| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkCubicMap.h" |
| |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkTPin.h" |
| #include "src/base/SkVx.h" |
| |
| #include <algorithm> |
| |
| static float eval_poly(float t, float b) { return b; } |
| |
| template <typename... Rest> |
| static float eval_poly(float t, float m, float b, Rest... rest) { |
| return eval_poly(t, sk_fmaf(m, t, b), rest...); |
| } |
| |
| static float cubic_solver(float A, float B, float C, float D) { |
| #ifdef SK_DEBUG |
| auto valid = [](float t) { return t >= 0 && t <= 1; }; |
| #endif |
| |
| auto guess_nice_cubic_root = [](float a, float b, float c, float d) { return -d; }; |
| float t = guess_nice_cubic_root(A, B, C, D); |
| |
| int iters = 0; |
| const int MAX_ITERS = 8; |
| for (; iters < MAX_ITERS; ++iters) { |
| SkASSERT(valid(t)); |
| float f = eval_poly(t, A, B, C, D); // f = At^3 + Bt^2 + Ct + D |
| if (sk_float_abs(f) <= 0.00005f) { |
| break; |
| } |
| float fp = eval_poly(t, 3*A, 2*B, C); // f' = 3At^2 + 2Bt + C |
| float fpp = eval_poly(t, 3*A + 3*A, 2*B); // f'' = 6At + 2B |
| |
| float numer = 2 * fp * f; |
| float denom = sk_fmaf(2 * fp, fp, -(f * fpp)); |
| |
| t -= numer / denom; |
| } |
| |
| SkASSERT(valid(t)); |
| return t; |
| } |
| |
| static inline bool nearly_zero(SkScalar x) { |
| SkASSERT(x >= 0); |
| return x <= 0.0000000001f; |
| } |
| |
| static float compute_t_from_x(float A, float B, float C, float x) { |
| return cubic_solver(A, B, C, -x); |
| } |
| |
| float SkCubicMap::computeYFromX(float x) const { |
| x = SkTPin(x, 0.0f, 1.0f); |
| |
| if (nearly_zero(x) || nearly_zero(1 - x)) { |
| return x; |
| } |
| if (fType == kLine_Type) { |
| return x; |
| } |
| float t; |
| if (fType == kCubeRoot_Type) { |
| t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3); |
| } else { |
| t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x); |
| } |
| float a = fCoeff[0].fY; |
| float b = fCoeff[1].fY; |
| float c = fCoeff[2].fY; |
| float y = ((a * t + b) * t + c) * t; |
| |
| return y; |
| } |
| |
| static inline bool coeff_nearly_zero(float delta) { |
| return sk_float_abs(delta) <= 0.0000001f; |
| } |
| |
| SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) { |
| // Clamp X values only (we allow Ys outside [0..1]). |
| p1.fX = std::min(std::max(p1.fX, 0.0f), 1.0f); |
| p2.fX = std::min(std::max(p2.fX, 0.0f), 1.0f); |
| |
| auto s1 = skvx::float2::Load(&p1) * 3; |
| auto s2 = skvx::float2::Load(&p2) * 3; |
| |
| (1 + s1 - s2).store(&fCoeff[0]); |
| (s2 - s1 - s1).store(&fCoeff[1]); |
| s1.store(&fCoeff[2]); |
| |
| fType = kSolver_Type; |
| if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) { |
| fType = kLine_Type; |
| } else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) { |
| fType = kCubeRoot_Type; |
| } |
| } |
| |
| SkPoint SkCubicMap::computeFromT(float t) const { |
| auto a = skvx::float2::Load(&fCoeff[0]); |
| auto b = skvx::float2::Load(&fCoeff[1]); |
| auto c = skvx::float2::Load(&fCoeff[2]); |
| |
| SkPoint result; |
| (((a * t + b) * t + c) * t).store(&result); |
| return result; |
| } |