorageSize : std::numeric_limits<size_t>::max());
}
bool SkTextBlobBuilder::mergeRun(const SkFont& font, SkTextBlob::GlyphPositioning positioning,
uint32_t count, SkPoint offset) {
if (0 == fLastRun) {
SkASSERT(0 == fRunCount);
return false;
}
SkASSERT(fLastRun >= SkAlignPtr(sizeof(SkTextBlob)));
SkTextBlob::RunRecord* run = reinterpret_cast<SkTextBlob::RunRecord*>(fStorage.get() +
fLastRun);
SkASSERT(run->glyphCount() > 0);
if (run->textSize() != 0) {
return false;
}
if (run->positioning() != positioning
|| run->font() != font
|| (run->glyphCount() + count < run->glyphCount())) {
return false;
}
// we can merge same-font/same-positioning runs in the following cases:
// * fully positioned run following another fully positioned run
// * horizontally postioned run following another horizontally positioned run with the same
// y-offset
if (SkTextBlob::kFull_Positioning != positioning
&& (SkTextBlob::kHorizontal_Positioning != positioning
|| run->offset().y() != offset.y())) {
return false;
}
SkSafeMath safe;
size_t sizeDelta =
SkTextBlob::RunRecord::StorageSize(run->glyphCount() + count, 0, positioning, &safe) -
SkTextBlob::RunRecord::StorageSize(run->glyphCount() , 0, positioning, &safe);
if (!safe) {
return false;
}
this->reserve(sizeDelta);
// reserve may have realloced
run = reinterpret_cast<SkTextBlob::RunRecord*>(fStorage.get() + fLastRun);
uint32_t preMergeCount = run->glyphCount();
run->grow(count);
// Callers expect the buffers to point at the newly added slice, ant not at the beginning.
fCurrentRunBuffer.glyphs = run->glyphBuffer() + preMergeCount;
fCurrentRunBuffer.pos = run->posBuffer()
+ preMergeCount * SkTextBlob::ScalarsPerGlyph(positioning);
fStorageUsed += sizeDelta;
SkASSERT(fStorageUsed <= fStorageSize);
run->validate(fStorage.get() + fStorageUsed);
return true;
}
void SkTextBlobBuilder::allocInternal(const SkFont& font,
SkTextBlob::GlyphPositioning positioning,
int count, int textSize, SkPoint offset,
const SkRect* bounds) {
if (count <= 0 || textSize < 0) {
fCurrentRunBuffer = { nullptr, nullptr, nullptr, nullptr };
return;
}
if (textSize != 0 || !this->mergeRun(font, positioning, count, offset)) {
this->updateDeferredBounds();
SkSafeMath safe;
size_t runSize = SkTextBlob::RunRecord::StorageSize(count, textSize, positioning, &safe);
if (!safe) {
fCurrentRunBuffer = { nullptr, nullptr, nullptr, nullptr };
return;
}
this->reserve(runSize);
SkASSERT(fStorageUsed >= SkAlignPtr(sizeof(SkTextBlob)));
SkASSERT(fStorageUsed + runSize <= fStorageSize);
SkTextBlob::RunRecord* run = new (fStorage.get() + fStorageUsed)
SkTextBlob::RunRecord(count, textSize, offset, font, positioning);
fCurrentRunBuffer.glyphs = run->glyphBuffer();
fCurrentRunBuffer.pos = run->posBuffer();
fCurrentRunBuffer.utf8text = run->textBuffer();
fCurrentRunBuffer.clusters = run->clusterBuffer();
fLastRun = fStorageUsed;
fStorageUsed += runSize;
fRunCount++;
SkASSERT(fStorageUsed <= fStorageSize);
run->validate(fStorage.get() + fStorageUsed);
}
SkASSERT(textSize > 0 || nullptr == fCurrentRunBuffer.utf8text);
SkASSERT(textSize > 0 || nullptr == fCurrentRunBuffer.clusters);
if (!fDeferredBounds) {
if (bounds) {
fBounds.join(*bounds);
} else {
fDeferredBounds = true;
}
}
}
// SkFont versions
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRun(const SkFont& font, int count,
SkScalar x, SkScalar y,
const SkRect* bounds) {
