blob: 37259d19c15a8e044517f4b6c6a561a2406eeb2f [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "fuzz/Fuzz.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFloatingPoint.h"
#include "src/base/SkCubics.h"
#include "src/base/SkQuads.h"
#include "src/base/SkUtils.h"
#include <cmath>
static void fuzz_quad_real_roots(double A, double B, double C) {
double roots[2];
const int numSolutions = SkQuads::RootsReal(A, B, C, roots);
SkASSERT_RELEASE(numSolutions >= 0 && numSolutions <= 2);
for (int i = 0; i < numSolutions; i++) {
SkASSERT_RELEASE(std::isfinite(roots[i]));
// You may be tempted to add assertions that plug the provided solutions into
// the quadratic equation and verify that the result is zero. Be advised
// that the fuzzer is very good at finding float values that result in
// seemingly arbitrarily large errors, due to the imprecision of floating
// point math. Unless the input range is sufficiently small, such an
// effort seems fruitless.
}
if (numSolutions == 2) {
// Roots should not be duplicated
SkASSERT_RELEASE(!sk_doubles_nearly_equal_ulps(roots[0], roots[1]));
}
}
DEF_FUZZ(QuadRoots, fuzz) {
double A, B, C;
fuzz->next(&A);
fuzz->next(&B);
fuzz->next(&C);
// Uncomment for easy test case creation
// SkDebugf("A %16e (0x%lx) B %16e (0x%lx) C %16e (0x%lx)\n",
// A, sk_bit_cast<uint64_t>(A), B, sk_bit_cast<uint64_t>(B),
// C, sk_bit_cast<uint64_t>(C));
fuzz_quad_real_roots(A, B, C);
}