blob: 1e952ae8c71bdbe065679b61994b6d888b399721 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColor.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathTypes.h"
#include "include/core/SkRect.h"
#include "include/core/SkRegion.h"
#include "include/core/SkScalar.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFixed.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkMacros.h"
#include "include/private/base/SkMath.h"
#include "include/private/base/SkPoint_impl.h"
#include "include/private/base/SkSafe32.h"
#include "src/base/SkTSort.h"
#include "src/core/SkBlitter.h"
#include "src/core/SkEdge.h"
#include "src/core/SkEdgeBuilder.h"
#include "src/core/SkFDot6.h"
#include "src/core/SkRasterClip.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkScan.h"
#include "src/core/SkScanPriv.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
struct SkMask;
#define kEDGE_HEAD_Y SK_MinS32
#define kEDGE_TAIL_Y SK_MaxS32
#ifdef SK_DEBUG
static void validate_sort(const SkEdge* edge) {
int y = kEDGE_HEAD_Y;
while (edge->fFirstY != SK_MaxS32) {
edge->validate();
SkASSERT(y <= edge->fFirstY);
y = edge->fFirstY;
edge = edge->fNext;
}
}
#else
#define validate_sort(edge)
#endif
static void insert_new_edges(SkEdge* newEdge, int curr_y) {
if (newEdge->fFirstY != curr_y) {
return;
}
SkEdge* prev = newEdge->fPrev;
if (prev->fX <= newEdge->fX) {
return;
}
// find first x pos to insert
SkEdge* start = backward_insert_start(prev, newEdge->fX);
// insert the lot, fixing up the links as we go
do {
SkEdge* next = newEdge->fNext;
do {
if (start->fNext == newEdge) {
goto nextEdge;
}
SkEdge* after = start->fNext;
if (after->fX >= newEdge->fX) {
break;
}
start = after;
} while (true);
remove_edge(newEdge);
insert_edge_after(newEdge, start);
nextEdge:
start = newEdge;
newEdge = next;
} while (newEdge->fFirstY == curr_y);
}
#ifdef SK_DEBUG
static void validate_edges_for_y(const SkEdge* edge, int curr_y) {
while (edge->fFirstY <= curr_y) {
SkASSERT(edge->fPrev && edge->fNext);
SkASSERT(edge->fPrev->fNext == edge);
SkASSERT(edge->fNext->fPrev == edge);
SkASSERT(edge->fFirstY <= edge->fLastY);
SkASSERT(edge->fPrev->fX <= edge->fX);
edge = edge->fNext;
}
}
#else
#define validate_edges_for_y(edge, curr_y)
#endif
#if defined _WIN32 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
#define PREPOST_START true
#define PREPOST_END false
static void walk_edges(SkEdge* prevHead, SkPathFillType fillType,
SkBlitter* blitter, int start_y, int stop_y,
PrePostProc proc, int rightClip) {
validate_sort(prevHead->fNext);
int curr_y = start_y;
int windingMask = SkPathFillType_IsEvenOdd(fillType) ? 1 : -1;
for (;;) {
int w = 0;
int left SK_INIT_TO_AVOID_WARNING;
SkEdge* currE = prevHead->fNext;
SkFixed prevX = prevHead->fX;
validate_edges_for_y(currE, curr_y);
if (proc) {
proc(blitter, curr_y, PREPOST_START); // pre-proc
}
while (currE->fFirstY <= curr_y) {
SkASSERT(currE->fLastY >= curr_y);
int x = SkFixedRoundToInt(currE->fX);
if ((w & windingMask) == 0) { // we're starting interval
left = x;
}
w += currE->fWinding;
if ((w & windingMask) == 0) { // we finished an interval
int width = x - left;
SkASSERT(width >= 0);
if (width > 0) {
blitter->blitH(left, curr_y, width);
}
}
SkEdge* next = currE->fNext;
SkFixed newX;
if (currE->fLastY == curr_y) { // are we done with this edge?
if (currE->fCurveCount > 0) {
if (((SkQuadraticEdge*)currE)->updateQuadratic()) {
newX = currE->fX;
goto NEXT_X;
}
} else if (currE->fCurveCount < 0) {
if (((SkCubicEdge*)currE)->updateCubic()) {
SkASSERT(currE->fFirstY == curr_y + 1);
newX = currE->fX;
goto NEXT_X;
}
}
remove_edge(currE);
} else {
SkASSERT(currE->fLastY > curr_y);
newX = currE->fX + currE->fDX;
currE->fX = newX;
NEXT_X:
if (newX < prevX) { // ripple currE backwards until it is x-sorted
backward_insert_edge_based_on_x(currE);
} else {
prevX = newX;
}
}
currE = next;
SkASSERT(currE);
}
if ((w & windingMask) != 0) { // was our right-edge culled away?
