blob: 0cbef8b256198150e4527d4d1e7dd6ae3c3d35e5 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkPixmap.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrTypes.h"
#include "include/private/SkHalf.h"
#include "include/private/SkTemplates.h"
#include "include/private/SkTo.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkMakeUnique.h"
#include "src/core/SkMipMap.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrCpuBuffer.h"
#include "src/gpu/GrDataUtils.h"
#include "src/gpu/GrFixedClip.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrMesh.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrSurfaceProxyPriv.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/gl/GrGLBuffer.h"
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/gl/GrGLGpuCommandBuffer.h"
#include "src/gpu/gl/GrGLSemaphore.h"
#include "src/gpu/gl/GrGLStencilAttachment.h"
#include "src/gpu/gl/GrGLTextureRenderTarget.h"
#include "src/gpu/gl/builders/GrGLShaderStringBuilder.h"
#include "src/sksl/SkSLCompiler.h"
#include <cmath>
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
//#define USE_NSIGHT
///////////////////////////////////////////////////////////////////////////////
static const GrGLenum gXfermodeEquation2Blend[] = {
// Basic OpenGL blend equations.
GR_GL_FUNC_ADD,
GR_GL_FUNC_SUBTRACT,
GR_GL_FUNC_REVERSE_SUBTRACT,
// GL_KHR_blend_equation_advanced.
GR_GL_SCREEN,
GR_GL_OVERLAY,
GR_GL_DARKEN,
GR_GL_LIGHTEN,
GR_GL_COLORDODGE,
GR_GL_COLORBURN,
GR_GL_HARDLIGHT,
GR_GL_SOFTLIGHT,
GR_GL_DIFFERENCE,
GR_GL_EXCLUSION,
GR_GL_MULTIPLY,
GR_GL_HSL_HUE,
GR_GL_HSL_SATURATION,
GR_GL_HSL_COLOR,
GR_GL_HSL_LUMINOSITY,
// Illegal... needs to map to something.
GR_GL_FUNC_ADD,
};
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation);
GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation);
GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation);
GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation);
GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation);
GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation);
GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation);
GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation);
GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation);
GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation);
GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation);
GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation);
GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation);
GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation);
GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt);
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
// Illegal... needs to map to something.
GR_GL_ZERO,
};
bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
// Illegal.
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
//////////////////////////////////////////////////////////////////////////////
static int gl_target_to_binding_index(GrGLenum target) {
switch (target) {
case GR_GL_TEXTURE_2D:
return 0;
case GR_GL_TEXTURE_RECTANGLE:
return 1;
case GR_GL_TEXTURE_EXTERNAL:
return 2;
}
SK_ABORT("Unexpected GL texture target.");
}
GrGpuResource::UniqueID GrGLGpu::TextureUnitBindings::boundID(GrGLenum target) const {
return fTargetBindings[gl_target_to_binding_index(target)].fBoundResourceID;
}
bool GrGLGpu::TextureUnitBindings::hasBeenModified(GrGLenum target) const {
return fTargetBindings[gl_target_to_binding_index(target)].fHasBeenModified;
}
void GrGLGpu::TextureUnitBindings::setBoundID(GrGLenum target, GrGpuResource::UniqueID resourceID) {
int targetIndex = gl_target_to_binding_index(target);
fTargetBindings[targetIndex].fBoundResourceID = resourceID;
fTargetBindings[targetIndex].fHasBeenModified = true;
}
void GrGLGpu::TextureUnitBindings::invalidateForScratchUse(GrGLenum target) {
this->setBoundID(target, GrGpuResource::UniqueID());
}
void GrGLGpu::TextureUnitBindings::invalidateAllTargets(bool markUnmodified) {
for (auto& targetBinding : fTargetBindings) {
targetBinding.fBoundResourceID.makeInvalid();
if (markUnmodified) {
targetBinding.fHasBeenModified = false;
}
}
}
//////////////////////////////////////////////////////////////////////////////
static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST;
case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR;
case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR;
}
SK_ABORT("Unknown filter");
}
static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST;
case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR;
case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR_MIPMAP_LINEAR;
}
SK_ABORT("Unknown filter");
}
static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode,
const GrCaps& caps) {
switch (wrapMode) {
case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE;
case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT;
case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT;
case GrSamplerState::WrapMode::kClampToBorder:
// May not be supported but should have been caught earlier
SkASSERT(caps.clampToBorderSupport());
return GR_GL_CLAMP_TO_BORDER;
}
SK_ABORT("Unknown wrap mode");
}
///////////////////////////////////////////////////////////////////////////////
class GrGLGpu::SamplerObjectCache {
public:
SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) {
fNumTextureUnits = fGpu->glCaps().shaderCaps()->maxFragmentSamplers();
fHWBoundSamplers.reset(new GrGLuint[fNumTextureUnits]);
std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0);
std::fill_n(fSamplers, kNumSamplers, 0);
}
~SamplerObjectCache() {
if (!fNumTextureUnits) {
// We've already been abandoned.
return;
}
for (GrGLuint sampler : fSamplers) {
// The spec states that "zero" values should be silently ignored, however they still
// trigger GL errors on some NVIDIA platforms.
if (sampler) {
GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(1, &sampler));
}
}
}
void bindSampler(int unitIdx, const GrSamplerState& state) {
int index = StateToIndex(state);
if (!fSamplers[index]) {
GrGLuint s;
GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s));
if (!s) {
return;
}
fSamplers[index] = s;
auto minFilter = filter_to_gl_min_filter(state.filter());
auto magFilter = filter_to_gl_mag_filter(state.filter());
auto wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps());
auto wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps());
GR_GL_CALL(fGpu->glInterface(),
SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter));
GR_GL_CALL(fGpu->glInterface(),
SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter));
GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX));
GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY));
}
if (fHWBoundSamplers[unitIdx] != fSamplers[index]) {
GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, fSamplers[index]));
fHWBoundSamplers[unitIdx] = fSamplers[index];
}
}
void invalidateBindings() {
// When we have sampler support we always use samplers. So setting these to zero will cause
// a rebind on next usage.
std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0);
}
void abandon() {
fHWBoundSamplers.reset();
fNumTextureUnits = 0;
}
void release() {
if (!fNumTextureUnits) {
// We've already been abandoned.
return;
}
GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers));
std::fill_n(fSamplers, kNumSamplers, 0);
// Deleting a bound sampler implicitly binds sampler 0.
std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0);
}
private:
static int StateToIndex(const GrSamplerState& state) {
int filter = static_cast<int>(state.filter());
SkASSERT(filter >= 0 && filter < 3);
int wrapX = static_cast<int>(state.wrapModeX());
SkASSERT(wrapX >= 0 && wrapX < 4);
int wrapY = static_cast<int>(state.wrapModeY());
SkASSERT(wrapY >= 0 && wrapY < 4);
int idx = 16 * filter + 4 * wrapX + wrapY;
SkASSERT(idx < kNumSamplers);
return idx;
}
GrGLGpu* fGpu;
static constexpr int kNumSamplers = 48;
std::unique_ptr<GrGLuint[]> fHWBoundSamplers;
GrGLuint fSamplers[kNumSamplers];
int fNumTextureUnits;
};
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpu> GrGLGpu::Make(sk_sp<const GrGLInterface> interface, const GrContextOptions& options,
GrContext* context) {
if (!interface) {
interface = GrGLMakeNativeInterface();
// For clients that have written their own GrGLCreateNativeInterface and haven't yet updated
// to GrGLMakeNativeInterface.
