| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkGlyph_DEFINED |
| #define SkGlyph_DEFINED |
| |
| #include "include/core/SkDrawable.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPicture.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkFixed.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkVx.h" |
| #include "src/core/SkChecksum.h" |
| #include "src/core/SkMask.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <limits> |
| #include <optional> |
| |
| class SkArenaAlloc; |
| class SkCanvas; |
| class SkGlyph; |
| class SkReadBuffer; |
| class SkScalerContext; |
| class SkWriteBuffer; |
| namespace sktext { |
| class StrikeForGPU; |
| } // namespace sktext |
| |
| // -- SkPackedGlyphID ------------------------------------------------------------------------------ |
| // A combination of SkGlyphID and sub-pixel position information. |
| struct SkPackedGlyphID { |
| inline static constexpr uint32_t kImpossibleID = ~0u; |
| enum { |
| // Lengths |
| kGlyphIDLen = 16u, |
| kSubPixelPosLen = 2u, |
| |
| // Bit positions |
| kSubPixelX = 0u, |
| kGlyphID = kSubPixelPosLen, |
| kSubPixelY = kGlyphIDLen + kSubPixelPosLen, |
| kEndData = kGlyphIDLen + 2 * kSubPixelPosLen, |
| |
| // Masks |
| kGlyphIDMask = (1u << kGlyphIDLen) - 1, |
| kSubPixelPosMask = (1u << kSubPixelPosLen) - 1, |
| kMaskAll = (1u << kEndData) - 1, |
| |
| // Location of sub pixel info in a fixed pointer number. |
| kFixedPointBinaryPointPos = 16u, |
| kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen, |
| }; |
| |
| inline static const constexpr SkScalar kSubpixelRound = |
| 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1)); |
| |
| inline static const constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX, |
| kSubPixelPosMask << kSubPixelY}; |
| |
| struct Hash { |
| uint32_t operator() (SkPackedGlyphID packedID) const { |
| return packedID.hash(); |
| } |
| }; |
| |
| constexpr explicit SkPackedGlyphID(SkGlyphID glyphID) |
| : fID{(uint32_t)glyphID << kGlyphID} { } |
| |
| constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y) |
| : fID {PackIDXY(glyphID, x, y)} { } |
| |
| constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y) |
| : fID {PackIDSubXSubY(glyphID, x, y)} { } |
| |
| SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) |
| : fID{PackIDSkPoint(glyphID, pt, mask)} { } |
| |
| constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { } |
| constexpr SkPackedGlyphID() : fID{kImpossibleID} {} |
| |
| bool operator==(const SkPackedGlyphID& that) const { |
| return fID == that.fID; |
| } |
| bool operator!=(const SkPackedGlyphID& that) const { |
| return !(*this == that); |
| } |
| bool operator<(SkPackedGlyphID that) const { |
| return this->fID < that.fID; |
| } |
| |
| SkGlyphID glyphID() const { |
| return (fID >> kGlyphID) & kGlyphIDMask; |
| } |
| |
| uint32_t value() const { |
| return fID; |
| } |
| |
| SkFixed getSubXFixed() const { |
| return this->subToFixed(kSubPixelX); |
| } |
| |
| SkFixed getSubYFixed() const { |
| return this->subToFixed(kSubPixelY); |
| } |
| |
| uint32_t hash() const { |
| return SkChecksum::CheapMix(fID); |
| } |
| |
| SkString dump() const { |
| SkString str; |
| str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed()); |
| return str; |
| } |
| |
| SkString shortDump() const { |
| SkString str; |
| str.appendf("0x%x|%1d|%1d", this->glyphID(), |
| this->subPixelField(kSubPixelX), |
| this->subPixelField(kSubPixelY)); |
| return str; |
| } |
| |
| private: |
| static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) { |
| SkASSERT(x < (1u << kSubPixelPosLen)); |
| SkASSERT(y < (1u << kSubPixelPosLen)); |
| |
| return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID); |
| } |
| |
| // Assumptions: pt is properly rounded. mask is set for the x or y fields. |