this->allocInternal(font, SkTextBlob::kDefault_Positioning, count, 0, {x, y}, bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunPosH(const SkFont& font, int count,
SkScalar y,
const SkRect* bounds) {
this->allocInternal(font, SkTextBlob::kHorizontal_Positioning, count, 0, {0, y}, bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunPos(const SkFont& font, int count,
const SkRect* bounds) {
this->allocInternal(font, SkTextBlob::kFull_Positioning, count, 0, {0, 0}, bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer&
SkTextBlobBuilder::allocRunRSXform(const SkFont& font, int count) {
this->allocInternal(font, SkTextBlob::kRSXform_Positioning, count, 0, {0, 0}, nullptr);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunText(const SkFont& font, int count,
SkScalar x, SkScalar y,
int textByteCount,
const SkRect* bounds) {
this->allocInternal(font,
SkTextBlob::kDefault_Positioning,
count,
textByteCount,
SkPoint::Make(x, y),
bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunTextPosH(const SkFont& font,
int count,
SkScalar y,
int textByteCount,
const SkRect* bounds) {
this->allocInternal(font,
SkTextBlob::kHorizontal_Positioning,
count,
textByteCount,
SkPoint::Make(0, y),
bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunTextPos(const SkFont& font,
int count,
int textByteCount,
const SkRect *bounds) {
this->allocInternal(font,
SkTextBlob::kFull_Positioning,
count, textByteCount,
SkPoint::Make(0, 0),
bounds);
return fCurrentRunBuffer;
}
const SkTextBlobBuilder::RunBuffer& SkTextBlobBuilder::allocRunTextRSXform(const SkFont& font,
int count,
int textByteCount,
const SkRect *bounds) {
this->allocInternal(font,
SkTextBlob::kRSXform_Positioning,
count,
textByteCount,
{0, 0},
bounds);
return fCurrentRunBuffer;
}
sk_sp<SkTextBlob> SkTextBlobBuilder::make() {
if (!fRunCount) {
// We don't instantiate empty blobs.
SkASSERT(!fStorage.get());
SkASSERT(fStorageUsed == 0);
SkASSERT(fStorageSize == 0);
SkASSERT(fLastRun == 0);
SkASSERT(fBounds.isEmpty());
return nullptr;
}
this->updateDeferredBounds();
// Tag the last run as such.
auto* lastRun = reinterpret_cast<SkTextBlob::RunRecord*>(fStorage.get() + fLastRun);
lastRun->fFlags |= SkTextBlob::RunRecord::kLast_Flag;
SkTextBlob* blob = new (fStorage.release()) SkTextBlob(fBounds);
SkDEBUGCODE(const_cast<SkTextBlob*>(blob)->fStorageSize = fStorageSize;)
SkDEBUGCODE(
SkSafeMath safe;
size_t validateSize = SkAlignPtr(sizeof(SkTextBlob));
for (const auto* run = SkTextBlob::RunRecord::First(blob); run;
run = SkTextBlob::RunRecord::Next(run)) {
validateSize += SkTextBlob::RunRecord::StorageSize(
run->fCount, run->textSize(), run->positioning(), &safe);
run->validate(reinterpret_cast<const uint8_t*>(blob) + fStorageUsed);
fRunCount--;
}
SkASSERT(validateSize == fStorageUsed);
SkASSERT(fRunCount == 0);
SkASSERT(safe);
)
fStorageUsed = 0;
fStorageSize = 0;
fRunCount = 0;
fLastRun = 0;
fBounds.setEmpty();
return sk_sp<SkTextBlob>(blob);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkTextBlobPriv::Flatten(const SkTextBlob& blob, SkWriteBuffer& buffer) {
// seems like we could skip this, and just recompute bounds in unflatten, but
// some cc_unittests fail if we remove this...
buffer.writeRect(blob.bounds());
SkTextBlobRunIterator it(&blob);
while (!it.done()) {
SkASSERT(it.glyphCount() > 0);
buffer.write32(it.glyphCount());
PositioningAndExtended pe;
pe.intValue = 0;
pe.positioning = it.positioning();
SkASSERT((int32_t)it.positioning() == pe.intValue); // backwards compat.