if (!interface) {
interface = sk_ref_sp(GrGLCreateNativeInterface());
}
if (!interface) {
return nullptr;
}
}
#ifdef USE_NSIGHT
const_cast<GrContextOptions&>(options).fSuppressPathRendering = true;
#endif
auto glContext = GrGLContext::Make(std::move(interface), options);
if (!glContext) {
return nullptr;
}
return sk_sp<GrGpu>(new GrGLGpu(std::move(glContext), context));
}
GrGLGpu::GrGLGpu(std::unique_ptr<GrGLContext> ctx, GrContext* context)
: GrGpu(context)
, fGLContext(std::move(ctx))
, fProgramCache(new ProgramCache(this))
, fHWProgramID(0)
, fTempSrcFBOID(0)
, fTempDstFBOID(0)
, fStencilClearFBOID(0) {
SkASSERT(fGLContext);
GrGLClearErr(this->glInterface());
fCaps = sk_ref_sp(fGLContext->caps());
fHWTextureUnitBindings.reset(this->numTextureUnits());
this->hwBufferState(GrGpuBufferType::kVertex)->fGLTarget = GR_GL_ARRAY_BUFFER;
this->hwBufferState(GrGpuBufferType::kIndex)->fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER;
if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) {
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget =
GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM;
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget =
GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM;
} else {
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER;
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_BUFFER;
}
for (int i = 0; i < kGrGpuBufferTypeCount; ++i) {
fHWBufferState[i].invalidate();
}
GR_STATIC_ASSERT(4 == SK_ARRAY_COUNT(fHWBufferState));
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
fPathRendering.reset(new GrGLPathRendering(this));
}
if (this->glCaps().samplerObjectSupport()) {
fSamplerObjectCache.reset(new SamplerObjectCache(this));
}
}
GrGLGpu::~GrGLGpu() {
// Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu
// to release the resources held by the objects themselves.
fPathRendering.reset();
fCopyProgramArrayBuffer.reset();
fMipmapProgramArrayBuffer.reset();
fHWProgram.reset();
if (fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
this->deleteFramebuffer(fTempSrcFBOID);
}
if (fTempDstFBOID) {
this->deleteFramebuffer(fTempDstFBOID);
}
if (fStencilClearFBOID) {
this->deleteFramebuffer(fStencilClearFBOID);
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (0 != fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (0 != fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
delete fProgramCache;
fSamplerObjectCache.reset();
}
void GrGLGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (DisconnectType::kCleanup == type) {
if (fHWProgramID) {
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
this->deleteFramebuffer(fTempSrcFBOID);
}
if (fTempDstFBOID) {
this->deleteFramebuffer(fTempDstFBOID);
}
if (fStencilClearFBOID) {
this->deleteFramebuffer(fStencilClearFBOID);
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (fSamplerObjectCache) {
fSamplerObjectCache->release();
}
} else {
if (fProgramCache) {
fProgramCache->abandon();
}
if (fSamplerObjectCache) {
fSamplerObjectCache->abandon();
}
}
fHWProgram.reset();
delete fProgramCache;
fProgramCache = nullptr;
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
fCopyProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
fCopyPrograms[i].fProgram = 0;
}
fMipmapProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
fMipmapPrograms[i].fProgram = 0;
}
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->disconnect(type);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLGpu::onResetContext(uint32_t resetBits) {
if (resetBits & kMisc_GrGLBackendState) {
// we don't use the zb at all
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
// We don't use face culling.
GL_CALL(Disable(GR_GL_CULL_FACE));
// We do use separate stencil. Our algorithms don't care which face is front vs. back so
// just set this to the default for self-consistency.
GL_CALL(FrontFace(GR_GL_CCW));
this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->invalidate();
this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->invalidate();
if (GR_IS_GR_GL(this->glStandard())) {
#ifndef USE_NSIGHT
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
if (this->caps()->wireframeMode()) {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
} else {
GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL));
}
#endif
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
}
if (GR_IS_GR_GL_ES(this->glStandard()) &&
this->glCaps().fbFetchRequiresEnablePerSample()) {
// The arm extension requires specifically enabling MSAA fetching per sample.
// On some devices this may have a perf hit. Also multiple render targets are disabled
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE));
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
GL_CALL(Disable(GR_GL_DITHER));
fHWClearColor[0] = fHWClearColor[1] = fHWClearColor[2] = fHWClearColor[3] = SK_FloatNaN;
}
if (resetBits & kMSAAEnable_GrGLBackendState) {
fMSAAEnabled = kUnknown_TriState;
if (this->caps()->mixedSamplesSupport()) {
// The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage
// modulation. This state has no effect when not rendering to a mixed sampled target.
GL_CALL(CoverageModulation(GR_GL_RGBA));
}
}
fHWActiveTextureUnitIdx = -1; // invalid
fLastPrimitiveType = static_cast<GrPrimitiveType>(-1);
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < this->numTextureUnits(); ++s) {
fHWTextureUnitBindings[s].invalidateAllTargets(false);
}
if (fSamplerObjectCache) {
fSamplerObjectCache->invalidateBindings();
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWWindowRectsState.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWVertexArrayState.invalidate();
this->hwBufferState(GrGpuBufferType::kVertex)->invalidate();
this->hwBufferState(GrGpuBufferType::kIndex)->invalidate();
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTargetUniqueID.makeInvalid();
fHWSRGBFramebuffer = kUnknown_TriState;
}
if (resetBits & kPathRendering_GrGLBackendState) {
if (this->caps()->shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->resetContext();
}
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->caps()->writePixelsRowBytesSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().readPixelsRowBytesSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
fHWProgram.reset();
}
++fResetTimestampForTextureParameters;
}
static bool check_backend_texture(const GrBackendTexture& backendTex, const GrColorType colorType,
const GrGLCaps& caps, GrGLTexture::Desc* desc,
bool skipRectTexSupportCheck = false) {
GrGLTextureInfo info;
if (!backendTex.getGLTextureInfo(&info) || !info.fID || !info.fFormat) {
return false;
}
desc->fSize = {backendTex.width(), backendTex.height()};
desc->fTarget = info.fTarget;
desc->fID = info.fID;
desc->fFormat = GrGLFormatFromGLEnum(info.fFormat);
if (desc->fFormat == GrGLFormat::kUnknown) {
return false;
}
if (GR_GL_TEXTURE_EXTERNAL == desc->fTarget) {
if (!caps.shaderCaps()->externalTextureSupport()) {
return false;
}
} else if (GR_GL_TEXTURE_RECTANGLE == desc->fTarget) {
if (!caps.rectangleTextureSupport() && !skipRectTexSupportCheck) {
return false;
}
} else if (GR_GL_TEXTURE_2D != desc->fTarget) {
return false;
}
if (backendTex.isProtected()) {
// Not supported in GL backend at this time.
return false;
}
desc->fConfig = caps.getConfigFromBackendFormat(backendTex.getBackendFormat(), colorType);
SkASSERT(desc->fConfig != kUnknown_GrPixelConfig);
return true;
}
sk_sp<GrTexture> GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrColorType colorType, GrWrapOwnership ownership,
GrWrapCacheable cacheable, GrIOType ioType) {
GrGLTexture::Desc desc;
if (!check_backend_texture(backendTex, colorType, this->glCaps(), &desc)) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
desc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
desc.fOwnership = GrBackendObjectOwnership::kOwned;
}
GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kValid
: GrMipMapsStatus::kNotAllocated;
auto texture = GrGLTexture::MakeWrapped(this, mipMapsStatus, desc,
backendTex.getGLTextureParams(), cacheable, ioType);
// We don't know what parameters are already set on wrapped textures.
texture->textureParamsModified();
return texture;
}
sk_sp<GrTexture> GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrColorType colorType,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
GrGLTexture::Desc desc;
if (!check_backend_texture(backendTex, colorType, this->glCaps(), &desc)) {
return nullptr;
}
// We don't support rendering to a EXTERNAL texture.
if (GR_GL_TEXTURE_EXTERNAL == desc.fTarget) {
return nullptr;
}
const GrGLCaps& caps = this->glCaps();
if (!caps.isFormatRenderable(desc.fFormat, sampleCnt)) {
return nullptr;
}
if (kBorrow_GrWrapOwnership == ownership) {
desc.fOwnership = GrBackendObjectOwnership::kBorrowed;
} else {
desc.fOwnership = GrBackendObjectOwnership::kOwned;
}
sampleCnt = caps.getRenderTargetSampleCount(sampleCnt, desc.fFormat);
SkASSERT(sampleCnt);
GrGLRenderTarget::IDs rtIDs;
if (!this->createRenderTargetObjects(desc, sampleCnt, &rtIDs)) {
return nullptr;
}
GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kDirty
: GrMipMapsStatus::kNotAllocated;
sk_sp<GrGLTextureRenderTarget> texRT(GrGLTextureRenderTarget::MakeWrapped(
this, sampleCnt, desc, backendTex.getGLTextureParams(), rtIDs, cacheable,
mipMapsStatus));
texRT->baseLevelWasBoundToFBO();
// We don't know what parameters are already set on wrapped textures.
