blob: 1d8cc5a0b24b635a1ca5b13580dcfcbe66e3a9e8 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTHash_DEFINED
#define SkTHash_DEFINED
#include "include/core/SkTypes.h"
#include "src/core/SkChecksum.h"
#include <initializer_list>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
namespace skia_private {
// Before trying to use THashTable, look below to see if THashMap or THashSet works for you.
// They're easier to use, usually perform the same, and have fewer sharp edges.
// T and K are treated as ordinary copyable C++ types.
// Traits must have:
// - static K GetKey(T)
// - static uint32_t Hash(K)
// If the key is large and stored inside T, you may want to make K a const&.
// Similarly, if T is large you might want it to be a pointer.
template <typename T, typename K, typename Traits = T>
class THashTable {
public:
THashTable() = default;
~THashTable() = default;
THashTable(const THashTable& that) { *this = that; }
THashTable( THashTable&& that) { *this = std::move(that); }
THashTable& operator=(const THashTable& that) {
if (this != &that) {
fCount = that.fCount;
fCapacity = that.fCapacity;
fSlots.reset(new Slot[that.fCapacity]);
for (int i = 0; i < fCapacity; i++) {
fSlots[i] = that.fSlots[i];
}
}
return *this;
}
THashTable& operator=(THashTable&& that) {
if (this != &that) {
fCount = that.fCount;
fCapacity = that.fCapacity;
fSlots = std::move(that.fSlots);
that.fCount = that.fCapacity = 0;
}
return *this;
}
// Clear the table.
void reset() { *this = THashTable(); }
// How many entries are in the table?
int count() const { return fCount; }
// How many slots does the table contain? (Note that unlike an array, hash tables can grow
// before reaching 100% capacity.)
int capacity() const { return fCapacity; }
// Approximately how many bytes of memory do we use beyond sizeof(*this)?
size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); }
// !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!
// set(), find() and foreach() all allow mutable access to table entries.
// If you change an entry so that it no longer has the same key, all hell
// will break loose. Do not do that!
//
// Please prefer to use THashMap or THashSet, which do not have this danger.
// The pointers returned by set() and find() are valid only until the next call to set().
// The pointers you receive in foreach() are only valid for its duration.
// Copy val into the hash table, returning a pointer to the copy now in the table.
// If there already is an entry in the table with the same key, we overwrite it.
T* set(T val) {
if (4 * fCount >= 3 * fCapacity) {
this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
}
return this->uncheckedSet(std::move(val));
}
// If there is an entry in the table with this key, return a pointer to it. If not, null.
T* find(const K& key) const {
uint32_t hash = Hash(key);
int index = hash & (fCapacity-1);
for (int n = 0; n < fCapacity; n++) {
Slot& s = fSlots[index];
if (s.empty()) {
return nullptr;
}
if (hash == s.fHash && key == Traits::GetKey(*s)) {
return &*s;
}
index = this->next(index);
}
SkASSERT(fCapacity == fCount);
return nullptr;
}
// If there is an entry in the table with this key, return it. If not, null.
// This only works for pointer type T, and cannot be used to find an nullptr entry.
T findOrNull(const K& key) const {
if (T* p = this->find(key)) {
return *p;
}
return nullptr;
}
// If a value with this key exists in the hash table, removes it and returns true.
// Otherwise, returns false.
bool removeIfExists(const K& key) {
uint32_t hash = Hash(key);
int index = hash & (fCapacity-1);
for (int n = 0; n < fCapacity; n++) {
Slot& s = fSlots[index];
if (s.empty()) {
return false;
}
if (hash == s.fHash && key == Traits::GetKey(*s)) {
this->removeSlot(index);
if (4 * fCount <= fCapacity && fCapacity > 4) {
this->resize(fCapacity / 2);
}
return true;
}
index = this->next(index);
}
SkASSERT(fCapacity == fCount);
return false;
}
// Removes the value with this key from the hash table. Asserts if it is missing.
void remove(const K& key) {
SkAssertResult(this->removeIfExists(key));
}
// Hash tables will automatically resize themselves when set() and remove() are called, but
// resize() can be called to manually grow capacity before a bulk insertion.