int width = rightClip - left;
if (width > 0) {
blitter->blitH(left, curr_y, width);
}
}
if (proc) {
proc(blitter, curr_y, PREPOST_END); // post-proc
}
curr_y += 1;
if (curr_y >= stop_y) {
break;
}
// now currE points to the first edge with a Yint larger than curr_y
insert_new_edges(currE, curr_y);
}
}
// return true if we're NOT done with this edge
static bool update_edge(SkEdge* edge, int last_y) {
SkASSERT(edge->fLastY >= last_y);
if (last_y == edge->fLastY) {
if (edge->fCurveCount < 0) {
if (((SkCubicEdge*)edge)->updateCubic()) {
SkASSERT(edge->fFirstY == last_y + 1);
return true;
}
} else if (edge->fCurveCount > 0) {
if (((SkQuadraticEdge*)edge)->updateQuadratic()) {
SkASSERT(edge->fFirstY == last_y + 1);
return true;
}
}
return false;
}
return true;
}
// Unexpected conditions for which we need to return
#define ASSERT_RETURN(cond) \
do { \
if (!(cond)) { \
SkDEBUGFAILF("assert(%s)", #cond); \
return; \
} \
} while (0)
// Needs Y to only change once (looser than convex in X)
static void walk_simple_edges(SkEdge* prevHead, SkBlitter* blitter, int start_y, int stop_y) {
validate_sort(prevHead->fNext);
SkEdge* leftE = prevHead->fNext;
SkEdge* riteE = leftE->fNext;
SkEdge* currE = riteE->fNext;
// our edge choppers for curves can result in the initial edges
// not lining up, so we take the max.
int local_top = std::max(leftE->fFirstY, riteE->fFirstY);
ASSERT_RETURN(local_top >= start_y);
while (local_top < stop_y) {
SkASSERT(leftE->fFirstY <= stop_y);
SkASSERT(riteE->fFirstY <= stop_y);
int local_bot = std::min(leftE->fLastY, riteE->fLastY);
local_bot = std::min(local_bot, stop_y - 1);
ASSERT_RETURN(local_top <= local_bot);
SkFixed left = leftE->fX;
SkFixed dLeft = leftE->fDX;
SkFixed rite = riteE->fX;
SkFixed dRite = riteE->fDX;
int count = local_bot - local_top;
ASSERT_RETURN(count >= 0);
if (0 == (dLeft | dRite)) {
int L = SkFixedRoundToInt(left);
int R = SkFixedRoundToInt(rite);
if (L > R) {
std::swap(L, R);
}
if (L < R) {
count += 1;
blitter->blitRect(L, local_top, R - L, count);
}
local_top = local_bot + 1;
} else {
do {
int L = SkFixedRoundToInt(left);
int R = SkFixedRoundToInt(rite);
if (L > R) {
std::swap(L, R);
}
if (L < R) {
blitter->blitH(L, local_top, R - L);
}
// Either/both of these might overflow, since we perform this step even if
// (later) we determine that we are done with the edge, and so the computed
// left or rite edge will not be used (see update_edge). Use this helper to
// silence UBSAN when we perform the add.