| // |
| // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)). |
| // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can |
| // generate a sub-pixel field using: |
| // sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen) |
| // |
| // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the |
| // sub-pixel field mask. |
| // int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel) |
| // |
| // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is |
| // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1). |
| // This does not round (floor) properly when converting to integer. Adding one to the range |
| // causes truncation and floor to be the same. Coincidentally, masking to produce the field also |
| // removes the +1. |
| static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) { |
| #if 0 |
| // TODO: why does this code not work on GCC 8.3 x86 Debug builds? |
| using namespace skvx; |
| using XY = Vec<2, float>; |
| using SubXY = Vec<2, int>; |
| |
| const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
| 1.f * (1u << (kSubPixelPosLen + kSubPixelY))}; |
| XY pos{pt.x(), pt.y()}; |
| XY subPos = (pos - floor(pos)) + 1.0f; |
| SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()}; |
| #else |
| const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
| magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY)); |
| |
| float x = pt.x(), |
| y = pt.y(); |
| x = (x - floorf(x)) + 1.0f; |
| y = (y - floorf(y)) + 1.0f; |
| int sub[] = { |
| (int)(x * magicX) & mask.x(), |
| (int)(y * magicY) & mask.y(), |
| }; |
| #endif |
| |
| SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen)); |
| SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen)); |
| return (glyphID << kGlyphID) | sub[0] | sub[1]; |
| } |
| |
| static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) { |
| return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y)); |
| } |
| |
| static constexpr uint32_t FixedToSub(SkFixed n) { |
| return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask; |
| } |
| |
| constexpr uint32_t subPixelField(uint32_t subPixelPosBit) const { |
| return (fID >> subPixelPosBit) & kSubPixelPosMask; |
| } |
| |
| constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const { |
| uint32_t subPixelPosition = this->subPixelField(subPixelPosBit); |
| return subPixelPosition << kFixedPointSubPixelPosBits; |
| } |
| |
| uint32_t fID; |
| }; |
| |
| // -- SkAxisAlignment ------------------------------------------------------------------------------ |
| // SkAxisAlignment specifies the x component of a glyph's position is rounded when kX, and the y |
| // component is rounded when kY. If kNone then neither are rounded. |
| enum class SkAxisAlignment : uint32_t { |
| kNone, |
| kX, |
| kY, |
| }; |
| |
| // round and ignorePositionMask are used to calculate the subpixel position of a glyph. |
| // The per component (x or y) calculation is: |
| // |
| // subpixelOffset = (floor((viewportPosition + rounding) & mask) >> 14) & 3 |
| // |
| // where mask is either 0 or ~0, and rounding is either |
| // 1/2 for non-subpixel or 1/8 for subpixel. |
| struct SkGlyphPositionRoundingSpec { |
| SkGlyphPositionRoundingSpec(bool isSubpixel, SkAxisAlignment axisAlignment); |
| const SkVector halfAxisSampleFreq; |
| const SkIPoint ignorePositionMask; |
| const SkIPoint ignorePositionFieldMask; |
| |
| private: |
| static SkVector HalfAxisSampleFreq(bool isSubpixel, SkAxisAlignment axisAlignment); |
| static SkIPoint IgnorePositionMask(bool isSubpixel, SkAxisAlignment axisAlignment); |
| static SkIPoint IgnorePositionFieldMask(bool isSubpixel, SkAxisAlignment axisAlignment); |
| }; |
| |
| class SkGlyphRect; |
| namespace skglyph { |
| SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect); |
| SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect); |
| } // namespace skglyph |
| |
| // SkGlyphRect encodes rectangles with coordinates using SkScalar. It is specialized for |
| // rectangle union and intersection operations. |
| class SkGlyphRect { |
| public: |
| SkGlyphRect() = default; |
| SkGlyphRect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) |
| : fRect{-left, -top, right, bottom} { } |
| bool empty() const { |
| return -fRect[0] >= fRect[2] || -fRect[1] >= fRect[3]; |
| } |
| SkRect rect() const { |
| return SkRect::MakeLTRB(-fRect[0], -fRect[1], fRect[2], fRect[3]); |
| } |
| SkGlyphRect offset(SkScalar x, SkScalar y) const { |
| return SkGlyphRect{fRect + Storage{-x, -y, x, y}}; |
| } |
| SkGlyphRect offset(SkPoint pt) const { |
| return this->offset(pt.x(), pt.y()); |
| } |
| SkGlyphRect scaleAndOffset(SkScalar scale, SkPoint offset) const { |
| auto [x, y] = offset; |
| return fRect * scale + Storage{-x, -y, x, y}; |
| } |
| SkGlyphRect inset(SkScalar dx, SkScalar dy) const { |
| return fRect - Storage{dx, dy, dx, dy}; |
| } |
| SkPoint leftTop() const { return -this->negLeftTop(); } |
| SkPoint rightBottom() const { return {fRect[2], fRect[3]}; } |
| SkPoint widthHeight() const { return this->rightBottom() + negLeftTop(); } |
| friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect); |
| friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect); |
| |
| private: |
| SkPoint negLeftTop() const { return {fRect[0], fRect[1]}; } |
| using Storage = skvx::Vec<4, SkScalar>; |
| SkGlyphRect(Storage rect) : fRect{rect} { } |
| Storage fRect; |
| }; |
| |
| namespace skglyph { |
| inline SkGlyphRect empty_rect() { |
| constexpr SkScalar max = std::numeric_limits<SkScalar>::max(); |
| return {max, max, -max, -max}; |
| } |
| inline SkGlyphRect full_rect() { |
| constexpr SkScalar max = std::numeric_limits<SkScalar>::max(); |
| return {-max, -max, max, max}; |
| } |
| inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) { |
| return skvx::max(a.fRect, b.fRect); |
| } |
| inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) { |
| return skvx::min(a.fRect, b.fRect); |
| } |
| |
| enum class GlyphAction { |
| kUnset, |
| kAccept, |
| kReject, |
| kDrop, |
| kSize, |
| }; |
| |
| enum ActionType { |
| kDirectMask = 0, |
| kDirectMaskCPU = 2, |
| kMask = 4, |
| kSDFT = 6, |
| kPath = 8, |
| kDrawable = 10, |
| }; |
| |
| enum ActionTypeSize { |
| kTotalBits = 12 |
| }; |
| } // namespace skglyph |
| |
| // SkGlyphDigest contains a digest of information for making GPU drawing decisions. It can be |
| // referenced instead of the glyph itself in many situations. In the remote glyphs cache the |
| // SkGlyphDigest is the only information that needs to be stored in the cache. |
| class SkGlyphDigest { |
| public: |
| // An atlas consists of plots, and plots hold glyphs. The minimum a plot can be is 256x256. |
| // This means that the maximum size a glyph can be is 256x256. |
| static constexpr uint16_t kSkSideTooBigForAtlas = 256; |
| |
| // Default ctor is only needed for the hash table. |
| SkGlyphDigest() = default; |
| SkGlyphDigest(size_t index, const SkGlyph& glyph); |
| int index() const { return fIndex; } |
| bool isEmpty() const { return fIsEmpty; } |
| bool isColor() const { return fFormat == SkMask::kARGB32_Format; } |
| SkMask::Format maskFormat() const { return static_cast<SkMask::Format>(fFormat); } |
| |
| skglyph::GlyphAction actionFor(skglyph::ActionType actionType) const { |
| return static_cast<skglyph::GlyphAction>((fActions >> actionType) & 0b11); |
| } |
| |
| void setActionFor(skglyph::ActionType, SkGlyph*, sktext::StrikeForGPU*); |
| |
| uint16_t maxDimension() const { |
| return std::max(fWidth, fHeight); |