void resize(int capacity) {
SkASSERT(capacity >= fCount);
int oldCapacity = fCapacity;
SkDEBUGCODE(int oldCount = fCount);
fCount = 0;
fCapacity = capacity;
std::unique_ptr<Slot[]> oldSlots = std::move(fSlots);
fSlots.reset(new Slot[capacity]);
for (int i = 0; i < oldCapacity; i++) {
Slot& s = oldSlots[i];
if (s.has_value()) {
this->uncheckedSet(*std::move(s));
}
}
SkASSERT(fCount == oldCount);
}
// Call fn on every entry in the table. You may mutate the entries, but be very careful.
template <typename Fn> // f(T*)
void foreach(Fn&& fn) {
for (int i = 0; i < fCapacity; i++) {
if (fSlots[i].has_value()) {
fn(&*fSlots[i]);
}
}
}
// Call fn on every entry in the table. You may not mutate anything.
template <typename Fn> // f(T) or f(const T&)
void foreach(Fn&& fn) const {
for (int i = 0; i < fCapacity; i++) {
if (fSlots[i].has_value()) {
fn(*fSlots[i]);
}
}
}
// A basic iterator-like class which disallows mutation; sufficient for range-based for loops.
// Intended for use by THashMap and THashSet via begin() and end().
// Adding or removing elements may invalidate all iterators.
template <typename SlotVal>
class Iter {
public:
using TTable = THashTable<T, K, Traits>;
Iter(const TTable* table, int slot) : fTable(table), fSlot(slot) {}
static Iter MakeBegin(const TTable* table) {
return Iter{table, table->firstPopulatedSlot()};
}
static Iter MakeEnd(const TTable* table) {
return Iter{table, table->capacity()};
}
const SlotVal& operator*() const {
return *fTable->slot(fSlot);
}
const SlotVal* operator->() const {
return fTable->slot(fSlot);
}
bool operator==(const Iter& that) const {
// Iterators from different tables shouldn't be compared against each other.
SkASSERT(fTable == that.fTable);
return fSlot == that.fSlot;
}
bool operator!=(const Iter& that) const {
return !(*this == that);
}
Iter& operator++() {
fSlot = fTable->nextPopulatedSlot(fSlot);
return *this;
}
Iter operator++(int) {
Iter old = *this;
this->operator++();
return old;
}
protected:
const TTable* fTable;
int fSlot;
};
private:
// Finds the first non-empty slot for an iterator.
int firstPopulatedSlot() const {
for (int i = 0; i < fCapacity; i++) {
if (fSlots[i].has_value()) {
return i;
}
}
return fCapacity;
}
// Increments an iterator's slot.
int nextPopulatedSlot(int currentSlot) const {
for (int i = currentSlot + 1; i < fCapacity; i++) {
if (fSlots[i].has_value()) {
return i;
}
}
return fCapacity;
}
// Reads from an iterator's slot.
const T* slot(int i) const {
SkASSERT(fSlots[i].has_value());
return &*fSlots[i];
}
T* uncheckedSet(T&& val) {
const K& key = Traits::GetKey(val);
SkASSERT(key == key);
uint32_t hash = Hash(key);
int index = hash & (fCapacity-1);
for (int n = 0; n < fCapacity; n++) {
Slot& s = fSlots[index];
if (s.empty()) {
// New entry.
s.emplace(std::move(val), hash);
fCount++;
return &*s;
}
if (hash == s.fHash && key == Traits::GetKey(*s)) {
// Overwrite previous entry.
// Note: this triggers extra copies when adding the same value repeatedly.
s.emplace(std::move(val), hash);
return &*s;
}
index = this->next(index);
}
SkASSERT(false);
return nullptr;
}
void removeSlot(int index) {
fCount--;
// Rearrange elements to restore the invariants for linear probing.
for (;;) {
Slot& emptySlot = fSlots[index];
int emptyIndex = index;
int originalIndex;
// Look for an element that can be moved into the empty slot.
// If the empty slot is in between where an element landed, and its native slot, then
// move it to the empty slot. Don't move it if its native slot is in between where
// the element landed and the empty slot.