left = Sk32_can_overflow_add(left, dLeft);
rite = Sk32_can_overflow_add(rite, dRite);
local_top += 1;
} while (--count >= 0);
}
leftE->fX = left;
riteE->fX = rite;
if (!update_edge(leftE, local_bot)) {
if (currE->fFirstY >= stop_y) {
return; // we're done
}
leftE = currE;
currE = currE->fNext;
ASSERT_RETURN(leftE->fFirstY == local_top);
}
if (!update_edge(riteE, local_bot)) {
if (currE->fFirstY >= stop_y) {
return; // we're done
}
riteE = currE;
currE = currE->fNext;
ASSERT_RETURN(riteE->fFirstY == local_top);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// this overrides blitH, and will call its proxy blitter with the inverse
// of the spans it is given (clipped to the left/right of the cliprect)
//
// used to implement inverse filltypes on paths
//
class InverseBlitter : public SkBlitter {
public:
void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
fBlitter = blitter;
fFirstX = clip.fLeft << shift;
fLastX = clip.fRight << shift;
}
void prepost(int y, bool isStart) {
if (isStart) {
fPrevX = fFirstX;
} else {
int invWidth = fLastX - fPrevX;
if (invWidth > 0) {
fBlitter->blitH(fPrevX, y, invWidth);
}
}
}
// overrides
void blitH(int x, int y, int width) override {
int invWidth = x - fPrevX;
if (invWidth > 0) {
fBlitter->blitH(fPrevX, y, invWidth);
}
fPrevX = x + width;
}
// we do not expect to get called with these entrypoints
void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) override {
SkDEBUGFAIL("blitAntiH unexpected");
}
void blitV(int x, int y, int height, SkAlpha alpha) override {
SkDEBUGFAIL("blitV unexpected");
}
void blitRect(int x, int y, int width, int height) override {
SkDEBUGFAIL("blitRect unexpected");
}
void blitMask(const SkMask&, const SkIRect& clip) override {
SkDEBUGFAIL("blitMask unexpected");
}
private:
SkBlitter* fBlitter;
int fFirstX, fLastX, fPrevX;
};
static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
((InverseBlitter*)blitter)->prepost(y, isStart);
}
///////////////////////////////////////////////////////////////////////////////
#if defined _WIN32
#pragma warning ( pop )
#endif
static bool operator<(const SkEdge& a, const SkEdge& b) {
int valuea = a.fFirstY;
int valueb = b.fFirstY;
if (valuea == valueb) {
valuea = a.fX;
valueb = b.fX;
}
return valuea < valueb;
}
static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) {
SkTQSort(list, list + count);
// now make the edges linked in sorted order
for (int i = 1; i < count; i++) {
list[i - 1]->fNext = list[i];
list[i]->fPrev = list[i - 1];
}
*last = list[count - 1];
return list[0];
}
// clipRect has not been shifted up
void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitter,
int start_y, int stop_y, int shiftEdgesUp, bool pathContainedInClip) {
SkASSERT(blitter);
SkIRect shiftedClip = clipRect;
shiftedClip.fLeft = SkLeftShift(shiftedClip.fLeft, shiftEdgesUp);
shiftedClip.fRight = SkLeftShift(shiftedClip.fRight, shiftEdgesUp);
shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp);
shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp);
SkBasicEdgeBuilder builder(shiftEdgesUp);
int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &shiftedClip);
SkEdge** list = builder.edgeList();
if (0 == count) {
if (path.isInverseFillType()) {
/*
* Since we are in inverse-fill, our caller has already drawn above
* our top (start_y) and will draw below our bottom (stop_y). Thus
* we need to restrict our drawing to the intersection of the clip
* and those two limits.
*/
SkIRect rect = clipRect;
if (rect.fTop < start_y) {
rect.fTop = start_y;
}
if (rect.fBottom > stop_y) {
rect.fBottom = stop_y;
}
if (!rect.isEmpty()) {
blitter->blitRect(rect.fLeft << shiftEdgesUp,
rect.fTop << shiftEdgesUp,
rect.width() << shiftEdgesUp,
rect.height() << shiftEdgesUp);
}
}
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = nullptr;
headEdge.fNext = edge;
headEdge.fFirstY = kEDGE_HEAD_Y;
headEdge.fX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fPrev = last;
tailEdge.fNext = nullptr;
tailEdge.fFirstY = kEDGE_TAIL_Y;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
start_y = SkLeftShift(start_y, shiftEdgesUp);
stop_y = SkLeftShift(stop_y, shiftEdgesUp);
if (!pathContainedInClip && start_y < shiftedClip.fTop) {
start_y = shiftedClip.fTop;
}
if (!pathContainedInClip && stop_y > shiftedClip.fBottom) {
stop_y = shiftedClip.fBottom;
}
InverseBlitter ib;
PrePostProc proc = nullptr;
if (path.isInverseFillType()) {
ib.setBlitter(blitter, clipRect, shiftEdgesUp);
blitter = &ib;
proc = PrePostInverseBlitterProc;
}
// count >= 2 is required as the convex walker does not handle missing right edges
if (path.isConvex() && (nullptr == proc) && count >= 2) {
walk_simple_edges(&headEdge, blitter, start_y, stop_y);
} else {
walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc,
shiftedClip.right());
}
}
void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
const SkIRect& cr = clip.getBounds();
SkIRect tmp;
tmp.fLeft = cr.fLeft;
tmp.fRight = cr.fRight;
tmp.fTop = cr.fTop;
tmp.fBottom = ir.fTop;
if (!tmp.isEmpty()) {
blitter->blitRectRegion(tmp, clip);
}
}
void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
const SkIRect& cr = clip.getBounds();
SkIRect tmp;
tmp.fLeft = cr.fLeft;
tmp.fRight = cr.fRight;
tmp.fTop = ir.fBottom;
tmp.fBottom = cr.fBottom;
if (!tmp.isEmpty()) {
blitter->blitRectRegion(tmp, clip);
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* If the caller is drawing an inverse-fill path, then it pass true for
* skipRejectTest, so we don't abort drawing just because the src bounds (ir)
* is outside of the clip.