texRT->textureParamsModified();
return texRT;
}
sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT,
GrColorType grColorType) {
GrGLFramebufferInfo info;
if (!backendRT.getGLFramebufferInfo(&info)) {
return nullptr;
}
if (backendRT.isProtected()) {
// Not supported in GL at this time.
return nullptr;
}
const auto format = backendRT.getBackendFormat().asGLFormat();
if (!this->glCaps().isFormatRenderable(format, backendRT.sampleCnt())) {
return nullptr;
}
GrGLRenderTarget::IDs rtIDs;
rtIDs.fRTFBOID = info.fFBOID;
rtIDs.fMSColorRenderbufferID = 0;
rtIDs.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
rtIDs.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed;
GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendRT.getBackendFormat(),
grColorType);
SkASSERT(kUnknown_GrPixelConfig != config);
const auto size = SkISize::Make(backendRT.width(), backendRT.height());
int sampleCount = this->glCaps().getRenderTargetSampleCount(backendRT.sampleCnt(), format);
return GrGLRenderTarget::MakeWrapped(this, size, format, config, sampleCount, rtIDs,
backendRT.stencilBits());
}
sk_sp<GrRenderTarget> GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex,
int sampleCnt,
GrColorType colorType) {
GrGLTexture::Desc desc;
// We do not check whether texture rectangle is supported by Skia - if the caller provided us
// with a texture rectangle,we assume the necessary support exists.
if (!check_backend_texture(tex, colorType, this->glCaps(), &desc, true)) {
return nullptr;
}
if (!this->glCaps().isFormatRenderable(desc.fFormat, sampleCnt)) {
return nullptr;
}
const int sampleCount = this->glCaps().getRenderTargetSampleCount(sampleCnt, desc.fFormat);
GrGLRenderTarget::IDs rtIDs;
if (!this->createRenderTargetObjects(desc, sampleCount, &rtIDs)) {
return nullptr;
}
return GrGLRenderTarget::MakeWrapped(this, desc.fSize, desc.fFormat, desc.fConfig, sampleCount,
rtIDs, 0);
}
static bool check_write_and_transfer_input(GrGLTexture* glTex) {
if (!glTex) {
return false;
}
// Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures
if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) {
return false;
}
return true;
}
bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType srcColorType,
const GrMipLevel texels[], int mipLevelCount) {
auto glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!check_write_and_transfer_input(glTex)) {
return false;
}
this->bindTextureToScratchUnit(glTex->target(), glTex->textureID());
SkASSERT(!GrGLFormatIsCompressed(glTex->format()));
return this->uploadTexData(glTex->format(), surfaceColorType, glTex->width(), glTex->height(),
glTex->target(), kWrite_UploadType, left, top,width,
height, srcColorType, texels, mipLevelCount);
}
bool GrGLGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height,
GrColorType textureColorType, GrColorType bufferColorType,
GrGpuBuffer* transferBuffer, size_t offset, size_t rowBytes) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(texture);
// Can't transfer compressed data
SkASSERT(!GrGLFormatIsCompressed(glTex->format()));
if (!check_write_and_transfer_input(glTex)) {
return false;
}
static_assert(sizeof(int) == sizeof(int32_t), "");
if (width <= 0 || height <= 0) {
return false;
}
this->bindTextureToScratchUnit(glTex->target(), glTex->textureID());
SkASSERT(!transferBuffer->isMapped());
SkASSERT(!transferBuffer->isCpuBuffer());
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer);
this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glBuffer);
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height());
SkASSERT(bounds.contains(subRect));
)
size_t bpp = GrColorTypeBytesPerPixel(bufferColorType);
const size_t trimRowBytes = width * bpp;
const void* pixels = (void*)offset;
if (width < 0 || height < 0) {
return false;
}
bool restoreGLRowLength = false;
if (trimRowBytes != rowBytes) {
// we should have checked for this support already
SkASSERT(this->glCaps().writePixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp));
restoreGLRowLength = true;
}
GrGLFormat textureFormat = glTex->format();
// Internal format comes from the texture desc.
GrGLenum internalFormat;
// External format and type come from the upload data.
GrGLenum externalFormat = 0;
GrGLenum externalType = 0;
this->glCaps().getTexImageFormats(textureFormat, textureColorType, bufferColorType,
&internalFormat, &externalFormat, &externalType);
if (!externalFormat || !externalType) {
return false;
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
GL_CALL(TexSubImage2D(glTex->target(),
0,
left, top,
width,
height,
externalFormat, externalType,
pixels));
if (restoreGLRowLength) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
return true;
}
bool GrGLGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType dstColorType,
GrGpuBuffer* transferBuffer, size_t offset) {
auto* glBuffer = static_cast<GrGLBuffer*>(transferBuffer);
this->bindBuffer(GrGpuBufferType::kXferGpuToCpu, glBuffer);
auto offsetAsPtr = reinterpret_cast<void*>(offset);
return this->readOrTransferPixelsFrom(surface, left, top, width, height, surfaceColorType,
dstColorType, offsetAsPtr, width);
}
/**
* Creates storage space for the texture and fills it with texels.
*
* @param format The format of the texture.
* @param interface The GL interface in use.
* @param caps The capabilities of the GL device.
* @param target Which bound texture to target (GR_GL_TEXTURE_2D, e.g.)
* @param internalFormat The data format used for the internal storage of the texture. May be sized.
* @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized.
* @param externalFormat The data format used for the external storage of the texture.
* @param externalType The type of the data used for the external storage of the texture.
* @param dataBpp The bytes per pixel of the data in texels.
* @param texels The texel data of the texture being created.
* @param mipLevelCount Number of mipmap levels
* @param baseWidth The width of the texture's base mipmap level
* @param baseHeight The height of the texture's base mipmap level
*/
static bool allocate_and_populate_texture(GrGLFormat format,
const GrGLInterface& interface,
const GrGLCaps& caps,
GrGLenum target,
GrGLenum internalFormat,
GrGLenum internalFormatForTexStorage,
GrGLenum externalFormat,
GrGLenum externalType,
size_t dataBpp,
const GrMipLevel texels[],
int mipLevelCount,
int baseWidth,
int baseHeight,
bool* changedUnpackRowLength,
GrMipMapsStatus* mipMapsStatus) {
CLEAR_ERROR_BEFORE_ALLOC(&interface);
if (caps.formatSupportsTexStorage(format)) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(&interface,
TexStorage2D(target, SkTMax(mipLevelCount, 1), internalFormatForTexStorage,
baseWidth, baseHeight));
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
} else {
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
const void* currentMipData = texels[currentMipLevel].fPixels;
if (currentMipData == nullptr) {
if (mipMapsStatus) {
*mipMapsStatus = GrMipMapsStatus::kDirty;
}
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
const int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
const int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
if (texels[currentMipLevel].fPixels) {
const size_t trimRowBytes = currentWidth * dataBpp;
const size_t rowBytes = texels[currentMipLevel].fRowBytes;
if (rowBytes != trimRowBytes) {
SkASSERT(caps.writePixelsRowBytesSupport());
GrGLint rowLength = static_cast<GrGLint>(rowBytes / dataBpp);
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
*changedUnpackRowLength = true;
} else if (*changedUnpackRowLength) {
SkASSERT(caps.writePixelsRowBytesSupport());
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
*changedUnpackRowLength = false;
}
}
GR_GL_CALL(&interface,
TexSubImage2D(target,
currentMipLevel,
0, // left
0, // top
currentWidth,
currentHeight,
externalFormat, externalType,
currentMipData));
}
return true;
}
} else {
if (!mipLevelCount) {
GL_ALLOC_CALL(&interface,
TexImage2D(target,
0,
internalFormat,
baseWidth,
baseHeight,
0, // border
externalFormat, externalType,
nullptr));
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
} else {
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
const int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
const int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
const void* currentMipData = texels[currentMipLevel].fPixels;
if (currentMipData) {
const size_t trimRowBytes = currentWidth * dataBpp;
const size_t rowBytes = texels[currentMipLevel].fRowBytes;
if (rowBytes != trimRowBytes) {
SkASSERT(caps.writePixelsRowBytesSupport());
GrGLint rowLength = static_cast<GrGLint>(rowBytes / dataBpp);
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
*changedUnpackRowLength = true;
} else if (*changedUnpackRowLength) {
SkASSERT(caps.writePixelsRowBytesSupport());
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
*changedUnpackRowLength = false;
}
} else if (mipMapsStatus) {
*mipMapsStatus = GrMipMapsStatus::kDirty;
}
// We are considering modifying the interface to GrGpu to no longer allow data to
// be provided when creating a texture. To test whether that is feasible for
// performance on ES2 GPUs without tex storage we're calling glTexImage2D and then
// glTexSubImage2D and hoping we don't get any performance regressions.