| } |
| |
| bool fitsInAtlasDirect() const { |
| return this->maxDimension() <= kSkSideTooBigForAtlas; |
| } |
| |
| bool fitsInAtlasInterpolated() const { |
| // Include the padding needed for interpolating the glyph when drawing. |
| return this->maxDimension() <= kSkSideTooBigForAtlas - 2; |
| } |
| |
| SkGlyphRect bounds() const { |
| return SkGlyphRect(fLeft, fTop, (SkScalar)fLeft + fWidth, (SkScalar)fTop + fHeight); |
| } |
| |
| static bool FitsInAtlas(const SkGlyph& glyph); |
| |
| // GetKey and Hash implement the required methods for THashTable. |
| static SkPackedGlyphID GetKey(SkGlyphDigest digest) { |
| return SkPackedGlyphID{SkTo<uint32_t>(digest.fPackedID)}; |
| } |
| static uint32_t Hash(SkPackedGlyphID packedID) { |
| return packedID.hash(); |
| } |
| |
| private: |
| void setAction(skglyph::ActionType actionType, skglyph::GlyphAction action) { |
| using namespace skglyph; |
| SkASSERT(action != GlyphAction::kUnset); |
| SkASSERT(this->actionFor(actionType) == GlyphAction::kUnset); |
| const uint64_t mask = 0b11 << actionType; |
| fActions &= ~mask; |
| fActions |= SkTo<uint64_t>(action) << actionType; |
| } |
| |
| static_assert(SkPackedGlyphID::kEndData == 20); |
| static_assert(SkMask::kCountMaskFormats <= 8); |
| static_assert(SkTo<int>(skglyph::GlyphAction::kSize) <= 4); |
| struct { |
| uint64_t fPackedID : SkPackedGlyphID::kEndData; |
| uint64_t fIndex : SkPackedGlyphID::kEndData; |
| uint64_t fIsEmpty : 1; |
| uint64_t fFormat : 3; |
| uint64_t fActions : skglyph::ActionTypeSize::kTotalBits; |
| }; |
| int16_t fLeft, fTop; |
| uint16_t fWidth, fHeight; |
| }; |
| |
| class SkPictureBackedGlyphDrawable final : public SkDrawable { |
| public: |
| static sk_sp<SkPictureBackedGlyphDrawable>MakeFromBuffer(SkReadBuffer& buffer); |
| static void FlattenDrawable(SkWriteBuffer& buffer, SkDrawable* drawable); |
| SkPictureBackedGlyphDrawable(sk_sp<SkPicture> self); |
| |
| private: |
| sk_sp<SkPicture> fPicture; |
| SkRect onGetBounds() override; |
| size_t onApproximateBytesUsed() override; |
| void onDraw(SkCanvas* canvas) override; |
| }; |
| |
| class SkGlyph { |
| public: |
| static std::optional<SkGlyph> MakeFromBuffer(SkReadBuffer&); |
| // SkGlyph() is used for testing. |
| constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { } |
| SkGlyph(const SkGlyph&); |
| SkGlyph& operator=(const SkGlyph&); |
| SkGlyph(SkGlyph&&); |
| SkGlyph& operator=(SkGlyph&&); |
| ~SkGlyph(); |
| constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { } |
| |
| SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; } |
| SkScalar advanceX() const { return fAdvanceX; } |
| SkScalar advanceY() const { return fAdvanceY; } |
| |
| SkGlyphID getGlyphID() const { return fID.glyphID(); } |
| SkPackedGlyphID getPackedID() const { return fID; } |
| SkFixed getSubXFixed() const { return fID.getSubXFixed(); } |
| SkFixed getSubYFixed() const { return fID.getSubYFixed(); } |
| |
| size_t rowBytes() const; |
| size_t rowBytesUsingFormat(SkMask::Format format) const; |
| |
| // Call this to set all the metrics fields to 0 (e.g. if the scaler |
| // encounters an error measuring a glyph). Note: this does not alter the |
| // fImage, fPath, fID, fMaskFormat fields. |
| void zeroMetrics(); |
| |
| SkMask mask() const; |
| |
| SkMask mask(SkPoint position) const; |
| |
| // Image |
| // If we haven't already tried to associate an image with this glyph |
| // (i.e. setImageHasBeenCalled() returns false), then use the |
| // SkScalerContext or const void* argument to set the image. |
| bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setImage(SkArenaAlloc* alloc, const void* image); |
| |
| // Merge the 'from' glyph into this glyph using alloc to allocate image data. Return the number |
| // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph |
| // making a copy of the image using the alloc. |
| size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from); |
| |
| // Returns true if the image has been set. |
| bool setImageHasBeenCalled() const { |
| // Check for empty bounds first to guard against fImage somehow being set. |
| return this->isEmpty() || fImage != nullptr || this->imageTooLarge(); |
| } |
| |
| // Return a pointer to the path if the image exists, otherwise return nullptr. |
| const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; } |
| |
| // Return the size of the image. |
| size_t imageSize() const; |
| |
| // Path |
| // If we haven't already tried to associate a path to this glyph |
| // (i.e. setPathHasBeenCalled() returns false), then use the |
| // SkScalerContext or SkPath argument to try to do so. N.B. this |
| // may still result in no path being associated with this glyph, |
| // e.g. if you pass a null SkPath or the typeface is bitmap-only. |
| // |
| // This setPath() call is sticky... once you call it, the glyph |
| // stays in its state permanently, ignoring any future calls. |
| // |
| // Returns true if this is the first time you called setPath() |
| // and there actually is a path; call path() to get it. |
| bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline); |
| |
| // Returns true if that path has been set. |
| bool setPathHasBeenCalled() const { return fPathData != nullptr; } |
| |
| // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the |
| // path was previously set. |
| const SkPath* path() const; |
| bool pathIsHairline() const; |
| |
| bool setDrawable(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
| bool setDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable); |
| bool setDrawableHasBeenCalled() const { return fDrawableData != nullptr; } |
| SkDrawable* drawable() const; |
| |
| // Format |
| bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; } |
| SkMask::Format maskFormat() const { return fMaskFormat; } |
| size_t formatAlignment() const; |
| |
| // Bounds |
| int maxDimension() const { return std::max(fWidth, fHeight); } |
| SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
| SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
| SkGlyphRect glyphRect() const { |
| return SkGlyphRect(fLeft, fTop, fLeft + fWidth, fTop + fHeight); |
| } |
| int left() const { return fLeft; } |
| int top() const { return fTop; } |
| int width() const { return fWidth; } |
| int height() const { return fHeight; } |
| bool isEmpty() const { |
| return fWidth == 0 || fHeight == 0; |
| } |
| bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; } |
| |
| uint16_t extraBits() const { return fScalerContextBits; } |
| |
| // Make sure that the intercept information is on the glyph and return it, or return it if it |
| // already exists. |
| // * bounds - [0] - top of underline; [1] - bottom of underline. |
| // * scale, xPos - information about how wide the gap is. |
| // * array - accumulated gaps for many characters if not null. |
| // * count - the number of gaps. |
| void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, |
| SkScalar* array, int* count, SkArenaAlloc* alloc); |
| |
| // Deprecated. Do not use. The last use is in SkChromeRemoteCache, and will be deleted soon. |
| void setImage(void* image) { fImage = image; } |
| |
| // Serialize/deserialize functions. |
| // Flatten the metrics portions, but no drawing data. |
| void flattenMetrics(SkWriteBuffer&) const; |
| |
| // Flatten just the the mask data. |
| void flattenImage(SkWriteBuffer&) const; |
| |
| // Read the image data, store it in the alloc, and add it to the glyph. |
| size_t addImageFromBuffer(SkReadBuffer&, SkArenaAlloc*); |
| |
| // Flatten just the path data. |