*/
SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip,
const SkIRect& ir, bool skipRejectTest, bool irPreClipped) {
fBlitter = nullptr; // null means blit nothing
fClipRect = nullptr;
if (clip) {
fClipRect = &clip->getBounds();
if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out
return;
}
if (clip->isRect()) {
if (!irPreClipped && fClipRect->contains(ir)) {
#ifdef SK_DEBUG
fRectClipCheckBlitter.init(blitter, *fClipRect);
blitter = &fRectClipCheckBlitter;
#endif
fClipRect = nullptr;
} else {
// only need a wrapper blitter if we're horizontally clipped
if (irPreClipped ||
fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) {
fRectBlitter.init(blitter, *fClipRect);
blitter = &fRectBlitter;
} else {
#ifdef SK_DEBUG
fRectClipCheckBlitter.init(blitter, *fClipRect);
blitter = &fRectClipCheckBlitter;
#endif
}
}
} else {
fRgnBlitter.init(blitter, clip);
blitter = &fRgnBlitter;
}
}
fBlitter = blitter;
}
///////////////////////////////////////////////////////////////////////////////
static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) {
// need to limit coordinates such that the width/height of our rect can be represented
// in SkFixed (16.16). See skbug.com/7998
const int32_t limit = 32767 >> 1;
SkIRect limitR;
limitR.setLTRB(-limit, -limit, limit, limit);
if (limitR.contains(orig.getBounds())) {
return false;
}
reduced->op(orig, limitR, SkRegion::kIntersect_Op);
return true;
}
// Bias used for conservative rounding of float rects to int rects, to nudge the irects a little
// larger, so we don't "think" a path's bounds are inside a clip, when (due to numeric drift in
// the scan-converter) we might walk beyond the predicted limits.
//
// This value has been determined trial and error: pick the smallest value (after the 0.5) that
// fixes any problematic cases (e.g. crbug.com/844457)
// NOTE: cubics appear to be the main reason for needing this slop. If we could (perhaps) have a
// more accurate walker for cubics, we may be able to reduce this fudge factor.
static const double kConservativeRoundBias = 0.5 + 1.5 / SK_FDot6One;
/**
* Round the value down. This is used to round the top and left of a rectangle,
* and corresponds to the way the scan converter treats the top and left edges.
* It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
* conservative int-bounds (larger) from a float rect.
*/
static inline int round_down_to_int(SkScalar x) {
double xx = x;
xx -= kConservativeRoundBias;
return sk_double_saturate2int(ceil(xx));
}
/**
* Round the value up. This is used to round the right and bottom of a rectangle.
* It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
* conservative int-bounds (larger) from a float rect.
*/
static inline int round_up_to_int(SkScalar x) {
double xx = x;
xx += kConservativeRoundBias;
return sk_double_saturate2int(floor(xx));
}
/*
* Conservative rounding function, which effectively nudges the int-rect to be slightly larger
* than SkRect::round() might have produced. This is a safety-net for the scan-converter, which
* inspects the returned int-rect, and may disable clipping (for speed) if it thinks all of the
* edges will fit inside the clip's bounds. The scan-converter introduces slight numeric errors
* due to accumulated += of the slope, so this function is used to return a conservatively large
* int-bounds, and thus we will only disable clipping if we're sure the edges will stay in-bounds.