GL_ALLOC_CALL(&interface,
TexImage2D(target,
currentMipLevel,
internalFormat,
currentWidth,
currentHeight,
0, // border
externalFormat, externalType,
nullptr));
if (currentMipData) {
GR_GL_CALL(&interface,
TexSubImage2D(target,
currentMipLevel,
0, 0,
currentWidth,
currentHeight,
externalFormat,
externalType,
currentMipData));
}
GrGLenum error = CHECK_ALLOC_ERROR(&interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
}
}
}
return true;
}
/**
* After a texture is created, any state which was altered during its creation
* needs to be restored.
*
* @param interface The GL interface to use.
* @param caps The capabilities of the GL device.
* @param restoreGLRowLength Should the row length unpacking be restored?
* @param glFlipY Did GL flip the texture vertically?
*/
static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps,
bool restoreGLRowLength) {
if (restoreGLRowLength) {
SkASSERT(caps.writePixelsRowBytesSupport());
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
}
void GrGLGpu::unbindCpuToGpuXferBuffer() {
auto* xferBufferState = this->hwBufferState(GrGpuBufferType::kXferCpuToGpu);
if (!xferBufferState->fBoundBufferUniqueID.isInvalid()) {
GL_CALL(BindBuffer(xferBufferState->fGLTarget, 0));
xferBufferState->invalidate();
}
}
bool GrGLGpu::uploadTexData(GrGLFormat textureFormat, GrColorType textureColorType,
int texWidth, int texHeight, GrGLenum target, UploadType uploadType,
int left, int top, int width, int height, GrColorType srcColorType,
const GrMipLevel texels[],int mipLevelCount,
GrMipMapsStatus* mipMapsStatus) {
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrGLFormatIsCompressed(textureFormat));
SkASSERT(this->glCaps().isFormatTexturable(textureFormat));
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texWidth, texHeight);
SkASSERT(bounds.contains(subRect));
)
SkASSERT(1 == mipLevelCount ||
(0 == left && 0 == top && width == texWidth && height == texHeight));
this->unbindCpuToGpuXferBuffer();
const GrGLInterface* interface = this->glInterface();
const GrGLCaps& caps = this->glCaps();
size_t bpp = GrColorTypeBytesPerPixel(srcColorType);
if (width == 0 || height == 0) {
return false;
}
// Internal format comes from the texture desc.
GrGLenum internalFormat;
// External format and type come from the upload data.
GrGLenum externalFormat;
GrGLenum externalType;
this->glCaps().getTexImageFormats(textureFormat, textureColorType, srcColorType,
&internalFormat, &externalFormat, &externalType);
if (!externalFormat || !externalType) {
return false;
}
GrGLenum internalFormatForTexStorage = this->glCaps().getSizedInternalFormat(textureFormat);
/*
* Check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
if (mipMapsStatus) {
*mipMapsStatus = (mipLevelCount > 1) ?
GrMipMapsStatus::kValid : GrMipMapsStatus::kNotAllocated;
}
if (mipLevelCount) {
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
}
bool succeeded = true;
if (kNewTexture_UploadType == uploadType) {
if (0 == left && 0 == top && texWidth == width && texHeight == height) {
succeeded = allocate_and_populate_texture(
textureFormat, *interface, caps, target, internalFormat,
internalFormatForTexStorage, externalFormat, externalType, bpp, texels,
mipLevelCount, width, height, &restoreGLRowLength, mipMapsStatus);
} else {
succeeded = false;
}
} else {
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (!texels[currentMipLevel].fPixels) {
if (mipMapsStatus) {
*mipMapsStatus = GrMipMapsStatus::kDirty;
}
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
const int currentWidth = SkTMax(1, width / twoToTheMipLevel);
const int currentHeight = SkTMax(1, height / twoToTheMipLevel);
const size_t trimRowBytes = currentWidth * bpp;
const size_t rowBytes = texels[currentMipLevel].fRowBytes;
if (caps.writePixelsRowBytesSupport() && rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
GL_CALL(TexSubImage2D(target,
currentMipLevel,
left, top,
currentWidth,
currentHeight,
externalFormat, externalType,
texels[currentMipLevel].fPixels));
}
}
restore_pixelstore_state(*interface, caps, restoreGLRowLength);
return succeeded;
}
bool GrGLGpu::uploadCompressedTexData(GrGLFormat format,
SkImage::CompressionType compressionType,
const SkISize& size,
GrGLenum target,
const void* data) {
SkASSERT(format != GrGLFormat::kUnknown);
const GrGLCaps& caps = this->glCaps();
// We only need the internal format for compressed 2D textures.
GrGLenum internalFormat = caps.getTexImageInternalFormat(format);
if (!internalFormat) {
return 0;
}
bool useTexStorage = caps.formatSupportsTexStorage(format);
static constexpr int kMipLevelCount = 1;
// Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
size_t dataSize = GrCompressedDataSize(compressionType, size.width(), size.height());
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(
this->glInterface(),
TexStorage2D(target, kMipLevelCount, internalFormat, size.width(), size.height()));
GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface());
if (error != GR_GL_NO_ERROR) {
return false;
}
GL_CALL(CompressedTexSubImage2D(target,
0, // level
0, // left
0, // top
size.width(),
size.height(),
internalFormat,
SkToInt(dataSize),
data));
} else {
GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(target,
0, // level
internalFormat,
size.width(),
size.height(),
0, // border
SkToInt(dataSize),
data));
GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface());
if (error != GR_GL_NO_ERROR) {
return false;
}
}
return true;
}
static bool renderbuffer_storage_msaa(const GrGLContext& ctx,
int sampleCount,
GrGLenum format,
int width, int height) {
CLEAR_ERROR_BEFORE_ALLOC(ctx.interface());
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType());
switch (ctx.caps()->msFBOType()) {
case GrGLCaps::kStandard_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kNone_MSFBOType:
SK_ABORT("Shouldn't be here if we don't support multisampled renderbuffers.");
break;
}
return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));
}
bool GrGLGpu::createRenderTargetObjects(const GrGLTexture::Desc& desc,
int sampleCount,
GrGLRenderTarget::IDs* rtIDs) {
rtIDs->fMSColorRenderbufferID = 0;
rtIDs->fRTFBOID = 0;
rtIDs->fRTFBOOwnership = GrBackendObjectOwnership::kOwned;
rtIDs->fTexFBOID = 0;
GrGLenum status;
GrGLenum colorRenderbufferFormat = 0; // suppress warning
if (desc.fFormat == GrGLFormat::kUnknown) {
goto FAILED;
}
if (sampleCount > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &rtIDs->fTexFBOID));
if (!rtIDs->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (sampleCount > 1 && this->glCaps().usesMSAARenderBuffers()) {
GL_CALL(GenFramebuffers(1, &rtIDs->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &rtIDs->fMSColorRenderbufferID));
if (!rtIDs->fRTFBOID || !rtIDs->fMSColorRenderbufferID) {
goto FAILED;
}
colorRenderbufferFormat = this->glCaps().getRenderbufferInternalFormat(desc.fFormat);
} else {
rtIDs->fRTFBOID = rtIDs->fTexFBOID;
}
// below here we may bind the FBO
fHWBoundRenderTargetUniqueID.makeInvalid();
if (rtIDs->fRTFBOID != rtIDs->fTexFBOID) {
SkASSERT(sampleCount > 1);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, rtIDs->fMSColorRenderbufferID));
if (!renderbuffer_storage_msaa(*fGLContext, sampleCount, colorRenderbufferFormat,
desc.fSize.width(), desc.fSize.height())) {
goto FAILED;
}
this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fRTFBOID);
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
rtIDs->fMSColorRenderbufferID));
if (!this->glCaps().isFormatVerifiedColorAttachment(desc.fFormat)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markFormatAsValidColorAttachment(desc.fFormat);
}
}
this->bindFramebuffer(GR_GL_FRAMEBUFFER, rtIDs->fTexFBOID);
if (this->glCaps().usesImplicitMSAAResolve() && sampleCount > 1) {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
desc.fTarget,
desc.fID,
0,
sampleCount));
} else {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
desc.fTarget,
desc.fID,
0));
}
if (!this->glCaps().isFormatVerifiedColorAttachment(desc.fFormat)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markFormatAsValidColorAttachment(desc.fFormat);
}
return true;
FAILED:
if (rtIDs->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &rtIDs->fMSColorRenderbufferID));
}
if (rtIDs->fRTFBOID != rtIDs->fTexFBOID) {
this->deleteFramebuffer(rtIDs->fRTFBOID);
}
if (rtIDs->fTexFBOID) {
this->deleteFramebuffer(rtIDs->fTexFBOID);
}
return false;
}
// good to set a break-point here to know when createTexture fails
static sk_sp<GrTexture> return_null_texture() {
// SkDEBUGFAIL("null texture");
return nullptr;
}
static GrGLTextureParameters::SamplerOverriddenState set_initial_texture_params(
const GrGLInterface* interface, GrGLenum target) {
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTextureParameters::SamplerOverriddenState state;
state.fMinFilter = GR_GL_NEAREST;
state.fMagFilter = GR_GL_NEAREST;
state.fWrapS = GR_GL_CLAMP_TO_EDGE;
state.fWrapT = GR_GL_CLAMP_TO_EDGE;
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, state.fMagFilter));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, state.fMinFilter));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_S, state.fWrapS));
GR_GL_CALL(interface, TexParameteri(target, GR_GL_TEXTURE_WRAP_T, state.fWrapT));
return state;
}
sk_sp<GrTexture> GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc,
const GrBackendFormat& format,
GrRenderable renderable,
int renderTargetSampleCnt,
SkBudgeted budgeted,
GrProtected isProtected,
const GrMipLevel texels[],
int mipLevelCount) {
// We don't support protected textures in GL.