uint32_t textSize = it.textSize();
pe.extended = textSize > 0;
buffer.write32(pe.intValue);
if (pe.extended) {
buffer.write32(textSize);
}
buffer.writePoint(it.offset());
SkFontPriv::Flatten(it.font(), buffer);
buffer.writeByteArray(it.glyphs(), it.glyphCount() * sizeof(uint16_t));
buffer.writeByteArray(it.pos(),
it.glyphCount() * sizeof(SkScalar) *
SkTextBlob::ScalarsPerGlyph(
SkTo<SkTextBlob::GlyphPositioning>(it.positioning())));
if (pe.extended) {
buffer.writeByteArray(it.clusters(), sizeof(uint32_t) * it.glyphCount());
buffer.writeByteArray(it.text(), it.textSize());
}
it.next();
}
// Marker for the last run (0 is not a valid glyph count).
buffer.write32(0);
}
sk_sp<SkTextBlob> SkTextBlobPriv::MakeFromBuffer(SkReadBuffer& reader) {
SkRect bounds;
reader.readRect(&bounds);
SkTextBlobBuilder blobBuilder;
SkSafeMath safe;
for (;;) {
int glyphCount = reader.read32();
if (glyphCount == 0) {
// End-of-runs marker.
break;
}
PositioningAndExtended pe;
pe.intValue = reader.read32();
const auto pos = SkTo<SkTextBlob::GlyphPositioning>(pe.positioning);
if (glyphCount <= 0 || pos > SkTextBlob::kRSXform_Positioning) {
return nullptr;
}
int textSize = pe.extended ? reader.read32() : 0;
if (textSize < 0) {
return nullptr;
}
SkPoint offset;
reader.readPoint(&offset);
SkFont font;
SkFontPriv::Unflatten(&font, reader);
// Compute the expected size of the buffer and ensure we have enough to deserialize
// a run before allocating it.
const size_t glyphSize = safe.mul(glyphCount, sizeof(uint16_t)),
posSize =
safe.mul(glyphCount, safe.mul(sizeof(SkScalar),
SkTextBlob::ScalarsPerGlyph(pos))),
clusterSize = pe.extended ? safe.mul(glyphCount, sizeof(uint32_t)) : 0;
const size_t totalSize =
safe.add(safe.add(glyphSize, posSize), safe.add(clusterSize, textSize));
if (!reader.isValid() || !safe || totalSize > reader.available()) {
return nullptr;
}
const SkTextBlobBuilder::RunBuffer* buf = nullptr;
switch (pos) {
case SkTextBlob::kDefault_Positioning:
buf = &blobBuilder.allocRunText(font, glyphCount, offset.x(), offset.y(),
textSize, &bounds);
break;
case SkTextBlob::kHorizontal_Positioning:
buf = &blobBuilder.allocRunTextPosH(font, glyphCount, offset.y(),
textSize, &bounds);
break;
case SkTextBlob::kFull_Positioning:
buf = &blobBuilder.allocRunTextPos(font, glyphCount, textSize, &bounds);
break;
case SkTextBlob::kRSXform_Positioning:
buf = &blobBuilder.allocRunTextRSXform(font, glyphCount, textSize, &bounds);
break;
}
if (!buf->glyphs ||
!buf->pos ||
(pe.extended && (!buf->clusters || !buf->utf8text))) {
return nullptr;
}
if (!reader.readByteArray(buf->glyphs, glyphSize) ||
!reader.readByteArray(buf->pos, posSize)) {
return nullptr;
}
if (pe.extended) {
if (!reader.readByteArray(buf->clusters, clusterSize) ||
!reader.readByteArray(buf->utf8text, textSize)) {
return nullptr;
}
}
}
return blobBuilder.make();
}
sk_sp<SkTextBlob> SkTextBlob::MakeFromText(const void* text, size_t byteLength, const SkFont& font,
SkTextEncoding encoding) {
// Note: we deliberately promote this to fully positioned blobs, since we'd have to pay the
// same cost down stream (i.e. computing bounds), so its cheaper to pay the cost once now.