| void flattenPath(SkWriteBuffer&) const; |
| |
| // Read the path data, create the glyph's path data in the alloc, and add it to the glyph. |
| size_t addPathFromBuffer(SkReadBuffer&, SkArenaAlloc*); |
| |
| // Flatten just the drawable data. |
| void flattenDrawable(SkWriteBuffer&) const; |
| |
| // Read the drawable data, create the glyph's drawable data in the alloc, and add it to the |
| // glyph. |
| size_t addDrawableFromBuffer(SkReadBuffer&, SkArenaAlloc*); |
| |
| private: |
| // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have |
| // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The |
| // consumer side has a tighter interface. |
| friend class SkScalerContext; |
| friend class SkGlyphTestPeer; |
| |
| inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u; |
| |
| // Support horizontal and vertical skipping strike-through / underlines. |
| // The caller walks the linked list looking for a match. For a horizontal underline, |
| // the fBounds contains the top and bottom of the underline. The fInterval pair contains the |
| // beginning and end of the intersection of the bounds and the glyph's path. |
| // If interval[0] >= interval[1], no intersection was found. |
| struct Intercept { |
| Intercept* fNext; |
| SkScalar fBounds[2]; // for horz underlines, the boundaries in Y |
| SkScalar fInterval[2]; // the outside intersections of the axis and the glyph |
| }; |
| |
| struct PathData { |
| Intercept* fIntercept{nullptr}; |
| SkPath fPath; |
| bool fHasPath{false}; |
| // A normal user-path will have patheffects applied to it and eventually become a dev-path. |
| // A dev-path is always a fill-path, except when it is hairline. |
| // The fPath is a dev-path, so sidecar the paths hairline status. |
| // This allows the user to avoid filling paths which should not be filled. |
| bool fHairline{false}; |
| }; |
| |
| struct DrawableData { |
| Intercept* fIntercept{nullptr}; |
| sk_sp<SkDrawable> fDrawable; |
| bool fHasDrawable{false}; |
| }; |
| |
| size_t allocImage(SkArenaAlloc* alloc); |
| |
| void installImage(void* imageData) { |
| SkASSERT(!this->setImageHasBeenCalled()); |
| fImage = imageData; |
| } |
| |
| // path == nullptr indicates that there is no path. |
| void installPath(SkArenaAlloc* alloc, const SkPath* path, bool hairline); |
| |
| // drawable == nullptr indicates that there is no path. |
| void installDrawable(SkArenaAlloc* alloc, sk_sp<SkDrawable> drawable); |
| |
| // The width and height of the glyph mask. |
| uint16_t fWidth = 0, |
| fHeight = 0; |
| |
| // The offset from the glyphs origin on the baseline to the top left of the glyph mask. |
| int16_t fTop = 0, |
| fLeft = 0; |
| |
| // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth. |
| void* fImage = nullptr; |
| |
| // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr, |
| // else if fPathData is not null, then a path has been requested. The fPath field of fPathData |
| // may still be null after the request meaning that there is no path for this glyph. |
| PathData* fPathData = nullptr; |
| DrawableData* fDrawableData = nullptr; |
| |
| // The advance for this glyph. |
| float fAdvanceX = 0, |
| fAdvanceY = 0; |
| |
| SkMask::Format fMaskFormat{SkMask::kBW_Format}; |
| |
| // Used by the SkScalerContext to pass state from generateMetrics to generateImage. |
| // Usually specifies which glyph representation was used to generate the metrics. |
| uint16_t fScalerContextBits = 0; |
| |
| // An SkGlyph can be created with just a packedID, but generally speaking some glyph factory |
| // needs to actually fill out the glyph before it can be used as part of that system. |
| SkDEBUGCODE(bool fAdvancesBoundsFormatAndInitialPathDone{false};) |
| |
| SkPackedGlyphID fID; |
| }; |
| |
| #endif |