if (isProtected == GrProtected::kYes) {
return nullptr;
}
SkASSERT(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType() || renderTargetSampleCnt == 1);
GrMipMapsStatus mipMapsStatus;
GrGLTextureParameters::SamplerOverriddenState initialState;
GrGLTexture::Desc texDesc;
texDesc.fSize = {desc.fWidth, desc.fHeight};
texDesc.fTarget = GR_GL_TEXTURE_2D;
texDesc.fFormat = format.asGLFormat();
texDesc.fConfig = desc.fConfig;
texDesc.fOwnership = GrBackendObjectOwnership::kOwned;
SkASSERT(texDesc.fFormat != GrGLFormat::kUnknown);
SkASSERT(!GrGLFormatIsCompressed(texDesc.fFormat));
// TODO: Take these as parameters.
auto textureColorType = GrPixelConfigToColorType(desc.fConfig);
auto srcColorType = GrPixelConfigToColorType(desc.fConfig);
texDesc.fID = this->createTexture2D({desc.fWidth, desc.fHeight},
texDesc.fFormat,
renderable,
&initialState,
textureColorType,
srcColorType,
texels,
mipLevelCount,
&mipMapsStatus);
if (!texDesc.fID) {
return return_null_texture();
}
sk_sp<GrGLTexture> tex;
if (renderable == GrRenderable::kYes) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(texDesc.fTarget, 0));
GrGLRenderTarget::IDs rtIDDesc;
if (!this->createRenderTargetObjects(texDesc, renderTargetSampleCnt, &rtIDDesc)) {
GL_CALL(DeleteTextures(1, &texDesc.fID));
return return_null_texture();
}
tex = sk_make_sp<GrGLTextureRenderTarget>(
this, budgeted, renderTargetSampleCnt, texDesc, rtIDDesc, mipMapsStatus);
tex->baseLevelWasBoundToFBO();
} else {
tex = sk_make_sp<GrGLTexture>(this, budgeted, texDesc, mipMapsStatus);
}
// The non-sampler params are still at their default values.
tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
bool clearLevelsWithoutData =
this->caps()->shouldInitializeTextures() && this->glCaps().clearTextureSupport();
if (clearLevelsWithoutData) {
static constexpr uint32_t kZero = 0;
int levelCnt = SkTMax(1, tex->texturePriv().maxMipMapLevel());
for (int i = 0; i < levelCnt; ++i) {
if (i >= mipLevelCount || !texels[i].fPixels) {
GL_CALL(ClearTexImage(tex->textureID(), i, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE,
&kZero));
}
}
}
return tex;
}
sk_sp<GrTexture> GrGLGpu::onCreateCompressedTexture(int width, int height,
const GrBackendFormat& format,
SkImage::CompressionType compression,
SkBudgeted budgeted, const void* data) {
GrGLTextureParameters::SamplerOverriddenState initialState;
GrGLTexture::Desc desc;
desc.fSize = {width, height};
desc.fTarget = GR_GL_TEXTURE_2D;
desc.fConfig = GrCompressionTypePixelConfig(compression);
desc.fOwnership = GrBackendObjectOwnership::kOwned;
desc.fFormat = format.asGLFormat();
desc.fID = this->createCompressedTexture2D(desc.fSize, desc.fFormat, compression, &initialState,
data);
if (!desc.fID) {
return nullptr;
}
auto tex = sk_make_sp<GrGLTexture>(this, budgeted, desc, GrMipMapsStatus::kNotAllocated);
// The non-sampler params are still at their default values.
tex->parameters()->set(&initialState, GrGLTextureParameters::NonsamplerState(),
fResetTimestampForTextureParameters);
return tex;
}
namespace {
const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount;
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLStencilAttachment::Format* format) {
// we shouldn't ever know one size and not the other
SkASSERT((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
int GrGLGpu::getCompatibleStencilIndex(GrGLFormat format) {
static const int kSize = 16;
SkASSERT(this->glCaps().canFormatBeFBOColorAttachment(format));
if (!this->glCaps().hasStencilFormatBeenDeterminedForFormat(format)) {
// Default to unsupported, set this if we find a stencil format that works.