// [native] <= [empty] < [candidate] == GOOD, can move candidate to empty slot
// [empty] < [native] < [candidate] == BAD, need to leave candidate where it is
do {
index = this->next(index);
Slot& s = fSlots[index];
if (s.empty()) {
// We're done shuffling elements around. Clear the last empty slot.
emptySlot.reset();
return;
}
originalIndex = s.fHash & (fCapacity - 1);
} while ((index <= originalIndex && originalIndex < emptyIndex)
|| (originalIndex < emptyIndex && emptyIndex < index)
|| (emptyIndex < index && index <= originalIndex));
// Move the element to the empty slot.
Slot& moveFrom = fSlots[index];
emptySlot = std::move(moveFrom);
}
}
int next(int index) const {
index--;
if (index < 0) { index += fCapacity; }
return index;
}
static uint32_t Hash(const K& key) {
uint32_t hash = Traits::Hash(key) & 0xffffffff;
return hash ? hash : 1; // We reserve hash 0 to mark empty.
}
class Slot {
public:
Slot() = default;
~Slot() { this->reset(); }
Slot(const Slot& that) { *this = that; }
Slot& operator=(const Slot& that) {
if (this == &that) {
return *this;
}
if (fHash) {
if (that.fHash) {
fVal.fStorage = that.fVal.fStorage;
fHash = that.fHash;
} else {
this->reset();
}
} else {
if (that.fHash) {
new (&fVal.fStorage) T(that.fVal.fStorage);
fHash = that.fHash;
} else {
// do nothing, no value on either side
}
}
return *this;
}
Slot(Slot&& that) { *this = std::move(that); }
Slot& operator=(Slot&& that) {
if (this == &that) {
return *this;
}
if (fHash) {
if (that.fHash) {
fVal.fStorage = std::move(that.fVal.fStorage);
fHash = that.fHash;
} else {
this->reset();
}
} else {
if (that.fHash) {
new (&fVal.fStorage) T(std::move(that.fVal.fStorage));
fHash = that.fHash;
} else {
// do nothing, no value on either side
}
}
return *this;
}
T& operator*() & { return fVal.fStorage; }
const T& operator*() const& { return fVal.fStorage; }
T&& operator*() && { return std::move(fVal.fStorage); }
const T&& operator*() const&& { return std::move(fVal.fStorage); }
Slot& emplace(T&& v, uint32_t h) {
this->reset();
new (&fVal.fStorage) T(std::move(v));
fHash = h;
return *this;
}
bool has_value() const { return fHash != 0; }
explicit operator bool() const { return this->has_value(); }
bool empty() const { return !this->has_value(); }
void reset() {
if (fHash) {
fVal.fStorage.~T();
fHash = 0;
}
}
uint32_t fHash = 0;
private:
union Storage {
T fStorage;
Storage() {}
~Storage() {}
} fVal;
};
int fCount = 0,
fCapacity = 0;
std::unique_ptr<Slot[]> fSlots;
};
// Maps K->V. A more user-friendly wrapper around THashTable, suitable for most use cases.
// K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two.
template <typename K, typename V, typename HashK = SkGoodHash>
class THashMap {
public:
// Allow default construction and assignment.
THashMap() = default;
THashMap(THashMap<K, V, HashK>&& that) = default;
THashMap(const THashMap<K, V, HashK>& that) = default;
THashMap<K, V, HashK>& operator=(THashMap<K, V, HashK>&& that) = default;
THashMap<K, V, HashK>& operator=(const THashMap<K, V, HashK>& that) = default;
// Construct with an initializer list of key-value pairs.
struct Pair : public std::pair<K, V> {
using std::pair<K, V>::pair;
static const K& GetKey(const Pair& p) { return p.first; }
static auto Hash(const K& key) { return HashK()(key); }
};
THashMap(std::initializer_list<Pair> pairs) {
fTable.resize(pairs.size() * 5 / 3);
for (const Pair& p : pairs) {
fTable.set(p);
}
}
// Clear the map.
void reset() { fTable.reset(); }
// How many key/value pairs are in the table?
int count() const { return fTable.count(); }
// Is empty?
bool empty() const { return fTable.count() == 0; }
// Approximately how many bytes of memory do we use beyond sizeof(*this)?
size_t approxBytesUsed() const { return fTable.approxBytesUsed(); }
// N.B. The pointers returned by set() and find() are valid only until the next call to set().
// Set key to val in the table, replacing any previous value with the same key.
// We copy both key and val, and return a pointer to the value copy now in the table.