const int count = font.countText(text, byteLength, encoding);
if (count < 1) {
return nullptr;
}
SkTextBlobBuilder builder;
auto buffer = builder.allocRunPos(font, count);
font.textToGlyphs(text, byteLength, encoding, buffer.glyphs, count);
font.getPos(buffer.glyphs, count, buffer.points(), {0, 0});
return builder.make();
}
sk_sp<SkTextBlob> SkTextBlob::MakeFromPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkFont& font,
SkTextEncoding encoding) {
const int count = font.countText(text, byteLength, encoding);
if (count < 1) {
return nullptr;
}
SkTextBlobBuilder builder;
auto buffer = builder.allocRunPos(font, count);
font.textToGlyphs(text, byteLength, encoding, buffer.glyphs, count);
memcpy(buffer.points(), pos, count * sizeof(SkPoint));
return builder.make();
}
sk_sp<SkTextBlob> SkTextBlob::MakeFromPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY,
const SkFont& font, SkTextEncoding encoding) {
const int count = font.countText(text, byteLength, encoding);
if (count < 1) {
return nullptr;
}
SkTextBlobBuilder builder;
auto buffer = builder.allocRunPosH(font, count, constY);
font.textToGlyphs(text, byteLength, encoding, buffer.glyphs, count);
memcpy(buffer.pos, xpos, count * sizeof(SkScalar));
return builder.make();
}
sk_sp<SkTextBlob> SkTextBlob::MakeFromRSXform(const void* text, size_t byteLength,
const SkRSXform xform[], const SkFont& font,
SkTextEncoding encoding) {
const int count = font.countText(text, byteLength, encoding);
if (count < 1) {
return nullptr;
}
SkTextBlobBuilder builder;
auto buffer = builder.allocRunRSXform(font, count);
font.textToGlyphs(text, byteLength, encoding, buffer.glyphs, count);
memcpy(buffer.xforms(), xform, count * sizeof(SkRSXform));
return builder.make();
}
sk_sp<SkData> SkTextBlob::serialize(const SkSerialProcs& procs) const {
SkBinaryWriteBuffer buffer(procs);
SkTextBlobPriv::Flatten(*this, buffer);
size_t total = buffer.bytesWritten();
sk_sp<SkData> data = SkData::MakeUninitialized(total);
buffer.writeToMemory(data->writable_data());
return data;
}
sk_sp<SkTextBlob> SkTextBlob::Deserialize(const void* data, size_t length,
const SkDeserialProcs& procs) {
SkReadBuffer buffer(data, length);
buffer.setDeserialProcs(procs);
return SkTextBlobPriv::MakeFromBuffer(buffer);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
size_t SkTextBlob::serialize(const SkSerialProcs& procs, void* memory, size_t memory_size) const {
SkBinaryWriteBuffer buffer(memory, memory_size, procs);
SkTextBlobPriv::Flatten(*this, buffer);
return buffer.usingInitialStorage() ? buffer.bytesWritten() : 0u;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace {
int get_glyph_run_intercepts(const sktext::GlyphRun& glyphRun,
const SkPaint& paint,
const SkScalar bounds[2],
SkScalar intervals[],
int* intervalCount) {
SkScalar scale = SK_Scalar1;
SkPaint interceptPaint{paint};
SkFont interceptFont{glyphRun.font()};
interceptPaint.setMaskFilter(nullptr); // don't want this affecting our path-cache lookup
// can't use our canonical size if we need to apply path effects
if (interceptPaint.getPathEffect() == nullptr) {
// If the wrong size is going to be used, don't hint anything.
interceptFont.setHinting(SkFontHinting::kNone);
interceptFont.setSubpixel(true);
scale = interceptFont.getSize() / SkFontPriv::kCanonicalTextSizeForPaths;
interceptFont.setSize(SkIntToScalar(SkFontPriv::kCanonicalTextSizeForPaths));
// Note: fScale can be zero here (even if it wasn't before the divide). It can also
// be very very small. We call sk_ieee_float_divide below to ensure IEEE divide behavior,
// since downstream we will check for the resulting coordinates being non-finite anyway.