int firstWorkingStencilFormatIndex = -1;
// Create color texture
GrGLuint colorID = 0;
GL_CALL(GenTextures(1, &colorID));
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, colorID);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat = this->glCaps().getTexImageInternalFormat(format);
GrGLenum externalFormat = this->glCaps().getBaseInternalFormat(format);
GrGLenum externalType = this->glCaps().getFormatDefaultExternalType(format);
if (!internalFormat || !externalFormat || !externalType) {
return -1;
}
this->unbindCpuToGpuXferBuffer();
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D,
0,
internalFormat,
kSize,
kSize,
0,
externalFormat,
externalType,
nullptr));
if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(DeleteTextures(1, &colorID));
return -1;
}
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
// Create Framebuffer
GrGLuint fb = 0;
GL_CALL(GenFramebuffers(1, &fb));
this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb);
fHWBoundRenderTargetUniqueID.makeInvalid();
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
colorID,
0));
GrGLuint sbRBID = 0;
GL_CALL(GenRenderbuffers(1, &sbRBID));
// look over formats till I find a compatible one
int stencilFmtCnt = this->glCaps().stencilFormats().count();
if (sbRBID) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID));
for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) {
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
kSize, kSize));
if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status == GR_GL_FRAMEBUFFER_COMPLETE) {
firstWorkingStencilFormatIndex = i;
break;
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
}
}
GL_CALL(DeleteRenderbuffers(1, &sbRBID));
}
GL_CALL(DeleteTextures(1, &colorID));
this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0);
this->deleteFramebuffer(fb);
fGLContext->caps()->setStencilFormatIndexForFormat(format, firstWorkingStencilFormatIndex);
}
return this->glCaps().getStencilFormatIndexForFormat(format);
}
GrGLuint GrGLGpu::createCompressedTexture2D(
const SkISize& size,
GrGLFormat format,
SkImage::CompressionType compression,
GrGLTextureParameters::SamplerOverriddenState* initialState,
const void* data) {
if (format == GrGLFormat::kUnknown) {
return 0;
}
GrGLuint id = 0;
GL_CALL(GenTextures(1, &id));
if (!id) {
return 0;
}
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, id);
*initialState = set_initial_texture_params(this->glInterface(), GR_GL_TEXTURE_2D);
if (!this->uploadCompressedTexData(format, compression, size, GR_GL_TEXTURE_2D, data)) {
GL_CALL(DeleteTextures(1, &id));
return 0;
}
return id;
}
GrGLuint GrGLGpu::createTexture2D(const SkISize& size,
GrGLFormat format,
GrRenderable renderable,
GrGLTextureParameters::SamplerOverriddenState* initialState,
GrColorType textureColorType,
GrColorType srcColorType,
const GrMipLevel texels[],
int mipLevelCount,
GrMipMapsStatus* mipMapsStatus) {
SkASSERT(format != GrGLFormat::kUnknown);
SkASSERT(!GrGLFormatIsCompressed(format));
GrGLuint id = 0;
GL_CALL(GenTextures(1, &id));
if (!id) {
return 0;
}
this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, id);
if (GrRenderable::kYes == renderable && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT));
}
*initialState = set_initial_texture_params(this->glInterface(), GR_GL_TEXTURE_2D);
if (!this->uploadTexData(format,
textureColorType,
size.width(), size.height(),
GR_GL_TEXTURE_2D,
kNewTexture_UploadType,
0,
0,
size.width(),
size.height(),
srcColorType,
texels,
mipLevelCount,
mipMapsStatus)) {
GL_CALL(DeleteTextures(1, &id));
return 0;
}
return id;
}
GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(
const GrRenderTarget* rt, int width, int height, int numStencilSamples) {
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
GrGLStencilAttachment::IDDesc sbDesc;
int sIdx = this->getCompatibleStencilIndex(rt->backendFormat().asGLFormat());
if (sIdx < 0) {
return nullptr;
}
if (!sbDesc.fRenderbufferID) {
GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID));
}
if (!sbDesc.fRenderbufferID) {
return nullptr;
}
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
if (numStencilSamples > 1) {
SkAssertResult(renderbuffer_storage_msaa(*fGLContext,
numStencilSamples,
sFmt.fInternalFormat,
width, height));
} else {
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
SkASSERT(GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface()));
}
fStats.incStencilAttachmentCreates();
// After sized formats we attempt an unsized format and take
// whatever sizes GL gives us. In that case we query for the size.
GrGLStencilAttachment::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), &format);
GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this,
sbDesc,
width,
height,
numStencilSamples,
format);
return stencil;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpuBuffer> GrGLGpu::onCreateBuffer(size_t size, GrGpuBufferType intendedType,
GrAccessPattern accessPattern, const void* data) {
return GrGLBuffer::Make(this, size, intendedType, accessPattern, data);
}
void GrGLGpu::flushScissor(const GrScissorState& scissorState, int rtWidth, int rtHeight,
GrSurfaceOrigin rtOrigin) {
if (scissorState.enabled()) {
GrGLIRect scissor;
scissor.setRelativeTo(rtHeight, scissorState.rect(), rtOrigin);
// if the scissor fully contains the viewport then we fall through and
// disable the scissor test.
if (!scissor.contains(rtWidth, rtHeight)) {
if (fHWScissorSettings.fRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWScissorSettings.fRect = scissor;
}
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
return;
}
}
// See fall through note above
this->disableScissor();
}
void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState,
const GrGLRenderTarget* rt, GrSurfaceOrigin origin) {
#ifndef USE_NSIGHT
typedef GrWindowRectsState::Mode Mode;
SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen.
SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles());
if (!this->caps()->maxWindowRectangles() ||
fHWWindowRectsState.knownEqualTo(origin, rt->width(), rt->height(), windowState)) {
return;
}
// This is purely a workaround for a spurious warning generated by gcc. Otherwise the above
// assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912
int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows));
SkASSERT(windowState.numWindows() == numWindows);
GrGLIRect glwindows[GrWindowRectangles::kMaxWindows];
const SkIRect* skwindows = windowState.windows().data();
for (int i = 0; i < numWindows; ++i) {
glwindows[i].setRelativeTo(rt->height(), skwindows[i], origin);
}
GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE;
GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts()));
fHWWindowRectsState.set(origin, rt->width(), rt->height(), windowState);
#endif
}
void GrGLGpu::disableWindowRectangles() {
#ifndef USE_NSIGHT
if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) {
return;
}
GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr));
fHWWindowRectsState.setDisabled();
#endif
}
void GrGLGpu::resolveAndGenerateMipMapsForProcessorTextures(
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrTextureProxy* const primProcTextures[],
int numPrimitiveProcessorTextureSets) {
auto genLevelsIfNeeded = [this](GrTexture* tex, const GrSamplerState& sampler) {
SkASSERT(tex);
auto* rt = tex->asRenderTarget();
if (rt && rt->needsResolve()) {
this->resolveRenderTarget(rt);
// TEMPORARY: MSAA resolve will have dirtied mipmaps. This goes away once we switch
// to resolving MSAA from the opList as well.
if (GrSamplerState::Filter::kMipMap == sampler.filter() &&
(tex->width() != 1 || tex->height() != 1)) {
SkASSERT(tex->texturePriv().mipMapped() == GrMipMapped::kYes);
SkASSERT(tex->texturePriv().mipMapsAreDirty());
this->regenerateMipMapLevels(tex);
}
}
// Ensure mipmaps were all resolved ahead of time by the opList.
if (GrSamplerState::Filter::kMipMap == sampler.filter() &&
(tex->width() != 1 || tex->height() != 1)) {
// There are some cases where we might be given a non-mipmapped texture with a mipmap
// filter. See skbug.com/7094.
SkASSERT(tex->texturePriv().mipMapped() != GrMipMapped::kYes ||
!tex->texturePriv().mipMapsAreDirty());
}
};
for (int set = 0, tex = 0; set < numPrimitiveProcessorTextureSets; ++set) {
for (int sampler = 0; sampler < primProc.numTextureSamplers(); ++sampler, ++tex) {
GrTexture* texture = primProcTextures[tex]->peekTexture();
genLevelsIfNeeded(texture, primProc.textureSampler(sampler).samplerState());
}
}
GrFragmentProcessor::Iter iter(pipeline);
while (const GrFragmentProcessor* fp = iter.next()) {
for (int i = 0; i < fp->numTextureSamplers(); ++i) {
const auto& textureSampler = fp->textureSampler(i);
genLevelsIfNeeded(textureSampler.peekTexture(), textureSampler.samplerState());
}
}
}
bool GrGLGpu::flushGLState(GrRenderTarget* renderTarget,
GrSurfaceOrigin origin,
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrPipeline::FixedDynamicState* fixedDynamicState,
const GrPipeline::DynamicStateArrays* dynamicStateArrays,
int dynamicStateArraysLength,
bool willDrawPoints) {
const GrTextureProxy* const* primProcProxiesForMipRegen = nullptr;
const GrTextureProxy* const* primProcProxiesToBind = nullptr;
int numPrimProcTextureSets = 1; // number of texture per prim proc sampler.
if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) {
primProcProxiesForMipRegen = dynamicStateArrays->fPrimitiveProcessorTextures;
numPrimProcTextureSets = dynamicStateArraysLength;
} else if (fixedDynamicState && fixedDynamicState->fPrimitiveProcessorTextures) {
primProcProxiesForMipRegen = fixedDynamicState->fPrimitiveProcessorTextures;
primProcProxiesToBind = fixedDynamicState->fPrimitiveProcessorTextures;
}
SkASSERT(SkToBool(primProcProxiesForMipRegen) == SkToBool(primProc.numTextureSamplers()));
sk_sp<GrGLProgram> program(fProgramCache->refProgram(this, renderTarget, origin, primProc,
primProcProxiesForMipRegen,
pipeline, willDrawPoints));
if (!program) {
GrCapsDebugf(this->caps(), "Failed to create program!\n");
return false;
}
this->resolveAndGenerateMipMapsForProcessorTextures(
primProc, pipeline, primProcProxiesForMipRegen, numPrimProcTextureSets);
this->flushProgram(std::move(program));
// Swizzle the blend to match what the shader will output.
this->flushBlendAndColorWrite(
pipeline.getXferProcessor().getBlendInfo(), pipeline.outputSwizzle());
fHWProgram->updateUniformsAndTextureBindings(renderTarget, origin,
primProc, pipeline, primProcProxiesToBind);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget);
GrStencilSettings stencil;
if (pipeline.isStencilEnabled()) {
// TODO: attach stencil and create settings during render target flush.