V* set(K key, V val) {
Pair* out = fTable.set({std::move(key), std::move(val)});
return &out->second;
}
// If there is key/value entry in the table with this key, return a pointer to the value.
// If not, return null.
V* find(const K& key) const {
if (Pair* p = fTable.find(key)) {
return &p->second;
}
return nullptr;
}
V& operator[](const K& key) {
if (V* val = this->find(key)) {
return *val;
}
return *this->set(key, V{});
}
// Removes the key/value entry in the table with this key. Asserts if the key is not present.
void remove(const K& key) {
fTable.remove(key);
}
// If the key exists in the table, removes it and returns true. Otherwise, returns false.
bool removeIfExists(const K& key) {
return fTable.removeIfExists(key);
}
// Call fn on every key/value pair in the table. You may mutate the value but not the key.
template <typename Fn, // f(K, V*) or f(const K&, V*)
std::enable_if_t<std::is_invocable_v<Fn, K, V*>>* = nullptr>
void foreach(Fn&& fn) {
fTable.foreach([&fn](Pair* p) { fn(p->first, &p->second); });
}
// Call fn on every key/value pair in the table. You may not mutate anything.
template <typename Fn, // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&).
std::enable_if_t<std::is_invocable_v<Fn, K, V>>* = nullptr>
void foreach(Fn&& fn) const {
fTable.foreach([&fn](const Pair& p) { fn(p.first, p.second); });
}
// Call fn on every key/value pair in the table. You may not mutate anything.
template <typename Fn, // f(Pair), or f(const Pair&)
std::enable_if_t<std::is_invocable_v<Fn, Pair>>* = nullptr>
void foreach(Fn&& fn) const {
fTable.foreach([&fn](const Pair& p) { fn(p); });
}
// Dereferencing an iterator gives back a key-value pair, suitable for structured binding.
using Iter = typename THashTable<Pair, K>::template Iter<std::pair<K, V>>;
Iter begin() const {
return Iter::MakeBegin(&fTable);
}
Iter end() const {
return Iter::MakeEnd(&fTable);
}
private:
THashTable<Pair, K> fTable;
};
// A set of T. T is treated as an ordinary copyable C++ type.
template <typename T, typename HashT = SkGoodHash>
class THashSet {
public:
// Allow default construction and assignment.
THashSet() = default;
THashSet(THashSet<T, HashT>&& that) = default;
THashSet(const THashSet<T, HashT>& that) = default;
THashSet<T, HashT>& operator=(THashSet<T, HashT>&& that) = default;
THashSet<T, HashT>& operator=(const THashSet<T, HashT>& that) = default;
// Construct with an initializer list of Ts.
THashSet(std::initializer_list<T> vals) {
fTable.resize(vals.size() * 5 / 3);
for (const T& val : vals) {
fTable.set(val);
}
}
// Clear the set.
void reset() { fTable.reset(); }
// How many items are in the set?
int count() const { return fTable.count(); }
// Is empty?
bool empty() const { return fTable.count() == 0; }
// Approximately how many bytes of memory do we use beyond sizeof(*this)?
size_t approxBytesUsed() const { return fTable.approxBytesUsed(); }
// Copy an item into the set.
void add(T item) { fTable.set(std::move(item)); }
// Is this item in the set?
bool contains(const T& item) const { return SkToBool(this->find(item)); }
// If an item equal to this is in the set, return a pointer to it, otherwise null.
// This pointer remains valid until the next call to add().
const T* find(const T& item) const { return fTable.find(item); }
// Remove the item in the set equal to this.
void remove(const T& item) {
SkASSERT(this->contains(item));
fTable.remove(item);
}
// Call fn on every item in the set. You may not mutate anything.
template <typename Fn> // f(T), f(const T&)
void foreach (Fn&& fn) const {
fTable.foreach(fn);
}
private:
struct Traits {
static const T& GetKey(const T& item) { return item; }
static auto Hash(const T& item) { return HashT()(item); }
};
public:
using Iter = typename THashTable<T, T, Traits>::template Iter<T>;
Iter begin() const {
return Iter::MakeBegin(&fTable);
}
Iter end() const {
return Iter::MakeEnd(&fTable);
}
private:
THashTable<T, T, Traits> fTable;
};
} // namespace skia_private
#endif // SkTHash_DEFINED