// Thus we don't need to check for zero here.
if (interceptPaint.getStrokeWidth() > 0
&& interceptPaint.getStyle() != SkPaint::kFill_Style) {
interceptPaint.setStrokeWidth(
sk_ieee_float_divide(interceptPaint.getStrokeWidth(), scale));
}
}
interceptPaint.setStyle(SkPaint::kFill_Style);
interceptPaint.setPathEffect(nullptr);
SkStrikeSpec strikeSpec = SkStrikeSpec::MakeWithNoDevice(interceptFont, &interceptPaint);
SkBulkGlyphMetricsAndPaths metricsAndPaths{strikeSpec};
const SkPoint* posCursor = glyphRun.positions().begin();
for (const SkGlyph* glyph : metricsAndPaths.glyphs(glyphRun.glyphsIDs())) {
SkPoint pos = *posCursor++;
if (glyph->path() != nullptr) {
// The typeface is scaled, so un-scale the bounds to be in the space of the typeface.
// Also ensure the bounds are properly offset by the vertical positioning of the glyph.
SkScalar scaledBounds[2] = {
(bounds[0] - pos.y()) / scale,
(bounds[1] - pos.y()) / scale
};
metricsAndPaths.findIntercepts(
scaledBounds, scale, pos.x(), glyph, intervals, intervalCount);
}
}
return *intervalCount;
}
} // namespace
int SkTextBlob::getIntercepts(const SkScalar bounds[2], SkScalar intervals[],
const SkPaint* paint) const {
SkTLazy<SkPaint> defaultPaint;
if (paint == nullptr) {
defaultPaint.init();
paint = defaultPaint.get();
}
sktext::GlyphRunBuilder builder;
auto glyphRunList = builder.blobToGlyphRunList(*this, {0, 0});
int intervalCount = 0;
for (const sktext::GlyphRun& glyphRun : glyphRunList) {
// Ignore RSXForm runs.
if (glyphRun.scaledRotations().empty()) {
intervalCount = get_glyph_run_intercepts(
glyphRun, *paint, bounds, intervals, &intervalCount);
}
}
return intervalCount;
}
std::vector<SkScalar> SkFont::getIntercepts(const SkGlyphID glyphs[], int count,
const SkPoint positions[],
SkScalar top, SkScalar bottom,
const SkPaint* paintPtr) const {
if (count <= 0) {
return std::vector<SkScalar>();
}
const SkPaint paint(paintPtr ? *paintPtr : SkPaint());
const SkScalar bounds[] = {top, bottom};
const sktext::GlyphRun run(*this,
{positions, size_t(count)}, {glyphs, size_t(count)},
{nullptr, 0}, {nullptr, 0}, {nullptr, 0});
std::vector<SkScalar> result;
result.resize(count * 2); // worst case allocation
int intervalCount = 0;
intervalCount = get_glyph_run_intercepts(run, paint, bounds, result.data(), &intervalCount);
result.resize(intervalCount);
return result;
}
////////
SkTextBlob::Iter::Iter(const SkTextBlob& blob) {
fRunRecord = RunRecord::First(&blob);
}
bool SkTextBlob::Iter::next(Run* rec) {
if (fRunRecord) {
if (rec) {
rec->fTypeface = fRunRecord->font().getTypeface();
rec->fGlyphCount = fRunRecord->glyphCount();
rec->fGlyphIndices = fRunRecord->glyphBuffer();
#ifdef SK_UNTIL_CRBUG_1187654_IS_FIXED
rec->fClusterIndex_forTest = fRunRecord->clusterBuffer();
rec->fUtf8Size_forTest = fRunRecord->textSize();
rec->fUtf8_forTest = fRunRecord->textBuffer();
#endif
}
if (fRunRecord->isLastRun()) {
fRunRecord = nullptr;
} else {
fRunRecord = RunRecord::Next(fRunRecord);
}
return true;
}
return false;
}
bool SkTextBlob::Iter::experimentalNext(ExperimentalRun* rec) {
if (fRunRecord) {
if (rec) {
rec->font = fRunRecord->font();
rec->count = fRunRecord->glyphCount();
rec->glyphs = fRunRecord->glyphBuffer();
rec->positions = fRunRecord->pointBuffer();
}
if (fRunRecord->isLastRun()) {
fRunRecord = nullptr;
} else {
fRunRecord = RunRecord::Next(fRunRecord);
}
return true;
}
return false;
}