SkASSERT(glRT->renderTargetPriv().getStencilAttachment());
stencil.reset(*pipeline.getUserStencil(), pipeline.hasStencilClip(),
glRT->renderTargetPriv().numStencilBits());
}
this->flushStencil(stencil, origin);
if (pipeline.isScissorEnabled()) {
static constexpr SkIRect kBogusScissor{0, 0, 1, 1};
GrScissorState state(fixedDynamicState ? fixedDynamicState->fScissorRect : kBogusScissor);
this->flushScissor(state, glRT->width(), glRT->height(), origin);
} else {
this->disableScissor();
}
this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT, origin);
this->flushHWAAState(glRT, pipeline.isHWAntialiasState());
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(glRT);
return true;
}
void GrGLGpu::flushProgram(sk_sp<GrGLProgram> program) {
if (!program) {
fHWProgram.reset();
fHWProgramID = 0;
return;
}
SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID()));
if (program == fHWProgram) {
return;
}
auto id = program->programID();
SkASSERT(id);
GL_CALL(UseProgram(id));
fHWProgram = std::move(program);
fHWProgramID = id;
}
void GrGLGpu::flushProgram(GrGLuint id) {
SkASSERT(id);
if (fHWProgramID == id) {
SkASSERT(!fHWProgram);
return;
}
fHWProgram.reset();
GL_CALL(UseProgram(id));
fHWProgramID = id;
}
void GrGLGpu::setupGeometry(const GrBuffer* indexBuffer,
const GrBuffer* vertexBuffer,
int baseVertex,
const GrBuffer* instanceBuffer,
int baseInstance,
GrPrimitiveRestart enablePrimitiveRestart) {
SkASSERT((enablePrimitiveRestart == GrPrimitiveRestart::kNo) || indexBuffer);
GrGLAttribArrayState* attribState;
if (indexBuffer) {
SkASSERT(indexBuffer->isCpuBuffer() ||
!static_cast<const GrGpuBuffer*>(indexBuffer)->isMapped());
attribState = fHWVertexArrayState.bindInternalVertexArray(this, indexBuffer);
} else {
attribState = fHWVertexArrayState.bindInternalVertexArray(this);
}
int numAttribs = fHWProgram->numVertexAttributes() + fHWProgram->numInstanceAttributes();
attribState->enableVertexArrays(this, numAttribs, enablePrimitiveRestart);
if (int vertexStride = fHWProgram->vertexStride()) {
SkASSERT(vertexBuffer);
SkASSERT(vertexBuffer->isCpuBuffer() ||
!static_cast<const GrGpuBuffer*>(vertexBuffer)->isMapped());
size_t bufferOffset = baseVertex * static_cast<size_t>(vertexStride);
for (int i = 0; i < fHWProgram->numVertexAttributes(); ++i) {
const auto& attrib = fHWProgram->vertexAttribute(i);
static constexpr int kDivisor = 0;
attribState->set(this, attrib.fLocation, vertexBuffer, attrib.fCPUType, attrib.fGPUType,
vertexStride, bufferOffset + attrib.fOffset, kDivisor);
}
}
if (int instanceStride = fHWProgram->instanceStride()) {
SkASSERT(instanceBuffer);
SkASSERT(instanceBuffer->isCpuBuffer() ||
!static_cast<const GrGpuBuffer*>(instanceBuffer)->isMapped());
size_t bufferOffset = baseInstance * static_cast<size_t>(instanceStride);
int attribIdx = fHWProgram->numVertexAttributes();
for (int i = 0; i < fHWProgram->numInstanceAttributes(); ++i, ++attribIdx) {
const auto& attrib = fHWProgram->instanceAttribute(i);
static constexpr int kDivisor = 1;
attribState->set(this, attrib.fLocation, instanceBuffer, attrib.fCPUType,
attrib.fGPUType, instanceStride, bufferOffset + attrib.fOffset,
kDivisor);
}
}
}
GrGLenum GrGLGpu::bindBuffer(GrGpuBufferType type, const GrBuffer* buffer) {
this->handleDirtyContext();
// Index buffer state is tied to the vertex array.
if (GrGpuBufferType::kIndex == type) {
this->bindVertexArray(0);
}
auto* bufferState = this->hwBufferState(type);
if (buffer->isCpuBuffer()) {
if (!bufferState->fBufferZeroKnownBound) {
GL_CALL(BindBuffer(bufferState->fGLTarget, 0));
bufferState->fBufferZeroKnownBound = true;
bufferState->fBoundBufferUniqueID.makeInvalid();
}
} else if (static_cast<const GrGpuBuffer*>(buffer)->uniqueID() !=
bufferState->fBoundBufferUniqueID) {
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer);
GL_CALL(BindBuffer(bufferState->fGLTarget, glBuffer->bufferID()));
bufferState->fBufferZeroKnownBound = false;
bufferState->fBoundBufferUniqueID = glBuffer->uniqueID();
}
return bufferState->fGLTarget;
}
void GrGLGpu::disableScissor() {
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
return;
}
}
void GrGLGpu::clear(const GrFixedClip& clip, const SkPMColor4f& color,
GrRenderTarget* target, GrSurfaceOrigin origin) {
// parent class should never let us get here with no RT
SkASSERT(target);
SkASSERT(!this->caps()->performColorClearsAsDraws());
SkASSERT(!clip.scissorEnabled() || !this->caps()->performPartialClearsAsDraws());
this->handleDirtyContext();
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
if (clip.scissorEnabled()) {
this->flushRenderTarget(glRT, origin, clip.scissorRect());
} else {
this->flushRenderTarget(glRT);
}
this->flushScissor(clip.scissorState(), glRT->width(), glRT->height(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glRT, origin);
this->flushColorWrite(true);
GrGLfloat r = color.fR, g = color.fG, b = color.fB, a = color.fA;
if (this->glCaps().clearToBoundaryValuesIsBroken() &&
(1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) {
static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f);
static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f);
a = (1 == a) ? safeAlpha1 : safeAlpha0;
}
this->flushClearColor(r, g, b, a);
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGLGpu::clearStencil(GrRenderTarget* target, int clearValue) {
SkASSERT(!this->caps()->performStencilClearsAsDraws());
if (!target) {
return;
}
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTargetNoColorWrites(glRT);
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(clearValue));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
if (!clearValue) {
sb->cleared();
}
}
void GrGLGpu::clearStencilClip(const GrFixedClip& clip,
bool insideStencilMask,
GrRenderTarget* target, GrSurfaceOrigin origin) {
SkASSERT(target);
SkASSERT(!this->caps()->performStencilClearsAsDraws());
this->handleDirtyContext();
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLint stencilBitCount = sb->bits();
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrOpList says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideStencilMask) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTargetNoColorWrites(glRT);
this->flushScissor(clip.scissorState(), glRT->width(), glRT->height(), origin);
this->flushWindowRectangles(clip.windowRectsState(), glRT, origin);
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
bool GrGLGpu::readOrTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType dstColorType,
void* offsetOrPtr, int rowWidthInPixels) {
SkASSERT(surface);
auto format = surface->backendFormat().asGLFormat();
GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!renderTarget && !this->glCaps().isFormatRenderable(format, 1)) {
return false;
}
GrGLenum externalFormat = 0;
GrGLenum externalType = 0;
this->glCaps().getReadPixelsFormat(surface->backendFormat().asGLFormat(),
surfaceColorType,
dstColorType,
&externalFormat,
&externalType);
if (!externalFormat || !externalType) {
return false;
}
if (renderTarget) {
// resolve the render target if necessary
switch (renderTarget->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
this->flushRenderTargetNoColorWrites(renderTarget);
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->onResolveRenderTarget(renderTarget);
// we don't track the state of the READ FBO ID.