*/
static SkIRect conservative_round_to_int(const SkRect& src) {
return {
round_down_to_int(src.fLeft),
round_down_to_int(src.fTop),
round_up_to_int(src.fRight),
round_up_to_int(src.fBottom),
};
}
void SkScan::FillPath(const SkPath& path, const SkRegion& origClip,
SkBlitter* blitter) {
if (origClip.isEmpty()) {
return;
}
// Our edges are fixed-point, and don't like the bounds of the clip to
// exceed that. Here we trim the clip just so we don't overflow later on
const SkRegion* clipPtr = &origClip;
SkRegion finiteClip;
if (clip_to_limit(origClip, &finiteClip)) {
if (finiteClip.isEmpty()) {
return;
}
clipPtr = &finiteClip;
}
// don't reference "origClip" any more, just use clipPtr
SkRect bounds = path.getBounds();
bool irPreClipped = false;
if (!SkRectPriv::MakeLargeS32().contains(bounds)) {
if (!bounds.intersect(SkRectPriv::MakeLargeS32())) {
bounds.setEmpty();
}
irPreClipped = true;
}
SkIRect ir = conservative_round_to_int(bounds);
if (ir.isEmpty()) {
if (path.isInverseFillType()) {
blitter->blitRegion(*clipPtr);
}
return;
}
SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType(), irPreClipped);
blitter = clipper.getBlitter();
if (blitter) {
// we have to keep our calls to blitter in sorted order, so we
// must blit the above section first, then the middle, then the bottom.
if (path.isInverseFillType()) {
sk_blit_above(blitter, ir, *clipPtr);
}
SkASSERT(clipper.getClipRect() == nullptr ||
*clipper.getClipRect() == clipPtr->getBounds());
sk_fill_path(path, clipPtr->getBounds(), blitter, ir.fTop, ir.fBottom,
0, clipper.getClipRect() == nullptr);
if (path.isInverseFillType()) {
sk_blit_below(blitter, ir, *clipPtr);
}
} else {
// what does it mean to not have a blitter if path.isInverseFillType???
}
}
void SkScan::FillPath(const SkPath& path, const SkIRect& ir,
SkBlitter* blitter) {
SkRegion rgn(ir);
FillPath(path, rgn, blitter);
}
bool SkScan::PathRequiresTiling(const SkIRect& bounds) {
SkRegion out; // ignored
return clip_to_limit(SkRegion(bounds), &out);
}
///////////////////////////////////////////////////////////////////////////////
static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
const SkIRect* clipRect, SkEdge* list[]) {
SkEdge** start = list;
if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
*list++ = edge;
edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
}
if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
*list++ = edge;
edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
}
if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
*list++ = edge;
}
return (int)(list - start);
}
static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
SkBlitter* blitter, const SkIRect& ir) {
SkASSERT(pts && blitter);
SkEdge edgeStorage[3];
SkEdge* list[3];
int count = build_tri_edges(edgeStorage, pts, clipRect, list);
if (count < 2) {
return;
}
SkEdge headEdge, tailEdge, *last;
// this returns the first and last edge after they're sorted into a dlink list
SkEdge* edge = sort_edges(list, count, &last);
headEdge.fPrev = nullptr;
headEdge.fNext = edge;
headEdge.fFirstY = kEDGE_HEAD_Y;
headEdge.fX = SK_MinS32;
edge->fPrev = &headEdge;
tailEdge.fPrev = last;
tailEdge.fNext = nullptr;
tailEdge.fFirstY = kEDGE_TAIL_Y;
last->fNext = &tailEdge;
// now edge is the head of the sorted linklist
int stop_y = ir.fBottom;
if (clipRect && stop_y > clipRect->fBottom) {
stop_y = clipRect->fBottom;
}
int start_y = ir.fTop;
if (clipRect && start_y < clipRect->fTop) {
start_y = clipRect->fTop;
}
walk_simple_edges(&headEdge, blitter, start_y, stop_y);
}
void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
SkRect r;
r.setBounds(pts, 3);
// If r is too large (larger than can easily fit in SkFixed) then we need perform geometric
// clipping. This is a bit of work, so we just call the general FillPath() to handle it.
// Use FixedMax/2 as the limit so we can subtract two edges and still store that in Fixed.
const SkScalar limit = SK_MaxS16 >> 1;
if (!SkRect::MakeLTRB(-limit, -limit, limit, limit).contains(r)) {
SkPath path;
path.addPoly(pts, 3, false);
FillPath(path, clip, blitter);
return;
}
SkIRect ir = conservative_round_to_int(r);
if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) {
return;
}
SkAAClipBlitterWrapper wrap;
const SkRegion* clipRgn;
if (clip.isBW()) {
clipRgn = &clip.bwRgn();
} else {
wrap.init(clip, blitter);
clipRgn = &wrap.getRgn();
blitter = wrap.getBlitter();
}
SkScanClipper clipper(blitter, clipRgn, ir);
blitter = clipper.getBlitter();
if (blitter) {
sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
}
}