this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID());
break;
default:
SK_ABORT("Unknown resolve type");
}
} else {
// Use a temporary FBO.
this->bindSurfaceFBOForPixelOps(surface, GR_GL_FRAMEBUFFER, kSrc_TempFBOTarget);
fHWBoundRenderTargetUniqueID.makeInvalid();
}
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(surface->height(), left, top, width, height, kTopLeft_GrSurfaceOrigin);
// determine if GL can read using the passed rowBytes or if we need a scratch buffer.
if (rowWidthInPixels != width) {
SkASSERT(this->glCaps().readPixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowWidthInPixels));
}
GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, 1));
bool reattachStencil = false;
if (this->glCaps().detachStencilFromMSAABuffersBeforeReadPixels() &&
renderTarget &&
renderTarget->renderTargetPriv().getStencilAttachment() &&
renderTarget->numSamples() > 1) {
// Fix Adreno devices that won't read from MSAA framebuffers with stencil attached
reattachStencil = true;
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight,
externalFormat, externalType, offsetOrPtr));
if (reattachStencil) {
GrGLStencilAttachment* stencilAttachment = static_cast<GrGLStencilAttachment*>(
renderTarget->renderTargetPriv().getStencilAttachment());
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, stencilAttachment->renderbufferID()));
}
if (rowWidthInPixels != width) {
SkASSERT(this->glCaps().readPixelsRowBytesSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (!renderTarget) {
this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, surface);
}
return true;
}
bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType dstColorType, void* buffer,
size_t rowBytes) {
SkASSERT(surface);
size_t bytesPerPixel = GrColorTypeBytesPerPixel(dstColorType);
// GL_PACK_ROW_LENGTH is in terms of pixels not bytes.
int rowPixelWidth;
if (rowBytes == SkToSizeT(width * bytesPerPixel)) {
rowPixelWidth = width;
} else {
SkASSERT(!(rowBytes % bytesPerPixel));
rowPixelWidth = rowBytes / bytesPerPixel;
}
return this->readOrTransferPixelsFrom(surface, left, top, width, height, surfaceColorType,
dstColorType, buffer, rowPixelWidth);
}
GrGpuRTCommandBuffer* GrGLGpu::getCommandBuffer(
GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds,
const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) {
if (!fCachedRTCommandBuffer) {
fCachedRTCommandBuffer.reset(new GrGLGpuRTCommandBuffer(this));
}
fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo);
return fCachedRTCommandBuffer.get();
}
GrGpuTextureCommandBuffer* GrGLGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) {
if (!fCachedTexCommandBuffer) {
fCachedTexCommandBuffer.reset(new GrGLGpuTextureCommandBuffer(this));
}
fCachedTexCommandBuffer->set(texture, origin);
return fCachedTexCommandBuffer.get();
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, GrSurfaceOrigin origin,
const SkIRect& bounds) {
this->flushRenderTargetNoColorWrites(target);
this->didWriteToSurface(target, origin, &bounds);
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target) {
this->flushRenderTargetNoColorWrites(target);
this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr);
}
void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target) {
SkASSERT(target);
GrGpuResource::UniqueID rtID = target->uniqueID();
if (fHWBoundRenderTargetUniqueID != rtID) {
this->bindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID());
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (kChromium_GrGLDriver != this->glContext().driver()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
}
#endif
fHWBoundRenderTargetUniqueID = rtID;
this->flushViewport(target->width(), target->height());
}
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(this->caps()->isFormatSRGB(target->backendFormat()));
}
}
void GrGLGpu::flushFramebufferSRGB(bool enable) {
if (enable && kYes_TriState != fHWSRGBFramebuffer) {
GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kYes_TriState;
} else if (!enable && kNo_TriState != fHWSRGBFramebuffer) {
GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kNo_TriState;
}
}
void GrGLGpu::flushViewport(int width, int height) {
GrGLIRect viewport = {0, 0, width, height};
if (fHWViewport != viewport) {
viewport.pushToGLViewport(this->glInterface());
fHWViewport = viewport;
}
}
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if defined(SK_BUILD_FOR_MAC)
#include <AGL/agl.h>
#elif defined(SK_BUILD_FOR_WIN)
#include <gl/GL.h>
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGLGpu::draw(GrRenderTarget* renderTarget, GrSurfaceOrigin origin,
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrPipeline::FixedDynamicState* fixedDynamicState,
const GrPipeline::DynamicStateArrays* dynamicStateArrays,
const GrMesh meshes[],
int meshCount) {
this->handleDirtyContext();
bool hasPoints = false;
for (int i = 0; i < meshCount; ++i) {
if (meshes[i].primitiveType() == GrPrimitiveType::kPoints) {
hasPoints = true;
break;
}
}
if (!this->flushGLState(renderTarget, origin, primProc, pipeline, fixedDynamicState,
dynamicStateArrays, meshCount, hasPoints)) {
return;
}
bool dynamicScissor = false;
bool dynamicPrimProcTextures = false;
if (dynamicStateArrays) {
dynamicScissor = pipeline.isScissorEnabled() && dynamicStateArrays->fScissorRects;
dynamicPrimProcTextures = dynamicStateArrays->fPrimitiveProcessorTextures;
}
for (int m = 0; m < meshCount; ++m) {
if (GrXferBarrierType barrierType = pipeline.xferBarrierType(renderTarget->asTexture(),
*this->caps())) {
this->xferBarrier(renderTarget, barrierType);
}
if (dynamicScissor) {
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget);
this->flushScissor(GrScissorState(dynamicStateArrays->fScissorRects[m]),
glRT->width(), glRT->height(), origin);
}
if (dynamicPrimProcTextures) {
auto texProxyArray = dynamicStateArrays->fPrimitiveProcessorTextures +
m * primProc.numTextureSamplers();
fHWProgram->updatePrimitiveProcessorTextureBindings(primProc, texProxyArray);
}
if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() &&
GrIsPrimTypeLines(meshes[m].primitiveType()) &&
!GrIsPrimTypeLines(fLastPrimitiveType)) {
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(Disable(GR_GL_CULL_FACE));
}
meshes[m].sendToGpu(this);
fLastPrimitiveType = meshes[m].primitiveType();
}
#if SWAP_PER_DRAW
glFlush();
#if defined(SK_BUILD_FOR_MAC)
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif defined(SK_BUILD_FOR_WIN)
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
static GrGLenum gr_primitive_type_to_gl_mode(GrPrimitiveType primitiveType) {
switch (primitiveType) {
case GrPrimitiveType::kTriangles:
return GR_GL_TRIANGLES;
case GrPrimitiveType::kTriangleStrip:
return GR_GL_TRIANGLE_STRIP;
case GrPrimitiveType::kPoints:
return GR_GL_POINTS;
case GrPrimitiveType::kLines:
return GR_GL_LINES;
case GrPrimitiveType::kLineStrip:
return GR_GL_LINE_STRIP;
case GrPrimitiveType::kLinesAdjacency:
return GR_GL_LINES_ADJACENCY;
}
SK_ABORT("invalid GrPrimitiveType");
}
void GrGLGpu::sendMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* vertexBuffer,
int vertexCount, int baseVertex) {
const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType);
if (this->glCaps().drawArraysBaseVertexIsBroken()) {
this->setupGeometry(nullptr, vertexBuffer, baseVertex, nullptr, 0, GrPrimitiveRestart::kNo);
GL_CALL(DrawArrays(glPrimType, 0, vertexCount));
} else {
this->setupGeometry(nullptr, vertexBuffer, 0, nullptr, 0, GrPrimitiveRestart::kNo);
GL_CALL(DrawArrays(glPrimType, baseVertex, vertexCount));
}
fStats.incNumDraws();
}
static const GrGLvoid* element_ptr(const GrBuffer* indexBuffer, int baseIndex) {
size_t baseOffset = baseIndex * sizeof(uint16_t);
if (indexBuffer->isCpuBuffer()) {
return static_cast<const GrCpuBuffer*>(indexBuffer)->data() + baseOffset;
} else {